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Abstract. We explore two central issues in the performance of Secure Two-Party
Computation (2PC): (1) the transport layer in 2PC and (2) evaluation of 2PC
implementations.

Transport layer. Although significantly improved, the performance of 2PC is still
prohibitive for practical systems. Contrary to the common belief that bandwidth
is the remaining bottleneck for 2PC implementation, we show that the network is
under-utilised due to the use of standard TCP sockets. Nevertheless, using other
sockets is a nontrivial task: the developers of secure computation need to integrate
them into the operating systems, which is challenging even for systems experts. To
resolve this issue, and break the efficiency barrier of 2PC, we design and develop a
framework, we call Transputation, which automates the integration of transport layer
sockets into 2PC implementations. The goal of Transputation is to enable developers
of 2PC protocols to easily identify and use the optimal transport layer protocol for
the given computation task and network conditions.

We integrated selected transport layer protocols into Transputation and evaluated
the performance for a number of computational tasks. As a highlight, even a general
purpose transport layer protocol, such as SABUL, improves the run-time of 2PC over
TCP on EU-Australia connection for circuits with > 106 Boolean gates by a factor of
8.

Evaluations of 2PC. Evaluations of 2PC implementations do not reflect performance
in real networks since they are typically done on simulated environments and even
more often on a single host. To address this issue, we setup a testbed platform for
evaluation of 2PC implementations in real life settings on the Internet.

1 Introduction

Secure two-party computation (2PC) is a cryptographic tool that allows two remote parties
to jointly compute any function on their inputs and obtain the result without leaking any
other information. As more and more interaction is performed online between parties that do
not trust (or only partially trust) each other, the need for secure and practically efficient 2PC
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solutions is increasing, and there are plenty of applications that secure 2PC could facilitate.
The classic setting where 2PC is needed is that of two parties holding some data and gaining
extra utility by combining their data with the data of the other party. However, the parties
might not want (or might not be allowed) to share their data with each other due to privacy
concerns, competition (e.g., financial) or legislation. In these settings 2PC is a powerful tool
that enables collaborations which were previously infeasible. Examples of such applications
include key management for digital currencies [2], auctions [10], tax-fraud detection [9],
private set intersection [16,18,35,50,60,61] and even prevention of satellite collision [38,33].

Implementations are still not practical. Despite its huge potential, aside from initial
attempts and scant success stories, 2PC still remains the focus of theoretical research. Most
prototype implementations are meant to demonstrate feasibility [30]. The implementations are
evaluated in simulated environments or on a single host without taking into account realistic
network conditions nor presence of other processes [40]. Current 2PC implementations are
not generally usable and the users have to tradeoff their privacy with efficiency by resorting
to third parties for performing computations for them instead of running 2PC with the target
service.

Computation is optimal. While the idea of 2PC is now more than 30 years old, the
first public implementation of 2PC was released in 2004 [42]. Since then, huge progress has
been made in terms of protocol design and implementation engineering. The most efficient
implementations of 2PC protocols are based on the protocol proposed in 1986 by Yao [58]
which is built from garbled circuits [8] and oblivious transfer (OT) [44]; see background on
2PC, garbled circuits and OT in Appendix A. What has changed in recent years is that
(thanks to protocol optimisations, hardware support for cryptographic operations and the use
of multiple cores) the computation overhead of 2PC protocols has been reduced drastically
and there are indications that the current constructions of 2PC based on garbled circuits
have reached the theoretical lower bound [59]. It is now widely believed that the bandwidth
and not the computation, is the remaining bottleneck in 2PC [3,59,30].

Communication is yet to be explored. Although there has been work on reducing
the communication complexity and limiting the amount of data that needs to be exchanged
between the two parties, no research has been done on the networking layer of 2PC. Indeed,
evaluations of 2PC implementations on a single machine now result in practical perfor-
mance [7,52]. Nevertheless, when 2PC is evaluated on separate hosts, the latency overhead
is prohibitive for practical applications [46,54]. Evaluations of 2PC disregard the issues
faced by practical deployment of 2PC: many implementations are not evaluated in real life
setups where diverse network conditions, such as packet loss, latency, other traffic and other
processes can negatively affect performance [40,30].

In this work we explore the transport layer in 2PC, focusing both on the transport layer
in secure computation and on evaluation of 2PC implementations in realistic network setups.

Automated Transport Layer All the secure computation implementations use the stan-
dard TCP socket supported in popular operating systems (OSes). We demonstrate through
our evaluations that, in contrast to other transport protocols, TCP sockets result in high
performance penalty and do not fully utilise the bandwidth. TCP connections not only suffer
from poor performance on paths with high latency and packet loss but they also fail to adjust
to rapidly changing network conditions and incur high latency with buffer bloat. Even in
stable network conditions, TCP does not provide optimal performance, and is not suitable
for different types of applications. In the recent years different variants of TCP as well as
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other transport protocols, tailored to different applications and network setups, have been
proposed.

Why then are other more efficient transport layer protocols not used in implementa-
tions of secure computation?

The cause is the difficulty of integrating new transport layer sockets. As a result, the
developers use the default option of TCP. In order to use other transport layer sockets the
developers have to integrate them into the OS kernel: this is a challenging task even for
systems and networking experts. Hence, 2PC developers resort to using the default TCP
sockets, supported in the available cryptographic implementations and operating systems.

Which transport layer protocol is optimal for 2PC implementations?

To answer this question we perform evaluations with popular transport protocols. Our
results demonstrate that there is no general transport protocol that can provide optional
performance for all 2PC implementations. For optimal performance the transport protocol
has to be selected as a function of the 2PC implementation, the size of the inputs, and the
network conditions (e.g., packet loss, latency).

In this work we develop a transport layer framework for secure computation that we call
Transputation, which automates the usage and integration of transport layer protocols into
secure computation implementations. Transputation can be continually extended with new
transport layer protocols. During the computation, Transputation automatically identifies
the most suitable transport protocol (among those that were integrated into Transputation)
for a given computation task and network conditions. This adaptive behaviour on the
transport layer allows achieving consistently high performance over different and complex
real world network conditions.

Evaluations of 2PC Due to the difficulty and overhead of setting up real life testbed
environments, 2PC developers typically evaluate the implementations on a single host or
on simulated environments [40,30]. The performance in those setups is not representative
of real networks, e.g., the developers cannot foresee behaviour during execution with other
traffic and in diverse network conditions. Although there are other platforms for running
experiments in distributed setups, such as PlanetLab [15], they are not specifically tailored
for 2PC evaluations and do not have the support for the various transport layer protocols,
nor enable automated usage of transport protocols in 2PC implementations. Hence the
2PC developers would themselves have to setup and install the requirements, including
upload binaries, install libraries and dependencies, configure and integrate transport layer
protocols, measure latencies and packet loss. We create a platform with automated and
real life network setups for evaluation of 2PC implementations. Our platform is setup on
Vultr cloud instances in different physical locations, over networks with varying latencies
and packet loss and other concurrent traffic. By using our preinstalled implementations or by
uploading binaries of their implementations, 2PC developers can perform real life evaluations
and receive immediate results without the need to install or use any traffic monitoring tools.

Contributions. In this work we explore the obstacles in making secure computation
practical for real life systems. We identify two central issues which need to be resolved: (1)
there should be an easy way for 2PC developers to integrate and experiment with various
transport protocols in their implementations of 2PC and (2) there should be an automated
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way to evaluate and compare the performance of 2PC implementations in different network
setups.

We use our framework Transputation to demonstrate the performance improvements of
other (even mainstream) protocols over TCP, and to motivate the importance of enabling
automated and easy integration of new transport protocols into implementations of 2PC.
In our experimental evaluations with Transputation, we consider the complexity of the
Internet and test Transputation in large scale real world networks. For our evaluations we
have integrated three transport protocols into Transputation: UDP, TCP and SABUL5.
We explain the choice of the protocols in Section 4. The benefits of using versatile network
protocols will be even more significant after transition to 5G networks, which guarantee
99.99% reliability (i.e., no packet loss) and high transmission rates (at least 20Gp/s), [48,53].
In such cases using TCP as the transport will miss out on the performance benefits of 5G.
Nevertheless, Transputation will enable usage of versatile transport protocols tailored for
the needs of specific applications and hence will facilitate adoption of 2PC for different
systems.

Our evaluations with the selected transport protocols demonstrate that even general
purpose protocols already provide significant performance improvement over standard TCP
sockets. For instance, for large circuit sizes in WAN setting, SABUL performs 8x better
than TCP (Figure 1). Of course, transport protocols tailored for specific tasks would further
improve efficiency. There is a large body research of showing performance improvements over
general purpose transport protocols when tailoring protocols to specific tasks and engineering
patches for specific network conditions, e.g., [22,11,28,47,57,1]. Preliminaries on the transport
layer protocols are given in Appendix B.

For automating the evaluations of 2PC, we develop and set up an environment which
provides a user friendly GUI, that allows the users to select the network conditions as well as
setup and run their 2PC implementations over the Internet with the required latency, packet
loss and concurrent traffic.

Organisation. In Section 2 we introduce the Transputation framework and its layers.
The optimizations and implementations on secure computation layer and the transport
layer are explained in Section 3 and 4 respectively. In Section 5 we present the design
and implementation of the Transputation framework that we propose. In Section 6 we
present the evaluation testbed environment and in Section 7 we report on our evaluation and
simulation results of Transputation on our testbed environment. In Section 8 we review
related work and conclude this work in Section 9. Appendix A and B provide the necessary
preliminaries on secure computation and transport layer.

2 Transputation Framework

In this section we provide an overview of Transputation, explain how it can be used by
developers and describe our front end implementations which provides online access to
Transputation.

5 Though we use the most updated version of SABUL, also commonly known as UDT or UDP-based
Data Transfer Protocol, in this paper we use the former name to stress the difference with “regular”
UDP.
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Fig. 1. TCP vs. SABUL as garbled circuit size increases.

2.1 Components

The goal of Transputation is to identify which transport layer protocol is optimal for a
given computational task at hand, the input sizes, the network setup and buffer sizes. The
functionality of Transputation is split between two layers: the secure computation layer
and the transport layer.

Secure Computation Layer, composed of secure computation implementations, ac-
cepts the function or application to be evaluated securely and the size of the circuit repre-
senting the function. In Section 3, we motivate our choices for 2PC implementations that we
integrated into Transputation. We identify the parameters that impact the data volume and
communication pattern, and deploy optimizations relevant for performance improvements on
the transport layer.

Transport Layer is responsible for identifying an optimal transport layer protocol for
a given computation task. To that end, it determines the latency, bandwidth and packet
loss on the network via live experimental probes. Transport layer is also responsible for
avoiding overflow at the sender and the receiver. To avoid overflow, given the function to be
computed and the size of inputs to the circuit, Transputation calculates the required buffer
sizes on the sender and the receiver. We explain the implementation of the transport layer in
Section 4.

We integrated, in both layers, popular and representative protocols to demonstrate the
usage of framework as well as the evaluation of 2PC implementations. In the secure computa-
tion layer, we have integrated a garbled circuit protocol under standard assumptions [27], a
garbled circuit protocol under circularity assumption [59] and the scheme that assumes AES
as a ideal cipher [7]. In the transport layer, we support TCP [29], UDP and SABUL [24,25,26].

Transputation brings together the secure computation layer and the transport layer by
choosing a suitable transport protocol based on the combination of parameters obtained from
them. Transputation is built to support easy extensions at both layers. New implementations
of secure computation as well as new transport layer protocols can be integrated into
TransputationṪhe flexibility for easy integration of transport layer protocols is critical
– new protocols are continually devised, e.g., to improve performance of applications in
diverse network conditions or to support new Internet architectures. Future protocols may
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be able to offer an even better performance for secure computation than the existing options.
Transputation provides agility and flexibility for 2PC developers enabling them to constantly
extend the implementations with new transport protocols.

2.2 Usage of Transputation

Transputation makes it convenient for secure computation developers to focus on the 2PC
protocol. First, the developers can implement the secure computation protocol without
worrying about the underlying transport layer protocol. Then, the developers can invoke the
transport layer part of Transputation which is implemented as a wrapper. Our implemen-
tation provides functions for common operations such as setting up a connection between
the two parties, sending and receiving data.

We implement abstract classes into Transputation that makes selecting transport layer
protocols simple and automated. Adding a new transport layer protocol to the framework
only requires specifying a string to identify the protocol without requiring any changes to the
secure computation implementation. Without the framework, substantial parts of the secure
computation implementation will need to be re-written to accommodate new transport layer
protocols. In many existing secure computation implementations, the code is not modular.
The network code is interwoven with the application code such that not only is the transport
layer protocol hard-coded into the application code, but also the IP-address and the port
numbers are hard-coded. This has also been recently observed by [30]. Unwrapping such
an implementation and adding transport layer protocols requires extensive rewriting of the
code base. To begin with, an entangled code base prevents retrofitting of transport layer
protocols. The code base will need to be made modular before considering the integration of
different transport protocols.

Secure computation developers can use Transputation in three ways. First, they can
utilize the transport layer module to automatically choose the most appropriate transport
protocol in a given network setting for their secure computation implementation and 2PC
application. The secure computation implementation is then integrated with the transport
layer protocol which provides the most efficient run time. Second, if the developer wants
to test secure computation protocol manually, it is possible to run the implementation and
2PC application using the various transport layer protocols available in Transputation

under various network conditions to choose the most suitable transport layer protocol for
the 2PC application. Finally, secure computation protocols consist of interactive primitives
such as oblivious transfer (OT) and OT extensions. Transputation can be used not only by
developers who use these primitives to construct a 2PC protocol, but also by the designers
of the primitives to test the practicality of their design.

2.3 Front End

Since the first implementation of secure computation, running and testing the implementations
requires the tiresome process of downloading the source files and installing them along with
the dependencies. Though this process is necessary if one wants to make changes to the code
and experiment, it should not be necessary if one wants to run the code as it is without any
modifications. Hence, to make it easy for users of secure computation to use Transputation,
we provide a GUI.

The GUI offers two possibilities: First, secure computation protocols can be run over
WAN or LAN by choosing the application and the transport protocol. Once the choices are
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made and the user clicks the Run icon, the experiment runs in the background and the result
of the execution is displayed after the evaluation is completed. Second, GUI also supports
running simulations. For the secure computation of a particular application, various network
parameters—delay, loss, bandwidth, transport protocol—can be chosen. Running simulations
gives the user an insight into the efficiency of secure computation protocol and allows them
to compare and choose the appropriate transport protocol under specific network constraints.

3 Two-Party Computation Layer

In this section we present the secure computation layer of Transputation. We explain our
choices of the selected 2PC protocols and the applications. We describe the parameters which
define the amount of data to be transmitted, the properties which impact the communication
performance and list recent computation optimizations relevant for our improvements on
the transport layer, which we integrate into Transputation. We identify computations and
operations which have most impact on communication efficiency and deploy corresponding
optimizations.

Currently most efficient technique for secure two-party computation is based on Yao’s
protocol with garbled circuits (see preliminaries in Appendix A). The main features of Yao’s
protocol (as opposed to other protocols) are: it has constant rounds (in fact, it is round
optimal when using a two-message oblivious transfer protocol), it is computationally cheap
(since it mostly uses lightweight symmetric-key operations, and very few expensive public-key
operations such as exponentiations). Moreover, due to the nowadays ubiquitous presence
of the AES native instruction (AES-NI) in modern CPUs, the computational overhead of
generating and evaluating garbling circuits has further decreased.

The main alternative to Yao’s protocol is the GMW protocol [21] (which is purely based
on Oblivious Transfer). Unlike Yao’s protocol, the GMW protocol has non-constant round
complexity (proportional to the depth of the circuit to be evaluated). This requirement
hinders its efficiency, especially in high latency setting. In [52], the authors concluded that
GMW protocol with multiple rounds was more efficient than Yao’s garbled circuits in low
latency LAN settings. However, the evaluations were compared to that of Huang et. al [36]
from 2011. Since then, the garbled circuits protocol has been optimized further. As an
additional contribution, in Appendix A.3, we show evidence that Yao’s protocol is currently
more efficient than GMW in all network settings. Thus, we do not consider GMW further in
this work.

We focus on the recent optimized garbling schemes. The three main characteristics of
such garbling schemes are: the size of the produced garbled circuits (which impacts the
communication efficiency of the protocol), the number of encryptions/decryptions which have
to be performed for generating/evaluating a garbled gate (which impacts the computational
overhead of the protocol), and the computational assumptions under which the garbling
scheme can be proven secure.

We included the most representative, with respect to efficiency-security trade-offs, garbling
schemes into Transputation. All other schemes in the literature are strictly worse than the
ones we consider when it comes to either efficiency or security.

Concretely, we implemented 2PC protocols based on the following three garbling schemes
in Transputation:

(1) The most efficient known garbling scheme which only makes very conservative and
standard assumptions (namely, that AES is a PRF), proposed by Gueron, Lindell, Nof and
Pinkas [27], henceforth GLNP15;
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(2) A more communication efficient garbling scheme which supports free-XOR [39] and
half-gates [59] (at the price of having to assume circular security properties of AES);

(3) A further improvement in the computational overhead at the price of having to
assume that AES with a fixed-key behaves like an ideal permutation [7];

In our evaluations with Transputation, we extend upon the work of GLNP15 [27] to
show that with a better selection of transport layer protocols, secure computation with
standard assumptions can be made more efficient. More precisely, we show that the use of
TCP limits the performance of secure computation protocols in a high latency setting when
the communication is large.

3.1 Garbling Schemes

In this section we give an overview of the different garbling schemes that have been im-
plemented in Transputation. We identify the computations and operations which have
impact on the communication efficiency and explain the corresponding optimizations that
we deployed (which, as we explain, do not sacrifice security). We use the implementations
which are part of the libscapi library [20] for garbled circuits, since all the known garbled
circuit optimizations have been incorporated into it. All implementations (Table 1) make
use of AES-NI instruction set.

Protocol Scheme
GLNP15 [27] Garbled Circuits (Pipelined-garbling + Key Scheduling; 4-2 GRR + XOR-1)

Garbled Circuits (Pipelined-garbling + Key Scheduling; Free-XOR; Half-gates)
ZRE15 [59] Garbled Circuits (Fixed key AES; Free-XOR; Half-gates)

Table 1. List of implementations.

GLNP15. The first implementation is based on the garbling scheme from [27]. The main
advantage of this garbling scheme is that it only makes very conservative computational
assumptions, i.e., it can be proven secure under the assumption that AES behaves like a
pseudorandom function (PRF). Like all garbling schemes that we consider in Transputation,
the garbling of linear gates (e.g., XOR) and non-linear gates (e.g., AND) is performed
differently. In GLNP15, garbling an AND gate produces two ciphertexts (using the 4-2
Garbled Row Reduction technique, or GRR for short), while garbling an XOR gate produces
one ciphertext using the XOR-1 technique. From a computational point of view, garbling
with AES key scheduling is pipelined. Four key schedules are required for every gate (AND
and XOR) during garbled circuit construction while two key schedules are required per gate
during circuit evaluation.

Half-Gate. The second implementation is based on the work of [59], and uses the so
called “half-gate” optimization, which in turn is compatible with the “free-XOR” optimization
of [39]. This optimization is achieved at the price of having to make a stronger computational
assumption on AES, namely assuming some form of circular-security (a kind of related-key
assumption). The half-gate optimization reduces the number of ciphertexts necessary to
garble an AND gate from 4 to 2 (using a different approach than GLNP15). We refer to the
original paper for further details.

JustGarble. The final optimization we consider was proposed in the JustGarble frame-
work of [7]. Recall that key-scheduling is the most expensive phase when using the AES-NI
instruction, i.e., the instruction is optimized to garble large amount of data under the same
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key, but loses some of its efficiency when different keys have to be used all the time. As
described above, in garbling schemes each gate consists of ciphertexts where different keys
are used, thus the full power of the AES-NI set is not exploited. In JustGarble, AES is used
as an ideal permutation “in stream cipher mode” by setting the key as a fixed constant, e.g.,
to encrypt message m under key k one computes C = AESc(k) ⊕m for some constant c.
This usage of AES is quite non-standard, and amongst the three presented, provides the
most extreme efficiency/security trade-off.

3.2 Applications and Circuit Size

Once we have fixed the protocol and the garbling scheme, we are left with one dimension,
namely which function should be evaluated using the 2PC protocol.

For garbled circuit protocols, the circuit size plays a significant role in defining the amount
of data that is to be transferred over the network. The amount of data transferred from the
circuit Garbler to the Evaluator is a linear function of the circuit size. In particular, there
is a difference in the price to pay (in terms of communication complexity) for linear gates
(e.g., XOR gates) vs. non-linear gates (e.g., AND gates), and different garbling schemes have
different coefficients for these two types of gates. In this work, we consider three applications
with circuits of three different sizes. These circuits are becoming the de-facto standards
for benchmarking of MPC protocols, mostly since they represent three different orders of
magnitude in circuit sizes. In particular, we benchmark Transputation on the circuits for
AES (≈ 105 gates), SHA256 (≈ 106 gates) and MinCut (≈ 107 gates). The exact number
of gates and the distribution between AND and XOR gates for these circuits is shown in
Table 2.

Function AND gates XOR gates

AES 6,800 25,124

SHA256 90,825 42,029

MinCut 999,960 2,524,920
Table 2. Number of gates.

Depending on the security assumptions, the amount of data for a particular circuit varies.
When garbling using GLNP15, each AND gate produces two ciphertexts while each XOR
gate produces one ciphertext. For AES, SHA256 and MinCut, amount of data communicated
is 0.59MB, 3.41MB, 69.04MB respectively. When garbling using the Half-Gate construction
or JustGarble, no ciphertexts are needed for XOR gates while two ciphertexts are produced
per AND gate. For AES, SHA256 and MinCut, the amount of data communicated is 0.21MB,
2.77MB and 30.52MB. As can be observed here, for MinCut circuit with many XOR gates,
the number of ciphertexts sent over the network has a high dependency on the garbling
scheme used. In Table 3, a summary of the circuit sizes in megabytes is provided.

4 Transport Layer

In this section we describe the network characteristics which Transputation measures in
order to optimise performance, parameters for selection of optimal transport layer protocol
and the challenges of integrating transport sockets.
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Assumption AES SHA256 MinCut

PRF 0.59 3.41 69.04

Circularity 0.21 2.77 30.52

Ideal cipher 0.21 2.77 30.52
Table 3. Garbled circuit size in Megabytes.

4.1 Transport Protocol Selection

Given the sizes of the inputs and the 2PC implementation, the transport layer of Transputation
measures the packet loss and the latency and consequently determines which transport pro-
tocol is optimal. The decision whether reliability and congestion control mechanisms are
needed is made also considering the network characteristics, e.g., LAN or WAN.

Transputation runs continuous experiments with PING, probes network for losses,
tries sending at different rates and selects a protocol which empirically produces optimal
performance.

Protocol selection based on latency. Latency plays an important role in the choice
of transport layer protocol. When the time to transmit one TCP window is higher than the
round trip time (RTT), the transmission proceeds in full pipe, and is essentially similar to
UDP since the congestion window does not limit the transmission.

Specifically, let W be the bytes in the TCP window and let ttrans be the transmission
delay of one byte. Let RTT be the time it takes to transmit one TCP segment and receive
an ACK. If W · ttrans > RTT , then there is no impact of TCP congestion window on the
latency since transmission proceeds in pipeline.

Transputation measures the RTT, the window size W and the ratio W · ttrans vs. RTT
and based on this determines which transport protocol to use (i.e., window-based or to
transmit in full pipe). In low latency networks, e.g., evaluations on the same LAN, congestion
control is generally insignificant (typically LANs do not suffer from packet losses and have
low latency). In those settings Transputation resorts to UDP-like protocols.

Protocol selection based on communication rounds. The relevant parameters here
are number of interaction and data volume. Window based protocols, such as TCP, are not
optimal for 2PC implementations with small number of interactions and large data volumes.
Window-less protocols, such as SABUL, provide better performance. This is due to the fact
that the transmission window increases with the number of RTTs. In TCP the window
starts with one segment and increases exponentially with every received ACK. As a result,
although on the application layer only a few interactions are required, they will be performed
in multiple interactions round on the transport layer. This factor is most evident in networks
with high latency, such as WANs.

Protocol selection based on packet loss. TCP performs poorly during packet loss
events, even when very few packets are lost, say 1%. During packet loss, reliability should be
taken care on the user space with UDP protocol or with SABUL.

4.2 Avoiding Packet Loss

Packet loss is the phenomenon, where one or more packets that are sent, do not reach the
destination. Lost packets need to be retransmitted, which increases the overall time spent
for communication. The main cause for packet loss is the buffers. When buffers are full,
subsequently arriving packets are discarded. This can be either at the sender side or the
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receiver side. Transputation avoids packet loss at the sender and receiver by adjusting the
size of buffers as a function of latency, transmission rates and the data volume that needs to
be transmitted.

Specifically, given (1) the differences between the transmission rate and the rate at
which the data is passed on to the IP buffer (respectively transport layer) at the sender,
(2) the transmission rate and the rate at which the IP buffers (and respectively transport
layer) are depleted at the receiver and, (3) the input sizes and the secure computation
implementation (both of which define the data volume and the rate at which it will be
exchanged), Transputation performs a computation of the maximal amount of data that
can be sent in one window.

The computation is performed by Transputation is as follows. Given a receiver buffer of
size B, with data arrival rate Rarrival, and the buffer depletion rate Rread. Transputation
computes the maximum window size as geometric series that converges to:

L =
B

1−Rarrival/Rread
During the computation, the data transmitted will be limited by L bytes during each
transmission window. This accounts for the data that is being read, while new data arrives,
and allows to optimize the communication.

4.3 Transport Protocols in Transputation

Implementing network functionality requires handling raw network sockets provided by the
operating system. As a result, the same code, e.g., to open a TCP socket, is written numerous
times and mixed with application code. However, if the transport protocol is to be changed,
then it is hard to unwrap the network code from the application code. To ease development,
our framework is modular. We provide abstract methods independent of the actual transport
protocol implementation to make switching of transport protocols convenient. The use of
abstract methods enables any secure computation protocol to use any transport protocol.
Developers of secure computation protocols as well as developers implementing transport
layer protocols do not require in-depth knowledge of the other layer; therefore, reducing
development overhead. Furthermore, developers of secure computation protocols save time
as the need to implement network functionality is reduced to calling the abstract function
set provided by the transport layer of Transputation.

We integrated into Transputation the following transport protocols: TCP, UDP and
SABUL. We implemented TCP for comparison to other transport protocols. We used UDP
as a benchmark for connection-less protocols on networks without losses. Examples for such
networks is evaluations on LAN, or implementations which are meant to run on 5G networks,
which guarantees reliability and no packet loss [48,53]. We integrated SABUL, as it is
currently used by an increasing number of applications, and provides reasonable performance
for Internet communication. See preliminaries in Appendix B. New and even more efficient
protocols may be developed in the future. Transputation enables easy integration of new and
additional transport protocols. We describe the steps needed for integrating new protocols
into Transputation in Section 5.

5 Transputation Implementation

The main design goal of Transputation is to provide a modular design which can be extended
with other secure computation protocols as well as transport layer protocols. Transputation
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allows secure computation researchers to focus on the protocol details without worrying
about the networking aspects of the implementation. Modularity is not restricted to secure
computation protocols. Transport layer protocols, ancillary to the those included in the
framework, can be added to the framework if required.

Abstraction. The transport layer part of Transputation is implemented as a wrapper
written in C++ which can be easily plugged in with secure computation protocols. The
current version uses synchronous sockets which is sufficient for our purposes. It abstracts the
network functionality and removes the requirement to deal with the transport layer protocols
themselves. The transport layer protocol can be set at runtime, making it easier to compare
different protocols without the need for recompilation. Since most of the secure computation
implementations developed in the past few years are written in C++, polymorphism in C++
are used to achieve modularity. We implemented an abstract class with methods needed to
establish and close connections, and to send and receive data. Every transport layer protocol
that is or will be implemented in our wrapper extends this class and implements these
methods. This provides secure computation developers with two benefits: First, they do not
need to know how to use the transport layer protocol and second, they can use new protocols
that are added to the wrapper without making any change to the executable or library of the
secure computation implementation. To implement a new protocol only the four methods of
the abstract class are required: SetupClient, SetupServer, RecvRaw, SendRaw. Adding a
transport layer protocol to the framework is as easy as adding it to a C or C++ program.

The wrapper currently supports UDP, TCP and SABUL. Since UDP does not provide
reliability through features such as retransmission or reordering of packets, it cannot be used
in real-world scenarios with packet losses and where the correct order of packets cannot
be guaranteed. If a dedicated network without packet loss is available, then UDP can be
used. In all other cases, we recommend to use TCP or SABUL in Transputation. To choose
between TCP and SABUL, we provide evaluations in the following sections.

Simplification. We have used predefined class methods to simplify common tasks. When
an instance of the Transport class is created, a socket is already allocated and set up on
creation (by using socket() e.g. for TCP or UDP). Then the user decides if a client which
connects to a server should be created, or if a server which listens on a port and waits for
incoming connections should be created. For example, using our wrapper, a TCP server can
be setup as shown in Figure 2. This reduces the number of lines needed as well as improves
the readability and encourages users to separate program logic from network code. This
is important to make the code more reusable. It is also easier to test the functionality of
different parts when they are separated in a modular design.

1 auto ∗ t = GetTransport ( ” tcp ” ) ;
2 t−>SetupServer ( ” 0 . 0 . 0 . 0 ” , 1234 ) ;

Fig. 2. Setting up a server with our wrapper.

The wrapper also includes two static methods, GetLatencyClient() and GetLatencyServer()

to measure the latency. These methods use UDP packets to measure the RTT in milliseconds.
This can be used to decide which protocol should be used. Finally, the wrapper takes care of
packet sizes’ byte order, which makes it simple to port applications to different platforms.

Packet handling. Transport layer protocols have contrasting methods to send data.
For instance, UDP sends single packets, and hence sending ten 100 byte packets is not an
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issue. However, sending packets larger than the maximal allowed packet size, limited by the
underlying maximum transmission unit (MTU) of the network stack, is not possible without
splitting the data into smaller chunks. This has to be done by the program that incorporates
UDP, which does not provide this by itself. In contrast to UDP, TCP sends data as a stream.
If the data to be sent is too large, it will be split into multiple packets by the protocol. To
simplify usage of different transport layer protocols, the wrapper allows users to send and
receive packets in arbitrary sizes.

To solve the issue where multiple packets are received as a big chunk, the wrapper includes
a Packet class which can be used to send a given amount of data. The receiver can then,
without knowing the packet size prior to receiving, receive the packet. For all protocols, that
can be included in the wrapper, the data will be split into multiple packets if needed and
reassembled at the receiver side. When 10 packets are sent with the wrapper it will receive
10 packets. In order to tell the packets apart, the length information is added to the data so
it can be interpreted by the receiving side. This length information is converted to network
byte order to make it cross compatible among systems with a different endianness. So sending
data from a big-endian machine to a little-endian machine (or vice versa) will still work since
the bytes of the 16 bit length value are not accidentally flipped due to different byte order.

Integration. The wrapper can be integrated into any secure computation protocols, by
simply calling methods of the wrapper such as Send() or Recv() in the Transport instance.
The protocols can be supplied as a string such as udp, tcp. If the wrapper is then extended
with a new transport layer protocol, then the framework will be able to use this protocol
without any changes. For example, an echo client that connects to a server, receives a packet
and echos it can implemented with the following code:

1 auto ∗ t = GetTransport ( ” tcp ” ) ;
2 t−>SetupCl ient ( ” 0 . 0 . 0 . 0 ” , 1234 ) ;
3 t−>Connect ( ) ;
4 auto p = t−>Recv ( ) ;
5 t−>Send (p ) ;

Fig. 3. Example of an echo client using our wrapper.

We have integrated the wrapper into libscapi. Libscapi uses external OT-extension
libraries which has its own network code. By incorporating our wrapper in libscapi, both -
libscapi code and the OT extension code - can use suitable transport layer protocols without
making any change to the rest of the code. This is an advantage that can be achieved by
using a common network wrapper. Transport layer protocols can be added to the wrapper
and used by both. With our approach, we want to separate the network code from the
application code.

6 2PC TestBed

For easy testing of secure computation protocols using different transport layer, we propose a
testing environment. Here users can upload their own implementations and evaluate different
transport layers on real networks.
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The testing environment consists of several computers located all over the globe. Only
one computer serves as a gateway and is accessible from the Internet. Users can upload the
code to the gateway machine.

Users are required to register for an account so that their programs are locked inside a
virtualized environment (using QEMU6) which also limits the amount of CPU resources,
memory, and harddisk space which can be used. This virtualized environment is set up at
every location where the tests will be run.

The non-gateway servers mount the filesystem that contains the uploads from users
via SSH7 for easy distribution of the files while maintaining security. The users have to
upload two script files (‘customname-client.sh’ and ‘customname-server.sh’) along with their
programs, where ‘customname’ can be any name only containing alphanumeric letters. An
example for a ‘client.sh’ is shown in Figure 4. This way it is possible to upload multiple files
to test. The frontend will then display the chosen name as an option if both, the ‘server.sh’
and ‘client.sh’ are present for it. When running the evaluation, the server will invoke these
files and provide the IP address of the opposite server and of the current server running the
script as the first parameter and the second parameter. This way, the experiments can be
run on different servers without any changes to the code.

As a third parameter the transport layer is passed as a lowercase string. In the Bourne
Shell (‘/bin/sh’) these parameters are accessed by the variables ‘$1’, ‘$2’ and ‘$3’, which
would contain the values of the opposite server’s IP address, the current server’s IP and the
transport layer protocol being used. As in Figure 4 ‘$2’ may not be needed, since clients
usually don’t bind to IP addresses. However, to avoid confusion when writing server and
client shell scripts, and to enable bidirectional communications, this parameter will still
be passed. Optionally, the user can install libraries from Ubuntu 16.04 repository to the
virtualized environment. The Transputation libraries for abstracting the transport layer
are already preinstalled.

1 #! / bin / sh
2 # $2 i s not needed by a c l i e n t
3 . / a . out −−connect $1 −−t ran spor t $3

Fig. 4. Example client.sh script.

When the user uploads the programs and scripts, it is possible to run simulations from
the front end. Here the user is presented with all the uploaded scripts. It is possible to select
different locations (in LAN or WAN setups) by choosing the program to run, the location
for the server and the client to connect with. Then, the user can check the transport layer
protocols to be used for the evaluation. The environment will run the evaluation and present
the user with the result for all the selected transport layers.

7 Simulation and Experimental Evaluation

In this Section, we provide the simulation results which are used to understand the effect of
latency and packet loss on the performance of secure computation protocols (Section 7.1).

6 https://www.qemu.org/
7 https://github.com/libfuse/sshfs
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Then we describe realistic deployment scenarios (Section 7.2) followed by evaluation results
obtained in LAN and WAN settings (Section 7.3).

7.1 Simulations

In this section, we provide the results obtained by simulating two parties performing secure
computation on a single machine. The simulation results provide the benchmark for the
executions in real network setups describe in Section 7.3. We simulate latency and packet loss
using tc qdisc network emulator on a single Vultr instance with a 64-bit single core CPU
with 2.6 GHz and 2 GB RAM. The communication takes place over the loopback interface.

Through these simulations we aim to understand the impact of latency and packet loss
on secure computation protocols. We simulate latencies between 1ms to 300ms, packet losses
between 0.01% and 0.05% and bandwidth of 200Mbps, 500Mbps, 1Gbps, 10Gbps, 15Gbps
and 25Gbps. The latencies were chosen to represent communication between machines on
the same network as well as those in different parts of the world. For instance, the round-trip
time (RTT) within North America is 50ms on average, RTT between machines on either side
of the Atlantic Ocean is about 100ms and machines placed in North-America and Asia or EU
and Australia is about 300ms. Packet losses were chosen such that they are representative of
realistic packet losses observed in networks8. Bandwidths were chosen based on measurements
performed using iperf on different networks—local and cross-Atlantic. Here we have present
the results on a 10Gbps network.
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Fig. 5. Effect of latency on AES on a 10Gbps link.

To understand the effect of latency on secure computation protocols, we run them using
TCP, UDP and SABUL. We use UDP to provide the best possible runtime of the protocol if
a reliable transport layer protocol was not needed. As reliable communication is required
to satisfy the correctness property of secure computation in real networks, we use UDP to
benchmark the runtimes achievable when the bandwidth is optimally utilized. We use two
reliable transport layer protocols, TCP and SABUL, to show the bandwidth utilisation for
different circuit sizes. All experiments are run using single thread using AES-NI and the
results here are the average of 100 runs.

For a small circuit such as AES, it can be observed in Figure 5 that TCP with Nagle’s
algorithm [43] disabled performs better than SABUL. This is because for small circuits, few

8 http://www.verizonenterprise.com/about/network/latency/
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Fig. 6. Effect of latency on SHA256 on a 10Gbps link.
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Fig. 7. Effect of latency on MinCut on a 10Gbps link

kilobytes of data are sent over the network while SABUL is optimized for transfer of large
data transfer. For a medium-sized circuit such as SHA256, it can be observed in Figure 6 that
TCP performs better than SABUL under ideal cipher assumption and circularity assumption,
while under PRF assumption, the performance of SABUL is better than TCP as RTT
increases. Our observation is due to a combination of reasons: the performance of SABUL is
better as Bandwidth Delay Product (BDP) increases as well as when the amount of data
transferred increases.

For a large circuit such as MinCut, the performance of SABUL and TCP is quite different
from that observed for AES and SHA256. It can be observed in Figure 7 that SABUL utilizes
the available bandwidth much better than TCP. As many packets are sent from the circuit
Garbler to the Evaluator, the congestion control mechanism plays an important role in
controlling the rate of packet transmission. The increase in latency affects the performance
of TCP more than SABUL as SABUL uses a timer-based selective ACK instead of reacting
to packet level events.

When considering packet loss, for small circuits such as AES, loss rate that we consider
impacts the performance of TCP more than SABUL, as can be seen in Figure 8. For
medium-size circuits such as SHA256 and large circuits such as MinCut, increase in loss rate
deteriorates the performance significantly when TCP is used. On the other hand, SABUL
handles packet loss better and the performance deterioration is very low. As can be observed
in Figure 9 and 10, for large and medium-sized circuits on a network with at least 100ms
delay, SABUL is more suitable than TCP. Here we have presented the results for GLNP15 on
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a 10Gbps network. We have also plotted the standard deviation of the runs as the variance
is non-negligible in many of the results.
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Fig. 8. AES on 10Gbps at various loss rates.
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Fig. 9. SHA256 on 10Gbps at various loss rates.

Network bandwidth has been improving over the years. Considering this trend, we consider
a wide range of bandwidth to show the performance of secure computation protocols for
AES, SHA256 and MINCUT. Figure 11, 12 and 13 are the results for GLNP15 protocol for
a simulated network bandwidth of 15Gbps and 25Gbps. Though the performance of TCP
for secure computation is comparable to UDP at low latencies, such as 1ms, we observe that
bandwidth is underutilized by TCP at higher latencies for both SHA256 and MINCUT.

7.2 Deployment Setups

For performance evaluation, two deployments were set up on our testbed environment: LAN
setting and WAN setting. These settings provide two common setups of evaluation of secure
computation protocols.
LAN setting. In the LAN setting, we run the experiments on two Azure instances located
in the same data centre in the EU using high-bandwidth network and low latency. Each
instance has a 64-bit Intel Xeon quadcore CPU with 2.4 GHz and 28 GB RAM. The latency
was 0.5 ms on a 10Gbps link. The variance observed was within 10%.
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Fig. 10. MINCUT on 10Gbps at various loss rates.
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Fig. 11. Performance of AES-GLNP15 at high bandwidths

WAN setting In the WAN setting, we ran experiments on two pairs of locations with
different latencies. These locations were chosen to show the behaviour of secure computation
protocols with different transport layer protocols as latency increases.

EU-US: In this setting, two Azure instances with a 64-bit Intel Xeon quadcore CPU
with 2.4 GHz and 28 GB RAM are used. One is located in the EU while the other is located
in central US. The latency was 110ms and the network speed was estimated to be 1Gbps.
The measured speed for a single TCP connection was 200Mbps on average. Both machines
run Ubuntu 16.04. Variance of 15% was observed in this setting.

EU-AUS: In this setting, two Azure instances with a 64-bit Intel Xeon quadcore CPU
with 2.4 GHz and 28 GB RAM are used. One is located in the EU while the other is located
in south-east Australia. The latency was 300ms and the network was estimated to be 1Gbps.
The measured speed for a single TCP connection was 100Mbps on average. Variance of 20%
was observed in this setting for secure computation of AES and SHA256 while the variance
for MinCut was 30% for TCP and 25% for SABUL.

18



15Gbps 25Gbps
Bandwidth

0

200

400

600

800

1000

1200

Ti
m

e
(m

s)

TCP 300ms
TCP 100ms
TCP 1ms

SABUL 300ms
SABUL 100ms
SABUL 1ms

UDP 300ms
UDP 100ms
UDP 1ms

Fig. 12. Performance of SHA256-GLNP15 at high bandwidths

All experiments are run using single thread and the Azure instances use AES-NI. Garbled
circuit protocols were run 100 times. The results in the following sections are the average of
these executions.

7.3 Experimental Evaluations

In this section, we present the results obtained by using Transputation. The results were
obtained using the network wrapper and running the three secure computation protocols
using TCP and SABUL for communication in LAN and WAN settings.

Circuit Setting JustGarble [7] Half-Gate [59] GLNP15 [27]

TCP SABUL TCP SABUL TCP SABUL

AES

LAN 2.4 187.1 2.9 191.3 7 202.7

EU-US 127.4 403.9 126.3 408.3 130.4 444.2

EU-AUS 312.44 566.84 310.88 580.2 377.92 592.5

SHA256

LAN 13.5 191.9 19.9 226.7 30.5 233.45

EU-US 146.23 332.24 151.99 318.26 266.46 411.96

EU-AUS 362.53 568.22 394.13 587.03 650.44 612.43

MinCut

LAN 255.19 598.2 267.2 740.2 700.8 1255.9

EU-US 2616.59 896.74 2783.6 957.6 4911.89 1802.25

EU-AUS 8204.61 1068.07 8693.57 1163.14 13805.2 2001.27

Table 4. Experimental results for garbled circuit protocols (Runtime in ms)

We summarize the experimental results in Table 4. The timing measurements in the
table include the garbling time, transfer of data from the Garbler to the Evaluator and
the computation of output. In LAN setting, TCP performs best for all circuit sizes. This
is because, when Nagle’s algorithm [43] is disabled, the packets are sent as soon as they
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Fig. 13. Performance of MinCut-GLNP15 at high bandwidths

arrive at the buffer. Disabling Nagle’s algorithm is advantageous in LAN setting as the
communication is fast and computation consumes bulk of the time taken by the protocol.

In the WAN setting, when the secure computation protocol is run between Azure instances
in EU and US, the circuit size begins to influence the performance. For AES and SHA256,
TCP is still more efficient than SABUL but the tide tilts for MinCut. MinCut using SABUL
is 2.7-3x faster than TCP. In fact, secure computation of MinCut under PRF assumption
using TCP is more efficient than under ideal cipher assumption or circularity assumption
using TCP.

PRF Circularity Ideal Cipher
Assumption

0

5000

10000

15000

Ti
m

e
(m

s)

MinCut TCP EU-AUS
MinCut SABUL EU-AUS
SHA256 TCP EU-AUS
SHA256 SABUL EU-AUS

Fig. 14. Comparison of assumptions.

In the WAN setting, when the secure computation protocol is run between Azure instances
in EU and Australia, the influence of latency on secure computation of large circuits becomes
much more evident. Secure computation of SHA256 under PRF assumption (with 223,679
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ciphertexts) using SABUL is only a little faster than using TCP. Secure computation of
MinCut using SABUL is 7− 8x faster than using TCP. This is significantly more than the
improvements that can be expected from secure computation protocol improvements [59]. In
Figure 14, we provide a comparison of the performance of TCP and SABUL under the three
security assumptions which further emphasizes the improvement in performance by using
appropriate transport layer protocols.

The comparison of TCP and SABUL with respect to increasing ciphertext size can be seen
in Figure 1. The impact of latency on the two transport layer protocols becomes apparent
from this figure. When using SABUL, time taken by secure computation protocols increases
by 200ms when latency between the two parties increases by 200ms. On the other hand,
performance of TCP deteriorates much more significantly as latency increases.

8 Related Work

Secure Computation. Secure two-party computation (2PC) allows two parties to jointly
compute any function of their inputs and obtain the result without leaking any other
information. Secure 2PC protocols have been extensively studied since mid-1980s when
the first feasibility results were provided by Yao [58] and Goldreich, Micali and Wigderson
(GMW) [21]. These seminal results show that it is possible to evaluate any function in a
secure way, that is, two parties P1, P2 with inputs x, y can jointly evaluate some function f
(expressed as a Boolean circuit) on their inputs in such a way that both parties learn the
desired output z = f(x, y) and nothing else about the input of the other party.

A long line of work has tried to increase the efficiency of garbled circuits. The original
protocol by Yao [58] requires a transfer of 4 ciphertexts per Boolean gate in the circuit, and
requires 4 decryptions for the evaluation of a garbled gate. The number of decryptions per
gate in the evaluation phase was reduced to 1 thanks to the point-and-permute strategy
of [6], which also reduces the size of the ciphertexts by a factor 2 (approximately). The
main measure of communication complexity of garbling schemes is the number of ciphertexts
which are transmitted per Boolean gate. This was first reduced in [45] using the garbled
row-reduction technique (GRR) which only requires 3 ciphertexts per gate (the so called
4-3 GRR technique). This was further optimized to 2 ciphertexts per Boolean gate in [49]
(e.g., 4-2 GRR). Thanks to the free-XOR technique [39], it is not necessary to transfer any
ciphertexts for XOR (or other linear) gates. Unfortunately the free-XOR technique was
incompatible with the more advanced 4-2 GRR technique. The two techniques were finally
combined thanks to the half-gate optimization, which combines the benefit of free-XOR
(no ciphertexts for XOR gates) with the advanced 4-2 GRR technique (only 2 ciphertexts
per AND gate). Unfortunately, the free-XOR technique is only secure under non-standard
cryptographic assumption [14] and, in particular, it requires some form of “circular security”
assumption. Using an even stronger assumption, i.e., fixed-key AES behaves like a random
permutation, faster garbling schemes were proposed in [7].

While efficiency is a crucial aspect in 2PC, some have questioned how safe it is to keep
making stronger assumptions about the encryption schemes to gain in efficiency, especially
since such encryptions (e.g., AES in practice) have not been designed with these properties
in mind. In particular, we note that a conservative approach is usually adopted by the
industry as it is difficult to change protocols if vulnerabilities are discovered after deployment.
Therefore [27] provided novel constructions of garbled circuits that require 2 ciphertexts for
AND gates (4-2 GRR) and 1 ciphertext for XOR gates (XOR-1) and that can be proven
secure using standard assumptions only. The main conclusion in [27] is that the price to
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pay for the stronger security guarantees in practice is much less than it is in theory. Our
evaluations in some sense confirm and strengthen the conclusions of [27]: our experiments
show that the choice of the right network protocol has a much higher impact on overall
efficiency than gambling on security by using non-standard assumption. In particular (when
evaluating large circuits over WAN), using SABUL plus standard assumptions is 4 times
faster than using TCP and non-standard assumptions.

Secure Computation Frameworks. Since the implementation of Fairplay framework
[42] in 2004, various frameworks have been developed for secure 2PC [36,20,17]. Currently, a
garbled circuit framework with security against passive and active adversaries is provided in
libscapi [20] library with the latest optimizations. Though our work only considers Boolean
circuits, we note that a framework for mixed protocol was implemented in ABY [17]: this
framework combines arithmetic sharing, boolean sharing and garbled circuits and allows
for conversions between the sharing methods. All the previous frameworks focus on secure
computation and use standard TCP socket provided by the operating system.

The work of [32] surveys general purpose compilers for secure computation. These com-
pilers provide high-level abstractions to describe functions in an intermediate representation
(such as a circuit). The compiled circuit is executed securely during runtime when the input
is provided. While [32] focuses on compilers, we focus on efficiency of protocol execution.
Hence, the two works address orthogonal problems. The sample programs chosen in [32]
do not represent practical MPC use case and instead attempt to test the usability of the
compiler code and how easy it is to write example code for an application for the compiler.
Furthermore, the tests are performed on standalone environment and do not account for
the context, such as the network condition, in which the protocol is run. The goal of their
paper is not to provide a practical testing framework, neither is it to test the efficiency of
the protocols. Instead, their goal is to make explicit which compilers are written for experts
and which for non-experts.

Another recent related work is [4], which considers the possibility of providing MPC as a
service where users use the platform to run protocols. They provide an environment where
users can participate in a low-bandwidth MPC protocol using web-browser or an app on the
phone. If the users are online during the execution of the protocol, then they can use their
own device otherwise they can store their inputs on their own cloud instance or use one from
the service provider (with lower privacy guarantees). While they focus on low-bandwidth
MPC protocols (which require multiple rounds and present evaluations only in LAN setting),
we focus on high-bandwidth (garbled circuits) constant round 2PC protocols in LAN and
WAN settings.

Recent related work shows that significant progress has been made in computation
complexity of 2PC implementations. When evaluated on a single host the implementations
produce good performance. However, on real networks with other traffic and concurrent pro-
cesses, latency and packet loss, the efficiency collapses and implementations incur prohibitive
latency. In particular we note that no previous work has considered how to improve secure
computation by addressing the issue of transport layer performances, as addressed in this
work.

9 Conclusions and Future Research

For the first time, our work demonstrates that, contrary to folklore belief, bandwidth is not the
bottleneck in performance of secure computation. The performance of 2PC implementations
can be significantly improved if other transport protocols are used instead of the standard
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TCP sockets. The under-utilisation will be further exacerbated with the adoption of new
technologies such as 5G, where networks guarantee no packet loss and high transmission rates.
Our evaluations demonstrate performance improvements for 2PC even with general purpose
transport layer protocols, e.g., SABUL is 8 times more efficient than TCP for the same task
and 4 times more efficient than TCP when comparing 2PC with standard assumptions over
SABUL vs 2PC with non-standard assumptions over TCP.

Support of multiple protocols. Specifically tailored transport layer protocols, e.g.,
for a specific computation task or network setup, could further improve the performance.

To enable 2PC developers to benefit from the wide range of existing protocols, we have
developed Transputation. Users can setup Transputation locally or can use our installation
(with preconfigured 2PC implementations and transport protocols) which can be accessed
online. Our installation of Transputation is running on the testbed with representative
network setups for evaluation of secure computation implementations.

Evaluation of 2PC in realistic setups. Although evaluations on one host provide
practical results, they “break” when run in real Internet networks. We setup a testbed for
evaluation of 2PC implementations. Our testbed automates setup and configurations, and
allows the developers to run evaluations without having to dive into complicated setups,
renting remote machines and running network measurements.

Future Research. Our work opens opportunities for followup improvements towards
wide-scale deployment of 2PC implementations for practical systems. Here are some examples
of next steps for future work on the transport layer and on the computation layer:

• Different 2PC implementations exhibit distinct communication patterns (e.g., com-
munication rounds and volume of data transmitted during each round). Future work is
needed to devise specially engineered transport protocols for specific computation tasks and
applications. This is an important yet nontrivial research direction, and requires investigation
of the specific properties of the target application (say computations on medical data or
computations for online trade market) as well as the network conditions in which they are
run.

• So far we have considered two-party protocols based on garbled circuits, with focus
on security against passive adversaries only. Two natural future directions for research are
active security and protocols for multi-party computation.
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A 2PC Background

In secure computation, three adversarial notions are most commonly used. First, semi-honest
adversaries who follow the protocol but can try to extract more information from the
transcript of the protocol. Second, malicious adversaries who can deviate from the protocol
specifications and can try to collect as much information about honest parties. Third, covert
adversary who may deviate but with the possibility of being caught with a certain probability.
This work focuses on protocol that achieve passive security i.e., they are only secure against
semi-honest adversaries.

A.1 Oblivious Transfer

Oblivious transfer is a cryptographic primitive in which one party, a sender, transmits
multiple messages to another party, a chooser, such that the sender does not learn which
message has been received by the chooser while the chooser does not learn anything about
the other messages. In a 1-out-of-2 OT, the sender inputs two messages, say m0 and m1, and
the chooser inputs a choice bit b ∈ {0, 1}. At the end of the protocol, the chooser obtains
mb, being ignorant of m1−b, while the sender gains no information. OT protocols can be
instantiated based on public-key type assumptions such as RSA or the Decisional-Diffie
Hellman assumption. In practice, due to the high computational cost of the exponentiations
required by OT protocols all modern implementation of 2PC use the OT-extension technique
[5,37] which allows to generate an unbounded number of OT from a few base OT and using
only symmetric crypto operations.
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A.2 2PC Based on Garbled Circuits

Garbled Circuits. Following the framework of [8], we define a garbling scheme as a tuple
of algorithm (Gb,En,Ev,De). Give a plaintext function f (expressed as a Boolean circuit)
the randomized garbling algorithm Gb outputs a garbled circuit F , together with encod-
ing/decoding information e and d. The encoding algorithm En on input a plaintext input x
and the encoding information e outputs a garbled input X (similarly, the plaintext input
y is mapped in a garbled input Y . The evaluation algorithm Ev can be used to evaluate
the garbled function F on the garbled inputs X and Y thus producing a garbled output Z.
The garbled output Z together with the decoding information d can be used to recover the
plaintext output z. As a basic requirement we need garbled circuits to satisfy correctness i.e.,
z = f(x, y). Privacy for garbled circuits informally states that the values (F,X, Y, d) can be
simulated having access to the output z and the function f i.e., they reveal (computationally)
no information about the inputs x, y.

Yao’s Protocol. Standard garbled circuits that are used in 2PC protocols are called projective
i.e., they have the property that the encoding information e is a set of pairs of random keys
(k0i , k

1
i ), and the number of pairs is the length of the input of the function. Now, the encoded

version X of x is simply constructed by choosing the “right” key from each pair i.e., X is
constructed by concatenating kx1

1 , kx2
2 and so on. This allows to easily combine GCs with

OT (since OT allows to select one element from a pair in an oblivious way). Armed with this
tool, Yao’s protocol for 2PC [58] can be described as follows: P1 garbles a circuit f into F ,
then runs |y| OT protocols where P1 offers the key pairs from e and where P2 uses the bits
of y as choice bits. As a result, P2 learns the garbled input Y and nothing else, and P1 learns
nothing at all. After this, P1 sends the garbled function F , the garbled input X and the
decoding information d to P2. With this information, P2 can evaluate the garbled function
on the garbled inputs and decode the final output in such a way that P2 learns nothing about
P1’s input x. Yao’s protocol requires only constant number of rounds of communication.

Yao Garbling. The original garbling scheme proposed by Yao follows a gate-by-gate approach
which is still followed by every practically efficient instantiation of garbled circuits. In
particular in Yao’s garbling P1 chooses two random keys for every wire in the circuit and
then uses them to construct garbled gates. In particular for each wire i two random keys are
sampled k0i and k1i , one that logically represents the “plaintext” 0 bit and one that represents
the “plaintext” 1 bit.

Then, P1 uses these keys to construct so called “garbled gates”, meaning that given a
binary Boolean gate g with input wires u, v and output wire w and the keys representing its
inputs and output P1 constructs a table of ciphertexts consisting of encryptions of the output
keys under the corresponding input keys i.e., a garbled gate is constructed by concatenating
ciphertexts of the form

Ca,b = E(kau, k
b
v; k

g(a,b)
w )

for all four combinations of a, b ∈ {0, 1}, which are then randomly permuted. 9

Garbled gates can then be evaluated obliviously by P2 i.e., in Yao’s protocol P2 will
know one key for each input kau, k

b
v but not the values a, b. Yet P2 will be able to learn the

corresponding output key k
g(a,b)
w . To allow P2 to begin the evaluation, the keys corresponding

9 Many details are omitted in this simple overview e.g., E should have the property that it is easy
to detect a successful decryption.
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to the input wires must be sent from P1 to P2. This can be done directly for the input
wires belonging to P1, while it is done using oblivious transfer (OT) for the wires beloning
to P2. OT is a cryptographic primitive that allows P2 to receive one out of two messages
from P1, in such a way that P2 only learns one message and P1 does not learn which one is
being transfered. Finally, if P2 is supposed to learn the output value, P1 will also send some
decoding information which allow to decode the keys corresponding to the output wires to
their plaintext values.

Henceforth, we refer to P1 as the Garbler and P2 as the Evaluator.

Garbling Optimizations. The ciphertexts in the garbled gate are permuted at random in
Yao’s construction (to ensure that P2 learns nothing about the output value g(a, b)) therefore
P2 must decrypt all 4 ciphertexts and have a mechanism to identify the right key. This can be
achieved by adding redundancy to the plaintexts which in turns increases the communication
complexity of the protocol. This was optimized in [6] with the point-and-permute technique
where a “permutation” bit is added to the keys. By looking at these bits the evaluator can
identify which ciphertext to decrypt thus reducing the computational overhead of evaluating
by a factor 4 and the communication overhead by a factor approximately 2.

In the garbled row reduction (GRR) [45,49] technique one (or more ciphertexts) are
artificially set to 0 and therefore do not need to be transmitted. Thus in the garbling process
the key corresponding to the output wire is no longer picked at random but it is computed,
pseudo-randomly, by decrypting the all 0 ciphertext with a combination of the input keys.
When using the free-XOR technique [39] the choice of keys for the wires is even more
restricted: now P1 only chooses the 0 key for each input wire while the 1 key is defined by
XOR-ing the 0 key with a global offset R. Then, by setting the output key corresponding to
the 0 bit to be the XOR of the two input 0 key i.e.,

k0w = k0u ⊕ k0v

it is easy to see that for all 4 combinations of a, b ∈ {0, 1} it holds that

ka⊕bw = kau ⊕ kbv

thus the evaluation of XOR gates only consists of XORing two keys which can be considered
“for free”. Unfortunately setting keys in this way makes it harder to prove the security of the
garbling of non-XOR gates in the circuit e.g., the AND gates. In particular now a “circular
security” assumption is required [14]: assume P2 knows the 0 key for two input wires k0u, k

0
v

of an AND gate (and thus P2 is allowed to retrieve k0w. Now, there are ciphertexts in the
garbled gate that P2 is not supposed to decrypt e.g., the one corresponding to inputs 1, 1.
But these ciphertex is now of the form

E(k0u ⊕R, k0v ⊕R; k0w ⊕R)

that is, the only unknown for P2 is R, which is encrypted under R itself.
The half-gate technique of [59] allows to combine free-XOR with garbled row reduction

requiring only 2 ciphertexts to be sent for each AND gate. In a nutshell, the technique
replaces every AND gate with two “half gates” (hence the name) which are easier to garble
(and only require a single ciphertext) since either P1 or P2 already knows one of the two
input bits of each half-gate. Due to the presence of free-XOR the security of the garbling
still relies on a circular security assumption.

In [7] an efficient method to implement the encryption function E is given by defining:
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E(kau, k
b
v; k

g(a,b)
w ) = π(kau, k

b
v)⊕ kg(a,b)w

where π is assumed to be an ideal permutation and is implemented as π(·) = AESα(·)
i.e., by using AES with a fixed-key.

Finally [27] proposed a garbling method that only uses 2 ciphertexts for each AND gate
and a single ciphertext for XOR gates using only the (minimal) assumption that AES is a
pseudorandom function. In a nutshell, they garble AND gates by performing aggressive 4-2
row reduction i.e., both output keys of an AND gate are generated pseudorandomly from
the input keys. Note that this is done in a more efficient way than [49] which uses (more
expensive) polynomial interpolation techniques while [27] only uses (cheaper) XORs of strings.
At the same time they garble XOR gates by using a variant of the Free-XOR technique in
which the offset R is not global for the entire circuit but is computed pseudorandomly for
each XOR gate by looking at the difference of a PRF evaluated on the two keys for an input
wire, and by constructing a “half-gate” which allows to apply the same difference to the
other wire.

A.3 GMW

Circuit Setting Yao (GLNP15) GMW

AES
LAN 7 27.88
EU-US 130.4 2917.3
EU-AUS 377.92 7325

SHA1
LAN 14.5 1651.27
EU-US 144.41 187080.6
EU-AUS 396.52 493143.1

Table 5. Yao vs. GMW (Runtime in ms)

B Transport Layer Protocols

In this section we review TCP and other proposals for protocols for transport layer commu-
nication.

TCP exhibits unsatisfactory performance on intercontinental links with high bandwidth
delay product (BDP) and links with high packet loss rates. This performance degradation
may not be significant if the amount of data transferred is low but in applications with
megabytes of data being transferred, this performance degradation can be critical and yet
TCP is still being used even though it “only just works” [31]. Though approaches to improve
TCP’s congestion control has been proposed [29,12,55,55,41,56,13], they fail to perform
consistently when the network assumptions on which they are based is violated.

Most congestion control algorithms rely on indicators such as packet loss and delay to
determine the congestion in the network. TCP-CUBIC [29], used by default in Linux kernels
since version 2.6.19, is a loss-based congestion control algorithm in which the congestion
window is a cubic function of time since the last packet loss. It fills the available buffer
capacity leading to large queueing delay. BBR [13], a recently proposed congestion control
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algorithm, does not rely on loss or delay indicators but estimates the available bandwidth to
determine the sending rate and tries to avoid queueing delay. BBR is still a work in progress
and in its current state, issues such as increased queuing delay and massive packet losses
have been observed [34].

There are alternatives to TCP such as SABUL [24,25,26], SPDY [23], QUIC [51] and
Performance-oriented Congestion Control (PCC) [19]. SABUL [25,26] is a UDP-based protocol
with the goal of utilizing the bandwidth efficiently. Congestion control and reliability control
mechanisms of SABUL are built on top of UDP in the application layer, making it easy for use
by application developers. It was designed for transferring large data streams over high-speed
wide area networks but has since been updated to support the commodity Internet.

B.1 TCP-CUBIC.

TCP-CUBIC uses a cubic function to manage the congestion window size. It uses a convex
component as well as a concave component for increasing the window size. After window
reduction on packet loss, the concave component contributes to the rapid increase in the
window size. As it nears the window size Wmax before the packet loss, the growth slows
down to zero. Then TCP-CUBIC begins looking for more bandwidth and the window grows
slowly away from the previous Wmax due to the convex component. Considerable time is
spent between the concave and convex growth regions as the network stabilizes to probe for
more bandwidth. The congestion window of TCP-CUBIC is given by the following equation:

W = C(t−K)3 +Wmax (1)

where C is a scaling factor, t is the elapsed time from the last window reduction, Wmax

is the window size before the last packet loss, and K = 3
√
Wmaxβ/C, where β is a constant

multiplication decrease factor applied for window reduction at the time of loss event. For the
rest of the paper, we refer to TCP-CUBIC as TCP.

B.2 SABUL.

SABUL adds reliability at the application layer on top of UDP. It makes use of timer-
based selective ACK and packet-based sequencing. Packet loss is indicated through the use
of an negative acknowledgement (NAK). It makes use of a hybrid rate-based congestion
control and window-based flow control. Rate control, which manages packet sending rate, is
triggered at every constant interval (SY N) while window control, which limits the number
of unacknowledged packets, is triggered when an acknowledgement packet is received. Packet
sending rate is controlled through an additive increase and multiplicative decrease algorithm.
Multiplicative decrease is by a factor of 1/9, while additive increase is independent of the
RTT. Additive increase factor is given by the following equation:

α(x) = 10dlog(L−C(x))e−τ · 1500

S
· 1

SY N
(2)

where x has the unit of packets/second. L is the link capacity measured by bits/second. S
is the SABUL packet size (in terms of IP payload) in bytes. C(x) is a function that converts
the unit of the current sending rate x from packets/second to bits/second (C(x) = x ∗ S ∗ 8).
τ = 9 is a protocol parameter.
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