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ABSTRACT

Smart contracts are programmable, decentralized and transparent
financial applications. Because smart contract platforms typically
support Turing-complete programming languages, such systems
are often said to enable arbitrary applications. However, the current
permissionless smart contract systems impose heavy restrictions
on the types of computations that can be implemented. For example,
the globally-replicated and sequential execution model of Ethereum
requires gas limits that make many computations infeasible.

In this paper, we propose a novel system called ACE whose main
goal is to enable more complex smart contracts on permissionless
blockchains. ACE is based on an off-chain execution model where
the contract issuers appoint a set of service providers to execute the
contract code independent from the consensus layer. The primary
advantage of ACE over previous solutions is that it allows one con-
tract to safely call another contract that is executed by a different
set of service providers. Thus, ACE is the first solution to enable off-
chain execution of interactive smart contracts with flexible trust as-
sumptions. Our evaluation shows that ACE enables several orders of
magnitude more complex smart contracts than standard Ethereum.

1 INTRODUCTION

After Bitcoin [30] became the first permissionless cryptocurrency
and popularized Blockchain technology, Ethereum [36] extended
the concept to smart contracts. Smart contracts are programs that
allow contract participants to load blockchain-based currency to a
contract-controlled account. The contract’s code defines rules and
conditions under which its funds will then be transferred out of
the contract, typically to one of the contract participants.

It is commonly argued that smart contracts provide significant
advantages over traditional financial instruments. One advantage
is their generality: since smart contracts are programmable, they
should enable arbitrary financial applications on blockchains. The
second is improved transparency: smart contract code and execu-
tion is verifiable by anyone from the public blockchain, unlike in
traditional business applications. And the third is strong liveness:
contract execution is not controlled by one or few entities, but
rather by a large permissionless system.

While these properties are indeed an attractive offering for build-
ing novel financial applications, the currently available smart con-
tract systems fail to realize them fully. For example, Ethereum, in
principle, allows arbitrary contracts through a Turing complete
language, but in practice it heavily limits contract complexity. Such
limits are necessary, because Ethereum is based on sequential and

globally-replicated execution model, where every miner should
execute all contract calls of the latest block before finding the next.

To prevent excessive delays, Ethereum uses a metric called gas

to measure execution complexity. If a contract call surpasses a
specified limit, its execution is aborted which effectively limits the
types of computation that can be implemented. For example, the
simple task of sorting 256 integers with selection sort requires 17M
gas while the current limit for each block is 8M. Quick sort hits
the limit after 2,000 elements. More complex applications, such as
decentralized blockchain oracles [33], become quickly infeasible.

The main goal of our work is to lift such execution limits and
to enable safe execution of more complex smart contracts for per-
missionless blockchain systems like Ethereum, while maintaining
smart contracts’ transparency and good liveness.

Previous work. Because Ethereum’s execution model is both ex-
pensive and slow, recent research has explored alternative ways to
execute contracts on permissionless blockchains.

YODA [14] proposes a randomly-sampled model that supports
asynchronous execution of contract calls. For each contract call,
a subset of miners are chosen randomly to execute the contract
code independently of the mining process and return the results in
form of a new transaction. Arbitrum [25] suggests a model where
the contract creator appoints a small set of verifiers who should
check execution integrity off-chain. Thus, Arbitrum replaces the se-
quential and globally-replicated execution model of Ethereum with
one where different contracts can be executed (and thus verified)
asynchronously by only few parties who may have an interest in
the contract’s integrity. Ekiden [11] uses Trusted Execution Envi-
ronments (TEEs), namely SGX enclaves, to execute smart contracts.
The main motivation of Ekiden is to enable confidential contracts,
rather than complex ones, but since execution is decoupled from
consensus, Ekiden can serve this purpose as well.

To draw an analogy to distributed database systems, in the above
solutions, contract calls are transactions that are executed in sep-
arate partitions that are either standard PCs or TEEs, chosen based
on random sampling or by appointment. However, none of the
above works addresses safe and concurrent execution of transac-
tions that cross partitions, i.e., cases where a contract executed in
one partition calls a contract managed by another partition.

Many current Ethereum contracts call other contracts and change
their state. Executing such contracts without concurrency control

can leave the contracts in an inconsistent state, as is well-known
from distributed databases [5]. Thus, none of the previous solutions
enable safe execution of many current Ethereum contracts.
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Our solution. In this paper, we propose a novel system that we
call ACE (for Asynchronous and Concurent Execution of Complex

Smart Contracts). ACE combines elements from previous systems.
As in YODA, ACE executes contracts asynchronously off-chain, de-
coupled from the consensus process. Similar to Arbitrum, execution
is performed by a set of service providers that are appointed by the
contract’s issuer. And, like in Ekiden, ACE runs contracts inside
SGX enclaves to increase trust on each service provider.

Such model allows execution of complex contracts without slow-
ing down the consensus process and enables flexible trust assump-
tions and liveness guarantees. Contract issuers can choose an ap-
propriate set of service providers for each contract separately and
users are free to choose which service providers they trust for
contract safety and liveness. This execution model allows to use
a digital currency provided by a permissionless blockchain, with
its transparency and integrity guarantees, while benefiting from
higher efficiency and more flexibility from the off-chain execution.

ACE has also noteworthy differences to previous systems. Unlike
Arbitrum, where service providers must reach unanimous agree-
ment on the execution results (or the system falls back to an ex-
pensive on-chain verification), we enable more flexible verification,
where execution results are accepted if at least t out of n service
providers report the same result. In contrast to Ekiden, ACE does not
require that all TEEs are fully trusted for integrity, and our model
is resistant to compromise of individual SGX platforms which has
been shown to be a relevant threat [9, 10]. And finally, unlike previ-
ous solutions, ACE supports cross-partition transactions, and thus
enables safe and efficient execution of contracts that interact across
service provider boundaries.

Concurrency control has been studied extensively in the context
of database systems. Classical solutions include two-phase lock-
ing [16] and optimistic concurrency control [27]. Recent research
has proposed deterministic alternatives [35], where transactions
are pre-ordered before execution. The main benefit of such sys-
tems is that they avoid the need for expensive distributed commit
protocols that require multiple rounds of communication between
the involved partitions. Our observation is that the deterministic
approach provides also a good basis for off-chain smart contract
execution and we tailor such schemes for our purpose.

In particular, we augment the typical block structure with sepa-
rate ordering and result sections. When a miner creates a new block,
it pre-orders transactions for execution. Service providers exam-
ine new blocks and if the ordering section contains transactions
with calls to their contracts, they execute them off-chain. Typically,
concurrency control solutions require expensive synchronization
between partitions, like distributed commit protocols. We avoid
this cost by leveraging the pre-assigned order and broadcasting
not yet committed transaction execution results to the peer-to-peer
network. Once a transaction is fully executed, service providers
sign a state-change transaction. Miners accept state changes signed
by at least t service providers and include it in the result section
of one of the next blocks which commits the transaction.

Main results.We implemented a prototype of ACE that has two
main components: the concurrency-control protocol and EVM im-
plementation that runs inside SGX enclaves.

The primary goal of ACE is to enable more complex contracts. To
evaluate this aspect, we simulated the asynchronous off-chain exe-
cution of ACE and the sequential and globally-replicated execution
used in Ethereum. Our results show that ACE enables contract calls
that take several orders of magnitude longer to execute (e.g., minutes
instead of milliseconds) with similar system throughput. Therefore,
ACE significantly improves the first main advantage of smart con-
tracts, the ability to implement arbitrary financial applications on
blockchain currencies.

The other two common advantages of smart contracts are im-
proved transparency and liveness. ACE preserves the transparency,
because contracts are executed by SGX enclaves and any entity
who examines the chain can verify enclave code integrity through
SGX attestation that is publicly recorded on the chain. Naturally,
ACE cannot provide similar liveness guarantee as Ethereum, since
its contracts are executed by a set of pre-named entities instead of a
permissionless network. However, ACE still provides a strong and
adjustable liveness guarantee, where contract calls are guaranteed
to complete, as long as at mostn−t service providers are unavailable.

Contributions. To summarize, this paper makes the following
contributions:

• ACE system.We propose novel a system called ACE for off-
chain execution of complex smart contracts on permission-
less blockchains like Ethereum. The key features of ACE are
its flexible trust model and safe concurrency control protocol.

• Evaluation.We show that ACE enables several orders of mag-
nitude more complex contract calls compared to Ethereum.

The rest of this paper is organized as follows. Section 2 provides
background and Section 3 explains our problem. Section 4 gives an
overview of ACE and Section 5 explains it in detail. Section 6 con-
tains the security analysis and Section 7 performance evaluation.
Section 8 provides discussion, Section 9 reviews related work and
Section 10 concludes the paper.

2 BACKGROUND

In this section we provide background information on smart con-
tracts, Intel SGX, and concurrency control.

2.1 Ethereum Smart Contracts

The Ethereum protocol [37] defines a system for a decentralized
state machine by using the blockchain paradigm. It allows partic-
ipating nodes to write and execute contracts that are a collection
of functions and global storage variables. Whenever a function
is called, the system’s state may change. This can be achieved
through transactions that define the target contract and the trans-
action sender. Each block defines a specific system state and the
transactions it contains represent the transition from the state of
the block’s predecessor to its current state.

The Ethereum state consists of two types of account objects:
external accounts controlled by a private key and contract accounts

controlled by the contract code. An external account can send mes-
sages to other accounts in the form of transactions. If a contract
account receives a message call, its code is executed which might
read or write to the account’s state, sendmessages to other contracts
or create new contracts.
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Miners collect transactions from a peer-to-peer network and
add them to a new block that is distributed back to all miners who
execute all included transactions to verify them. To keep verification
fast, every used resource (computation, storage) defines a price,
measured in gas, and every transaction has a gas limit. The gas
used during execution is subtracted from the account balance of
the transaction sender and added to the block miner’s account.

Ethereum contracts can be written in high-level languages, such
as Solidity [1], that are compiled into a low-level, stack-based,
Turing-complete language called EVM (Ethereum Virtual Machine)
Code. Executing the EVM Code is handled by an EVM interpreter.

Ethereum’s trust assumptions follow the general security model
of PoW blockchains [18]. It is assumed that no malicious entity con-
trols a majority of the mining power and message dissemination
works sufficiently well (e.g., eclipse attacks are not possible [21]).
For contracts, Ethereum’s trust model is contract-specific, i.e., users
can freely choose which contracts they decide to trust. For example,
if a user decides to send money to a particular smart contract, then
with this action the user implicitly agrees with the conditions and
the logic specified in that contract’s code. A user that decides to
trust one contract does not have to trust other contracts that run
in the same system.

2.2 Intel SGX

Trusted execution environments (TEEs) enable protected applica-
tions on untrusted computing platforms. Instead of having to trust
the entire platform that typically consists of millions of lines of code,
the main goal of TEEs is to enable services whose security relies
only on the protected application code that can be much smaller.

Intel’s SGX [13, 23] is a TEE architecture that is widely de-
ployed to commodity PCs. In SGX, TEEs are realized as enclaves
that run with user-level privileges, but their data and execution is
isolated from any privileged code on the same platform, such as
the untrusted OS. The two main security properties of SGX are en-
clave code integrity and data confidentiality. Data confidentiality is
achieved through access control checks that are implemented inside
the CPU allowing only the enclave’s code to access its data. The CPU
encrypts enclave data whenever it’s moved outside the processor.

Enclave code integrity is realized through remote attestation [24].
Each SGX CPU has an attestation key, installed at the time of man-
ufacturing, and it uses this key to produce a signed attestation
statement containing measurements of enclave’s initialization se-
quence, code, and issuer. The enclave can generate another key
and attach the public part of this key to the attestation statement
which allows remote entities to establish secure connections to the
attested enclave and verify data signed by the attested enclaves.

Attestation is an interactive protocol that involves three entities:
the attested SGX platform, the remote verifier and Intel’s attes-
tation service (IAS). The attestation protocol is based on group
signatures and it is anonymous such that the remote verifier cannot
identify the attested hardware platform. However, the remote attes-
tation protocol supports a linkable mode of attestation that allows
the remote verifier to check if the attested enclave code has been
previously attested on the same CPU [2].

2.3 Concurrency Control

Distributed database systems process transactions using multiple
database servers or partitions [12]. Transactions consist of multi-
ple operations (reads and writes) and the execution order of these
operations is called schedule. If two transactions access the same re-
source simultaneously, they may conflict. To ensure safe concurrent
processing, the following ACID properties are often required [20]:

• Atomicity means that a committed transaction is either com-
pleted in full or aborted (either all or none of the reads and
writes are applied).

• Consistency implies that every executed transaction can only
change the state of the database from one consistent state
to another.

• Isolation defines how the changes made by one transac-
tion become visible to other transactions. Serializability is
a strong level of isolation that ensures that the outcome of
parallel-executed transaction is equal to one where transac-
tion had been executed sequentially [5].

• Durability guarantees that all successfully committed trans-
action withstand possible database crashes.

Several concurrency protocols are known. Two-phase locking is
a classical solution that enables serializable schedules [16] (strong
isolation). To ensure atomicity and durability, the transaction results
must be committed either on all or none of the involved resources
that may cross partition boundaries. The involved partitions run a
distributed commit protocol that requires multiple rounds of commu-
nication (two rounds are required for crash faults and three rounds
for Byzantine faults). Such distributed commit protocol is typically
considered the primary cost of distributed transaction processing.

Another classical concurrency control solution are optimistic

protocols [27]. In such systems, distributed transactions are first
executed without locking and afterwards the transaction managers
examine if conflicts took place. If this is the case, all execution
results must be rolled back which incurs a significant cost. If none
of the executed operations were in conflict, the execution results
can be committed (using a commit protocol).

Recently, deterministic concurrency control has been proposed
as an alternative [32]. In deterministic systems, transactions are
first ordered by a (centralized or distributed) sequencing layer fol-
lowed by a simple and deterministic locking protocol. Executions
must follow this order regardless of possible crashes. The primary
benefit of deterministic concurrency control solutions is that they
avoid the high cost of multi-round distributed commit protocols.

A transaction schedule is called recoverable if abort of one trans-
action never leaves other transactions in inconsistent state. A trans-
action schedule is called cascading or cascadeless recoverable de-
pending if abort of one transaction requires rollback of other (not
yet committed) transactions or not.

3 PROBLEM STATEMENT

In this section, we motivate our work, discuss limitations of pre-
vious solutions, and define requirements for our solution.

3.1 Motivation

In Ethereum, all contracts are executed one after another by all
miners that participate in the consensus process. Such a sequential
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and globally-replicated execution model ensures the integrity of the
blockchain’s state that includes the state of all contracts, assuming
that the trust assumptions of Ethereum’s consensus mechanism
hold (see Section 2.1).

Execution integrity requires that all miners re-execute each trans-
action code to verify the correctness of the result. This has twomain
problems. First, it represents a high cost for the miners in terms of
both the power consumption and time.1 Second, it inherently limits
the achievable throughput of the system and the types of contracts
that can be implemented. To provide good throughput, the block
interval must be kept small, and therefore the execution time of
Ethereum contracts is limited. Such time limits have a direct effect
on the allowed computational complexity of contracts.

Currently, the gas limit for each Ethereum block is approximately
8M gas. To put this into perspective, even the simple task of sort-
ing 256 integers using insertion sort requires twice as much. Thus,
although Ethereum is based on a Turing-complete language that
in principle allows the execution of arbitrary smart contracts, the
arbitrary part is severely limited in practice. For example, contracts
that perform heavy cryptographic operations (e.g., for data feeds
like TLS-N [33]) or use machine learning models are infeasible.

Our main goal is to provide a solution that allows safe execution
of more complex smart contracts in permissionless blockchain sys-
tems like Ethereum. With “complex” we mean contracts where a
single call may take seconds or minutes to complete, in contrast
to Ethereum where calls can take few milliseconds at most. We
argue that this would enable various new types of contracts, such
as ones that perform cryptographic operations that are not natively
supported by EVM. We assume that heavier computations that take
hours or days to complete, are rarely needed in smart contracts.

3.2 Limitations of Previous Solutions

Recent research has explored alternative ways to execute smart
contracts. In this section we summarize the main limitations of
these approaches. Section 9 surveys additional related work.

In YODA [14] a subset of consensus participants is randomly sam-

pled to execute and thus verify each contract call. The main limita-
tion of systems like YODA is that each smart contract call needsmul-
tiple rounds of execution by separate subsets and the sampled sub-
sets need to be relatively large (e.g., hundreds of nodes) to reduce the
probability of cheating. Such approaches can reduce the required
degree of execution replication compared to standard Ethereum
(e.g., from thousands of nodes to hundreds), but they still requires a
great amount of redundancy, a multi-round execution process, large
communication overhead, and the probability of integrity violation
is not negligible. In addition, systems like YODA require unbiased
and distributed random beacon. State-of-the-art beacon protocols,
like RandHound [34], require highly expensive initialization rou-
tines (that need to be repeated when new participants join or leave)
and significant communication for every periodic random value.

In Arbitrum [25] the execution of smart contracts is performed
asynchronously off-chain by a set of managers that are appointed
by the contract creator. Execution results are accepted by miners, if
1Miners could be spent the same time to mine a new block and acquire monetary
benefits. The only direct benefit verification is “the common good" of the cryptosystem
itself, and therefore miners are often tempted to skip the execution and verification,
accepting the result as given, which is often referred to as “Verifier’s Dilemma” [28].

all appointed managers signed the same results. If fewer managers
sign results, the transaction does not immediately get accepted
and a challenge period is entered instead. The signing managers
and the disputing challenger are required to post a deposit and
then one of them proves correctness of his results using a protocol
that is logarithmic in the length of the execution trace. During the
challenge period the contract cannot make progress.

Ekiden [11] provides confidentiality for smart contracts and de-
couples contract execution from the consensus process by executing
contract off-chain in SGX enclaves. While this approach also en-
ables execution of more complex contracts, Ekiden requires that all
enclaves are trusted, since compromising one enclave enables the
adversary violate contract integrity arbitrarily. Recent research has
shown that TEE compromise is a practical threat [8, 9, 17, 19, 29, 38].

Each of the above solutions executes contracts in separate parti-
tions. However, none of the solutions supports safe cross-partition
transactions, i.e., contract calls from one execution partition to an-
other. Since many Ethereum contracts make calls that write to an-
other contract, these solutions therefore cannot execute them safely.

Chainspace [3] increases the transaction throughput through
sharding. The backbone infrastructure is divided into shards and
every smart contract author can designate a trusted shard to exe-
cute its smart contract, thus parallelizing execution. However, to
maintain integrity across cross-shard executions all shards need to
be honest and have mutual trust.

3.3 Requirements

Given the above limitations of previous approaches, we define two
main requirements for our solution.
R1: Flexible trust model. Our first requirement is a practical and
flexible trust model for contract execution. We want to maintain
the trust model of Ethereum where each user can decide which
contracts he trusts. We want to avoid systems like Ekiden, where
each entity that executes the contract code needs to be fully trusted,
or solutions like ChainSpace, where all partitions need to fully trust
each other, because such solutions offer poor security in the per-
missionless setting. We also want to avoid solutions like Arbitrum
where all entities need to agree on contract execution results, be-
cause such approaches provide poor availability and performance.
R2: Efficient concurrency control. Our second requirement is
that we want to enable contracts that can make safe cross-partition
calls. In particular, our solution should ensure the typical ACID-
properties of distributed database systems with serializability (to
mimic the sequential execution of Ethereum). Our goal is to avoid
expensive distributed commit protocols between partitions and
enable recoverable schedules. Finally, we want to optimize the com-
mon and benign case, so that transaction execution is safe with
minimal communication overhead in the absence of errors and
attacks (recovery from error conditions can be more expensive).

4 ACE OVERVIEW

In this section, we provide an overview of our solution ACE.

4.1 System Model

Figure 1 shows our system model. ACE is based on a permissionless
setting where any entity can freely take one of the following roles.
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Figure 1: ACE system model. Clients deploy and call

contracts by broadcasting transactions. Miners organize

transactions into blocks. Service Providers execute contracts

and post results to miners that will add them to new blocks.

Clients are equivalent to users in systems like Ethereum. Clients
can call smart contracts by broadcasting a signed transaction that
specifies the called contract. Client identities are pseudonyms, i.e.,
identifiers that clients can freely choose and change. Clients can
also deploy new smart contracts as contract creators by broadcasting
a transaction that contains the contract code and its specification.
The specification defines the service providers who should execute
contract calls and acceptance criteria for execution results.

Miners are responsible for collecting and ordering transactions
to blocks, similar to systems like Ethereum.2 The primary differ-
ence between ACE miners and Ethereum miners is that the former
do not execute contract calls. Instead, they only add state changes
from already executed contract calls to new blocks.

Service providers are responsible for executing contract calls
using SGX enclaves. After execution is complete, service providers
communicate the execution results back tominers. Service providers
must register on the chain, before they can execute smart contracts.
The identity of each service provider is their enclave public key.

Network.We assume asynchronous communication between
the above entities (i.e., message delivery may get delayed and mes-
sages may arrive out of order). However, network-level attacks like
node eclipsing [21] are not possible.

4.2 Trust Assumptions

We consider clients fully untrusted, similar to most permissionless
blockchain systems. Regardingminers, we follow the standard trust
assumptions of Ethereum and other PoW systems (see Section 2.1).
Any individual miner can be malicious, but miners are collectively
trusted for consensus and forks in the chain remain shallow.

Service providers can be reputable entities such as well-known
companies who run contracts in exchange for a small service fee
or non-profit organizations who run contracts for public good. Al-
ternatively, service providers can be private people who volunteer
to run contracts as a community effort. Each service provider has
a TEE, namely SGX processor. We consider the OS in all service
providers untrusted, due to their large complexity and possibility
of insider attacks like malicious administrators. In addition, we as-
sume that some individual TEEs may get compromised, as is shown

2We focus on Ethereum that uses Proof-of-Work consensus. Therefore, we use the
term miner to refer to a consensus participant, although our solution is orthogonal
to the used consensus scheme. ACE could be used also with other permissionless
consensus schemes like Proof of Stake.

to be possible by recent SGX attacks (see Section 2.2). We assume
that Intel runs the SGX attestation service (IAS) correctly.

While these assumptions suffice to ensure integrity of smart
contract execution, to ensure contract availability, we additionally
assume that some of the service providers remain responsive (see
Section 6.2 for details).

4.3 Execution Model

The starting point of our solution is an off-chain contract execution
model that is similar to Arbitrum [25]. At the time of deploying
a new contract, the contract creator appoints n service providers
who should execute each call of that contract. The contract cre-
ator specifies the identities (enclave public keys) of these service
providers in the transaction that creates the contract.

Instead of requiring that all service providers have to agree on
the execution results, we follow a different approach and allow
the contract creator to define a quorum of t service providers that
are required for acceptable execution result. The identities of the n
service providers and the security parameter t together define the
trust level of the contract.

When a contract call is executed, if at least t out of the specified n
service providers report the same execution result, the state change
will be accepted by the miners. All service providers execute the
smart contract calls inside attested SGX enclaves. Enclave attesta-
tion takes place during service provider registration and both the
enclave code and the attestation evidence is recorded on the chain
so that they can be publicly verified.

It may seem counterintuitive to allow the contract creator to
choose the trust level for each contract separately. However, we
emphasize that this design decision is inline with the existing trust
model of Ethereum, where contract participants implicitly agree
with the contract specification, defined by its code, when they start
interacting with it (see Section 2.1). In ACE, this specification addi-
tionally includes the identities of n service providers and the quo-
rum size t . Similar to Ethereum, any party that does not use a par-
ticular ACE contract is not affected by any results of that contract.

Our model can be seen as a hybrid of permissionless and per-
missioned systems. The decoupled off-chain execution provides
more efficiency and allows for a flexible trust model in which a
permissioned set of validators is appointed for each contract sepa-
rately. The smart contracts that are executed off-chain can directly
utilize the underlying digital currency that is implemented by the
permissionless blockchain which provides transparency and double-
spending protection. The trust model is flexible as it allows various
applications with separate security requirements to co-exist in the
same system. For example, even if all validators of one contract are
fully compromised, only the funds of that contract are affected and
the integrity of the currency is still guaranteed for all other parties.
Additionally, using a public blockchain to connect clients to service
providers enables simple service discovery.

4.4 Contract Execution Overview

Next, we provide an overview of contract execution in ACE. Sim-
ilar to Ethereum, clients broadcast transactions to the peer-to-peer
network. We assume that every ACE transaction contains at least
one write operation, as read-only computations are possible simply
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by examining the blockchain without issuing a new transaction.
The broadcasted transactions are ordered and collected into blocks
by miners. If a transaction does not include any contract call (i.e.,
it only transfers money from one account to another), the miners
immediately execute the transaction on-chain and record it to a
result section of the block.

If a transaction calls a contract, the miners perform basic checks
(e.g., correct transaction format) and then include the transaction
in the ordering section of a block, but importantly do not execute
the contract call. The new block is broadcasted to the network.
Once the service providers appointed for this contract receive it,
they execute the contract call code inside attested enclaves. After
executing the call, enclaves sign so called state change transactions

and publish them back to the network. Once the miners receive sig-
natures from t of the appointed service providers on the same set of
state changes, they include the state changes and the corresponding
signatures in the result section of a future block.

In distributed systems, when transactions are executed by mul-
tiple entities, the entities typically need to agree on the order of
execution and whether execution was successfully completed on all
nodes before committing the results. In ACE, the service providers
do not run an agreement protocol, because transaction ordering is
already performed by the miners. Similarly, the miners ultimately
decide whether a transaction is committed (by including it to the
next block), and therefore the service providers not do have to run
a multi-round commit protocol with Byzantine agreement. Thus,
ACE can be seen as a variant of deterministic concurrency con-
trol (see Section 2.3), where transactions are pre-ordered to avoid
expensive distributed commit protocols.

In distributed databases, transactions are typically committed im-
mediately after their execution to avoid so called dirty reads where
one transaction changes the state of a resource and another trans-
action reads the changed state before the first transaction is com-
mitted. If the first transaction cannot commit (e.g., due to a crash),
the second transaction must be rolled back to preserve consistency.

In off-chain contract execution transaction commits have inher-
ent latency, due to the infrequent block generation rate of permis-
sionless blockchains. Thus, dirty reads are in practice unavoidable.3
ACE ensures consistency in the presence of potential dirty reads
as follows. When miners include signed state changes to a new
block (i.e., commit transactions), they need to ensure that the state
changes are added per contract in the same order as they were listed
in the ordering section previously. That is, a transaction that appears
before another transaction in the ordering section needs to either
have its state changes committed or be invalidated (see Section 5.7)
before state changes of the second transaction can be committed
to a block if the two transactions affect the same contract state.

4.5 Concurrency Control

A commonway to execute cross-partition transactions in distributed
systems is that transaction managers (service providers) execute
those operations that access their resources (contract storage vari-
ables) and they would send a request to another partition when
3In principle, it would be possible to design a system, where each executed transaction
is committed to a new block before the execution of the next transaction is allowed to
proceed. However, such system could process, in the worst case, only one transaction
per block, and be completely impractical.
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Figure 2: On the left we have the strawman solution for con-

current execution where each subcall requires communica-

tion between partitions. On the right we have our replicated

model where all involved service providers execute the com-

plete transaction preceded by an initial update of the other

contracts tentative state based on uncommitted results.

the executed transaction reads or write to a resource that is con-
trolled by the other partition. The contacted service provider would
then execute the requested operations and send back a result. This
common approach is illustrated in Figure 2 on the left. However, a
significant drawback of this approach is that it may require lots of
communication. A single smart contract call may involve several
subcalls to many other contracts which would in turn mean many
rounds of communication between the involved service providers.

In ACE, we follow a different approach. Instead of forcing the
service providers to communicate before and after every subcalls,
all involved service providers execute the full transaction and pub-
lish their results afterward, as illustrated on the right in Figure 2.
To enable such cross-partition calls, the involved service providers
only need to update tentative states of involved contracts before
executing the call. This is necessary since some results of previous
contract calls may not have been included in the blockchain yet.

To do this, service providers listen to state change results that
are broadcast to the P2P network. If the required state updates
(results for relevant preceding transactions) are not received within
a specified timeout, the service provider can issue an abort for
the transaction (see Section 5.7). Otherwise, the service provider
can start executing the transaction. We use the P2P network for
exchanging the tentative contract states, because it makes deploy-
ment of ACE easier. In particular, the service providers do not need
to establish direct communication links between each other which
gives them the freedom to migrate, change IP addresses etc.4

Such cross-partition contract call model requires that every trans-
action has to list all possibly involved contracts. In ACE, clients
pre-run transactions as a reconnaissance step to determine the set
of contracts and service providers involved and attach this infor-
mation to the broadcast transaction (see Section 5.4). This enables
service providers to know which contract calls they need to execute
and with which other service providers they need to exchange state.

4If some service providers communicate often, they can ensure that they are well
connected within the P2P network for reduced latency, similar to what large mining
pools do to ensure low latency.
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Based on this tentative state, all of the involved service providers
execute the full call chain.

After the execution has finished, each service provider enclave
signs the results (list of state changes) and sends them to the P2P
network. Once miners have received the threshold number of sig-
natures on the results for each of the involved smart contracts, they
will include them in the results section of the next block (again,
following the per-contract order from a previous ordering section).

5 ACE DETAILS

In this section we describe the ACE system in detail.

5.1 Block Structure

ACE blocks consist of three sections: The Registration section is
used to add new service providers, the Ordering section is used to
list and order transactions before execution, and the Result section
lists the state changes of executed smart contract calls.

5.2 Service Provider Registration

To register, the service provider runs the SGX remote attestation
protocol with its own enclave that runs the EVM. The attestation
is performed using the linkable mode of attestation that prevents
the same SGX processor from being registered multiple times (see
Section 2.2). The enclave generates a new key pair and includes
the public part of this key in the attestation which enables external
parties to verify data signed by the enclave.

The service provider includes the attestation result to the reg-
istration transaction, and the miners include it to a registration
section of a new block. This allows any client who wants to par-
ticipate in a smart contract to verify the remote attestation of each
involved service provider enclave. Later on, in order to prove the
correct execution of smart contracts, the enclave signs the contract
code running in the EVM along with the result with its private key,
thus proving honest execution of a particular contract inside of the
attested environment.

5.3 Contract Deployment

Deployment of new smart contractC is shown in Figure 3. 1 Client
chooses an executing set EC out of the registered service provider
enclaves P and sends a deployment request RD to each service
provider P ∈ EC asking them to act as executors for this contract de-
ployment. The request contains the contract code, parameters n and
t ≤ n, and the identities (registered enclave public keys) of the cho-
sen service providers. 2 Every service provider that agrees to be
part of the executing set returns a signature σP (RD ) on the deploy-
ment request. 3 The client creates a deployment transaction TxD ,
containing the list of service providers from EC , the deployment re-
quest RD , and the set of signatures ΣEC (RD ) = {σP (RD ) | P ∈ EC }

from all members of EC . The client sends the deployment trans-
action to the network, where miners verify the signatures and, if
valid, include it in the ordering section of a new block. 4 Once the
transaction is included, the members of EC execute the construc-
tor of the contract like a normal contract call, as described below.
5 The service providers send the result Res to the network to be
included in the result section of a future block.

P1 P2 P2P Network

RD

σP1 (RD ) σP2 (RD )

TxD

Block

Res, σP1 (Res)
Res, σP2 (Res)

EC

1

2

3

4

5

Figure 3: Contract deployment. The client first sends the

deployment request RD to the service providers chosen to

be in the executing set EC 1 , who then sign it and return it

to the client 2 . The client sends the resulting transaction

to the network 3 , where it gets included into a block. The

service providers see this transaction in a block, execute

the contract constructor 4 and send the signed results to

the network to be included in a future block 5 .

5.4 Contract Call

To call a smart contract, a client creates a transaction similar to
Ethereum transactions. However, in addition to the standard com-
ponents of an Ethereum transaction (nonce, gas, gas price, recipient,
transfer value, input data, signature) the client also specifies the
set of involved smart contracts which allows service providers to
quickly determine whether they need to be involved in the exe-
cution of the smart contract. While the directly called contract is
always specified for Ethereum transactions as well, the same does
not apply to contracts that are indirectly called as subcalls from the
executed contract.

To determine the set of involved contracts, the client can first ex-
ecute the contract locally to get a set of dynamically called contracts.
Such reconnaissance step is analogous to how gas costs are estimated
in Ethereum. Similar to Ethereum, the contract state may change
between local pre-execution that is based on the latest block and
the final execution where new transactions may have been already
applied. Such transaction execution may need to abort, and the
client needs to send the transaction again with newly determined
set of involved contracts (see Section 5.7). However, this is unlikely
to happen for well-written smart contracts that are not purposefully
designed to exhibit such behavior. Alternatively, static analysis can
be used to over-approximate the involved smart contracts.

We note that clients cannot misuse this feature to violate con-
tract safety. If the contract call has a subcall to some contract that
is not included in the list, it will simply not be executed by the
responsible executing set, i.e. no changes to the respective contract
state can be committed. Other (non-compromised) executing sets
involved in the transaction will simply abort it.

Once the client has sent the transaction to the network, the min-
ers check its validity, i.e., they check whether the sending account
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Figure 4: Cross-partition contract call. In this example,

contract C1 is executed with a 1-out-of-2 quorum by

EC1 = {P1, P2} and C2 is executed with a 1-out-of-1 quorum

by EC2 = {P3}. The diagram shows the messages exchanged

in a contract call involving C1 and C2 in which P2 becomes

unresponsive after the state exchange. Since P1 is respon-

sive, a quorum can still be reached and the results can be

committed successfully.

has enough balance, the transaction nonce is correct, and the sig-
nature verifies correctly. They then include the transaction in the
ordering section of the next block.

Service providers parse the blocks they receive and checkwhether
they are involved in any contract call, i.e. whether some transaction
has specified a contract, for which they are responsible. If this is
the case, they add the transaction to their execution queue. Service
providers can parallelize execution of distinct smart contracts, i.e.
they only need to execute calls to the same contract sequentially
and can thus use separate queues for each contract.

To execute a transaction that does not involve other smart con-
tracts, the service providers simply execute the transaction, sign the
state changes and send them to the network. The miners then check
that the state transition is based on the most recent state and that
the transaction has been signed by a quorum of t service providers
in the executing set. If this is the case, they include the results in the
result section of the next block, and thus commit the transaction.

5.5 Cross-Partition Contract Call

If the transaction does involve other smart contracts, the contract
call is executed as described below. An example is shown in Figure 4.

1 Sending the Transaction. The client creates transaction Tx
and sends it to the network as described in Section 5.4. Miners check
its validity and include it in the ordering section of the next block.

2 Fetching the Block. The service providers fetch the new block
including the transaction Tx from the P2P network and, if the trans-
action is addressed to (in the example, contract C1 for P1 and P2)
or lists (in the example, contract C2 for P3) a contract they are re-
sponsible for, they add the transaction to the execution queue of
the respective contract.

3 Tentative State Update. The service providers continue to
receive tentative results from other transactions from the P2P net-
work that have not yet been included in the chain. Based on these
results, the service providers update the tentative local state for
other contracts. This allows them to use the current state of other
service providers involved in the contract call during execution.
In Figure 4 EC1 , i.e. service providers P1 and P2, needs updates for
the state of contract C2, and P3 needs updates for the state of C1, if
other transactions to one of these contracts is scheduled before Tx.
4 Contract Execution. Once the states have been updated and
the transaction Tx is at the top of the execution queue for each con-
tract, every service provider executes the full transaction, i.e., the
contract call with all subcalls based on the current (tentative) state
of the smart contracts. If a service provider does not yet have the
contract code required for subcall execution, it can obtain this code
from a previous block, as every contract deployment is recorded
on the chain.
5 Broadcast Result. After the execution, each service provider
signs the resulting state changes and sends the results (list of state
changes) and their corresponding signature to the P2P network.
The results also include a hash of the previous contract state to
ensure that e.g. blockchain forks or inconsistent tentative states of
other contracts cannot lead to inconsistencies. At least a quorum of
ti service providers in each involved executing set ECi has to sign
the state changes for the transaction to be accepted. In the example
in Figure 4, P2 becomes unresponsive and does not send its results.
The protocol can still progress without abort, since P1 is sufficient
to achieve a quorum in this case (t = 1, n = 2).

Upon receiving state changes from service providers, miners
check that previous state changes have already been received and
applied, i.e., that for every involved smart contract, the state changes
correspond to the next scheduled transaction in the list of transac-
tions given by the ordering sections of the blocks in the chain. They
further check the signatures on the state changes, ensuring that a
quorum ti has been reached for all involved smart contracts and
then include the state changes in the result section of the next block.

5.6 Block Verification

To verify a block, verifiers need to check that it was formed correctly,
the transactions listed in the ordering section are valid transactions,
and that the results are valid. Further, they have to check that the
block conforms to consensus rules, e.g. that it has a valid proof-of-
work, and finally apply the state changes listed in the results section.

To check the validity of the ordering sections, the node checks
for every transaction that the signature from the sender is valid and
that the sender has sufficient balance for the call. For each result
in the result section, the node checks that the hash of the previous
state stored in the result is equal to the current state (before ap-
plying the state changes) of the contract, that the signatures from
the service providers are valid and that a quorum from each exe-
cuting set of involved contracts has been reached. Additionally, it
checks that all results of previous transactions involving one of the
involved smart contracts have been applied. That is, the previously
defined per-contract transaction order is preserved. Nodes can keep
FIFO queues for transactions per contract to easily keep track of
which results are expected next for each smart contract.
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To verify the registration section, the node checks that all the ser-
vice provider enclaves registered to run a particular smart contract
are from separate SGX processors. This is possible, since enclaves
are attested using the linkable attestation mode.

5.7 Recovery from Errors

Unresponsive enclave. If u individual enclaves from one set be-
come unresponsive, the transactions handled by that set of service
providers can still complete, as long as u ≤ n − t .
Unresponsive executing set. If u > n − t service providers from
the same set become unresponsive, we say that this set is unre-
sponsive, and transactions involving that set of service providers
can obviously not be processed, until some of the unresponsive
service providers are fixed, e.g., restarted after a crash (in Section 8
we discuss how permanently unresponsive service providers can
be replaced). The goal of ACE is to ensure that in such cases the
unresponsive set cannot prevent other service providers and their
contracts from proceeding.

The way this is achieved in ACE is that service provider enclaves
can sign and broadcast an abort for a transaction. The enclaves will
do this in the following two cases. First, they will broadcast an abort
if they do not receive tentative state updates (with t signatures) for
involved contracts in cross-partition transaction execution within a
pre-defined time limit. Second, the enclaves can broadcast an abort
if they do not receive enough signatures on the new state after exe-
cution within some time limit after they have finished its execution.

If the miners receive a signed abort from more than n − t service
providers out of an executing set ECi of one of the involved con-
tractsCi , where n = |ECi | and t is the quorum threshold ofCi , they
can include these aborts in the blockchain as result for the given
transaction instead of state changes. This allows involved contracts
to progress with the execution of future transactions, if the execut-
ing set of another contract is offline for an extended period of time.
Failed reconnaissance. If a client failed to correctly determine
the set of contracts involved in a transaction, the service provider
enclaves will notice this at the time of transaction execution and
abort the execution, as explained above. The client can issue the
same transaction again with newly estimated involved contracts.
Missing state change. Contract calls in ACE may involve dirty
reads. If the state change from the previous transaction never
reaches miners (e.g., due to a temporary networking issue or inten-
tional attack), the following state changes cannot be committed, as
the miners must follow the per-contract order for transactions. In
such cases, the service providers will soon observe that their state
changes are not committed by miners and they can simply re-send
the state changes again. Since we assume that node eclipsing is not
possible (see Section 4.1), eventually the missing state changes will
reach the miners and the pending state changes can be committed.

6 SECURITY ANALYSIS

In this section we analyze the safety and liveness of ACE.

6.1 Safety

In ACE, smart contracts are executed inside TEEs that are SGX
enclaves. The two main security properties of SGX are enclave code

integrity that is verified through attestation and enclave data con-
fidentiality (see Section 2.2). For the purposes of this analysis, we
say that a TEE is compromised if the adversary can violate either
enclave code integrity or data confidentiality on that CPU.

We start our analysis by defining a basic security property of
ACE for a restricted case where one set of service providers E

executes one contract.
Lemma 1. Given the specification of a contract, which defines

an executing set E consisting of n enclaves and quorum t , the
following holds: If fewer than t TEEs from E are compromised,
transaction atomicity, consistency and serializability hold for this
contract in contract calls involving no other contracts.

Proof. First, we need to show that if the adversary cannot
compromise t or more separate TEEs (i.e., SGX processors), he can-
not violate enclave code integrity or data confidentiality on t or
more used enclaves. This follows from the fact that service provider
enclaves are attested using the linkable mode of remote attestation.
If multiple enclave instances of the same enclave running on the
same SGX processor would be registered, this would be visible in
the attestation evidence, and the miners would refuse to add such at-
testations to a registration section of a new block. An individual ma-
licious miner can deviate from the protocol rules, but other miners
will collectively ignore the invalid block, and therefore such service
provider registrations cannot be part of the final and stable chain.

Since less than t of the specified enclaves can deviate from the at-
tested enclave code and since less than t of the enclave signing keys
may leak, the adversary cannot produce t or more signatures on
state changes that are different from the correct enclave execution.
Since all non-compromised enclaves follow the transaction order
per contract, and execute their transactions sequentially one after
another, such contract execution provides consistency and serializ-
ability for all transactions. Because transaction are either committed
in full or not at all by miners, all transactions are also atomic. □

Next, we extend our analysis and define a more general security
property for the case where a call involving contract A executed
by EA also involves other contracts.

Theorem 2. Given the specification of contract A, which de-
fines an executing set EA that consists of nA enclaves and quorum
tA, the following holds: If less than tA TEEs from EA are compro-
mised, then transaction atomicity, consistency and serializability
hold for contract A even in contract calls involving other contracts.

Proof. We distinguish three possible cases:
1. No compromised executing sets. If for every other involved

contract B with EB consisting of nB enclaves and quorum tB , less
than tB TEEs from EB are compromised the adversary cannot pro-
duce an acceptable and false state change for contract B and thus
the adversary cannot produce a false tentative state of contract B
that would be accepted by any of the non-compromised enclaves of
EA. Because of this, tA or more enclaves cannot execute the cross-
partition contract call based on false initial state and the miners
cannot accept such execution result. Thus, all executed transactions
ensure consistency. Transaction serializability and atomicity are
ensured due to the same reason as in Lemma 1.

2. Compromise during execution. If for all involved contracts,
the tentative states are correct, but for an (or all other) involved
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contract B with EB consisting of nB enclaves and quorum tB , at
least tB TEEs from EB are compromised during the execution, they
can produce a false result for the execution of the contract with a
quorum from EB . However, due to the same reasons as in Lemma 1,
no quorum from EA can be achieved on these results, which ensures
that they will not be accepted by the miners and thus consistency
is ensured. Transaction serializability and atomicity are ensured
due to the same reason as in Lemma 1.

3. Inconsistent tentative state. If for an (or all other) involved
contract B with EB consisting of nB enclaves and quorum tB , at
least tB TEEs from EB are compromised before the execution, they
can produce inconsistent results for the execution of previous calls
to B, i.e. they can convince members of EA to use a false tentative
state of contract B for the contract execution. Once the contract has
finished executing, a quorum of EA may sign a set of state changes
based on this false state. However, the signed results include a refer-
ence to the tentative state, and miners only include state changes in
the result section of a block if this correctly references the previous
state committed to the chain, i.e. the results will only be included
if the tentative state used for the execution is in fact the canonical
state committed to the chain, thus ensuring consistency for contract
A. Transaction serializability and atomicity are ensured due to the
same reason as in Lemma 1. □

Finally, we note that the execution results (state changes) of
smart contracts are only relevant to participants of the smart con-
tract, as long as they do not enable double spends or affect the
overall supply of the cryptocurrency. In ACE, the integrity of the
underlying cryptocurrency is guaranteed independently of smart
contract execution. In particular, a smart contract (or a compro-
mised executing set) is not able to arbitrarily modify its balance.
Transfers of money is always checked on the cryptocurrency con-
sensus layer, i.e. a contract balance can only increase by amounts
explicitly sent in transactions (or received from other smart con-
tracts) and smart contracts can only initiate sending of funds that
do not exceed their balance. This ensures that compromised exe-
cuting sets can neither double spend funds nor create money out
of nothing, even if an executing set is completely compromised.

6.2 Liveness

As shown above, ACE provides a strong safety guarantee, where
the adversary has to compromise several SGX processors to violate
transaction atomicity, consistency or serializability. This condition
holds even if the adversary controls the OS of every registered ser-
vice provider platform. The liveness guarantee of ACE is slightly
weaker, since the above strong adversary could obviously prevent
the non-compromised enclaves from running or communicating.

Given this observation, we define the liveness property for con-
tract A that may or may not call other contracts:

Theorem 3. Given the specification of contract A, which de-
fines an executing set EA that consists of nA enclaves and quorum
tA, the following holds: If the adversary is able to compromise at
most c TEEs from EA and block enclaves on at most b platforms
from EA, such that tA = nA−c−b, then contractA provides liveness.

Proof. There are two possible cases to consider. First, we con-
sider the case where contract A does not call any other contract B.

If the adversary compromises less than c enclaves and blocks en-
claves on less than b platforms, then at least tA non-compromised
and non-blocked enclaves exist which enables the execution to
complete for calls of contract A.

Second, we consider the case where contract A interacts with
another contract B. If the above defined available enclaves of EA
receive state changes from EB , they can complete the contract call.
If the available enclaves of EA do not receive state changes from
EB , they issue an abort which allows other transactions for the
same contract to be completed. Similarly, if the available enclaves of
EA receive inconsistent state changes from EB , the transaction will
be aborted which allows other transactions for the same contract
to be completed. □

7 EVALUATION

In this section we analyze how complex contracts ACE can support
and evaluate the performance of ACE.

7.1 Contract Complexity

We compare the average computational complexity of contract calls
supported in the ACE execution model to the sequential execution
model used in Ethereum. We modeled our system in Python to
simulate its throughput for a large number of nodes. This allowed
us to detemine the complexity of contracts supported given a target
throughput and different dependencies between the contracts.
Simulation details. To simulate ACE, we first set parameters such
as the block size, the total number of service providers, the total
number of smart contracts, and the mean and standard deviation
for contract execution time. The block size puts an upper bound on
the throughput and the number of service providers and contracts
affects how interdependent the smart contract executions are.

We generate the set of contracts parameterized in their execution
time and the number of involved contracts (number of sub-calls). For
simplicity we assume that each contract call to the same contract re-
sults in the same amount of sub-calls and the execution time is fixed.
The execution time is sampled from a normal distribution with
given mean and standard deviation while the involved contracts
are sampled uniformly from the list of all contracts. Furthermore,
each contract is assigned a set of (between 1 and 6) responsible
service providers, chosen uniformly from fix-sized list of providers.

For each block, we then sample the transactions for its ordering
section. Each transaction calls a contract sampled uniformly at
random from our set of generated contracts.
Measurements. For each configuration, we measured the through-
put in transactions per second (Tps) for ACE for different mean
execution times of the contracts. This allows us to determine how
computationally intensive smart contract executions can be, given a
target throughput (i.e. we want to exhaust throughput of an under-
lying consensus layer that can achieve k Tps). For our experiments,
we fixed a block interval of 15 seconds and simulate up to 15000
transactions per block (1000 Tps). Note that this upperbound is
not achievable in permissionless systems given current network
throughputs, i.e. in practice the throughput will be capped at a
lower number. Given the current average Ethereum block size, the
throughput would be limited to 10 Tps. The total number of service
providers in our experiments is set to 100.
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Figure 5: Average execution time per transaction given a tar-

get throughput. Sampling size refers to the number of differ-

ent contract in the system from which we sample our trans-

actions. The number of additionally involved contracts per

contract call are sampled uniformly from the range [0, 5].

In order to compare to the theoretical maximum execution com-
plexity in Ethereum and similar systems for a given target through-
put, we also show the execution time supported by a sequential
transaction execution model. This gives an absolute upper bound,
since it assumes an instant propagation of the block and transac-
tions and no other overheads, whereas in reality the average execu-
tion time has to be much lower to achieve a given target throughput.
Results. Figure 5 shows the results for different numbers of con-
tracts from which we sample transactions. The maximum number
of involved contracts is fixed at 5 which is currently the 99th per-
centile in Ethereum’s mainnet. The impact of the sampling size is
clearly visible from our simulation results. When sampling from a
small set of 1000 different contracts, ACE allows supporting execu-
tion times of one to two orders of magnitude higher than sequential
execution, because the dependency between transactions is high.
For a set size of 100’000 contracts, much higher execution times can
be supported for a given target throughput. For example, for a target
throughput of 10 Tps (currently achievable by Ethereum), transac-
tions can have a mean execution time of 5 minutes, whereas the
theoretical upper bound for sequential execution is at 0.1 seconds.

In Figure 6, we show the results for varying numbers of other
contracts involved in a contract call. For these measurements, con-
tracts are sampled from a set of 10’000 contracts. The numbers listed
in the graph denote the upper bounds of the range from which we
uniformly sample the number of additionally involved contracts for
a contract call. We see that going from transactions involving zero
additional contracts to transactions involving up to 5 additional con-
tracts adds a lot of dependency and therefore supports a much lower
average computational complexity. However, this difference gets
much smaller with more and more additionally involved contracts.

Our results show that ACE is capable of handling contracts with
execution times in the order of seconds or minutes. Clearly, ACE
can support much longer execution times when contracts have a
low interdependence, e.g. if many distinct (e.g. 10’000) smart con-
tracts exist in the system or contracts only involve a low number of
other smart contracts. Also in our simulations we used 100 service
providers. If more service providers are available, ACE can support
even longer execution times.

Figure 6: Average execution time per transaction given

a target throughput. The sampling size is fixed to 10’000

different contracts while the upper limit of the range from

which we sample the number of additionally involved

contracts varies from 0 to 20.

Summary. Overall, we observe that ACE can process transactions
with execution times that are 2-4 orders of magnitudes larger than
what can be theoretically handled by sequential execution in the
optimal case (instant block propagation). Since sequential execu-
tion is much slower due to block propagation delays, the difference
would be even larger in practice.

7.2 ACE Performance

Next, we evaluate the computation, storage and communication
cost of ACE.
Implementation. We implemented ACE based on Ethereum. Our
implementation supports the execution of smart contracts that are
compiled to EVM bytecode and it is based on the EVM implemen-
tation from the Parity Ethereum client for which we migrated the
relevant parts to SGX, resulting in 30000 lines of enclave code.
Computation cost. The first performance metric that we evaluate
is computation, measured as the time required for verification of
contract call results (state changes). This verification task needs to
be performed by all miners (and all other nodes that verify blocks)
and if verification takes too long, then the savings of off-chain
contract execution may be reduced or eliminated.

Verifying the transaction result consists of the verification of the
service provider signatures, deserialization of the encoded results
and finally application of the state changes. As the time used for
hashing (needed for signature verification) and deserialization both
depend on the size of their input we measured the verification time
relative to the size of a transaction result in terms of number of
storage changes, i.e. the number of variables changed during the
contract call, which is independent of the number of sub-calls or the
quorum size. One variable corresponds to 64 Bytes (key and value).

We conducted our experiments on a machine with a 4 Core In-
tel(R) Core(TM) i7-7700 CPU @ 3.60 GHz, 2 threads, CPU family 6
and 16 GB RAM. As expected, the verification time is proportional
to the result size. The throughput for verifying and applying state
changes is roughly 160 MB/s. Each service provider signature con-
tributes with 0.1 ms to the total verification time but this could be
parallelized for multiple signatures.
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Tx/Block Changes/Tx Quorum Size Storage Verification

60 4 5 35kB 0.03s
60 10 5 58kB 0.03s
60 25 10 134kB 0.06s
60 50 10 230kB 0.06s
60 100 10 422kB 0.06s
60 200 20 845kB 0.12s

Table 1: On-chain storage cost and total verification time

for the result section of blocks with 60 contract calling

transactions per block (current Ethereum throughput),

given different average quorum sizes and number of state

changes per transaction.

Table 1 shows some examples for block verification time. We can
see that even for large quorum sizes of 20 service providers and
with an average number of 200 state changes per transaction, total
verification cost is small at 0.12 seconds per block.
Storage cost. The second performance metric that we evaluate is
storage, measured as the on-chain storage due to execution results.
Execution result storage scales linearly with the number of state
changes. For each updated 32 byte word, 64 bytes are needed (32
bytes for the location, 32 for the new value). In addition we need
to store an ECDSA signature of 64 bytes for each member of the
quorum. Note that the storage cost is independent of the execution
time, i.e. even long-running contracts may only make very few
state changes.

Table 1 shows examples for on-chain storage costs given different
average number of storage changes per transaction and different
quorum sizes. We assume the current throughput of Ethereum in
terms of contract calling transactions per block (60). Depending
on the number of state changes and size of quorum, the storage
overhead ranges from tens to hundreds of kilobytes. Currently,
Ethereum has an average of 4 state changes per block, i.e. for similar
contracts, the result section would add an overhead of 35kB to each
block, effectively doubling the block size. With a larger number of
state changes, the overhead grows linearly. Recent proposals for
block dissipation claim that 1MB blocks could be propagated to the
majority of the Bitcoin networkwithin 1.9 seconds given connection
speeds of 56Mbps [26], thus making it feasible to support even
contracts with a large number of state changes (e.g. 200) in ACE.
Communication cost. The primary communication cost of ACE
is that it may increase block size as described above. All other
messages involved in the system have no significant cost.

8 DISCUSSION

Changing service providers. For a long running smart contract,
it may be desirable to have the ability to update the set of service
providers. For example, one may want to replace a service provider
that has become (permanently) unresponsive. A simple solution is
to allow the contract creator alone to change the executing set. The
main drawback of this approach is that a contract creator could
initially appoint a set of service providers that is acceptable to the
contract participants who would then load money into the contract.
After that, the contract creator could then update the set of service
providers such that it no longer meets the contract participants’

requirements. A better solution is that the initially deployed smart
contract code includes a contract-specific service provider update
policy that defines the conditions under which the service providers
may be updated after the initial contract deployment.

Aggregate signatures. For large executing sets (e.g. 20 or more
service providers), the required result signatures increase the the
block size and verification time, as discussed above. If large exe-
cuting sets are used, the block size and the verification time can
be reduced by using an aggregate signature scheme such as BLS
signatures [6]. In an ACE contract call (see Section 5.4), the client
could collect individual result signatures from t out of n service
providers and then aggregate them together before broadcasting
the results to the miners. Such optimization is beneficial only for
large execution sets, because the verification time of aggregate
signatures is high compared to standard signatures like ECDSA.

Contracts with private state. Since ACE executes contract code
inside TEEs (SGX enclaves), it could be adapted to enable confiden-
tial contracts. Here we outline two possible models.

First, if the creator of a smart contract wants to keep the state
private, except for a predefined set of participants, he generates a
new symmetric key sk that he shares with the participants. He then
encrypts sk with the public keys of the service provider enclaves
that he wants the contract to be deployed at. This encrypted key
is stored on the chain together during contract deployment. To call
the contract, participants encrypt the contract call inputs using sk .

Second, if the state of a contract should be completely private, i.e.
not even known to the creator or contract participants, the service
provider enclave listed first in the deployment request can generate
a symmetric key and exchange it with the other service provider
enclaves using their public keys. Contract participants can encrypt
inputs to contract calls using the service provider enclaves’ public
keys. In either of the two scenarios, the result of a contract call will
not contain the state-diff of the contract account (that has to be
private) but rather an encrypted hash of the updated account state.

9 FURTHER RELATEDWORK

In Section 3.2 we already discussed closely related solutions and
their limitations. In this section we review further related work.

Brandenburger et al. [7] have developed an extension to Hyper-
ledger Fabric [4] that uses Intel SGX [22] to provide private state
for smart contracts. Similarly, ShadowETH [39] uses enclaves to
execute smart contracts privately for Ethereum. In contrast, ACE
tackles the problem of contract complexity in blockchains such as
Ethereum, by leveraging trusted computing to enable the execution
of long-running smart contracts.

Plasma [31] is another approach for scaling on top of Ethereum
by introducing so-called child-chains, which run their own con-
sensus mechanism and process transactions for a specific purpose.
This requires explicit transfer of assets between the main chain and
a child-chain and complicates interaction between child-chains.

Other works focusing on concurrency of smart contracts ex-
ist [15, 40]. However, they only parallelize execution on a single
node in order to use multiple processor cores for faster block valida-
tion and thus still suffer from the limitation that every node needs
to execute every smart contract call.
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10 CONCLUSION

Permissionless smart contract platforms like Ethereum are often
expected to enable arbitrary financial applications. However, in
practice such systems impose heavy restrictions on the types of
computations that can be implemented. In this paper, we have de-
scribed a novel system called ACE that enables several orders of
magnitude more complex contracts using off-chain execution by
appointed service providers. The key technical ingredient of our
solution is a concurrency control protocol that allows contracts
to call each other across service provider boundaries but does not
require that all service providers must mutually trust each other.
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