
Ouroboros Chronos: Permissionless Clock Synchronization via
Proof-of-Stake

Christian Badertscher?, Peter Gaži??, Aggelos Kiayias? ? ?, Alexander Russell†, and Vassilis Zikas‡

July 19, 2019

Abstract. Proof-of-stake (PoS) has been shown to be a suitable replacement—in many respects—for
the expensive proof-of-work mechanism introduced by the Bitcoin protocol. Nevertheless, one common
and seemingly intrinsic shortcoming of all existing PoS blockchains in the permissionless “dynamic
availability” setting introduced by Badertscher et al. [CCS 2018], where parties come and go without
warning, is that they require explicit use of a common notion of time among the participants, i.e., a
“global” clock that provides the correct time on demand.
We design and analyze a PoS blockchain protocol that we prove UC-secure without assuming access to
a global time functionality. Central to our construction is a novel clock synchronization mechanism that
enables joining parties to adjust their local clocks correctly, relying only on knowledge of the genesis
block and the assumption that their local, initially desynchronized clocks advance at approximately
the same speed. This is particularly challenging as we work in the dynamic availability setting which
addresses optimal resilience under arbitrary and potential adversarial participation patterns. As a
corollary of our construction, we obtain a permissionless PoS implementation of a global clock that
may be used whenever access to global time is a requirement in a higher level protocol.

1 Introduction

Synchrony is one of the most important concepts in the theory and practice of distributed computing.
Distributed protocols in the synchronous model advance in rounds and typically it is guaranteed that no
party advances to round ρ+ 1 before every party has finished round ρ. In every round, a party might receive
messages sent to it in the previous round and send messages to other parties intended (and guaranteed) to be
delivered by the beginning of the following round. This means that synchronous protocols allow the protocol
participants to maintain an implicit notion of common time by simply considering the current round index
as a common clock (initially set to 0 at the protocol’s onset).

In contrast, asynchronous settings do not provide such a common notion of round: while one party might
already have completed its protocol, having received and reacted to all messages, another party may still be
stuck waiting for messages somewhere in the middle of its protocol execution. While removing synchrony
assumptions is naturally attractive and important, the asynchronous model comes at a high cost: The only
way to get the same type of output-correctness guarantees afforded by the synchronous model is for parties
to explicitly enforce a round structure, by some implicit or explicit acknowledgement mechanism where
parties only advance to their next round if every party acknowledges that it is finished with the current
round (cf. [29]). In this case, it is clear that an adversary can stall the computation forever by withholding
acknowledgements on behalf of corrupted parties.

Alternatively, one may relax the input/output requirements to cope with asynchrony by not waiting for an
acknowledgement from everyone; rather, players advance as soon as “enough” messages have been received.
? University of Edinburgh and IOHK. christian.badertscher@ed.ac.uk.
?? IOHK, peter.gazi@iohk.io.

? ? ? University of Edinburgh and IOHK. akiayias@inf.ed.ac.uk. Research partly supported by EU Project No. 780477,
PRIVILEDGE.
† University of Connecticut. acr@cse.uconn.edu. This material is based upon work supported by the National

Science Foundation under Grant No. 1717432.
‡ University of Edinburgh and IOHK. vassilis.zikas@ed.ac.uk.

As argued in [4, 5], under the mild assumption that messages of honest parties are eventually delivered, this
model allows for termination even if the adversary may exclude from the computation the inputs of several
honest parties—at least as many as the corrupted parties. Furthermore, the number of corruptions that can
be tolerated by such a protocol is also decreased with respect to their synchronous counterparts. Despite
its inherent limitations, this model, which is known as asynchronous with eventual delivery or guaranteed
termination, has been extensively studied in the literature [14, 9, 10, 28, 15, 32, 16].

This state of affairs suggests two approaches to distributed protocol design: either work on the stringent,
but presumably more realistic, asynchronous with eventual delivery model, or assume synchrony and rely on
an underlying synchronizer subsystem—which is typically a sophisticated distributed protocol on its own—
to provide the required round structure. Building such synchronizers from weaker assumptions has been
extensively studied in secure and fault-tolerant distributed computing, computer science theory, and cryp-
tography. In typical scenarios [18, 30, 23] it is assumed that the parties have initially (loosely) synchronized
clocks and that the clocks advance at about the same speed. It is proved that without setup assumptions,
such as a public-key infrastructure that enables digital signatures, n parties can synchronize their clocks
and keep them (loosely) synchronized if and only if no more than t < n/3 of the parties report far-drifting
or inconsistent clocks values [18, 30, 23]. This bound can be improved to t < n/2 by use of existentially
unforgeable digital signatures [30]. A number of follow up works have investigated clock synchronization in
various settings [20, 19, 1, 40, 31, 36] and we refer the reader to [39] for a survey (albeit somewhat outdated).

As the above results suggest, the synchronization problem is well understood across most models of
interest. However, as with many concepts in secure distributed computation, this situation changed with the
introduction of the so-called permissionless model, popularized by the Bitcoin protocol [35] which utilizes
Proof-of-Work (PoW) and in turn motivated the design of other blockchain protocols such as Ethereum [8],
and the introduction of alternative mechanisms including Proof-of-Stake (PoS), as in Ouroboros [17, 26, 2],
Algorand [22], and Snow White [6]), Proof-of-Space, as in Spacemint [37]), and Proof-of-Space-Time [34].1
Informally, this model posits a different perspective which is incomparable to the ones studied before: there
is a large population of potential participants and everyone can become part of the protocol execution2,
contribute to its security, and enjoy its guarantees, but not every party needs to be informed that a new
party is joining or leaving or is required to be online all the time to follow the protocol. More specifically,
at any given moment, there will be a (comparably) small set of users which will have access to network
communication with bounded delays but that set will be continuously evolving and may be arbitrarily small
compared to the total set of users. This comes in sharp contrast to the models previously studied, in which
parties would be aware of a fairly good estimate of the number as well as all the identities of the parties
running the protocol because membership to this set is typically controlled, something that has lead to its
characterization as the permissioned model.

The cryptographic study of the permissionless model—mainly in the context of proving security of Bit-
coin and developing next-generation blockchains—revealed that for many problems the techniques used in
the permissioned setting do not translate directly to the permissionless one. Not surprisingly, clock synchro-
nization is one of these challenges. Informally, this is explained by the fact that existing synchronization
techniques rely on knowledge of the total number of parties in the system, an assumption which one cannot
make in a truly permissionless model. We refer to Remark 1 for further discussion. In fact, to our knowledge,
all existing rigorous cryptographic analyses of blockchains, e.g., [38, 21, 3, 26, 17, 2], assume, implicitly or
explicitly, perfect or loose clock-synchronization. Furthermore, the reliance of PoS blockchains on a global
clock appears quite essential, as it is precisely this assumption which joining parties use to prevent the ad-

1 Arguably there exist different flavors of “permissionlessness”, with PoW and PoS based blockchains exhibiting
two distinct perspectives. Still all such systems exemplify similar “peer-to-peer” operational characteristics in the
sense that are supposed to continue to be functional despite parties coming and going without warning, even at
significant (> 1/2) ratios.

2 Note how these approaches differ in how parties become part of the execution. In PoW the ability to contribute
stems from computational power, in PoS a party first has to obtain stake from an existing stakeholder. In this
sense, PoW is slightly “more permissionless”.

2

versary from exploiting, for example, the longest chain rule to “fast forward” them to a fictitious blockchain
extending into the future.

In this work we carry out a systematic cryptographic study of clock synchronization in the permissionless
PoS setting. We devise a novel protocol based on Ouroboros Genesis [2] to demonstrate that it is possible to
build a composable PoS-based blockchain that enables parties to implement and maintain a bounded-drift
clock in the delayed-delivery network model [38, 21]. Our new blockchain protocol thereby avoids the depen-
dency on an external service providing timestamps such as NTP [33], which constitutes a great improvement
in resiliency compared to previous works. Moreover, our protocol can serve as a cryptographically secure
clock synchronization module in any application.

Our construction assumes that the inaugural parties, that initially commence the protocol execution,
have access to local clocks that report values (corresponding to local time) that might be off by a parameter
∆ and which advance at (roughly) the same speed. This is similar to the timing model of Kalai et al. [24].
Our protocol then guarantees that parties who later join the protocol, no matter how outdated their local
clock value is, will synchronize themselves (up to a small drift that depends on the network delay) with the
rest of the parties running the protocol, and remain synchronized for as long as they faithfully execute the
protocol. We conduct our analysis in the UC framework (where we model certain setup functionalities as
being globally accessible) [12, 13], which ensures that the resulting synchronizer can be used to enable the
design of synchronous protocols which enjoy the benefits sketched above from our arguably weak assumptions
of similar speed local clocks and bounded delivery networks.

As mentioned above, one feature of our solution to obtain clock synchronization, which is perhaps equally
interesting as the solution itself, is that synchronization is achieved by means of a PoS-based blockchain
protocol. We describe our construction building on previous results in PoS and specifically, [2], as this
latter work enables to express formally and succinctly the exact level of permissionlessness called “dynamic
availability” that our synchronization mechanism captures. To signify the connection, we adopt the name
Ouroboros Chronos, or simply Chronos, to refer to our protocol. The Chronos protocol exports the clock it
implements to whoever participates in it. The only thing that a party needs to do in order to connect to the
common clock, is join the protocol and keep executing it for a sufficiently large number of (locally clocked)
steps. By doing so, the party will compute a clock that, as we prove, is guaranteed to be in (loose, up to a
small constant offset) synchronization with all honest parties running the protocol as long as honest stake
majority is maintained.

Despite sharing similarities in structure to the previous work [17, 26, 2] the design and analysis of
Ouroboros Chronos involves several new ideas, which are crucial in achieving synchronization in the permis-
sionless setting. We discuss these ideas in details in Section 1.1 where we give an overview of the design.
Furthermore, aside from its usefulness for synchronization, Chronos is, to our knowledge, the first blockchain
whose security proof does not rely on parties being given (loosely) synchronized clocks as an external setup
or on knowing an approximation of the total participation which would allow them to use techniques from
the permissioned literature as explained in Remark 1 below.

Remark 1 (The Inapplicability of Common Synchronization Techniques). The main tool used by synchro-
nizers in the permissioned setting is appropriate counting of messages in combination with signatures to
thwart malicious behavior. Unfortunately, in the permissionless model with dynamic availability counting
messages does not work, as the parties have no way of knowing how many, or which parties are present at
any given time. This is also a major factor that distinguishes the Algorand [22] approach to decentralized
consensus from that we follow here (which is based on Ouroboros Genesis [2]). Concretely, Algorand explic-
itly assumes that parties know (approximately) how many parties are in any committee, and therefore, know
how many honest messages they can expect by any such committee. This assumption allows Algorand to
achieve complete agreement on the whole blockchain after each block, and even employ techniques from the
permissioned synchronizers literature to achieve clock synchronization. It is evident, however, that this is a
stronger assumption than dynamic availability.

3

1.1 Overview of our Techniques

The synchronization process of Ouroboros Chronos starts with the joining parties listening on the network
for some time, collecting broadcasted chains and following a Genesis-inspired “densest chain” chain-selection
rule; informally, this rule mandates that if two chains C and C′ start diverging at some time τ—according to
the reported time-stamps3 in C and C′—then prefer the chain which is denser in a sufficiently long interval
after that time. Our first key observation is that although the above rule was designed (and proved effective)
in [2] for the model in which all parties share the same global clock—and therefore timestamps are accurate—
it still offers a useful (albeit in itself insufficient) guarantee when no global clocks are assumed: If honest
parties use the above rule, then any honest party will end up with some blockchain that, although arbitrarily
long, is at worst forking from any blockchain held by an honest and already synchronized party by a bounded
number of blocks (equal to a security parameter) with overwhelming probability. Thus, the above joining
process can be seen as a generalization of the bootstrapping process of Ouroboros Genesis [2] to eliminate
the need to use of the global clock. More concretely, we prove here that the above process guarantees to
eventually prune-off all chains with bad prefixes, i.e., prefixes that do not largely coincide with the prefixes of
the other already synchronized honest parties’ chains. In fact, as we show, the parties can compute an upper
bound on the time (according to their local clocks) they need to remain in the above self-synchronization
state before they build confidence to the above guarantee, i.e., before they know that their locally held chain
is consistent with a long and stable prefix that already-synchronized honest parties adopt.

Once a joining party has converged to such a fresh—i.e., produced after the joining party was activated—
prefix of an honest chain, it will use the difference between its current local time and the (local) time recorded
when this chain (and other control information) was received to reset its local clock so that its local time is
consistent with the times reported on the prefix. The hope would be that a clever adjustment will bring its
local clock to a time sufficiently close to that of an honest and already synchronized party. Such an updating
process is, however, far from trivial to design, let alone prove secure. To see why, consider the following näıve
solution: The party resets its local clock so that the time reported in, say, the last block of the prefix is
the time this block was received. Let us look at some implications of this adjustment. A first observation is
that due to the (bounded but otherwise adversarially controlled) delay in the message delivery, a message
received by a party might have been sent up to ∆ rounds4 before. Hence the time that the party will set
its clock to might be up to ∆ rounds far from the clock of the sender (at the point of update). This delay-
induced imprecision is inherent in clock synchronization and we will settle with the property that after the
adjustment the clocks only need to be loosely synchronized, i.e., clocks of honest parties might be far but
only by a bounded amount, where the bound is known and depends on ∆. In fact, this relaxation is common
and believed to be necessary even in the permissioned model, when honest clocks might report times that
differ by ∆ [30, 23].5

However, the above simple solution is problematic, even when there is no delay (i.e., messages sent in
some round are guaranteed to be delivered in the next round), in which case we should in principle be
able to obtain perfect synchronization. The reason is that although the chain that the newly joining party
recovered is guaranteed to have a prefix consistent with the already synchronized honest parties, individual
blocks might be originating from the adversary and therefore contain a time stamp very different from (a
reasonably accurate) estimate of the true time of creation of that block. To make matters worse, the rate of
honestly generated blocks in a chain of an honest party can be quite low as implied by the known bounds of
chain quality, cf. [21, 17], and thus the time inaccuracy of any individual block can be significant. Thus the
above simplistic approach fails in multiple ways.

A second attempt would be to have in every round (or at regular intervals) every party use the credentials
of all the coins it owns to broadcast a signed timestamp, i.e., every party acts as a verifiable synchronization
3 Recall that, in Ouroboros, as in most permissionless blockchains, parties add their local time (stamp) to blocks

they broadcast.
4 Note that we use the term “round” here to express a step in the protocol execution — message delivery may take

multiple such rounds subject to the maximum delay of the network, ∆.
5 The model from [30] with honest clocks that report values differing by up to ∆ is equivalent to a situation in which

clocks report the right value, but parties might receive it with a difference of up to ∆ rounds.

4

(or timestamping) beacon on behalf of all the coins it owns. The joining party receives all these broadcasted
timestamps, and uses their majority to compute the value of its clock. Also this solution has several issues.
First, it is not scalable. But scalability is not a big limitation, as it can be achieved, using existing ideas,
e.g., by using the protocol history as input to a VRF to identify eligible parties (or, in the case of Algorand,
by using Bracha-style committees [7]) to send timestamping beacons in every synchronization round. The
second, harder problem is that in order to use the majority, the local clocks of the parties that report time
need to be perfectly synchronized so that their majority agrees. If their clocks have any (even very small)
drift, this cannot be the case. And even assuming identical speed clocks, in the dynamic availability setting,
every party might eventually drop off and rejoin, which means that, due to the network delay (as discussed
above) the honest parties will end up with a small drift on their local clocks. An alternative approach would
be to use the average instead of the majority, but once again, even a single adversarial timestamp (and
there will be many such) can throw off the average arbitrarily far. Thus we need to use a function that is
more stable against extreme values. Such a function is the median of the received timestamps. As long as
synchronized honest parties’ local clocks are not far apart, the times they report will be concentrated to a
sufficiently small time interval, and the median will fall in this interval.

Although the above idea brings us closer to our solution, it still has a shortcoming. If the adversary is
able to serve to different parties inconsistent timestamps (on behalf of eligible corrupted synchronization-
beacon parties) then he can possibly force an opposing clock adjustment between joining participants that
will increase their clock drift well beyond the drift of any pair of already synchronized parties. To resolve this,
we need to make sure that the parties agree on the set of eligible timestamps (whether honest or corrupted)
that they use for adjusting their local time. This is a classical consensus problem. Luckily, our synchronizer
is in tandem with a PoS-based blockchain which solves consensus in the permissionless setting. The idea is
to use the blockchain to agree on beacon-value indices to be used for recalibration. Once again, the property
discussed at the beginning of the section will ensure that even newly joining parties will eventually fall in
the set that has consensus on the common prefix and therefore can use the blockchain for recalibrating.

Our final solution uses the above techniques and we establish the above properties by a careful sequence
of probabilistic arguments: In a nutshell, we will use the VRF to assign timestamping-beacon parties to
slots/rounds according to their state. Parties who are synchronized and active when their assigned slot
is encountered will broadcast a timestamp and a VRF-proof of their eligibility for the current timeslot
(together, we call this a synchronization beacon). And to agree on the set of eligible parties that will be
used (including the dishonest ones) these beacons will also be included in the blockchain by the already
synchronized parties. Any party who joins and tries to get synchronized will gather chains and record any
broadcasted beacons (and keep track of the local time these were received). Once the party is confident
it has a sufficiently long prefix of the honest chain, it will retrospectively use this gathered information to
extract the agreed-upon set of beacons, compute a good approximation of the clocks parties had when they
broadcasted these beacons and apply a median rule to set its local clock to at most a small distance from
other honest and synchronized parties. In order to ensure that already synchronized parties adjust in tandem
with joining parties we will have them also periodically execute the synchronization algorithm—but of course
using their local blockchain, which they know is guaranteed to have a large common prefix with any other
honest and synchronized party. Evidently, the above process has many moving parts and this is only a high
level idea of our construction. Its low level details and design choices are carefully defined and analyzed in
Sections 3-4 which constitutes the main technical contribution of this paper.

2 Our Model

Basic Notation. For n ∈ N we use the notation [n] to refer to the set {1, . . . , n}. For brevity, we often
write {xi}ni=1 and (xi)ni=1 to denote the set {x1, . . . , xn} and the tuple (x1, . . . , xn), respectively. For a tuple
(xi)ni=1, we denote by med((xi)ni=1) the (lower) median of the tuple, i.e., med((xi)ni=1) , x′dn/2e, where (x′i)ni=1
is a (non-decreasing) sorted permutation of (xi)ni=1.

For a blockchain (or chain) C, which is a sequence of blocks, we denote by Cdk the chain that is obtained
by removing the last k blocks; and by head(C) the last block of C. We write C1 � C2 if C1 is a prefix of C2.

5

Dynamic Availability. We adopt the dynamic availability framework from [2] which captures parties
joining and leaving the protocol at (the environment’s) will. This is done by equipping the functionalities,
global setups, and the protocol with explicit registration/de-registration commands, thereby keeping track
of when parties are joining and adjusting their guarantees depending based on this information. We refer
the interested reader to [2] for details on this mechanism and examples of the different types of guarantees
offered by Ouroboros Genesis.
Synchrony and Time. As discussed above, a common assumption in the analysis of blockchain protocols
in the permissionless model is the availability of a global clock that allows parties to acquire the current
round index. This assumption was captured in [27, 3] by means of a (global) clock functionality which, in
a nutshell, behaves as follows: it maintains a round index, i.e., a clock counter, which it reports to parties
registered to it upon request. To ensure that the round only advances when all parties have been given a
chance to complete their current-round instructions, the clock accepts a special command from any party
that it interprets as “I am done with my current round”. Once every (honest) party sends this command,
the clock increases its round index.

The above clock makes the synchrony assumptions required by synchronous protocols explicit. However,
as clearly implied by our results, its induced assumption on synchrony is rather strong, and corresponds
to every party having access to the same absolute clock. Arguably, the only way one can guarantee this in
reality, especially in presence of parties that might come and go at will, is by assuming contiguous access to
an Internet clock [33].

In this work, we make an important relaxation to the synchrony assumed by blockchain protocols: parties
do not have access to such an Internet-clock-style setup, but rather, they have local clocks that advance at
roughly the same speed. This assumption can be captured by the straightforward global-setup version of
the clock functionality introduced in [25]. The main difference to [25] is that, as a global setup, our clock-
functionality is accessible to any party or functionality, and supports a registration/reregistration mechanism
as in the global clock discussed in [3]. We note in passing that the clock functionality of [25] was explicitly
described as the minimal assumption for synchrony.

Our (weaker) clock setup never exports a global-round counter to any party or functionality. In particular,
exported information consists only of an indication of whether or not a new round has started. This can be
expressed as in [25] by means of exporting a bit b that switches from b to 1 − b with every round switch.
For sake of simplicity, we allow our clock to maintain a reference value τ—corresponding to global round—
but the exported information to any party is the bit τ mod 2.6 For example, a party that joins an execution
cannot infer the time of other parties in the system by observing this output. Still, the functionality allows
the party to proceed “at the same speed” as other honest parties in the same session. For completeness,
the above clock, which we denote by Gtick to avoid confusion with the global clock from [3, 2], is defined in
Section A. For simplicity, we restrict our attention to its “perfect” version, where a round-switch is reported to
everyone at the very next request. As in [25], one can easily relax the clock to capture loose synchronization,
by allowing the adversary to delay informing some parties. Our techniques can be easily extended to this
loosely synchronized setting.

Remark 2 (Global vs. local time). We keep the explicit (redundant) counter τsid in the clock-functionality to
be able to refer (in our analysis) to global reference time of the execution of a particular protocol session.
In sharp contrast stands the notion of local time (also known as logical time), which is a party-specific
variable and thus updated by the protocol logic. In our specific case, each party running Ouroboros Chronos
maintains a local time-stamp localTime which defines the slot number for which it is going to produce the
block in this round. As a consiquence, at each global time τ in the execution, parties might thus report
different local time-stamps and it is up to the protocol to ensure that the difference of these time-stamps is
reasonably bounded.

6 We note in passing that such a reference value is somewhat redundant, and it was not included in the proposal
by [25]. However, it will make the results easier to formulate, as some properties can be best expressed in terms of
lifetime of the system (cf. Remark 2).

6

Modeling Peer-to-Peer Communication. We assume a diffusion network in which all protocol messages
sent by honest parties are guaranteed to be fetched by protocol participants after a specific delay ∆. Addi-
tionally, the network guarantees that once a message has been fetched by an honest party, this message is
fetched by any other honest party within a delay of at most ∆, even if the sender of the message is corrupted.
Note that this is slightly different than the multicast-functionality from [3, 2] which only guaranteed this
bounded delivery for messages sent by honest parties. Nonetheless such a seemingly stronger network can in
theory be constructed by simple gossiping over multicast networks: honest parties always forward messages
they have not already seen. To avoid confusion, we refer to using such a network as broadcasting. We detail
the corresponding functionality in Section A for completeness.
The Genesis Block Distribution with Weak Start Agreement In this work, we not only allow
that parties’ local time-stamps might shift apart over the course of an execution, we do not even require
that the initialization of the initial stakeholders is complete in the same round, i.e., honest parties might
start producing blocks even for logical slot 1 in different rounds of the (global) execution. To this aim, we
weaken the functionality FINIT described in [2] to allow for bounded offsets in starting times. As for protocol
initialization, the distinction with previous works is that our functionality F∆INIT does not enforce that all
honest stakeholder receive the created genesis block in the same round, but merely guarantees delivery not
more than ∆ rounds apart. Looking ahead, the initialization of a protocol is only complete once the genesis
block is received. More concretely, we allow the adversary to define the offsets upon the first activation to the
functionality. For the sake of convenience, we consider this initial offset query to the adversary as restricting
(and prefix the query with the keyword Respond) as defined by Camenisch et al. [11] which means that the
adversary is required to answer this query immediately (and hence the offsets can technically be seen as
chosen “when the FINIT is created”).7 The details of the F∆INIT functionality appear in Section A.1.
Further Hybrids. The protocol makes use of a VRF (verifiable random function) functionality FVRF, a
KES (key-evolving signature) functionality FKES, a (global) random oracle functionality GRO. We use the
random oracle as the idealization of a hash function. We use the strongest form of a global random oracle to
express that our new consensus algorithm does not need any kind of programmability or query restrictions
(and the result using a local random oracle is implied). The idealizations FVRF and FKES are shown to be
realizable under standard assumptions or an additional random oracle in [17].

3 The New Protocol: Ouroboros Chronos

3.1 Overview and Main Challenges

The protocol Ouroboros Chronos inherits its basic mode of operation from Ouroboros Genesis. Recall that
in Ouroboros Genesis the execution of the protocol is dependent on a global clock Gclock that provides to
each party the current global time or slot number and allows them to have agreement on the slot number at
any instant of the execution. In each slot, each party performs a private lottery to determine whether it is a
leader of this slot. If a party P is determined as leader—whose probability is proportional to its stake in the
system—it is allowed to create a block for this slot and to publish it via FN-MC. The delivery times of this
block are under limited adversarial control. Slots are further grouped into epochs, where at the beginning of
a new epoch the stake distribution used in the lottery is updated. An epoch consists of a predefined number
of R slots, where R is a protocol parameter whose value is chosen based on the security analysis (i.e., it can
be seen as a function of a general security parameter).

Ouroboros Chronos operates effectively with much less agreement: the protocol still proceeds in rounds
but each party maintains its own local time-stamp and performs the above round actions such as evalu-
ating slot leadership according to its own local time. More technically, the setup Gclock is replaced by a

7 In case the query would be not be restricting, this would incur a slight but rather artificial complication of the
initialization procedure of the protocol as we would have to take into account that the very first activated honest
protocol participant (and only this one) will actually lose its activation token right away. Defining this query to be
restricting is not crucial for our treatment.

7

synchronization module Gtick that merely indicates that a new round has started. Hence, in order to real-
ize a secure ledger functionality in the dynamic availability setting (where the level of participation varies
without a predetermined estimate), it is indispensable that Ouroboros Chronos specifies actions to prevent
a large drift in local time-stamps of the participants and at the same time offer newly joining parties the
possibility to bootstrap the correct chain and a local time stamp that lies within a reasonable interval with
existing participants’ timestamps. Looking ahead, this will be achieved by emitting (and embedding in the
blockchain) specific “synchronization beacons.” In the following, we provide a more detailed overview of the
actions and point out the differences between Ouroboros Chronos and Ouroboros Genesis. Before we discuss
the exact operations, we take a look at the types of parties that our model of execution allows.

3.2 Party Types

The various basic and derived types of parties used in our analysis follow a similar categorization as used
in [2]. For a concise overview, we refer to Figure 1.

For a given point in execution, a party is considered offline if it is not registered with the network,
otherwise it is considered online. A party is time-aware if it is registered with the clock, otherwise we call
it time-unaware. We say that a party is operational if it is registered with the random oracle, otherwise
considered we call it stalled. Finally, we say that a party is sign-capable if the counter in FKES is less or equal
to its local time-stamp.

Additionally, an honest party is called synchronized if it has been continuously connected to all its
resources for a sufficiently long interval to make sure that, roughly speaking, (i) it holds a chain that shares
a common prefix with other synchronized parties (synchronized state) and (ii) its local time does not differ
by much from other synchronized parties (synchronized time). Our protocol’s resynchronization procedure
JoinProc will guarantee the party that after executing it for the prescribed number of rounds, it will achieve
both properties (i) and (ii) above. In addition, such a party will eventually become sign-capable in future
rounds (in case the KES is “evolved” too far into the future due to a de-synchronized time-stamp before
joining). We note that an honest party always knows whether it is synchronized or sign-capable and (in
contrast to the treatment in [2]), it maintains its synchronization state in a local variable isSync and makes
its actions depend on it).

Based on these four basic attributes, we define alert and active parties similarly to [2]. Alert parties
are considered the core set of honest parties that have access to all necessary resources, are synchronized
and sign-capable. On the other hand, potentially active parties (or active for short) are those (honest or
corrupted) parties that can potentially act (propose a block, send a synchronization beacon) in its current
status; in other words, we cannot guarantee their inactivity. Formally, it includes alert parties, corrupted (i.e.,
adversarial) parties, and moreover any party that is time-unaware (independently of the other attributes;
this is because those parties are in particular not capable of evolving their signing keys reliably and hence
it cannot be excluded that if they later get corrupted, they might retroactively perform protocol operations
in a malicious way).

The definition of a party type is extended from a single point in an execution to a logical slot as follows: a
party P is counted as alert (resp. operational, online, time-aware, synchronized, sign-capable) for a slot sl if
the first time its local clock passes through the (logical) slot sl, it maintains this state throughout the whole
slot, otherwise it is considered not alert (resp. stalled, offline, time-unaware, desynchronized, sign-uncapable)
for sl. It is considered corrupted (i.e., adversarial) for sl if it was corrupted by the adversary A when its
local clock satisfied localTime ≤ sl. Finally, it is active for sl if it is either corrupted for that slot, or it is
alert or time-unaware at any point during the interval when its local clock for the first time passes through
slot sl.

3.3 Technical Overview with Differences to Ouroboros Genesis

All operations are given as pseudo-code in the following. To underline the changes to Ouroboros Genesis we
marked the lines that are new to Ouroboros Chronos in blue.

8

Basic types of honest parties
Resource Resource unavailable Resource available
random oracle GRO stalled operational
network FN-MC offline online
clock Gtick time-unaware time-aware
synchronized state, local time desynchronized synchronized
KES capable of signing (w.r.t. local time) sign-capable sign-uncapable

Derived types: alert :⇔ operational ∧ online ∧ time-aware ∧ synchronized ∧ sign-capable
active :⇔ alert ∨ adversarial ∨ time-unaware

Note: alert parties are honest, active parties also contain all adversarial parties.

Fig. 1. Party types.

3.3.1 Basic Operation
Ouroboros Chronos is a ledger-protocol and the main protocol is depicted in Section B.1. It accepts three
kinds of input: inputs in order to register the party to the required setup and which models the dynamic
availability of parties. Second, the ledger-specific inputs to submit new transactions (submit), to read the
ledger state (read), and to perform the round actions (maintain-ledger). Note that maintain-ledger
inputs are the activations that “make the parties work” and perform their round actions in the main procedure
LedgerMaintenance specified in Section B.2. What exactly a party might execute in a round depends on its
status: newly registered parties first run through initialization and only later start to create blocks.

Finally, the protocol allows a caller controlled access to the features of the global shared setups through
this protocol instance. We present the relevant sub-protocols and procedures in handling all these calls in
the sequel. We follow the typical stages of a party from registration to playing the lottery and perform the
necessary round actions to maintain the ledger. A summary of the state variables appears in Section G.1.

Technical remark: handling interrupts in a UC protocol. As a general paradigm to write the ledger
protocol as a UC protocol, we follow the approach taken in [2] to simplify the treatments with interrupts in
UC. Note that a protocol command might consists of a sequence of operations. In UC, certain operations,
such as sending a message to another party or just the inability to conclude a task because a resource is
unavailable, result into the protocol machine having to lose its activation. Thus, one needs a mechanism
for ensuring that a party that looses the activation in the middle of such a multi-step command is able to
resume and complete this command.

The general mechanism is to introduce an anchor a that stores a pointer to the current operation; the
protocol associates each anchor with an input I, so that when such an input is received (again) it directly
jumps to the stored anchor, executes the next operation(s) and updates (increases) the anchor before releasing
the activation. We refer to execution in such a manner as I-interruptible.

3.3.2 Registration and Special Procedures
A party P needs access to all its resources in order to start operation. Once it is registered to all resources it is
able to perform basic operations. The registration handling is given in Section B.4. In contrast to Ouroboros
Genesis, the protocol will initialize a party P’s local time P.localTime to 0. Furthermore, the protocol is
aware that it is not synchronized (since existing participants might be far off) and sets P.isSync to false.
Finally, in order to be able to recognize a new round, the party maintains a variable lastTick that stores
the most recent tick from Gtick (either 0 or 1).

Initialization. The first special procedure a party runs through is initialization. It is invoked upon the first
maintain-ledger input given to this instance. Since every party starts at time 0 and has no knowledge
whether the session is already running, it will first try to claim stake from FINIT in its first round. Only in this
instance’s second round (P.localTime = 1) it will retrieve the genesis block. As a difference to Ouroboros

9

Genesis, a party might be delayed in receiving the genesis block. In any case, once a party obtains the
genesis block it will initialize the variables of this instance which are described in Table G.1. In particular,
as specified by our setup FINIT if the genesis block is delivered shortly after the start of the system, then the
party considers itself as synchronized.8 Otherwise it has to invoke the joining procedure.

Joining. The joining procedure will make any party that joins the system getting synchronized with the
blockchain and to derive a local time-stamp that is in a small interval around the current alert parties time-
stamps. The introduction and analysis is a core contribution of this work and the procedure is explained in
detail in Section 3.5.

3.3.3 Mode of Operation for Alert Parties
Recall that if a party is synchronized, i.e., part of the system since the beginning or completed the joining
procedure, and if all resources are available, then the party is considered alert and runs through the standard
round actions described in Section B.2:

– Fetch information from the network (by a call to FetchInformation).
– Update the time (by a call to UpdateTime): the party locally advances its time-stamp whenever it realizes

that a new round has started by a call Gtick and comparing it to lastTick. The procedure is defined in
Section B.6.

– Record the arrival times of the synchronization beacons the protocol sends out (call to ProcessBeacons).
This feature will be discussed in detail in Section 3.4.

– Process the received chains: as some chains might be created by parties whose time-stamps might be
ahead, the future chains are stored in the buffer futureChains for later usage. Among the remaining
chains, the protocol will according to the Genesis chain-selection rule decide whether any chain is more
preferable than the local chain (procedure SelectChain). The procedures involved in chain selection are
given in Section B.9, Section B.8, and Section B.7

– Run the main staking procedure (StakingProcedure) to evaluate slot leadership, and potentially create
and emit a new block or synchronization beacon. Before the main staking procedure is executed, the
local state is updated including the current stake distribution (call to UpdateStakeDist). The procedures
are specified in Section B.10 and Section B.6.

– If the end of the round coincides with the end of an epoch, the synchronization procedure is executed.
This core procedure of our proposal is detailed below.

Below we provide more details on the most important aspects of the standard mode of operation.

Stake distribution and leader election. A party P is an eligible slot-leader for a particular slot sl in
an epoch ep if its VRF-output (for an input dependent on sl) is smaller than a threshold value T ep

P . The
threshold is derived from the (local) stake distribution Sep assigned to an ep which in turn is defined by the
(local) blockchain Cloc, or more precisely by an abstract mapping that assigns a party (identified by its public
keys) to its stake derived based on the encoded transactions in Cloc (and the genesis block). The relative
stake of P in the stake distribution Sep is denoted as αep

p ∈ [0, 1]. The mapping φf (·) is defined as

φf (α) , 1− (1− f)α (1)

and is parametrized by a quantity f ∈ (0, 1] called the active slots coefficient [17].
Finally, the threshold T

ep
p is determined as

T ep
p = 2`VRFφf (αep

p), (2)

where `VRF denotes the output length of the VRF (in bits).
Note that by (2), a party with relative stake α ∈ (0, 1] becomes a slot leader in a particular slot with

probability φf (α), independently of all other parties. We clearly have φf (1) = f , hence f is the probability
8 Note that this knowledge is needed to bootstrap the system with a set of alert parties.

10

that a hypothetical party controlling all 100% of the stake would be elected leader for a particular slot.
Furthermore, the function φ has an important property called “independent aggregation” [17]:

1− φ
(∑

i

αi

)
=
∏
i

(1− φ(αi)) . (3)

In particular, when leadership is determined according to φf , the probability of a stakeholder becoming a slot
leader in a particular slot is independent of whether this stakeholder acts as a single party in the protocol,
or splits its stake among several “virtual” parties.

The technical description of the staking procedure appears in Section B.10. It starts by two calls evaluating
the VRF in two different points, using constants NONCE and TEST to provide domain separation, and receiving
(yρ, πρ) and (y, π), respectively. The value y is used to evaluate slot leadership: if y < T

ep
p then the party is

a slot leader and continues by processing its current transaction buffer to form a new block B. Aside of this
application data, each block contains control information. The information includes the proof of leadership
(y, π), additional VRF-output (yρ, πρ) that influences the epoch-randomness for the next epoch, and the
block signature σ produced using FKES. Finally, an updated blockchain Cloc containing the new block B
is multicast over the network (note that in practice, the protocol would only diffuse the new block B). A
slot leader embeds a sequence of valid transactions into a block. As in [2], we abstract block formation and
transaction validity into predicates blockifyOC and ValidTxOC. The function blockifyOC takes as input a plain
sequence of transactions and outputs a block, whereas ValidTxOC takes as input a single transaction and the
ledger state. A transaction is said to be valid with respect to the ledger state if and only if it fulfills the
predicate. The transaction validity predicate ValidTxOC induces a natural transaction validity on blockchain-
states that we succinctly denote by the predicate isvalidstate(~st) that decides that a state is valid if it can
be constructed sequentially by adding one transaction at a time and viewing the already added transactions
as part of the state.

Emitting synchronization beacons. New to Ouroboros Chronos is the emission of synchronization bea-
cons in the first R/6 slots of an epoch ep. To be admissible to emit a beacon, the party evaluates the VRF
again as in slot-leadership. To obtain an independent evaluation, we use a new constant called SYNC to obtain
domain separation. If the returned value y ≤ T ep

P , the party will create a block header and send it on the
broadcast network.9

Embedding synchronization beacons. Part of the staking procedure is to embed synchronization beacons
in the first 2R/3 slots of an epoch ep. A synchronization beacon is embedded if the creator of the beacon
was elected to emit a beacon (according to the current stake distribution in epoch ep) in the first R/6 slots
of this epoch, and if no other beacon in the chain already specifies the same slot and party identifiers. Like
this, an alert party is assured to produce a valid chain according to IsValidChain in Section B.7 which is the
validity predicate of Ouroboros Genesis, equipped with the additional checks for beacon validity. Note that
for a slot leader, we provide for simplicity an extra-predicate ValidSB in Section B.7 that allows ensuring
that the extension block is valid with respect to beacon inclusion.

Running the synchronization procedure. At the end of an epoch, parties run the synchronization
procedure based on the beacons recorded in this epoch. We will elaborate on this core procedure of the new
protocol in Section 3.4.

3.3.4 Further Ledger Queries
We discuss further features exported by the ledger protocol Ouroboros Chronos and formally written in
Section B.1.
9 Note that there is no need to additionally sign a beacon. Looking ahead, for the synchronization procedure to

achieve its goal, we only need agreement on the reported slot numbers (by the respectively elected parties), which
is derived from the blockchain, and the guarantees provided by the broadcast functionality. Furthermore, to bound
the shift that alert parties experience, it is sufficient that slot numbers reported by alert (and thus synchronized
parties) are dominating and are delivered within a reasonable number of rounds after first being emitted.

11

Submit transactions. As in [2] parties take as inputs transactions that serve as the inputs to the ledger.

Read state. As in [2], the ledger protocol exports a stable ledger state to the environment (implemented
as a certain prefix of the longest chain of a party).

Read time. A novelty compared to Ouroboros Genesis, where the global clock showed the global time to
all parties, Ouroboros Chronos will export a feature to read the logical protocol time. The exact guaran-
tees on this “new clock”, in particular the skew between reported times and the offset to “objective” time
advancement (rounds) are given in the ideal ledger-functionality that Ouroboros Chronos realizes.

3.3.5 De-Registration and Re-Joining
If a party is alert, it can lose in several ways its status of being alert. Following [2], if a party loses access to
the random oracle only, then it will still be able to observe the protocol execution and record message arrivals
as seen in Section B.1. The main issue is that such a party — when re-joining — will have to retrace what it
missed. Compared to Ouroboros Genesis, this is slightly more complicated due to the adjustments to the local
clock in the course of the execution. However, the party has all reliable information to actually retrace the
actions as if it was present as a passive observer all the time. This special procedure SimulateClockAdjustments
is described in Section B.13. It is invoked as part of procedure LedgerMaintenance before preforming as an
alert party again.

On the other hand, if any alert party loses access to Gtick or FN-MC be the respective de-registration
queries, then it considers itself as de-synchronized. Compared to Ouroboros Genesis, parties in Ouroboros
Chronos are aware about their synchronization status. Any party that is de-synchronized will have to run
through the main joining procedure of Section 3.5 to become synchronized.

3.4 The Synchronization Procedure of Ouroboros Chronos

Our main synchronization procedure is based on several logical building blocks. We describe each of them
in detail and provide the rationale behind the choices. Each building block is given with the reference to the
code implementing it.

1.) Synchronization slots: Once a party’s local time-stamp reaches a defined synchronization slot for the
first time, it will adjust its local time-stamp before moving to the next slot. The protocol will specify
the necessary actions for the cases where the local time-stamp is shifted forward or backward. We define
the synchronization slots to be the slots with numbers i · R for i ≥ 1 and hence they coincide with the
end of an epoch. In a real-word execution (which is a random experiment with discrete steps), we say
that a party P has passed its synchronization slot i ·R (e.g., at step x of the experiment) if it has already
concluded its operations in a round where P.localTime = i ·R holds for the first time. In the code, the
synchronization procedure is invoked as the final step in a synchronization slot in Section B.2).

2.) Synchronization Beacons: In addition to the other messages similar to Ouroboros Genesis, the parties
in Ouroboros Chronos generate synchronization messages or “beacons” as follows: an alert party P
evaluates the VRF functionality by sending (EvalProve, sid, ηj ‖P.localTime ‖ SYNC) to FVRF to receive
the response (Evaluated, sid, y, π). The beacon message is then defined as the meta-data

SB , (P.localTime,P, y, π),

where P.localTime is the current slot number party P reports and the triple (P, yρ, π) is the usual
attestation of slot leadership by party (or stakeholder) P. In the code, synchronization beacons are
created in the main staking procedure in Section B.10.

3.) Arrival times bookkeeping: Every party P maintains an array P.TimestampSB(·) that assigns to each
synchronization beacon SB a pair (n, flag) ∈ N × {final, temp}. Assume a beacon SB with slotnum(SB) ∈
[j · R + 1, . . . , j · R + R/6], j ∈ N and party P′ is fetched by party P (for the first time). If the pair
(slotnum(SB),P′) is new, the recorded arrival time is defined as follows:

12

• If P has already passed synchronization slot j · R but not yet passed synchronization slot (j + 1) ·
R, TimestampSB(SB) is defined as the current slot number and the value is considered final, i.e.,
TimestampSB(SB) , (P.localTime, final).

• If party P has not yet passed synchronization slot j ·R (and thus the beacon belongs logically to this
party’s next epoch), TimestampSB(SB) is defined as the current slot number P.localTime and the
decision is marked as temporary, i.e., TimestampSB(SB) , (P.localTime, temp). This value will be
adjusted once this party adjusts its local time-stamp for the next epoch (when arriving at the next
synchronization slot j ·R).

If a party has already received a beacon for the same slot and creator, it will set the arrival time equal to
the first one received among those. The process to record arrival times is described in its own algorithm
in Section B.3.

4.) The synchronization interval: the interval based on which the adjustment of the local time-stamp is
computed. For a synchronization slot i ·R (i ≥ 1), its associated synchronization interval is the interval
Isync(i) , [(i− 1) ·R+ 1, . . . (i− 1) ·R+R/6] and hence encompasses the first sixth of the epoch that is
now ending.

5.) Emitting Beacons and inclusion into the chain: An alert party sends out a synchronization beacon
during a synchronization interval (i.e., if the current local time reports a slot number that falls into a
synchronization interval) if and only if the VRF evaluation (EvalProve, sid, ηj ‖P.localTime ‖ SYNC) to
FVRF returned (Evaluated, sid, y, π) with y < T ep

P where T ep
P is the threshold in the current epoch as

used for normal slot leader election. An alert slot leader P′ on the other hand will include any valid
synchronization beacon in its new block as long as P′.localTime reports a slot number within the first
two-thirds of an epoch (and if the beacon has not been included yet). This process is part of the main
staking procedure in Section B.10.

The remaining three steps are implemented as part of the core synchronization procedure in Section B.11.

6.) Computing the adjustment evidence: The adjustment will be computed based on evidence from the set SP
i

that is defined with respect to the current view of P in the execution: Let SP
i contain all beacons SB that

report a slot number slotnum(SB) ∈ [(i− 1) ·R+ 1, . . . , (i− 1) ·R+R/6] (of the synchronization interval)
and which are included in a block B of P.Cloc that reports a slot number slotnum(B) ≤ (i−1) ·R+2R/3.
Based on these beacons and their recorded arrival times, the shift will be computed. More precisely, if
a beacon SB is recorded in P.Cloc, then the arrival time used in the computation will be based on a the
valid10 beacon SB′ that reports the same slot number and party identity as SB and which has arrived
first—either as part of some blockchain block or as a standalone message. By our choice of parameters,
parties will have assigned an arrival value to any such beacon with overwhelming probability.

7.) Adjusting the local clock: The shift shiftP
i a party P computes to adjust its clock in synchronization slot

i ·R is defined by

shiftP
i , med

{
slotnum(SB)− Timestamp(SB) | SB ∈ SP

i

}
.

Recall that Timestamp(SB) is shorthand for the first element of the pair TimestampSB(SB). As we will
show, this adjustment ensures that the local time stamps of alert parties report values in a sufficiently
narrow interval (depending on the network delay) to provide all protocol properties we need. Furthermore,
for each beacon SB with P.TimestampSB(SB) = (a, temp) and slot number slotnum(SB) > i ·R the arrival
time is adjusted by P.TimestampSB(SB) , (a + shiftP

i , final). This ensures that eventually the arrival
times of all beacons that logically belong to epoch i+ 1 will be expressed in terms of the newly adjusted
local time-stamp computed at synchronization slot i · R. At this point, the party is further capable of
excluding invalid beacons.

8.) At the beginning of the next round the party will report a local time equal to i ·R+ shift + 1. If shift ≥ 0,
the party proceeds by emulating its actions for shift rounds. If shift < 0, the party remains a silent
observer (recording arrival times for example) until its local time has advanced to slot i · R + 1 and

10 Evaluated using this epoch’s stake distribution.

13

resumes normally at that round. Note that in this time, an alert party will not revert any previously
reported ledger state with overwhelming probability. The reason is that the party will stick to Cloc during
this waiting time and only replace it by longer chains that do not fork by more than k blocks from Cloc
which is a direct consequence of the security guarantees implied by the Genesis chain-selection rule [2].11

3.5 The Joining Procedure for New Parties of Ouroboros Chronos

Introducing synchronization slots into the protocol serves the main purpose of allowing newly joining parties
to adjust their local time to a value that lies in the interval of time stamps reported by alert parties. Note
that a newly joining party starts at local time 0 and can thus be arbitrarily off of the values reported by alert
parties. With our new procedure, a newly joining party can not only bootstrap the current reliable ledger
state, but also a reliable time-stamp.

The novel joining procedure is divided into several phases where the party gathers reliable information,
identifies a good synchronization interval and finally applies the shift(s) that will allow it to report a local
time-stamp that is sufficiently close to the alert parties in the system. Below we give an overview and rationale
behind our procedure and formally prove its security in Section 4.4. The code for this procedure is given
in Figure 2 containing the procedure JoinProc which is is invoked as part of LedgerMaintenance for newly
joining parties.

Phase A: Once a newly joining party has all resources available, it will invoke its main round procedure
and start the joining process. It will reset all its current local variables.

Phase B: In the second activation upon a maintain-ledger command, the party will jump to phase B
and continue to do so until and including round toff . During this interval, the party applies the Genesis
chain selection rule maxvalid-bg to filter its incoming chains. It will apply the chain selection rule to all
valid chains it receives. Since the party does not have reliable time, it will consider also future chains as
valid, as long as they satisfy all remaining validity predicates (cf. Section B.7). As we prove in Lemma 4,
at the end of this phase, the party adopts chain C that stands in a particularly useful relation to any
chain C′ an alert party adopts. Roughly, the relation says that the point at which the two chains fork
is about k blocks behind the tip of C′. This follows from the (genesis) chain selection rule and the fact
that C′ is more dense than C shortly after the fork. However, this also means that P could still hold
an extremely long chain served by the adversary (namely, an adversarial extension of an alert party’s
chain at some point less than k blocks behind the tip into the future). On the positive side, the stake
distribution used for general validation of blocks and beacons logically associated to the time before the
fork are reliable.

Phase C: If a party arrives at local time toff +1, it starts with phase C, the gathering phase. The party still
filters chains as before, but now processes the arrival times of beacons from the network (or indirectly
via the received chains). This phase is parameterized by two quantities: the sum of tminSync and tstable
define the total duration of this round, where intuitively, tminSync guarantees that enough arrival times
are recorded to compute a reliable estimate of the time-shift, and tstable ensures that the blockchain
reaches agreement on which (valid) synchronization beacons to use. After this phase, a party can reliably
judge valid arrival times.

Phase D: The party collects the valid evidence and computes the adjustment based on the first synchro-
nization interval I = [(i−1)R, . . . , (i−1)R+R/6] identified on the blockchain that reports beacons that
arrived sufficiently later than the start of phase C (parameter tpre). Party P computes the adjustment
value that alert parties would do at synchronization slot i ·R based on the recorded beacon arrival times
associated with interval I. The party P is done if its adjusted time does not indicate that it should have
passed another synchronization slot (and otherwise, the above is repeated with adjusted arrival times of
already recorded beacons).

11 An alert party reverting a previously reported state implies a common-prefix violation.

14

1: Call UpdateTime(P, R, f) // Align with newest round
2: if localTime > 1 then // Set back to local round 1
3: Set localTime← 1
4: Set ep← dlocalTime/Re, and sl← localTime.
5: fetchCompleted← false, futureChains, buffer← ∅, TimestampSB ← empty array.
6: end if
7: // Phase B
8: while localTime ≤ toff do
9: if fetchCompleted = false then

10: Call FetchInformation(k,P) and denote fetched chains by N := (C1, . . . , CM)
11: Call SelectChain(Cloc,N , k, s, R, f) to update Cloc // Since isSync = false, all chains are considered
12: fetchCompleted← true
13: FinishRound(P) // Mark round actions as finished. Resume below upon next activation
14: end if
15: Call UpdateTime(P, R, f) to update localTime, ep, and sl // fetchCompleted will reset.
16: end while
17: // Phases C
18: while localTime ≤ toff + tminSync + tstable do
19: if fetchCompleted = false then
20: Call FetchInformation(k,P) and denote the output by (C1, . . . , CM), (tx1, . . . , txk).
21: Set buffer← buffer||(tx1, . . . , txk) and define futureChains← futureChains||(C1, . . . , CM)
22: Call ProcessBeacons to collect new beacons in this round.// All arrival times are temporary
23: Call SelectChain(Cloc, futureChains, k, s, R, f) to update Cloc
24: fetchCompleted← true
25: FinishRound(P) // Mark round actions as finished. Resume below upon next activation
26: end if
27: Call UpdateTime(P, R, f) to update localTime, ep, and sl // fetchCompleted will reset.
28: end while
29: // Phase D
30: Define the function Isync(j) : j 7→ Ij := [(j − 1)R + 1, . . . , (j − 1)R + 2R/3].
31: syncBuffervalid ← {SB′ ∈ syncBuffer |ValidSB(P, sid, SB′, Cloc, f, R) = true}
32: Initialize i := 0. Now set i to be the minimum positive integer such that
∀SB ∈ Cloc[Isync(i)] : SB ∈ syncBuffervalid ∧ Timestamp(SB) > toff + tpre (if no interval exists, i is unchanged).

33: if i ≥ 1 then
34: for at most ((tstable + tminSync) divR)) iterations do
35: Si ← {SB | ∃B ∈ Cloc[Isync(i)] : SB ∈ B ∧ slotnum(SB) ∈ {(i− 1)R + 1, . . . , (i− 1)R + R/6}}
36: for each SB = (sl,P, y, π) ∈ Si do
37: QSB ← {SB′ = (sl′,P′, ·, ·) ∈ syncBuffervalid |P

′ = P ∧ sl′ = sl}
38: if QSB 6= ∅ then
39: minSB ← min{Timestamp(SB′) | SB′ ∈ QSB}
40: TimestampSB(SB)← (minSB, final)
41: recom(SB)← slotnum(SB)− Timestamp(SB)
42: else
43: S ← S \ {SB} // Negligible probability event in execution.
44: end if
45: end for
46: shifti ← med {recom(SB) | SB ∈ Si}
47: for each SB with TimestampSB(SB) = (a, temp) do
48:) TimestampSB(SB)← (a+ shifti, temp)
49: end for
50: Set localTime← localTime + shifti; EpochUpdate(i)← Done
51: Break if localTime ≤ (i+ 1)R. Otherwise, set i← i+ 1 and continue iteration.
52: end for
53: isSync← true; SelectChain(Cloc, futureChains, k, s, R, f) to update Cloc
54: for each beacon SB ∈ syncBuffervalid with slotnum(SB) ≤ (i+ 1)R do
55: Parse TimestampSB(SB) as (a, temp). Define TimestampSB(SB)← (a, final)
56: end for
57: If localTime ≤ i · R then set twork ← i · R // If shifted back before the sync slot of i wait.
58: end if
Output: The protocol outputs ok to its caller (but not to Z).

Protocol JoinProc(P, sid, R, k, f, s, toff , tstable, tminSync)

Fig. 2. The joining procedure.

15

Parameter Default Phase
toff R/3 B

tminSync 2R C
tstable R C
tpre 3R/4 D

Table 1. Parameters of the joining procedure and phases in which they play a role.

4 Security Analysis

In this section we establish the security properties of our protocol. Due to space constraints, all proofs are
deferred to Appendix D.

4.1 Security Assumptions: Alert and Participating Stake Ratio

We begin by setting down notation and defining the conventions we adopt for measuring stake ratios. The
following definition is adapted from [2]; the crucial difference is that it refers to the types of parties with
respect to a logical slot as defined in Section 3.2.

Definition 1 (Classes of parties and their relative stake). Let P[sl] denote the set of all parties in
a logical slot sl and let Ptype[sl], for any type of party described in Figure 1 (e.g. alert, active), denote the
set of all parties of the respective type in the slot sl. For a set of parties Ptype[sl], let S−(Ptype[sl]) ∈ [0, 1]
(resp. S+(Ptype[sl]) ∈ [0, 1]) denote the minimum (resp., maximum), taken over the views of all alert parties,
of the total relative stake of all the parties in Ptype[sl] in the stake distribution used for sampling the slot
leaders for slot sl.

Looking ahead, we remark that even though we give the general definition above, our protocol will
have the desirable property that for all party types and all time slots, S−(Ptype[sl]) = S+(Ptype[sl]) with
overwhelming probability, as all the alert parties will agree on the distribution used for sampling slot leaders
with overwhelming probability.

Definition 2 (Alert ratio, participating ratio). For any logical slot sl during the execution, we let:

– the alert stake ratio be the fraction S−(Palert[sl])/S+(Pactive[sl]); and
– the (potentially) participating stake ratio be S−(Pactive[sl]).

It is instructive to see that the potentially participating stake ratio allows us to infer the ratio of stake
belonging to parties that cannot participate in slot sl. Intuitively speaking, we will prove the security of our
protocol under the assumption that both stake ratios from Definition 2 are sufficiently lower-bounded (the
former one by 1/2 + ε, the latter one by a constant). We remark that it is easy to verify that in particular,
such assumption also implies the existence of alert parties in every objective round.

4.2 Blockchain Security Properties

We now define the standard security properties of blockchain protocols: common prefix, chain growth and
chain quality. These will later be useful for establishing the composable, UC-framework security guarantees
that we are aiming for.

Similarly to [2], we only grant these guarantees to alert parties. More importantly for this work, the
definitions from [2] need to be adjusted to take into account the fact that the local clocks of the parties
are not synchronized. To this end, we choose now to define the properties below with respect to the logical
timestamps (i.e., slot numbers) contained in blocks, and the local clocks of the parties. Namely, we refer to
logical slots below, and a party is considered to be on the onset of slot sl (or enter slot sl) if her local clock
just switched to sl.

16

Common Prefix (CP); with parameters k ∈ N. The chains C1, C2 possessed by two alert parties at the
onset of the slots sl1 < sl2 are such that Cdk1 � C2, where Cdk1 denotes the chain obtained by removing
the last k blocks from C1, and � denotes the prefix relation.

Chain Growth (CG); with parameters τ ∈ (0, 1], s ∈ N. Consider a chain C possessed by an alert party
at the onset of a slot sl. Let sl1 and sl2 be two previous slots for which sl1 + s ≤ sl2 ≤ sl, so sl2 is
at least s slots ahead of sl1. Then |C[sl1 : sl2]| ≥ τ · s. We call τ the speed coefficient.

Chain Quality (CQ); with parameters µ ∈ (0, 1] and k ∈ N. Consider any portion of length at least k
of the chain possessed by an alert party at the onset of a slot; the ratio of blocks originating from alert
parties is at least µ. We call µ the chain quality coefficient.

Finally, we will also consider a slight variant of chain quality called existential chain quality:

Existential Chain Quality (∃CQ); with parameter s ∈ N. Consider a chain C possessed by an alert
party at the onset of a slot sl. Let sl1 and sl2 be two previous slots for which sl1 + s ≤ sl2 ≤ sl.
Then C[sl1 : sl2] contains at least one alertly generated block (i.e., block generated by an alert party).

For brevity we sometimes write CP(k) (resp., CG(τ, s), CQ(µ, k), ∃CQ(s)) to refer to these properties.
While these definitions based on the logical time allow us to talk about the logical structure of the forks

created by the parties and reuse parts of the technical machinery given in [26, 17, 2] to analyze it, providing
only guarantees based on the logical time would be unsatisfactory, as the parties running the Ouroboros
Chronos protocol desire persistence and liveness with respect to the objective time. We will address this
translation from logical-time to objective-time guarantees later, when establishing the composable security
in Theorem 5.

4.3 Setting with Static Registration

Our first goal is to establish that the properties of (logical-time) common prefix, chain growth, and chain
quality are achieved by Ouroboros Chronos when executed in a restricted environment where all parties
participate in the protocol run from the beginning and never get deregistered from any of their resources
(i.e., from GRO, FN-MC or Gtick). Similarly to [2], we refer to this setting as the setting with static registration;
we will drop this assumption later.

Definition 3 (Clock skew and Skew∆). Given an honest party P, we define its skew in slot sl (and
denote SkewP[sl]) the difference between sl and the objective time t when P enters slot sl. For any ∆ ≥ 0
and a slot sl, we denote by Skew∆[sl] the predicate that for all parties that are synchronized in slot sl, their
skew in this slot differs by at most ∆; formally

Skew∆[sl] :⇔
(
∀P1,P2 ∈ Palert[sl] :

∣∣∣SkewP1 [sl]− SkewP2 [sl]
∣∣∣ ≤ ∆) .

Note that in the static-registration setting, all honest parties are synchronized (and hence are considered
for Skew∆[sl]); the difference will become important in later sections.

4.3.1 Single-Epoch Analysis with ∆-Bounded Skew

Before we can analyze the resynchronization procedure SyncProc, we first need to establish the blockchain
security properties given in Section 4.2 for Ouroboros Chronos during a single-epoch execution, as the proper
functioning of SyncProc will inductively depend on these properties being satisfied in the epochs preceding
it. Having this inductive structure of the proof in mind, we actually need a security statement for the single-
epoch setting with an additional assumption that the predicate Skew∆[sl] is satisfied for all slots in that
epoch, we refer to this as the setting with ∆-bounded skew. The desired properties are established in the
following theorem; its proof is given in a separate Appendix C.

17

Theorem 1. Consider the single-epoch execution of the protocol Ouroboros-Chronos with adversary A and
environment Z in the setting with static FN-MC-registration and ∆-bounded skew. Let R denote the epoch
length in slots, let f be the active-slot coefficient, let ∆ be the upper bound on the network delay and let
∆̃ , 2∆. Let α, β ∈ [0, 1] denote a lower bound on the alert ratio and participating ratio throughout this
epoch, respectively. If for some ε ∈ (0, 1) we have

α · (1− f)∆̃+1 ≥ (1 + ε)/2 , (4)

and the maxvalid-bg parameters, k and s, satisfy

k > 192∆̃/(εβ) and R/6 ≥ s = k/(4f) ≥ 48∆̃/(εβf) (5)

then Ouroboros-Chronos achieves the following guarantees:
Common prefix. The probability that it violates the common prefix property with parameter k′ is no

more than
ε̄CP(k′;R,∆, ε) , 19R

ε4
exp(∆̃− ε4k′/18) + ε̄mv ;

Chain growth. The probability that it violates the chain growth property with parameters s ≥ 48∆̃/(εβf)
and τCG = βf/16 is no more than

ε̄CG(τCG, s;R, ε) ,
sR2

2 exp
(
−(εβf)2s/256

)
+ ε̄mv ;

Existential chain quality. The probability that it violates the existential chain quality property with
parameter s ≥ 12∆̃/(εβf) is no more than

ε̄∃CQ(s;R, ε) , (s+ 1)R2 exp
(
−(εβf)2s/64

)
+ ε̄mv ;

Chain quality. The probability that it violates the chain quality property with parameters k′ ≥ 48∆̃/(εβf)
and µ = εβf/16 is no more than

ε̄CQ(µ, k′;R, ε) , kR2

2 exp
(
−(εβf)2k′/256

)
+ ε̄mv ;

where ε̄mv is a shorthand for the quantity

ε̄mv , exp (lnR−Ω(k)) + ε̄CG(βf/16, k/(4f)) + ε̄∃CQ(k/(4f)) + ε̄CP(kβ/64) .

4.3.2 Properties of SyncProc
Here we establish two key properties of the resynchronization procedure SyncProc given in Section B.11 that
is being executed by all alert parties on the edge of any two epochs.

Lemma 1. Let (ai)ni=1 and (bi)ni=1 be two sequences of n integers each, with the property that |ai − bi| ≤ ∆
for all i ∈ [n]. Then we also have |med ((ai)ni=1)−med ((bi)ni=1)| ≤ ∆.

The above simple statement is at the heart of the following lemma.

Lemma 2 (SyncProc maintains Skew∆). Consider an execution of the full protocol Ouroboros-Chronos
over a lifetime of L = ER slots, where R is the epoch length. Let ∆ be the upper bound on message delay
enforced by FN-MC; and let sl ≥ 1 be the last slot of some epoch ep ≥ 1, i.e., such that sl mod R = 0. If
the properties CG(τCG, R/3) and CP(τCGR/3) for τCG as in Theorem 1 are not violated during the execution
up to slot sl, then the predicate Skew∆[sl + 1] will be satisfied.

The proof of the above lemma relies on the following two intermediate claims:

18

(i) All alert parties use the same set of synchronization beacons in their execution of the procedure SyncProc
between epochs ep and ep + 1,

(ii) For any fixed beacon SB ∈ SP1
i = SP2

i , the quantity µ(Pi, SB) , SkewPi [sl] + slotnum(SB) −
Pi.Timestamp(SB) will differ by at most ∆ between any two alert parties P1 and P2.

Lemma 3 (Bounded shift). Consider an execution of the full protocol Ouroboros-Chronos over a lifetime
of L = ER slots, where R is the epoch length. Let ∆ be the upper bound on message delay enforced by
FN-MC, and assume ∆̃ , 2∆ ≤ R/6. Let sl ≥ 1 be the last slot of some epoch ep ≥ 1, i.e., such that
sl mod R = 0, and assume that Skew∆[sl′] is satisfied for all slots in epoch ep. Let α ∈ [0, 1] denote a
lower bound on the alert ratio and participating ratio throughout the execution. If for some ε ∈ (0, 1) we have
α · (1− f) ≥ (1 + ε)/2, and if the property ∃CQ(R/3) is not violated during the execution up to slot sl, then
in any invocation of SyncProc by an alert party during sl, the local variable shift computed on line 17 will
satisfy |shift| ≤ 2∆, except with error probability exp(lnL−Ω(R)) over the whole execution.

4.3.3 Lifting to Multiple Epochs

Theorem 1 gives us security guarantees achieved by Ouroboros Chronos in a single-epoch setting with static
stake distribution and perfect randomness. We now show how these guarantees can be extended throughout
the whole lifetime of the system consisting of many epochs. The following theorem is established by an
inductive argument over epochs, using the properties of FINIT and Theorem 1 for the base case, and the
epoch-randomness analysis of [17] together with the properties of SyncProc from Section 4.3.2 (again together
with Theorem 1) for the inductive step.

Theorem 2 (Full-execution security with static registration). Consider the execution of
Ouroboros-Chronos with adversary A and environment Z in the setting with static registration. Let f be
the active-slot coefficient, let ∆ be the upper bound on the network delay and let ∆̃ , 2∆. Let α, β ∈ [0, 1]
denote a lower bound on the alert and participating stake ratios throughout the whole execution, respectively.
Let R and L denote the epoch length and the total lifetime of the system (in slots), and let Q be the to-
tal number of queries issued to GRO. If the assumptions (4) and (5) are satisfied, then Ouroboros-Chronos
achieves the same guarantees for common prefix (resp. chain growth, chain quality, existential chain quality)
as given in Theorem 1 (with L replacing R as execution length) except with an additional error probability of

QL · (ε̄CG (τCG, R/3;R, ε) + ε̄CP (τCGR/3;R,∆, ε) + ε̄∃CQ (R/3;R, ε)) , (6)

where τCG = βf/16. If R ≥ 144∆̃/εβf then this term can be upper-bounded by

εlift , QL ·
[
R3 · exp

(
− (εβf)2R

768

)
+ 19R

ε4
· exp

(
∆̃− ε4τCGR

54

)
+ 3ε̄mv

]
. (7)

For all p ∈ {CP,CG,∃CQ,CQ}, we denote the obtained counterparts of the single-epoch error terms ε̄p for
the full execution with static registration by εp.

4.4 Newly Joining Parties

In this section we prove that the guarantees on common prefix, chain growth and (existential) chain quality
obtained for Ouroboros-Chronos in Section 4.3 remain valid also when new parties join the protocol later
during its execution.

Definition 4 (Joining party). We say that an honest party P is joining the protocol execution at time
tjoin > 0 if tjoin is the (objective) round in which P becomes operational, time-aware and online for the first
time.

19

Lemma 4. Consider an execution of the full protocol Ouroboros-Chronos and let Pjoin be a party joining the
protocol execution at time tjoin > 0 that retains its access to all resources during its joining procedure JoinProc
(cf. Fig. 2). Let t ∈ (tjoin + toff , tjoin + toff + tminSync + tstable + 1] be an (objective) round in which Pjoin is in
Phase C or D of its joining procedure. Let Cjoin denote a chain held in round t by Pjoin, and let Calert denote
a chain held in round t′ , t−∆ by any party Palert alert in round t′.

Then under the assumptions of Theorem 2 and assuming no violations of CP(kβ/64), ∃CQ(s), and
CG(τCG, s) until the end of the joining procedure (for the parameters k and s of maxvalid-bg), we have
Cdkalert � Cjoin except with error probability exp(lnL−Ω(R)) over the whole execution.

Lemma 5. Consider an execution of the full protocol Ouroboros-Chronos and let Pjoin be a party joining the
protocol execution at time tjoin > 0 that retains its access to all resources during its joining procedure JoinProc
(cf. Fig. 2). Under the assumptions of Theorem 2 and Lemma 4, and assuming no violations of CG(τCG, R/3),
CP(τCGR/3), and ∃CQ(R/3) until the end of the joining procedure, we have the following except with error
probability exp(lnL−Ω(R)) over the whole execution:

(a) The index value i∗ determined on line 32 of its joining procedure JoinProc satisfies i∗ ≥ 1.
(b) For all values of i ≥ i∗ processed in the iteration on lines 34–52 we have SPjoin

i = SPalert
i , where SPjoin

i is
the set of synchronization beacons determined by Pjoin on line 35 and SPalert

i is the set of synchronization
beacons determined by any alert party Palert on line 6 of its procedure SyncProc for the same i.

(c) For all values of i ≥ i∗ processed in the iteration on lines 34–52 and for any fixed beacon SB ∈ SPjoin
i =

SPalert
i , the quantity

µ(P, SB) , SkewP[sl] + slotnum(SB)− P.Timestamp(SB)

will differ by at most ∆ between the two parties P ∈ {Pjoin,Palert}.

4.5 The Dynamic-Availability Setting

Using the above analysis of the joining procedure, we now generalize the results from previous sections to
the dynamic availability setting [2], where the parties get arbitrarily registered and deregistered from their
resources upon the decision of the environment. The error term in the theorem corresponds to violating the
assumptions of Lemmas 4 and 5.

Theorem 3 (Dynamic availability). Consider an execution of the full protocol Ouroboros-Chronos in the
dynamic-availability setting. Under the assumptions of Theorem 2 and Lemma 5, Ouroboros-Chronos achieves
the same guarantees for common prefix (resp. chain growth, chain quality, existential chain quality) as given
in Theorem 2 except for the negligible additional error probability

εDA , εCP(max{kβ/64, τCGR/3}) + εCG(τCG, s)
+ ε∃CQ(τCGR/3) + exp(lnL−Ω(R)) .

4.6 From Logical-Time to Objective-Time Guarantees

In this section, we show how to translate our statements, which basically are statements about the time the
parties report, to statements as a function of objective time, i.e., guarantees that an “external” observer of
the system could measure. The property under consideration for this is chain-growth.

Lemma 6 (Objective vs. logical time growth). Consider an execution of the full protocol
Ouroboros-Chronos in the dynamic-availability setting, let P be a party that is synchronized between (and
including) slots sl and sl′, let t and t′ be the objective times when P enters slot sl and sl′ for the first
time, respectively. Denote by δsl and δt the respective differences |sl′ − sl| and |t′ − t|. Define the quantity

τTG ,
(

1− 96∆+Rεβf

48R

)
.

20

Then, under the assumptions of Theorem 3, we have

δsl ≥ τTG · δt,

whenever δt ≥ 48∆̃/(εβf) (where ∆̃ = 2∆).

Proof. The lemma follows directly from Lemma 3 carried over to the dynamic-availability setting. In partic-
ular, the skew that the adversary can apply in every sequence of R objective rounds is at most 2∆ since no
more synchronization slots can occur where the synchronized parties adjust their local time-stamps (and in
between they increase at the same speed as the objective time). Given that the interval under consideration
could start right at a synchronization slot of alert party P, we need to incorporate an additional offset of 2∆
giving a total shift of at most 2∆ · δt/R + 2∆. Relative to δt, this shift can be expressed as (2∆/R + x)δt
for some x > 0 as long as δt ≥ 2∆/x. For the sake of concreteness, we pick x = (εβf)/48 to obtain the
lower bound on δt ≥ 48∆̃/(εβf) that aligns with the bound in Corollary 6 (where ∆̃ = 2∆), finally yielding
the τTG of the statement. Note that the coefficient tends to the value (1 − x) for increasing epoch lengths
R ≥ 144∆̃/(εβf). ut

Corollary 1. Consider the event that the execution of Ouroboros Chronos under the assumptions of The-
orem 3 does not violate property CG with parameters τ ∈ (0, 1], s ∈ N. Let τCG,glob , τ · τTG. Consider a
chain C possessed by an alert party at the onset of an objective round t. Let further t1 and t2 be two previous
objective rounds for which t1 + δt ≤ t2 ≤ t. Let sl1 and sl2 be the slot numbers that P reported at the
end of objective rounds t1 and t2, respectively. Then it must hold that |C[sl1 : sl2]| ≥ τCG,glob · δt whenever
δt ≥ max{s/τ, 48∆̃}.

Proof. By the previous Lemma, if the number of objective rounds elapsed is δt, then in the view of alert
party P, at least τTG · δt ≥ s slots were reported. Thus, by chain growth as of Definition 4.2, the increase in
blocks between the reported logical slots sl1 and sl2 must be τTG · δt · τ = (τTG · τ) · δt. ut

4.7 Composable Guarantees of Ouroboros Chronos and its Clock Properties

Based on the above analysis, we finally prove composable security of this proof-of-stake protocol by showing
that it realizes a ledger functionality that additionally exports additional time-stamps and hence realizes a
clock. This precisely gives the guarantees a higher-level protocol can rely on regarding the time-stamps of
Ouroboros Chronos. The full details are given in Section E and we give here an overview.

The Export-Time Extension. We introduce the export time extension to the ledger functionality Gledger
of [2]. The requirement on the given guarantees (to alert parties) is that they should be sufficient for crypto-
graphic protocols to work. We introduce a generic extension to the basic ledger functionality and represent
time-stamps timeP associated to party P as a pair (e, t), where t is the actual time stamp, and e refers to
what we call a generation (in the real world, e corresponds to the number of adjustments a party has made
to its local clock and t the logical time). An alert party’s time t in (e, t) is guaranteed to increase during a
generation with every tick of the reference speed. Once t hits a generation boundary, defined as multiples
of a generation length parameter RL (which in this work RL = R), the generation value increases as well.
Clearly, this would a perfect, monotonically increasing, two-dimensional time-stamp. We have to weaken this
guarantee by allowing to the adversary to apply a limited shift whenever a party is at an epoch boundary
(parameters shiftLB, shiftUB). Furthermore the ledger enforces that any two alert parties with respective
time-stamps (e, t) and (e′, t′), satisfy the constraints |t − t′| ≤ timeSlacktotal and |t − t′| ≤ timeSlackep if
e = e′, and |e − e′| ≤ 1 for the respective ledger parameters timeSlackep, timeSlacktotal that define the
maximally allowed skewness of parties. Note that we give the possibility than Within an epoch the slack could
be potentially different (i.e., much better) than across generations. We give an overview of the parameters
in Table G.2.

21

On using the realized clock. To judge the applicability of our exported clock, we describe in Section F
how higher-level protocols could use the exported clock in a synchronous computation. For example, if
timeSlackep = timeSlacktotal = 0, and shiftLB = shiftUB = 0, then we have an equivalent formulation of
the global clock of previous works. However, each weakening of the parameters will result in a higher-level
protocol to require specific reactions. This is obviously achievable by standard mechanisms if shifts are to be
expected but still timeSlackep = timeSlacktotal = 0. The parties will know that unexpected behavior could
happen around the known generation boundary appropriately suspend their round operations and proceed
at given later time after the boundary. Furthermore, by the limited shift, and the guaranteed advancement
the parties will proceed and, if the protocol uses explicit knowledge of shiftLB and shiftUB, liveness can be
quantified. If parties can additionally skewed, in addition to the above, the higher level protocol has to be
resilient against small variations in the time-stamps. Again, the level of resilience required is clearly defined
by parameters timeSlacktotal and timeSlackep and this allows a higher level protocol to deal with this
bounded skew by standard mechanisms [25].

We conclude Section F by providing an overview on how the clock parameters do improve in more
predictable and less adversarial networks, which in particular allows higher-level protocols to effectively
emulate a timing service based on the timestamps provided by the Chronos protocol.

References

[1] Hagit Attiya, Amir Herzberg, and Sergio Rajsbaum. Optimal clock synchronization under different delay as-
sumptions (preliminary version). In Jim Anderson and Sam Toueg, editors, 12th ACM PODC, pages 109–120.
ACM, August 1993.

[2] Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas. Ouroboros genesis:
Composable proof-of-stake blockchains with dynamic availability. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, ACM CCS 18, pages 913–930. ACM Press, October 2018.

[3] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin as a transaction ledger: A
composable treatment. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401
of LNCS, pages 324–356. Springer, Heidelberg, August 2017.

[4] Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure computation. In 25th ACM STOC,
pages 52–61. ACM Press, May 1993.

[5] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asynchronous secure computations with optimal resilience
(extended abstract). In Jim Anderson and Sam Toueg, editors, 13th ACM PODC, pages 183–192. ACM, August
1994.

[6] Iddo Bentov, Rafael Pass, and Elaine Shi. Snow white: Provably secure proofs of stake. Cryptology ePrint
Archive, Report 2016/919, 2016. http://eprint.iacr.org/2016/919.

[7] Gabriel Bracha. An asynchronou [(n-1)/3]-resilient consensus protocol. In Robert L. Probert, Nancy A. Lynch,
and Nicola Santoro, editors, 3rd ACM PODC, pages 154–162. ACM, August 1984.

[8] Vitalik Buterin. A next-generation smart contract and decentralized application platform, 2013. https://
github.com/ethereum/wiki/wiki/White-Paper.

[9] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and efficient asynchronous broadcast
protocols. In Joe Kilian, editor, Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology
Conference, Santa Barbara, California, USA, August 19-23, 2001, Proceedings, volume 2139 of Lecture Notes in
Computer Science, pages 524–541. Springer, 2001.

[10] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantinople: Practical asynchronous
byzantine agreement using cryptography. J. Cryptology, 18(3):219–246, 2005.

[11] Jan Camenisch, Robert R. Enderlein, Stephan Krenn, Ralf Küsters, and Daniel Rausch. Universal composition
with responsive environments. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II,
volume 10032 of LNCS, pages 807–840. Springer, Heidelberg, December 2016.

[12] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd FOCS,
pages 136–145. IEEE Computer Society Press, October 2001.

[13] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable security with global
setup. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 61–85. Springer, Heidelberg, February
2007.

22

http://eprint.iacr.org/2016/919
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper

[14] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings of the Third USENIX
Symposium on Operating Systems Design and Implementation (OSDI), New Orleans, Louisiana, USA, February
22-25, 1999, pages 173–186, 1999.

[15] Ran Cohen. Asynchronous secure multiparty computation in constant time. In Chen-Mou Cheng, Kai-Min
Chung, Giuseppe Persiano, and Bo-Yin Yang, editors, Public-Key Cryptography - PKC 2016 - 19th IACR In-
ternational Conference on Practice and Theory in Public-Key Cryptography, Taipei, Taiwan, March 6-9, 2016,
Proceedings, Part II, volume 9615 of Lecture Notes in Computer Science, pages 183–207. Springer, 2016.

[16] Sandro Coretti, Juan A. Garay, Martin Hirt, and Vassilis Zikas. Constant-round asynchronous multi-party com-
putation based on one-way functions. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology
- ASIACRYPT 2016 - 22nd International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part II, volume 10032 of Lecture Notes in
Computer Science, pages 998–1021, 2016.

[17] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An adaptively-secure,
semi-synchronous proof-of-stake blockchain. In Jesper Buus Nielsen and Vincent Rijmen, editors, EURO-
CRYPT 2018, Part II, volume 10821 of LNCS, pages 66–98. Springer, Heidelberg, April / May 2018.

[18] Danny Dolev, Joseph Y. Halpern, and H. Raymond Strong. On the possibility and impossibility of achieving
clock synchronization. In 16th ACM STOC, pages 504–511. ACM Press, 1984.

[19] Shlomi Dolev and Jennifer L. Welch. Wait-free clock synchronization (extended abstract). In Jim Anderson and
Sam Toueg, editors, 12th ACM PODC, pages 97–108. ACM, August 1993.

[20] Shlomi Dolev and Jennifer L. Welch. Self-stabilizing clock synchronization in the presence of byzantine faults
(abstract). In James H. Anderson, editor, 14th ACM PODC, page 256. ACM, August 1995.

[21] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol with chains of variable
difficulty. Cryptology ePrint Archive, Report 2016/1048, 2016. http://eprint.iacr.org/2016/1048.

[22] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand: Scaling byzantine
agreements for cryptocurrencies. Cryptology ePrint Archive, Report 2017/454, 2017. http://eprint.iacr.
org/2017/454.

[23] Joseph Y. Halpern, Barbara Simons, H. Raymond Strong, and Danny Dolev. Fault-tolerant clock synchroniza-
tion. In Robert L. Probert, Nancy A. Lynch, and Nicola Santoro, editors, 3rd ACM PODC, pages 89–102. ACM,
August 1984.

[24] Yael Kalai, Yehuda Lindell, and Manoj Prabhakaran. Concurrent composition of secure protocols in the timing
model. Cryptology ePrint Archive, Report 2005/036, 2005. http://eprint.iacr.org/2005/036.

[25] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally composable synchronous compu-
tation. In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 477–498. Springer, Heidelberg, March
2013.

[26] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A provably secure
proof-of-stake blockchain protocol. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I,
volume 10401 of LNCS, pages 357–388. Springer, Heidelberg, August 2017.

[27] Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multi-party computation using a global
transaction ledger. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume
9666 of LNCS, pages 705–734. Springer, Heidelberg, May 2016.

[28] Klaus Kursawe and Victor Shoup. Optimistic asynchronous atomic broadcast. In Lúıs Caires, Giuseppe F.
Italiano, Lúıs Monteiro, Catuscia Palamidessi, and Moti Yung, editors, Automata, Languages and Programming,
32nd International Colloquium, ICALP 2005, Lisbon, Portugal, July 11-15, 2005, Proceedings, volume 3580 of
Lecture Notes in Computer Science, pages 204–215. Springer, 2005.

[29] Eyal Kushilevitz, Yehuda Lindell, and Tal Rabin. Information-theoretically secure protocols and security under
composition. In Jon M. Kleinberg, editor, 38th ACM STOC, pages 109–118. ACM Press, May 2006.

[30] Leslie Lamport and P. M. Melliar-Smith. Byzantine clock synchronization. In Robert L. Probert, Nancy A.
Lynch, and Nicola Santoro, editors, 3rd ACM PODC, pages 68–74. ACM, August 1984.

[31] Christoph Lenzen, Thomas Locher, and Roger Wattenhofer. Clock synchronization with bounded global and
local skew. In 49th FOCS, pages 509–518. IEEE Computer Society Press, October 2008.

[32] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of BFT protocols.
In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors,
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria,
October 24-28, 2016, pages 31–42. ACM, 2016.

[33] David L. Mills. Computer Network Time Synchronization: The Network Time Protocol on Earth and in Space,
Second Edition. CRC Press, 2010.

23

http://eprint.iacr.org/2016/1048
http://eprint.iacr.org/2017/454
http://eprint.iacr.org/2017/454
http://eprint.iacr.org/2005/036

[34] Tal Moran and Ilan Orlov. Proofs of space-time and rational proofs of storage. IACR Cryptology ePrint Archive,
2016:35, 2016.

[35] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. http://bitcoin.org/bitcoin.pdf.
[36] Rafail Ostrovsky and Boaz Patt-Shamir. Optimal and efficient clock synchronization under drifting clocks. In

Brian A. Coan and Jennifer L. Welch, editors, 18th ACM PODC, pages 3–12. ACM, May 1999.
[37] Sunoo Park, Krzysztof Pietrzak, Albert Kwon, Joël Alwen, Georg Fuchsbauer, and Peter Gazi. Spacemint: A

cryptocurrency based on proofs of space. IACR Cryptology ePrint Archive, 2015:528, 2015.
[38] Rafael Pass, Lior Seeman, and abhi shelat. Analysis of the blockchain protocol in asynchronous networks. In

Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS,
pages 643–673. Springer, Heidelberg, April / May 2017.

[39] Barbara B. Simons, Jennifer Lundelius Welch, and Nancy A. Lynch. An overview of clock synchronization. In
Barbara B. Simons and Alfred Z. Spector, editors, Fault-Tolerant Distributed Computing, volume 448 of LNCS.
Springer, Heidelberg, 1990.

[40] T. K. Srikanth and Sam Toueg. Optimal clock synchronization. In Michael A. Malcolm and H. Raymond Strong,
editors, 4th ACM PODC, pages 71–86. ACM, August 1985.

24

http://bitcoin.org/bitcoin.pdf

SUPPLEMENTARY MATERIAL

A Completing the Setup Functionality Description

The purpose of this section is to introduce the setup functionalities that have formally been weakened for
the treatment in this work.

Synchrony. The clock functionality from [2] and replace by a weaker functionality Gtick that instead of
exporting global time, exports simply a bit via which parties can observe rounds passing. A party that joins
the protocol execution has therefore no possibility to infer the time of existing parties. Still, the Gtick offers
the possibility to proceed “at the same speed” as all other honest parties in the same session. Our new
functionality is given below where the only difference to the clock functionality in [2] is colored in blue.

The functionality manages the set P of registered identities, i.e., parties P = (pid, sid). It also manages the set F
of functionalities (together with their session identifier). Initially, P := ∅ and F := ∅.
For each session sid the clock maintains a variable τsid. For each identity P := (pid, sid) ∈ P it manages variable
dP. For each pair (F, sid) ∈ F it manages variable d(F,sid) (all integer variables are initially 0).

Synchronization:

– Upon receiving (clock-update, sidC) from some party P ∈ P set dP := 1; execute Round-Update and forward
(clock-update, sidC ,P) to A.

– Upon receiving (clock-update, sidC) from some functionality F in a session sid such that (F, sid) ∈ F set
d(F,sid) := 1, execute Round-Update and return (clock-update, sidC ,F) to this instance of F.

– Upon receiving (clock-read, sidC) from any participant (including the environment on behalf of a party, the
adversary (on behalf of a corrupted party), or any ideal—shared or local—functionality), first compute
tick← τsid mod 2 and return (clock-read, sidC , tick) to the requestor (where sid is the sid of the calling
instance).

Procedure Round-Update: For each session sid do: If d(F,sid) := 1 for all F ∈ F and dP = 1 for all honest parties
P = (·, sid) ∈ P, then set τsid := τsid + 1 and reset d(F,sid) := 0 and dP := 0 for all parties P = (·, sid) ∈ P.

Functionality Gtick

The network model. As outlined in the main body, we work in a setting where the adversary is required
to the same multicast restrictions as an honest party (which gives a broadcast-like guarantee). Such a
functionality can theoretically be achieved by a flooding protocol over a multicast network such as the one
in [2]. Our network functionality is given below where the only difference to the one in [2] is colored in blue.

The functionality is parameterized with a set possible senders and receivers P. Any newly registered (resp.
deregistered) party is added to (resp. deleted from) P.

– Honest sender multicast. Upon receiving (multicast, sid,m) from some P ∈ P, where P = {U1, . . . , Un}
denotes the current party set, choose n new unique message-IDs mid1, . . . ,midn of the form midi = (mid, i),
initialize 2n new variables Dmid1 := DMAX

mid1 . . . := Dmidn := DMAX
midn := 1, a per message-delay ∆midi = ∆ for

i = 1, . . . , n and set ~M := ~M ||(m,mid1, Dmid1 , U1)|| . . . ||(m,midn, Dmidn , Un), and send
(multicast, sid,m,P, (U1,mid1), . . . , (Un,midn)) to the adversary.

– Adversarial sender multicast. Upon receiving (multicast, sid,m) from some P ∈ P (where
P = {U1, . . . , Un} denotes the current party set), do execute it the same way as an honest-sender multicast,
with the only difference that ∆midi =∞.

Functionality F∆N-MC

25

– Honest party fetching. Upon receiving (fetch, sid) from P ∈ P (or from A on behalf of P if P is
corrupted):
1. For all tuples (m,mid, Dmid,P) ∈ ~M , set Dmid := Dmid − 1.
2. Let ~MP

0 denote the subvector ~M including all tuples of the form (m,mid, Dmid,P) with Dmid = 0 (in the
same order as they appear in ~M). Then, delete all entries in ~MP

0 from ~M and in case some
(m,mid, Dmid,P) is in ~MP

0 , where P is honest, set ∆mid′ = ∆ for any (m,mid′, Dmid′ ,P′) in ~M and replace
this record by (m,mid′,min{Dmid′ ,∆},P′). Finally, send ~MP

0 to P.
– Adding adversarial delays. Upon receiving (delays, sid, (Tmidi1 ,midi1), . . . , (Tmidi` ,midi`)) from the

adversary do the following for each pair (Tmidij ,midij):
If DMAX

midij
+ Tmidij ≤ ∆midij and midij is a message-ID registered in the current ~M , set

Dmidij := Dmidij + Tmidij and set DMAX
midij

:= DMAX
midij

+ Tmidij ; otherwise, ignore this pair.

– Adversarially reordering messages. Upon receiving (swap, sid,mid,mid′) from the adversary, if mid and
mid′ are message-IDs registered in the current ~M , then swap the triples (m,mid, Dmid, ·) and
(m,mid′, Dmid′ , ·) in ~M . Return (swap, sid) to the adversary.

A.1 Genesis Block Distribution and Implicit Clock Initialization

The functionalsity FINIT is parameterized by the set P1, . . . ,Pn of initial stakeholders n and their respective
stakes s1, . . . , sn. It additionally stores n variables offseti, one for each stakeholder Pi, a variable counter to steer
when a stakeholder receives the genesis block, and a variable lastTick to determine when a new round started.
It maintains the set of registered parties P.

– On the first activation of the functionality, send (Respond, (DefineOffset, sid)) to the adversary. Upon
receiving the response (DefineOffset, sid, o1, . . . , on), set offseti := max(oi,∆). It further sets counter← 0.
Proceed handling the first input as specified in the following.

– On receiving any input by a registered party, the functionality first sends (clock-read, sidC) to Gtick to
obtain the clock-tick d and if lastTick 6= d, it sets counter← counter + 1 and sets lastTick← d.
Subsequently:
• If counter = 0 and the message is a request from some initial stakeholder P = Pi, i ∈ [n], of the form

(ver keys, sid,P, vvrf , vkes), then FINIT stores the verification keys tuple (Pi, vvrf
i , vkes

i) and acknowledges its
receipt. If some of the registered public keys are equal, it outputs an error and halts. Otherwise, it samples
and stores a random value η1

$← {0, 1}λ and constructs a genesis block (S1, η1), where
S1 =

(
(P1, v

vrf
1 , vkes

1 , s1), . . . , (Pn, vvrf
n , vkes

n , sn)
)
.

• If 0 < counter ≤ ∆, then do the following
∗ If any of the n initial stakeholders has not sent a request of the above form, i.e., a

(ver keys, sid,Pi, vvrf
i , vkes

i)-message, to FINIT in the same round then FINIT outputs an error.
∗ Otherwise, if the currently received input is a request of the form (genblock req, sid,P) from any initial

stakeholder P = Pi for some i ∈ [n], and counter ≥ offseti, FINIT sends (genblock, sid, (S1, η1)) to P.
∗ Finally, if it is a request from a party that is not initial stakeholder, simply return

(genblock, sid, (S1, η1)).
• If counter > ∆ then do the following:
∗ If any of the n initial stakeholders has not sent a request of the above form, i.e., a

(ver keys, sid,Pi, vvrf
i , vkes

i)-message, to FINIT in the same round then FINIT outputs an error.
∗ Return ((genblock, sid, (S1, η1)),Running) to the requestor.

Functionality F∆INIT

26

B Completing the Chronos Protocol Description

The purpose of this section is to specify more formally the code of the Chronos protocol for more clarity
with respect to the security claims. Again, changes compared to Ouroboros Genesis are marked in blue.

B.1 The Main Protocol Instance

Global Variables:
Read-only (parameters): R, k, f , s, toff , tstable, tminSync,tpre

Read-write: vvrf
P , vkes

P , localTime, ep, sl, Cloc, T ep
P , isInit, twork, buffer, futureChains, lastTick, isSync,

EpochUpdate(·), fetchCompleted, lastTimeAlert,TimestampSB(·). (recall that we use Timestamp(·) to
denote the first (and numerical) element of the pair TimestampSB(·))

Registration/Deregistration:
Upon receiving input (register,R), where R ∈ {Gledger,Gtick,GRO} execute protocol
Registration-Chronos(P, sid, Reg,R).
Upon receiving input (de-register,R), where R ∈ {Gledger,Gtick,GRO} execute protocol
Deregistration-Chronos(P, sid, Reg,R).
Upon receiving input (is-registered, sid) return (register, sid, 1) if the local registry Reg indicates that
this party has successfully completed a registration with R = Gledger (and did not de-register since then).
Otherwise, return (register, sid, 0).

Interacting with the Ledger:
Upon receiving a ledger-specific input I ∈ {(submit, . . .), (read, . . .), (maintain-ledger, . . .)} verify first that all
resources are available. If not all resources are available, then ignore the input; else (i.e., the party is operational
and time-aware) execute one of the following steps depending on the input I:

If I = (submit, sid, tx) then set buffer← buffer||tx, and send (multicast, sid, tx) to F∆N-MC.
If I = (maintain-ledger, sid,minerID) then invoke protocol LedgerMaintenance(Cloc,P, sid, k, s, R, f); if
LedgerMaintenance halts then halt the protocol execution (all future input is ignored).
If I = (read, sid) then invoke protocol ReadState(k, Cloc,P, sid, R, f).
If I = (export-time, sid) then do the following: if isSync or isInit is false, then return
(export-time, sid,⊥) to the caller. Otherwise call UpdateTime(P, R) and do:
1. Define e to be the highest value s.t. EpochUpdate(e) = Done.
2. Return (export-time, sid, (e, localTime)) to the caller.

Handling calls to the shared setup:
Upon receiving (clock-read, sidC) forward it to Gtick and output Gtick’s response.
Upon receiving (clock-update, sidC), record that a clock-update was received in the current round. If the
party is registered to all its setups, then do nothing further.

Otherwise, do the following operations before concluding this round:
1. If this instance is currently time-aware but otherwise stalled or offline, then call UpdateTime(P, R) to

update localTime and evolve the KES signing key by sending (USign, sid,P, 0, localTime) to FKES. If the
party has passed a synchronization slot, then set isSync← false.

2. If this instance is only stalled but isSync = true, then additionally execute FetchInformation(P, sid),
extract all new synchronization beacons B from the fetched chains, and invoke ProcessBeacons(P, sid,B) to
correctly process all message that are due in this round and set fetchCompleted← true. Also, complete
any unfinished interruptible execution of this round.

3. Forward (clock-update, sidC) to Gtick to finally conclude the round.
Upon receiving (eval, sidRO, x) forward the query to GRO and output GRO’s response.

Protocol Ouroboros-Chronosk(P, sid;Gledger,Gtick,GRO,F∆N-MC)

27

B.2 Ledger Maintenance

The following steps are executed in an (maintain-ledger, sid,minerID)-interruptible manner:

1: if isInit is false then invoke Initialization-Chronos(P, sid, R); if Initialization-Chronos halts then halt (this will
abort the execution)
end if

2: // From here the variables vvrf
p , vkes

p , localTime, ep, sl, Cloc, isSync, T ep
p , fetchCompleted, twork can be used

to read from as they are guaranteed to be initialized.
3: if isSync and stalled before (and now up and running) then
4: SimulateClockAdjustments(P, R, k, f, s)
5: end if
6: if not isSync then
7: Call JoinProc(P, sid, R, k, f, s, toff , tstable, tminSync)
8: end if
9: // normal operation when alert

10: Call FetchInformation(P, sid) and denote the output by (C1, . . . , CM), (tx1, . . . , txk).
11: Set buffer← buffer||(tx1, . . . , txk) and define futureChains← futureChains||(C1, . . . , CM)
12: Call UpdateTime(P, R)
13: // Ensures the processing of new beacons arrived in chains only.
14: Extract beacons B ← {SB1, . . . , SBn} contained in C1, . . . , CM and not yet contained in syncBuffer.
15: Call ProcessBeacons(P, sid,B)
16: Let N0 be the subsequence of futureChains s.t. C ∈ N0 :⇔ ∀B ∈ C : slotnum(B) ≤ localTime
17: Remove each C ∈ N0 from futureChains.
18: fetchCompleted← true
19: Call SelectChain(P, sid, Cloc,N0, k, s, R, f) to update Cloc
20: if twork < localTime then
21: Call UpdateStakeDist(P, sid, k,P, R, f) to update the values Sep, α

ep
P , T

ep
P , and ηep.

22: Call StakingProcedure(k,P, ep, sl, buffer, Cloc)
23: Set twork ← localTime
24: if localTime mod R = 0 then
25: Call SyncProc(P, sid, R)
26: end if

end if
27: Call FinishRound(P) // Mark normal round actions as finished.

Protocol LedgerMaintenance(Cloc,P, sid, k, s, R, f)

B.3 Process Beacons and Arrival Times

1: if not fetchCompleted then
2: Send (fetch, sid) to F sync

N-MC. denote the ith response from F sync
N-MC by (fetch, sid, b).

3: Extract all received beacons (SB1, . . . , SBk) contained in b ∪ B.
4: for each SBi with TimestampSB(SB) = ⊥ do
5: syncBuffer← syncBuffer ∪ {SB}
6: Let ep be the epoch number slotnum(SB) belongs to
7: if isSync ∧ (EpochUpdate(ep− 1) = Done) then
8: Set TimestampSB(SBi)← (localTime, final). // The measurement is final.
9: else

10: TimestampSB(SBi)← (localTime, temp) // Will be adjusted upon next time shift.
11: end if
12: end for
13: // Buffer cleaning. Keep one representative arrival time.

Protocol ProcessBeacons(P, sid,B)

28

14: if isSync then
15: Remove from syncBuffer all beacons such that ValidSB(P, sid, SB, Cloc, f, R) returns false.
16: syncBuffervalid ← {SB′ ∈ syncBuffer |ValidSB(P, sid, SB′, Cloc, f, R) = true}
17: Let L = (SB1, . . . , SBn) be a canonical ordering of syncBuffervalid
18: for each SB = (sl,P, y, π) ∈ L do
19: QSB ← {SB′ = (sl′,P′, ·, ·) ∈ L |P′ = P ∧ sl′ = sl}
20: minSB ← min{Timestamp(SB′) | SB′ ∈ QSB}
21: SB′ ← min{SB′′ ∈ QSB |Timestamp(SB′′) = minSB} // Min w.r.t. ordering in L
22: Remove from syncBuffer all beacons (sl,P, ·, ·) except SB′.
23: end for
24: end if
25: end if
Output: ok to its caller (but not to Z).

B.4 Registration and De-registration

1: if G ∈ {Gtick,GRO} then send (register, sid) to G, set registration status to registered with G, and output
the valued received by G.

2: end if
3: if G = Gledger then
4: if the party is not registered with Gtick or GRO then or already registered with all setups ignore this input
5: else
6: for each F ∈ {F∆INIT,FVRF,FKES} do
7: Send (register, sid) to F, set its registration status as registered with F, but do not output the

received values.
end for

8: Send (clock-read, sidC) to Gtick and receive (clock-read, sidC , tick) and set lastTick← tick
9: Send (register, sid) to F∆N-MC.

10: Set localTime := 0 and isSync← false.
11: If this is the first registration invocation for this ITI, then set isInit← false.
12: Output (register, sid,P) once completing the registration with all the above resources F.

end if
end if

Protocol Registration-Chronos(P, sid, Reg,G)

And De-registration:

1: If the party is alert, set lastTimeAlert← localTime
2: if G ∈ {Gtick,GRO} then
3: if G = Gtick then set isSync← false
4: Send (de-register, sid) to G and set registration status as de-registered with G.
5: Output the valued received by G.

end if
6: if G = Gledger then
7: Set isSync← false

Send (de-register, sid) to F∆N-MC, set its registration status as de-registered with F∆N-MC and output
(de-register, sid,P).

end if

Protocol Deregistration-Chronos(P, sid, Reg,G)

B.5 Initialization

29

The following steps are executed in an (maintain-ledger, sid,minerID)-interruptible manner:

1: Send (KeyGen, sid,P) to FVRF and FKES; receiving (VerificationKey, sid, vvrf
P) and (VerificationKey, sid, vkes

P),
respectively.
// The following branch is executed on the first maintenance query after registration of this instance

2: if localTime = 0 then
3: Send (ver keys, sid,P, vvrf

P , vkes
P) to FINIT to claim stake from the genesis block.

4: FinishRound(P) // Mark round actions as finished. Resume below upon next activation
5: Call UpdateTime(P, R, f) to update localTime, ep, and sl
6: while localTime = 0 do
7: Call UpdateTime(P, R, f) to update localTime, ep, and sl and give up the activation (set anchor here)

end while
8: end if

// The following is executed in future init-activations of this instance
9: if localTime > 0 then

10: if FINIT signals an error then
11: Halt the execution.
12: end if
13: Send (genblock req, sid,P) to FINIT.
14: while FINIT ignores the input do
15: FinishRound(P) // Round actions as finished. Resume below upon next activation
16: Send (genblock req, sid,P) to FINIT.
17: end while
18: Receive the genesis block (genblock, sid,G = (S1, η1)), where

S1 =
(
(U1, v

vrf
1 , vkes

1 , s1), . . . , (Un, vvrf
n , vkes

n , sn)
)
.

19: Set Cloc ← (G).
20: Set T ep

p ← 2`VRFφf (αep
p) as the threshold for stakeholder P for epoch ep, where αep

p is the relative stake of
stakeholder P in Sep and `VRF denotes the output length of FVRF.

21: If FINIT did not mark the returned value as as Running then additionally set isSync← true (the execution
just started).
end if

22: Set isInit← true and fetchCompleted← false, twork ← 0, lastTimeAlert← 0
23: buffer← ∅, futureChains← ∅
24: EpochUpdate(·)← empty table (initial symbol ⊥), EpochUpdate(0)← Done

Protocol Initialization-Chronos(P, sid, R)

B.6 Fetching information and stake distribution; time update

The two algorithms FetchInformation and UpdateTime are identical except that FetchInformation was sim-
plified since newly joining parties do not make an active request.

1: if fetchCompleted then
2: Set fetchcount← 0
3: else
4: Set fetchcount := 1 // Compared to Genesis, time-aware and online parties in Chronos do always fetch

once per round and never have to catch up missed round messages.
5: end if

// Fetching on Fbc
N-MC.

6: Send fetchcount fetch-queries (fetch, sid) to Fbc
N-MC; denote the ith response from Fbc

N-MC by (fetch, sid, bi).
7: Extract chains C1, . . . , Ck from b1 . . . bfetchcount.

// Fetching on F tx
N-MC.

Protocol FetchInformation(P, sid)

30

8: Send fetchcount fetch-queries (fetch, sid) to F tx
N-MC; denote the ith response from F tx

N-MC by (fetch, sid, bi).
9: Extract received transactions (tx1, . . . , txk) from b1 . . . bfetchcount.

10: if not isSync or P is stalled then
11: buffer← buffer||(tx1, . . . , txn)
12: futureChains← futureChains ∪ {C1, . . . , Cn}
13: end if
Output: The protocol outputs (C1, . . . , Ck) and (tx1, . . . , txk) to its caller (but not to Z).

1: Set Sep to be the stakeholder distribution at the end of epoch ep− 2 in Cloc in case ep ≥ 2 (and keep the
initial stake distribution in case ep < 2).

2: Set αep
P to be the relative stake of P in Sep and T ep

P ← 2`VRFφf (αep
P).

3: Set ηep ← H(ηep−1 ‖ ep ‖ v) where v is the concatenation of the VRF outputs yρ from all blocks in Cloc from
the first 2R/3 slots of epoch ep− 1.

Output: The protocol outputs Sep, α
ep
P , T

ep
P , and ηep to its caller (but not to Z).

Protocol UpdateStakeDist(k,P, R, f)

And, finally, the time update procedure:

// Precondition: Only executed if time-aware
1: Send (clock-read, sidC) to Gtick and receive (clock-read, sidC , tick)
2: if lastTick 6= tick then
3: lastTick← tick
4: localTime← localTime + 1
5: fetchCompleted← false
6: end if
7: Set ep← dlocalTime/Re, and sl← localTime.

Output: The protocol outputs localTime, ep, sl to its caller (but not to Z).

Protocol UpdateTime(P, R)

B.7 Chain Verification and Beacon Validity

if C contains empty epochs or starts with a block other than G, or isvalidstate(~st) = 0 then
return false

end if
if isSync and (∃B ∈ C : slotnum(B) > localTime) then

return false
end if
for each epoch ep do

// Derive stake distribution and randomness for this epoch from C
// In the following, H(·) stands for an RO evaluation for simplicity.
Set SCep to be the stakeholder distribution at the end of epoch ep− 2 in C.
Set αep,C

P′ to be the relative stake of any party P′ in SCep and T ep,C
P′ ← 2`VRFφf (αep,C

P′).
Set ηCep ← H(ηCep−1 ‖ ep ‖ v) where v is the concatenation of the VRF outputs yρ from all blocks in C from
the first two-thirds of slots of epoch ep− 1, and ηC1 , η1 from G.
for each block B in C from epoch ep do

Parse B as (h, st, sl, crt, ρ, σ).
// Check hash

Protocol IsValidChain(P, sid, C, f, R)

31

Set badhash← (h 6= H(B−1)), where B−1 is the last block in C before B.
// Check VRF values
Parse crt as (P′, y, π) for some P′.
Send (Verify, sid, ηep ‖ sl ‖ TEST, y, π, vvrf

P′) to FVRF,
denote its response by (Verified, sid, ηep ‖ sl ‖ TEST, y, π, b1).

Send (Verify, sid, ηep ‖ sl ‖ NONCE, yρ, πρ, vvrf
P′) to FVRF,

denote its response by (Verified, sid, ηep ‖ sl ‖ NONCE, yρ, πρ, b2),
Set badvrf ←

(
b1 = 0 ∨ b2 = 0 ∨ y ≥ T ep,C

P′
)
.

// Check signature
Send (Verify, sid, (h, st, sl, crt, ρ), sl, σ, vkes

P′) to FKES,
denote its response by (Verified, sid, (h, st, sl, crt, ρ), sl, b3).

Set badsig← (b3 = 0).
// Check Beacons
if ∃SB ∈ B ∧ slotnum(B) > (ep− 1)R+ 2R/3 then

Set badBeacon← true
else if ∃SB ∈ B : slotnum(SB) > slotnum(B) ∨ slotnum(SB) 6∈ [(ep− 1)R+ 1, ep ·R] then

Set badBeacon← true
else

for each SB ∈ B do
Parse SB as (sl′,P′, y, π)
If C contains more than one beacon with (sl′,P′, ·, ·) then set badBeacon← true
Send (Verify, sid, ηep′ ‖ sl′ ‖ SYNC, y, π, vvrf

P′) to FVRF.
Denote the response from FVRF by (Verified, sid, ηep′ ‖ sl′ ‖ SYNC, y, π, b4),

if (b4 = 0) or (y ≥ T ep,C
P′) then

Set badBeacon← true
end if

end for
end if
if (badhash ∨ badvrf ∨ badsig ∨ badBeacon) then

return false
end if

end for
end for
return truek

The beacon validity predicate.

// Precondition: Chain C is valid. Returns true if the beacon is a valid beacon w.r.t. C, undecided if no
judgement is possible, and false if the beacon is invalid w.r.t. C.
Parse SB as (sl′,P′, y, π)
Let ep′ be the epoch number slot sl′ falls into. Let ep := ep′ − 2.
if C contains no block in epoch ep′ then

return undecided // no judgement possible for this beacon
end if
// Derive stake distribution and randomness for epoch ep′ as indicated by C
Set SCep′ to be the stakeholder distribution at the end of epoch ep′ − 2 in C.
Set αep

′,C
P′ to be the relative stake of party P′ in SCep′ and T ep

′,C
P′ ← 2`VRFφf (αep

′,C
P′).

Set ηCep′ ← H(ηCep′−1 ‖ ep′ ‖ v) where v is the concatenation of the VRF outputs yρ from the existing blocks in C
with slot numbers of the first two-thirds slots of epoch ep′ − 1 (and ηC1 , η1 from G).
// Check VRF value

Protocol ValidSB(P, sid, SB, C, f, R)

32

Send (Verify, sid, ηep′ ‖ sl′ ‖ SYNC, y, π, vvrf
P′) to FVRF.

Denote the response from FVRF by (Verified, sid, ηep′ ‖ sl′ ‖ SYNC, y, π, b1),
if b1 = 0 or y ≥ T ep

′,C
P′ then

return false
end if
return true

B.8 Select Chain

1: Initialize Nvalid ← ∅
2: for i = 1 . . .M do
3: Invoke IsValidChain(P, sid, Ci, f, R); if it returns true then update Nvalid ← Nvalid ∪ Ci

end for
4: Execute Algorithm maxvalid-bg(Cloc,Nvalid = {C1, . . . , CM}, k, s, f) and receive its output Cmax.
5: Replace Cloc by Cmax

Output: The protocol outputs Cmax to its caller (but not to Z).

Protocol SelectChain(P, sid, Cloc,N = {C1, . . . , CM}, k, s, R, f)

B.9 The Genesis Chain Selection Rule

// Compare Cmax to each Ci ∈ N
1: Set Cmax ← Cloc.
2: for i = 1 to M do
3: if (Ci forks from Cmax at most k blocks) then
4: if |Ci| > |Cmax| then // Condition A

Set Cmax ← Ci.
end if

5: else
6: Let j ← max {j′ ≥ 0 | Cmax and Ci have the same block in slj′}
7: if

∣∣Ci[0 : j + s]
∣∣ > ∣∣Cmax[0 : j + s]

∣∣ then // Condition B
Set Cmax ← Ci.

end if
end if

end for
8: return Cmax.

Algorithm maxvalid-bg(Cloc,N = {C1, . . . , CM}, k, s, f)

33

B.10 The Staking Procedure

The following steps are executed in an (maintain-ledger, sid,minerID)-interruptible manner:

// Determine leader status
1: Send (EvalProve, sid, ηj ‖ sl ‖ NONCE) to FVRF, denote the response from FVRF by (Evaluated, sid, yρ, πρ).
2: Send (EvalProve, sid, ηj ‖ sl ‖ SYNC) to FVRF, denote the response from FVRF by (Evaluated, sid, ysync, πsync).
3: Send (EvalProve, sid, ηj ‖ sl ‖ TEST) to FVRF, denote the response from FVRF by (Evaluated, sid, y, π).
4: if y < T ep

P and this party is sign-capable then
// Generate a new block

5: Set buffer′ ← buffer, ~N ← txbase-tx
P , and st← blockifyOC(~N)

6: repeat
7: Parse buffer′ as sequence (tx1, . . . , txn)
8: for i = 1 to n do
9: if ValidTxOC(txi, ~st||st) = 1 then

10: ~N ← ~N ||txi
11: Remove tx from buffer′

12: Set st← blockifyOC(~N)
end if

end for
until ~N does not increase anymore

13: Set crt = (P, y, π), ρ = (yρ, πρ) and h← H(head(Cloc)).
14: if Slot sl is within the first 2R/3 slots of this epoch then
15: sb← {SB′ ∈ syncBuffer |ValidSB(P, sid, SB′, Cloc, f, R) = true}
16: Remove from sb all beacons SB = (sl,P, ·, ·) that satisfy:
17: (slotnum(SB) > sl) ∨ (slotnum(SB) ≤ (ep− 1) ·R) ∨ Cloc contains a beacon (sl,P, ·, ·)
18: end if
19: Send (USign, sid,P, (h, st, sb, sl, crt, ρ), sl) to FKES; denote the response from FKES by

(Signature, sid, (h, st, sb, sl, crt, ρ), sl, σ).
20: Set B ← (h, st, sb, sl, crt, ρ, σ) and update Cloc ← Cloc ‖B.

// Multicast the extended chain and wait.
21: Send (multicast, sid, Cloc) to Fbc

N-MC and proceed from here upon next activation of this procedure.
22: else
23: Evolve the KES signing key at least to localTime by sending (USign, sid,P, 0, sl) to FKES (and ignore the

returned value). Give up activation and set anchor here to resume on next maintenance activation
end if

24: if ysync < T ep
P and sl lies within the first R/6 slots of this epoch then

25: SB← (sl,P, ysync, πsync).
26: Send (multicast, sid, SB) to F sync

N-MC and set anchor at end of procedure to resume on next maintenance
activation

27: else
28: Give up activation and set anchor at end of procedure to resume on next maintenance activation
29: end if

Protocol StakingProcedure(P, sid, k, ep, sl, buffer, Cloc)

B.11 Code of the Synchronization Procedure

1: // Only called when: P is alert, localTime mod R = 0 and localTime > 0
2: Set i← localTime divR
3: if (not EpochUpdate(i) = Done) then
4: EpochUpdate(i)← Done // Remember that clock adjustment has happened
5: Bi ← Cloc[(i− 1)R : (i− 1)R+ 2R/3]

Protocol SyncProc(P, sid, R)

34

6: Si ← {SB | ∃B ∈ Bi : SB ∈ B ∧ slotnum(SB) ∈ {(i− 1)R, . . . , (i− 1)R+R/6}}
7: for each SB = (sl,P, y, π) ∈ Si do
8: // Find representative beacon and compute recommendation.
9: Find unique SB′ = (sl,P, ·, ·) ∈ syncBuffer. If inexistent, set SB′ ← ⊥.

10: if SB′ 6= ⊥ then
11: Set TimestampSB(SB)← TimestampSB(SB′) // Assign correct value
12: recom(SB)← slotnum(SB)− Timestamp(SB)
13: else
14: S ← S \ {SB} // Negligible probability event in execution.
15: end if
16: end for
17: shifti ← med {recom(SB) | SB ∈ Si}
18: for each SB with TimestampSB(SB) = (a, temp) do
19: TimestampSB(SB)← (a+ shifti, final)
20: end for
21: if shifti > 0 then // Move fast forward
22: newTime← localTime + shifti
23: Mchains ←Msync ← ∅
24: while localTime < newTime do
25: localTime← localTime + 1
26: Let N0 be the subsequence of futureChains s.t.
27: C ∈ N0 :⇔ ∀B ∈ C : slotnum(B) ≤ localTime
28: Remove each C ∈ N0 from futureChains.
29: Call SelectChain(Cloc,N0, k, s, R, f) to update Cloc
30: Call UpdateStakeDist(k,P, R, f)
31: Emulate StakingProcedure(k,P, ep, sl, buffer, Cloc) but instead of multicasting new chains or

beacons, add them to the sets Mchains and Msync, respectively (activation is not lost).
32: end while
33: Send (multicast, sid,Mchains) to Fbc

N-MC and (multicast, sid,Msync) to F sync
N-MC and proceed from

here upon next activation of this procedure.
34: end if
35: if shifti < 0 then // Need to wait
36: Set twork ← localTime
37: Set localTime← localTime + shifti // Next slot in which staking will be performed is slot

localTime + 1 according to the “new time”.
38: end if
39: end if
Output: The protocol outputs ok to its caller (but not to Z).

B.12 Reading the Ledger State

1: If isInit or isSync is false output the empty state (read, sid, ε) (to Z). Otherwise, do the following:
2: Call FetchInformation(k,P) and denote the output by (C1, . . . , CM), (tx1, . . . , txk).
3: Set buffer← buffer||(tx1, . . . , txk) and define N ← {C1, . . . , CM}
4: Call UpdateTime(P, R)
5: Call ProcessBeacons(P, sid)
6: Let N0 := {C ∈ N ∪ futureChains | ∀B ∈ C : slotnum(B) ≤ localTime}
7: Let N1 := {C ∈ N | ∃B ∈ C : slotnum(B) > localTime}
8: futureChains← (futureChains \ N0) ∪N1
9: fetchCompleted← true

10: Call SelectChain(P, sid, Cloc,N0, k, s, R, f) to update Cloc

Protocol ReadState(k, Cloc,P, sid, R, f)

35

11: Extract the state ~st from the current local chain Cloc.
12: Output (read, sid, ~stdk) (to Z). // ~stdk denotes the prefix of ~st with the last k state blocks chopped off

B.13 Simulate Clock Adjustments

1: simulatedTime← lastTimeAlert
2: for localTime− lastTimeAlert iterations do
3: Let N0 be the subsequence of futureChains s.t. C ∈ N0 :⇔ ∀B ∈ C : slotnum(B) ≤ simulatedTime
4: Remove each C ∈ N0 from futureChains.
5: Emulate SelectChain(Cloc,N0, k, s, R, f) with simulated time simulatedTime (instead of localTime)
6: - Update Cloc
7: if simulatedTime mod R = 0 then
8: Emulate SyncProc(P, R) on simulated time simulatedTime (instead of localTime)
9: - Execute Lines 1 to 13 to compute the shift shiftep and to adjust already recorded arrival times.

10: - Set simulatedTime← simulatedTime + shiftep

11: end if
12: simulatedTime← simulatedTime + 1
13: end for
14: Evolve the KES signing key by sending (USign, sid,P, 0, localTime) to FKES
15: Set twork ← localTime
16: Set localTime← simulatedTime
Output: The protocol outputs ok to its caller (but not to Z).

Protocol SimulateClockAdjustments(P, R, k, f, s)

B.14 The round finish procedure

Once a party is done its actions in a round it has to advance the synchronous computation by sending the
indication to Gtick. Since the functionality is shared, an update request in the ideal world will be relayed
which implies that the protocol cannot simply ignore this input in the real world either. However, the
update-request by the environment might not be well aligned with the round actions, so the protocol merely
remembers that such an update has been received. At the end of its functions it then executes FinishRound
which enforces that the protocol only sends the clock-update once (1) the round operations are concluded
and (2) the environment has given the command to advance the round.12

1: while A (clock-update, sidC) has not been received during the current round do
Give up activation (set the anchor here)

end while
2: Send (clock-update, sidC) to Gtick. // Party will lose its activation here.

Protocol FinishRound(P)

C Single-Epoch Security with Static Registration and ∆-Bounded Skew

In this section we prove Theorem 1. First, in Section C.1, we introduce a simplified chain-selection rule
that will make our protocol easier to analyze. In Section C.2 we draw the connection between a single-
epoch execution of this simplified protocol and the formalism of characteristic strings and forks that we
later employ. We then analyze the distribution of the characteristic strings induced by an execution of the
12 Note that in the ideal world, it is the ledger functionality which is registered with Gtick and enforces the same

principal time-evolving behavior as in the real world.

36

simplified Ouroboros Chronos in Section C.3, and establish the implications of that for the properties CP,
CG and CQ in Section C.4. Finally, in Section C.5, we finally replace the simplified chain-selection rule with
the actual one, concluding the proof of Theorem 1.

C.1 The Simplified Chain-Selection Rule maxvalid-mc

To make our analysis more modular, and take advantage of the combinatorial framework for analyzing
common-prefix violations of longest-chain rule protocols developed gradually in [26, 17, 2], we first consider
the protocol Ouroboros-Chronos with a simplified chain-selection rule maxvalid-mc (given in Fig. 3) instead of
the actual rule maxvalid-bg given in Fig. B.8; we will denote this variant Ouroboros-Chronosmc for conciseness.

1: Set Cmax ← Cloc.
2: for i = 1 to ` do
3: if IsValidChain(Ci) then

// Compare Cmax to Ci
4: if (Ci forks from Cmax at most k blocks) then
5: if |Ci| > |Cmax| then // Condition A

Set Cmax ← Ci.
end if

end if
end if

end for
6: return Cmax.

Protocol maxvalid-mc(Cloc, C1, . . . , C`)

Fig. 3. The simplified chain selection rule maxvalid-mc.

The rule maxvalid-mc differs in that it applies the longest-chain preference and refuses to revert more
than k blocks under any circumstances (hence the “mc” identifier standing for “moving checkpoint”). This is
in contrast to the more nuanced behavior of maxvalid-bg that compares the two chains forking more than k
blocks ago for density close to the point where they fork (cf. Condition B in Fig. B.8). The latter rule allows
for so-called bootstrapping from genesis [2] (hence “bg”) and so we adopt it for Ouroboros Chronos as well,
the consequences for our analysis are discussed in Section C.5.

C.2 From Executions to Forks

We recall the notion of a characteristic string, which we use to record, for each slot in a sequence of slots,
whether any leader is elected for the slot and, if that is the case, whether this leader is unique and alert.

Definition 5 (Characteristic string [26, 17, 2]). Let S = {sl1, . . . , slR} be a sequence of slots of length
R; consider an execution (with adversary A and environment Z) of the protocol. For a slot slj, let P(j)
denote the set of active parties assigned to be slot leaders for slot j by the protocol. We define the characteristic
string w ∈ {0, 1,⊥}R of S to be the random variable so that

wj =

⊥ if P(j) = ∅,
0 if |P(j)| = 1 and the assigned party is alert,
1 otherwise.

(8)

For such a characteristic string w ∈ {0, 1,⊥}∗ we say that the index j is uniquely alert if wj = 0, empty if
wj = ⊥, and potentially active if wj ∈ {0, 1}.

37

If the execution is fixed (i.e., the randomness of the execution is fixed), we use the notation wE to denote
the fixed characteristic string resulting from that particular execution, where the subscript E is used to indicate
its difference to the random variable above.

We also recall the notion of a ∆-fork, a tool developed to reason about the various blockchains that can
be induced by an adversary in the ∆-synchronous setting with a particular characteristic string.

Definition 6 (∆-fork [17]). Let w ∈ {0, 1,⊥}k and ∆ be a non-negative integer. Let A = {i |wi 6= ⊥}
denote the set of potentially active indices, and let H = {i |wi = 0} denote the set of uniquely alert indices.
A ∆-fork for the string w is a rooted tree F = (V,E) with a labeling ` : V → {0} ∪A so that

(i) the root r ∈ V is given the label `(r) = 0;
(ii) the labels along any (simple) path beginning at the root are strictly increasing;

(iii) each uniquely alert index i ∈ H is the label of exactly one vertex of F ;
(iv) the function d : H → {1, . . . , k}, defined so that d(i) is the depth in F of the unique vertex v for which

`(v) = i, satisfies the following ∆-monotonicity property: if i, j ∈ H and i+∆ < j, then d(i) < d(j).

For convenience, we direct the edges of forks so that depth increases along each edge; then there is a unique
directed path from the root to each vertex and, in light of (ii), labels along such a path are strictly increasing.
As a matter of notation, we write F `∆ w to indicate that F is a ∆-fork for the string w. We typically refer
to a ∆-fork as simply a “fork”.

Note that both notions of a characteristic string and a fork can be directly ported to our setting without
a global clock, interpreting the slot indices as logical time, in accordance with the rest of this paper (cf.
Section 2). However, this change of the setting requires us to re-establish the connection between executions
and forks from [17]. The relevant part of the outcome of an execution is captured in the notion of an execution
tree which we first define, the transition from executions to forks is then stated in Lemma 7.

Definition 7 (Execution tree [17]). Consider an execution E of the real-world experiment. The execution
tree for this execution is a directed, rooted tree TE = (V,E) with a labeling ` : V → N0 that is constructed
during the execution as follows:

(i) At the beginning, V = {r}, E = ∅ and `(r) = 0.
(ii) Every chain C ′ that is input to maxvalid-bg as a part of N or created as a new local chain in Step 20

of StakingProcedure of Ouroboros-Chronos run by any alert party is immediately processed block-by-block
from the genesis block to head(C ′). For every block B = (h, st, sb, sl, crt, ρ, σ) processed for the first
time:
– a new vertex vB is added to V ;
– a new edge (vB− , vB) is added to E where B− is the unique block such that H(B−) = h;
– the labeling ` is extended by setting `(vB) = sl.

Lemma 7. Consider a single-epoch execution E of Ouroboros-Chronosmc with static registration and ∆-
bounded skew, where ∆ is the maximum network delay; let R be the epoch length.

1. Every message sent by an alert party P in slot sl (according to the local time of P) will be received by
any other alert party P′ by slot sl′ , sl + ∆̃ for ∆̃ , 2∆ (according to the local time of P′).

2. In particular, we have TE `∆̃ wE unless a collision in the responses of the random oracle occurs.

Proof (sketch). For the first statement, note that by the assumption Skew∆[sl], we know that P will be
executing its (logical) slot sl at most ∆ rounds (with respect to the objective time) later than P′ executed
sl; and if P sends a message in sl, the party P will receive it at most ∆ rounds later (again, with respect
to the objective time) be the assumption on network delay. Combining these two bounds, P′ will receive the
message at latest by slot sl′ according to its own local clock.

As for the second statement, observe that the properties (i)–(iii) in Definition 6, as well as the requirement
that range(`) = {0} ∪ A, are satisfied for the same reasons as given in [17, Lemma 6]. The remaining

38

property (iv) is satisfied for ∆̃ , 2∆ thanks to the first statement of this lemma: Given that an alert party
P′ is aware of any block produced by P for slot sl, it will act based upon it and if it creates any block for
slot sl′, its depth will be strictly larger than the depth of any block created by P for the slot sl by the
description of the protocol. ut

To maintain readability, in the following tratment we will omit the (negligible) failure probability caused
by random-oracle collisions that are mentioned in the second statement of Lemma 7.

C.3 Protocol-Induced Distribution of the Characteristic String

Badertscher et al. [2] identified the following property of a characteristic string distribution to be of particular
interest.

Definition 8 (The characteristic conditions [2]). Consider a family of random variables W1, . . . ,Wn

taking values in {0, 1,⊥}. We say that they satisfy the (f ; γ)-characteristic conditions if, for each k ≥ 1,

Pr[Wk = ⊥ |W1, . . . ,Wk−1] ≥ (1− f) ,
Pr[Wk = 0 |W1, . . . ,Wk−1,Wk 6= ⊥] ≥ γ , and hence
Pr[Wk = 1 |W1, . . . ,Wk−1,Wk 6= ⊥] ≤ 1− γ .

In the expressions above, conditioning on a collection of random variables indicates that the statement is
true for any conditioning on the values taken by variables.

The distribution of the characteristic string induced by Ouroboros-Chronosmc satisfies (f ; γ)-characteristic
conditions for parameters recorded in the next lemma.

Lemma 8 (Protocol-Induced Distribution). Consider an execution of the protocol Ouroboros-Chronosmc
in the single-epoch setting, with static registration and ∆-bounded skew. Let R denote the epoch length and f be
the active-slot coefficient. Let α (resp., β) be a lower bound on the alert stake ratio (resp., participating stake
ratio) over the execution. This execution then induces a characteristic string W1, . . . ,WR (with each Wt ∈
{0, 1,⊥}) satisfying the (f ; (1− f)2α)-characteristic conditions, and moreover Pr[Wt = ⊥ |W1, . . . ,Wt−1] ≤
1− fβ.

Proof (sketch). The lemma can be established by following the same reasoning as in [2, Corollary 2] with
respect to logical slots rather than objective-time rounds. ut

C.4 Single-Epoch Security Properties

Any characteristic string that satisfies particular (f ; γ)-characteristic conditions does not allow for too large
common prefix violations, as proven in [2, Theorem 6] and formally captured by the notion of divergence.
We record this result below as Theorem 4, after presenting the necessary formalism in Definitions 9 and 10.

Definition 9 (Tines, length, and viability [2]). A path in a fork F originating at the root is called a
tine. For a tine t we let length(t) denote its length, equal to the number of edges on the path. For a vertex
v, we call the length of the tine terminating at v the depth of v. For convenience, we overload the notation
`(·) so that it applies to tines by defining `(t) , `(v), where v is the terminal vertex on the tine t. We say
that a tine t is ∆-viable if length(t) ≥ maxh+∆≤`(t) d(h), this maximum extended over all uniquely alert
indices h (appearing ∆ or more slots before `(t)). Note that any tine terminating in a uniquely alert vertex
is necessarily viable by the ∆-monotonicity property.

Definition 10 (Divergence [26, 17]). Let F be a ∆-fork for a string w ∈ {0, 1,⊥}∗. For two ∆-viable
tines t and t′ of F , we define the notation t/t′ by the rule

t/t′ = length(t)− length(t ∩ t′) ,

39

where t ∩ t′ denotes the common prefix of t and t′. Then define the divergence of two viable tines t1 and t2
to be the quantity

div(t1, t2) =

t1/t2 if `(t1) < `(t2),
t2/t1 if `(t2) < `(t1),
max(t1/t2, t2/t1) if `(t1) = `(t2).

We extend this notation to the fork F by maximizing over viable tines: div∆(F) , maxt1,t2 div(t1, t2), taken
over all pairs of ∆-viable tines of F . Finally, we define the ∆-divergence of a characteristic string w to be
the maximum over all ∆-forks: div∆(w) , maxF `∆w div∆(F).

Theorem 4 ([2, Theorem 6]). Let W = W1, . . . ,WR be a family of random variables, taking values in
{0, 1,⊥} and satisfying the (f, γ)-characteristic conditions. If ∆ > 0 and ε > 0 satisfy γ(1−f)∆−1 ≥ (1+ε)/2
then

Pr[div∆(W) ≥ k +∆] ≤ 19R
ε4

exp(−ε4k/18) .

This general statement allows us to translate the properties of the characteristic string distribution
induced by an execution of Ouroboros-Chronosmc, as recorded in Lemma 8, into a common-prefix guarantee
for the protocol, given below.

Corollary 2 (Common prefix). Let W = W1, . . . ,WR denote the characteristic string induced by the
Ouroboros-Chronosmc protocol in the single-epoch setting with static registration and ∆-bounded skew. Let R
be the epoch length and f the active-slot coefficient. Assume that ε > 0 satisfies

α(1− f)∆̃+1 ≥ (1 + ε)/2 ,

where α is a lower-bound on the alert stake ratio over the execution and ∆̃ = 2∆ is twice the network delay.
Then

Pr[div
∆̃

(W) ≥ k + ∆̃] ≤ 19R
ε4

exp(−ε4k/18) ,

and hence a k-common-prefix violation occurs with probability at most

ε̄CP(k;R,∆, ε) , 19R
ε4

exp(∆̃− ε4k/18) .

Proof. Follows directly from Theorem 4 and Lemma 8, using the first statement of Lemma 7 as a bound on
the observed message delivery delay. ut

The remaining Corollaries 3 (resp., 4, 5) below can be established by following the same reasoning as used
in the proof of [2, Corollary 4] (resp., [2, Corollary 5], [2, Lemma 11]) with respect to logical slots instead
of the objective time, and using the first statement of Lemma 7 to bound the observed message delivery
delay. ut

Corollary 3 (Chain Growth). Let W = W1, . . . ,WR denote the characteristic string induced by the
Ouroboros-Chronosmc protocol in the single-epoch setting with static registration and ∆-bounded skew. Let R
be the epoch length and f the active-slot coefficient. Let α, β ∈ [0, 1] denote lower bounds on the alert stake
ratio and the participating stake ratio over the execution as per Definition 2, and assume that for some some
ε ∈ (0, 1) the parameter α satisfies

α(1− f)∆̃+1 ≥ (1 + ε)/2 .

where ∆̃ = 2∆ is twice the network delay. Then for

s = 48∆̃/(εβf) and τ = βf/16 (9)

we have
Pr[W admits a (s, τ)-CG violation] ≤ ε̄CG(τ, s;R, ε) , 1

2sR
2 exp

(
−(εβf)2s/256

)
.

40

Corollary 4 (Chain Quality). Let W = W1, . . . ,WR denote the characteristic string induced by the
Ouroboros-Chronosmc protocol in the single-epoch setting with static registration and ∆-bounded skew. Let
R be the epoch length and f the active-slot coefficient. Let α, β ∈ [0, 1] denote lower bounds on the alert
stake ratio and the participating stake ratio as per Definition 2, and assume that for some some ε ∈ (0, 1)
the parameter α satisfies

α(1− f)∆̃+1 ≥ (1 + ε)/2 .

where ∆̃ = 2∆ is twice the network delay. Then for

k = 48∆̃/(εβf) and µ = εβf/16

we have

Pr[W admits a (µ, k)-CQ violation] ≤ ε̄CQ(µ, k;R, ε) , 1
2kR

2 exp
(
−(εβf)2k/256

)
.

Corollary 5 (Existential Chain Quality). Let W = W1, . . . ,Wr denote the characteristic string induced
by the protocol Ouroboros-Chronos in the single-epoch setting with static registration and ∆-bounded skew.
Let R be the epoch length and f the active-slot coefficient. Let α, β ∈ [0, 1] denote lower bounds on the alert
stake ratio and the participating stake ratio over the execution as per Definition 2, and assume that for some
ε ∈ (0, 1) the parameter α satisfies

α(1− f)∆̃+1 ≥ (1 + ε)/2 ,

where ∆̃ = 2∆ is twice the network delay. Then for s ≥ 12∆̃/(εβf),

Pr[W admits a s-∃CQ violation] ≤ ε̄∃CQ(s; r, ε) = r2(s+ 1) exp
(
−(εβf)2s/64

)
.

C.5 Switching to maxvalid-bg

To capture the security of the full protocol Ouroboros Chronos with the chain-selection rule maxvalid-bg given
in Section B.8, the bounds above need to be adjusted by an additional term that reflects the probability
that the new chain selection rule deviates from the easier-to-analyze rule maxvalid-mc. This error term was
quantified by Theorem 2 in [2] and this quantification translates directly into our setting.

Corollary 6 (Security of maxvalid-bg). Consider the protocol Ouroboros-Chronos (with maxvalid-bg), ex-
ecuted in the same setting and under the same assumptions as in Corollaries 2–5 above. If the maxvalid-bg
parameters, k and s, satisfy

k > 192∆̃/(εβ) and R/6 ≥ s = k/(4f) ≥ 48∆̃/(εβf)

then the guarantees given in Corollaries 2–5 for common prefix, chain growth, chain quality and existential
chain quality are also valid for Ouroboros-Chronos except for an additional error probability

ε̄mv , exp (lnR−Ω(k)) + ε̄CG(βf/16, k/(4f)) + ε̄∃CQ(k/(4f)) + ε̄CP(kβ/64) , (10)

where the subscript “mv” stands for “maxvalid”.

Proof (sketch). The corollary follows by the same reasoning as Theorem 2 in [2], again by using the first
statement of Lemma 7 to bound the observed message delivery delay. ut

Putting things together. The proof of Theorem 1 now follows by combining Corollaries 2, 3, 4, 5 and 6.

41

D Further Analytic Details and Omitted Proofs

D.1 The Proof of Lemma 1

Proof (of Lemma 1). Without loss of generality order the pairs so that ai ≤ aj for i < j (and note that this
does not necessarily imply bi ≤ bj for i < j). Now we have

adn/2e −∆
(a)
≤ min {bi : dn/2e ≤ i ≤ n}

(b)
≤ med ((bi)ni=1)

(c)
≤ max {bi : 1 ≤ i ≤ dn/2e}

(d)
≤ adn/2e +∆ ,

where inequalities (a) and (d) follow from the assumption of the lemma and the assumed ordering of the
values ai, inequalities (b) and (c) follow from the definition of med. The proof is concluded by observing that
med((ai)ni=1) = adn/2e by definition. ut

D.2 The Proof of Lemma 2

Proof. We first establish that under the lemma assumptions, the following holds:

(i) All alert parties use the same set of synchronization beacons in their execution of the procedure SyncProc
between epochs ep and ep + 1, formally SP1

i = SP2
i for any two parties P1,P2 that are alert in the i-th

synchronization slot.
(ii) For any fixed beacon SB ∈ SP1

i = SP2
i , the quantity

µ(Pi, SB) , SkewPi [sl] + slotnum(SB)− Pi.Timestamp(SB)

will differ by at most ∆ between any two alert parties P1 and P2.

To see (i), note that the set SP
i is constructed by the party P by collecting all beacons SB that report a

slot number slotnum(SB) within [(i− 1) ·R+ 1, . . . , (i− 1) ·R+R/6] (the preceding synchronization interval)
and which are included in a block of the adopted chain P.Cloc of P up to slot (i − 1) · R + 2R/3. Based on
the chain growth property, the chain Cloc contain as least τCGR/3 blocks in the last R/3 slots, and by the
common prefix property, the chains are identical up to slot (i− 1) ·R+ 2R/3.

Now observe that
µ(Pi, SB) = (slotnum(SB)− t)− δPi,SB , (11)

where t is the objective time in which SB was sent, and δPi,SB ∈ [∆] is the number of (objective) rounds that
SB was delayed in its transit from P̃ to Pi, establishing (ii). Note that (11) holds even if the sender P̃ of SB
was corrupted when sending it (owing to the network model); for alert parties P̃ the first bracket in (11) is
equal to SkewP̃[slotnum(SB)].

Given the above properties, we finish the proof by invoking Lemma 1 for the tuples

(µ(P1, SB))SB∈SP1
i

and (µ(P2, SB))SB∈SP2
i

for two arbitrary alert parties P1 and P2. By property (i) both tuples are of the same size, and by property (ii)
they satisfy the ∆-bound required by Lemma 1. Therefore we obtain∣∣∣med

(
(µ(P1, SB))SB∈SP1

i

)
−med

(
(µ(P2, SB))SB∈SP2

i

)∣∣∣ ≤ ∆
and since for each i ∈ {1, 2} we have med

(
(µ(P1, SB))SB∈SP1

i

)
= SkewPi [sl + 1], Lemma 2 follows. ut

42

D.3 The Proof of Lemma 3

Proof. We first show that the set SP
i used by any alert party P contains all beacon messages produced by

alert parties in the last synchronization interval. This follows by observing that all synchronization beacons
produced by alert parties in (their) slots [(i− 1) ·R+ 1, . . . , (i− 1) ·R+R/6] will be delivered to other alert
parties by the slot (i − 1) · R + R/3 by the assumption ∆̃ ≤ R/6 and by the first statement of Lemma 7.
Moreover, by the ∃CQ property, the chain Cloc of any alert party P will contain at least one block created
by an alert party over the slot interval [(i− 1) ·R+R/3 + 1, . . . , (i− 1) ·R+ 2R/3]. When such an alertly-
created block is included, it will contain all the synchronization beacons produced by alert parties for slots
[(i− 1) ·R+ 1, . . . , (i− 1) ·R+R/6] that were not included yet.

Next, in light of the lower bound on alert stake ratio, a majority of synchronizing beacons in SP
i will be

alertly-generated, except with error probability exp(lnL−Ω(R)). Therefore, if this error does not occur, due
to the use of median in the definition of shift there exist alert parties P1,P2, which produced synchronization
beacons SB1, SB2 ∈ SP

i respectively, such that

SkewP1 [slotnum(SB1)]−∆
(a)
≤ SkewP[sl] + shift

(b)
≤ SkewP2 [slotnum(SB2)] .

The inequalities (a) and (b) follow from equation (11) for µP,SB1 and µP,SB2 where we use δP,SB1 ≤ ∆ and
δP,SB2 ≥ 0, respectively. The proof is now concluded by observing that for both i ∈ {1, 2}, we have∣∣∣SkewPi [slotnum(SBi)]− SkewP[sl]

∣∣∣ ≤ ∆
thanks to the assumption Skew∆[sl]. ut

D.4 The Proof of Theorem 2

Proof (of Theorem 2, sketch). When moving from the single-epoch setting to a setting with several epochs,
the following aspects need to be considered:

– Stake distribution updates. The stake distribution used for sampling slot leaders changes in ev-
ery epoch. In Ouroboros-Chronos the distribution used for sampling in epoch ep is set to be the stake
distribution recorded on the blockchain up to the last block of the epoch ep− 2.

– Randomness updates. Every epoch needs new public randomness to be used for the private leader
election process based on the above distribution. For epoch ep, this randomness is obtained by hashing
together VRF-outputs put into blocks in epoch ep − 1 by their creators. More precisely, the protocol
hashes together these values from the blocks in the first 2R/3 slots of epoch ep− 1 (out of its R slots).

– Resynchronization. All alert parties execute the resynchronization procedure SyncProc in the last slot
of every epoch.

This proof partly follows the treatment in Section 5 of [17] to argue about stake distribution and randomness
updates, and hence we only sketch the reasoning for these parts, adding a discussion of the resynchronization.
The proof has an inductive structure over the epochs of the execution.

First, note that in the first epoch, we have both perfect epoch randomness, and the property Skew∆[sl]
is satisfied for all slots sl in this epoch, by definition of the functionality FINIT. More precisely, FINIT ensures
Skew∆[sl] for the slot sl = 1, but Skew∆[sl] is always maintained within an epoch as all alert parties
advance their local clock by exactly one slot per objective round. Given that, we can apply Theorem 1 to
the first epoch and obtain the bounds for CP, CG and CQ it provides.

For the induction step, Lemma 2 shows that the properties CG(τCG, R/3) and CP(τCGR/3) satisfied in
epoch ep imply Skew∆[sl] for all slots in epoch ep + 1. Furthermore, CG(τCG, R/3) and CP(τCGR/3) during
the first R/3 slots of epoch ep also imply that each alert player’s chain grows by at least τR/3 blocks and
after these slots, all alert players agree on the stake distribution at the end of epoch ep − 1. Moreover,
∃CQ(R/3) implies that during the second R/3 slots of epoch ep, each alert player’s chain contains at least

43

one honest block. Hence the randomness that will be derived for epoch ep + 1 will be influenced by at least
one honest VRF-output chosen after the stake distribution for ep + 1 is fixed. Finally, CG(τCG, R/3) and
CP(τCGR/3) during the last R/3 slots of epoch ep imply that each alert player’s chain grows by at least
τR/3 blocks and therefore after these slots, all alert players agree on the randomness for the epoch ep + 1.

Exactly as in [17, 2], we need to additionally account for the limited amount of grinding that the adversary
can achieve by deciding whether to include blocks (with VRF outputs) in slots where he is a slot leader. This
can be crudely upper-bounded by limiting the number of queries to the random oracle that the adversary
makes, adding an additional quantity Q into our bound.

Now, having established Skew∆[sl] for the first (and hence all) slot in epoch ep + 1 as well as accounted
for the quality of the randomness used in epoch ep + 1, we can again invoke Theorem 1 for ep + 1 to obtain
guarantees on CP, CG, and CQ and complete the induction step.

Finally, the bound (7) is obtained by instantiating (6) with the concrete bounds of Theorem 1. ut

D.5 The Proof of Lemma 4

Proof (sketch). Notice that the chain-selection procedure maxvalid-bg given in Fig. B.8 does not involve
the local time localTime of the party executing it. Therefore, Pjoin and Palert would do the same chain-
selection decisions in their maxvalid-bg procedures, if presented with the same inputs. The only (but crucial)
difference in their chain-adoption behavior comes from the fact that Palert has local clock that satisfies the
Skew∆ predicate, and based on this local clock the party removes from consideration all received chains that
contain blocks from its logical future (with timestamp larger than its local time), this is done on line 4 of
procedure IsValidChain in Fig. B.7. Of course, Pjoin does no such filtering as it does not possess reliable local
time information yet.

To see the implications of this difference, we consider the concept of a virtual execution for Pjoin introduced
in [2]. This is an artificial random experiment that consists of the execution of the protocol with an additional
(“virtual”) party Pvirt that participates from the beginning, is always alert, but commands no stake and hence
is passive. Moreover, starting from tjoin it receives the same messages in the same slots and order as Pjoin.

The only case when Pjoin may adopt as its local chain a chain Cjoin that Pvirt does not adopt over the chain
it is currently holding (call it Cvirt) is if Cjoin contains an adversarially-created suffix of future blocks such
that it dominates Cvirt based on Condition A in maxvalid-bg. (As proved in [2, Theorem 2], the adversary
is not capable of creating a chain that would dominate an alert chain according to Condition B under the
assumptions of the lemma, except for a global bad event with probability exp(lnL − Ω(R)).) However,
Condition A is only applied if Cdkvirt � Cjoin so this must have been the case when Pjoin adopted Cjoin prior
to t. Moreover, since Pjoin is still holding Cjoin at round t, it means that since it adopted it, Pvirt has not
received any chain C′virt that would violate C′dkvirt � Cjoin, as in that case also Pjoin would receive and adopt it
(as follows by inspection of maxvalid-bg). Therefore, the chain C′virt that Pvirt holds at t satisfies C′dkvirt � Cjoin.
Finally, if any alert party Palert held in round t′ a chain Calert that would violate Cdkalert � Cjoin, by our network
assumption it would be seen by Pvirt by round t and hence adopted, concluding the proof. ut

D.6 The Proof of Lemma 5

Proof (sketch). We first show the claim (a) that condition i∗ ≥ 1 on line 32 of JoinProc will be satisfied for
Pjoin. Informally speaking, this means that while Pjoin executed Phase C of its joining procedure JoinProc
(recall that line 32 is only executed after that), it has observed at least one full synchronization interval
Isync(i∗) that started at least tpre rounds after the beginning of Phase C; and has recorded timestamps (in
its data structure Timestamp) for all synchronization beacons SB recorded in its local chain and coming from
Isync(i) according to their included logical slot numbers.

For clarity, let us split Phase C into two consecutive, non-overlapping Phases Csync and Cstable consisting
of tminSync and tstable rounds, respectively. Let t(j)start denote the (objective) round in which it happens for the

44

first time that an alert party enters the synchronization interval Isync(j) according to its local clock (i.e.,
enters the logical slot (j − 1)R+ 1). Then for all j ≥ 1 we have

t
(j+1)
start − t

(j)
start ≤ R+ 3∆ ≤ 13R/12 (12)

thanks to the fact that there is a synchronization interval starting at the first slot of every R-slot epoch, the
bound of Lemma 3 and the assumptions Skew∆ and (5).

Let now i∗ denote the minimal i such that t(i)start ≥ tjoin + toff + tpre, i.e., t(i
∗)

start occurs at least tpre rounds
after the beginning of Pjoin’s Phase C. According to (12) we have

t
(i∗)
start ≤ tjoin + toff + tpre + 13R/12 ≤ tjoin + toff + tminSync −R/6

by the values of tpre and tminSync (cf. Table 1). Therefore t(i
∗)

start is guaranteed to occur at least R/6 rounds
before the end of Phase Csync for Pjoin.

We now argue that i∗ will satisfy the condition on line 32 of JoinProc. This follows as by round t
(i∗)
start,

Pjoin has been already recording the timestamps of all received synchronization beacons for tpre rounds, and
hence, has recorded into its Timestamp data structure the timestamps of all beacons that (according to the
logical slot number they contain) belong to the synchronization interval Isync[i∗] — either by receiving the
beacon directly or observing it as included in a blockchain block. This is exactly what is needed for i∗ to pass
the test on line 32 of JoinProc. Note that the adversary cannot create valid beacons logically belonging to
Isync[i] before the start of Pjoin’s Phase C, as before that point the epoch randomness necessary for creating
valid synchronization beacons for this synchronization interval is still completely unpredictable (thanks to
the choice of tpre).

Moving to claim (b), we first establish it for i∗. This can be argued in a similar way as the validity of
item (i) in the proof of Lemma 2: the set SP

i∗ is for both P ∈ {Pjoin,Palert} constructed by collecting all
beacons SB (satisfying certain conditions on the reported slot number) from the adopted chain P.Cloc of P
up to slot (i∗ − 1) ·R+ 2R/3. As observed above, the synchronization interval Isync(i∗) will start (from the
perspective of the first alert party) at least R/6 rounds before the end of Pjoin’s Phase Csync, and hence will
also end (for this alert party) before the end of Phase Csync. Therefore, it will be followed by tstable = R
rounds of Phase Cstable, and the relevant beacons will be collected from up to round 2R/3 of Phase Cstable (to
account for the potential skew of other alert parties and network delay, as in (12)). Assuming CG(τCG, R/3)
and R ≥ 3kτCG (which follows from (5)), we get that the chain held by Palert grows by at least k blocks
during the last R/3 slots, and is hence identical to the chain held by Pjoin up to slot (i∗ − 1) · R + 2R/3 by
Lemma 4, resulting in SPjoin

i∗ = SPalert
i∗ . The above reasoning applies identically also to all following values of

i ≥ i∗ that the iteration on lines 34–52 considers.
Finally, claim (c) follows by a similar reasoning as claim (ii) in the proof of Lemma 2, and relies on our

network model guarantees. ut

D.7 The Proof of Theorem 3

Proof (of Theorem 3, sketch). The theorem follows by considering each of the new situations that occur
when honest parties loose and regain some of their resources. We sketch these considerations below.

If an alert party briefly loses access to its random oracle, it will keep the synchronized status, and start
caching all network messages and advancing its local clock “blindly” by 1 slot per tick of Gtick. Hence, it will
not violate the Skew∆ invariant until it first reaches a synchronization slot, and is able to become alert again
immediately upon regaining access to GRO. However, once it reaches a synchronization slot, it declares itself
desynchronized, hence not affecting Skew∆ anymore. Similarly, if an honest party loses access to its clock or
its network, it immediately becomes desynchronized.

Desynchronized parties maintain this status until they regain all resources, at which point they run the
joining procedure JoinProc analyzed in Section 4.4, just like newly joining parties. The claims (b) and (c)
of Lemma 5 guarantee that upon completion of this procedure, when the party declares itself synchronized

45

again, it will indeed satisfy the invariant Skew∆ except with a negligible error probability: this follows again
by invoking Lemma 1 in the same way as done for synchronized parties in Lemma 2 based on the claims (i)
and (ii) from its proof.

Finally, note that the proof of Theorem 1 relies on the martingale analysis from Appendix C, which was
designed in [2] exactly for the purpose of carrying over to the dynamic availability setting that allows the
environment to adjust the stake ratios of alert and active parties adaptively during the execution of the
protocol. ut

E Realization of the Ledger Functionality with Export-Clock Extension (in
the Gtick-world)

To realize the ledger functionality, we must among other things relate the global reference time—objective
rounds that—to the logical time experience by the protocol to translate chain growth into liveness guarantees
by the ledger. We do this in Section 4.6. We then move on to the overview of the ledger and the security
statement in Section E.1.

E.1 The Ledger Functionality and Security Theorem

As in [2], we prove composable security of this proof-of-stake protocol by showing that it realizes a ledger
functionality that additionally exports additional time-stamps. This is important to show on what guarantees
a higher-level protocol can rely as it requires to abstract the time advancement of the protocol in a way that
is less complex than the real world, but complex enough to provide a sufficiently detailed clock. Compared
to [2], we have thus two major differences:

1. The ledger uses Gtick to maintain its reference time (time since creation of the functionality).
2. We need to incorporate the detailed achieved guarantees for the exported time-stamps and provide a

useful behavior for alert parties to be used by external protocols.

Overview. The ledger functionality introduced in [2] builds upon the general functionality [3]. In a nutshell,
it maintains a central and unique ledger state denoted by state. How fast this state grows and which
transactions it includes are part of the ledger policy—and therefore fully adjustable—as this depends heavily
on the protocol achieving it. In any case, each registered party can request to see the state, and is guaranteed
to receive a sufficiently long prefix of it; the size of each party’s view of the state is captured by (monotonically)
increasing pointers that define which part of the state each party can read; the adversary has a limited control
on these pointers. The dynamics of this can be reflected with a sliding window over the sequence of state
blocks, with width windowSize and starting at the head of the state; each party’s pointer points to a location
withing this window. (The adversary can choose the position of the pointers within this sliding window.) As
is common in UC, parties advance the ledger when they are instructed to (activated with specific maintain-
ledger input by their environment Z). The ledger uses these queries along with the function predict-time(·)
to ensure that the ideal world execution advances with the same pace (relatively to the pacemaker) as the
protocol.

Any party can input a transaction to the ledger; upon reception transactions are validated using a pred-
icate Validate and, if found valid, are added to a buffer. Each new block of the state consists of transactions
which were previously accepted to the buffer. To give protocols syntactic freedom to structure their state
blocks, a vector of transactions, say ~Ni, is mapped to the ith state block via function Blockify(~Ni). Validate and
Blockify are two of the ledger’s parametrization algorithms. The third algorithm is the predicate predict-time
that is instantiated by the predictable time-behavior predicate of the protocol under consideration (in this
case Ouroboros Chronos). We note that that Ouroboros Chronos has a predictable time-advancement pat-
tern due to the way the UC protocol is designed and it is always clear when honest parties call FinishRound
in the protocol.

46

Party sets maintained by the ledger. In accordance with the classification of parties in Section 3.2, the
ledger divides the registered honest into two different basic categories called synchronized and desynchronized.
Synchronized parties are the parties that enjoy full security guarantees. Formally, a party that is considered
synchronized by the ledger and which is connected to all shared setups is what we usually called alert in
the dynamic availability setting. A party is considered synchronized if it has been continuously connected
to all its resources for a sufficiently long interval and has maintained connectivity to these resources, except
perhaps the GRO, until the current time. Formally, here, “sufficiently long” refers to Delay-many rounds,
where Delay is a parameter of the ledger and directly relates to the real-world time duration between joining
and becoming synchronized. In the general formulation, de-synchronized parties receive significantly weaker
guarantees.

State-extend policy. A defining part of the behavior of the ledger is the (parameterizable) procedure
which defines when/how to extend state and what the constraints are for an adversary. The state-extend
policy of the ledger in this work is almost identical to the ledger in [2] except that we establish a slightly
better bound for transaction liveness guarantees. In nutshell, the basic mode of operation of ExtendPolicy is
that it takes as an input a proposal from the adversary for extending the state, and can decide to follow this
proposal if it satisfies its policy; if it does not, ExtendPolicy can ignore the proposal (and enforce a default
extension). It will enforce minimal chain growth, a certain fraction of “good blocks,” and transaction liveness
guarantees for old and (still) valid transactions.

Given this similarity, we give a concise summary of the ledger parameters used in this work in Table G.2.
The ledger functionality and its ExtendPolicy are further provided in the appendix for the sake of self-
containment.

The Export-Time Extension. We introduce the export time extension to Gledger. The requirement on
the given guarantees (to alert parties) should replace the need for a global clock by external protocols.

We introduce a generic extension to the basic ledger functionality: first, we represent a times-stamp
timeP associated to party P as a pair (e, t), where t is the actual time stamp, and e refers to what we
call a generation.13 An alert party’s time t in (e, t) is guaranteed to increase during a generation with
every tick of the reference speed. Once t hits a generation boundary, defined as multiples of a generation
length parameter RL14, the generation value increases as well. Clearly, this would a perfect, monotonically
increasing, two-dimensional time-stamp. We have to weaken this guarantee by allowing to the adversary to
apply a limited shift whenever a party is at an epoch boundary (parameters shiftLB, shiftUB). Furthermore
the ledger enforces that any two alert parties with respective time-stamps (e, t) and (e′, t′), satisfy the
constraints |t− t′| ≤ timeSlacktotal and |t− t′| ≤ timeSlackep if e = e′, and |e− e′| ≤ 1 for the respective
ledger parameters timeSlackep, timeSlacktotal that define the maximally allowed skewness of parties. Note
that we give the possibility than Within an epoch the slack could be potentially different (i.e., much better)
than across generations.

We give an overview of the parameters in Table G.2 and provide the functionality in Section E.2.

Security statement. Based on the above, we show that Ouroboros Chronos realizes the extended ledger
functionality Gledger with a concrete choice of parameters. The proof is deferred to Appendix E.4.

Theorem 5. Let k be the common-prefix parameter, R the epoch-length parameter (constrained as required
by Theorem 2) and ∆ be the network delay. Let τCG be the chain growth coefficient as of Theorem 1, let
τCG,glob be the derived (objective time) chain-growth coefficient as of Corollary 1, and let µ be the chain
quality coefficient as of Theorem 1. Under the constraints15 of Theorem 3, the protocol Ouroboros Chronos
realizes the ledger functionality, i.e., there exists a simulator that simulates the protocol execution in the
13 In the real world, e would be the number of adjustments a party has made to its local clock.
14 In this work, this is always exactly the length of normal epoch, i.e., RL = R. However, the two concepts are logically

different.
15 Note that while we express the theorem as a constrained statement, it is possible to express the constraint as a

(hybrid) functionality wrapper in the real world that enforces the constraints and leaves the environment uncon-
strained. For more details we refer to [3] and [2].

47

ideal world perfectly except with negligible probability in the parameter k for R ≥ ω(log k), for the ledger
parameters

windowSize = k; Delay = tjoin; Delaytx = 2∆;

maxTimewindow ≥
windowSize
τCG · τCG,glob

; advBlckswindow ≥ (1− µ)windowSize,

and the clock-parameters

shiftLB = −2∆; shiftUB = ∆; RL = R

timeSlacktotal = 2∆; timeSlackep = ∆,

and where the algorithms Blockify, Validate, and predict-time are instantiated as stated in Section G.2.

E.2 The Formal Description of the Functionality

For completeness, we describe here the ledger functionality in the Gtick world together with the export-
time extension. A couple of technicalities might be mentioned here regarding the novel aspects for time-
management: as explained in the main body, the timestamps are two-dimensional of the form (e, t), where
e is a generation number and t is the actual timestamp. Initially, the generation is e = −1 which stands for
“prior” to be active. Timestamps advance in a monotone fashion controlled by the functionality. The only
irregularities are introduced, by the adversary, once the generation increases from e to e+1 for a party. Then
the functionality allows the adversary shifting the reported timestamp of that party by a limited amount.
The influence is captured by the above explained clock parameters.

General: The functionality is parameterized by four algorithms, Validate, ExtendPolicy, Blockify, and
predict-time, along with three parameters: windowSize, Delay ∈ N, and SinitStake := {(U1, s1), . . . , (Un, sn)}. The
functionality manages variables state, NxtBC, buffer, τL, and ~τstate, as described above. The variables are
initialized as follows: state := ~τstate := NxtBC := ε, buffer := ∅, τL = 0. For each party P ∈ P the functionality
maintains a pointer pti (initially set to 1) and a current-state view statep := ε (initially set to empty). The
functionality also keeps track of the timed honest-input sequence in a vector ~ITH (initially ~ITH := ε).

Party Management: The functionality maintains the set of registered parties P, the (sub-)set of honest parties
H ⊆ P, and the (sub-set) of de-synchronized honest parties PDS ⊂ H (as discussed below). The sets P,H,PDS
are all initially set to ∅. When a (currently unregistered) honest party is registered at the ledger, if it is registered
with the clock-tick functionality and the global RO already, then it is added to the party sets H and P and the
current time of registration is also recorded; if the current time is τL > 0, it is also added to PDS . Similarly,
when a party is deregistered, it is removed from both P (and therefore also from PDS or H). The ledger
maintains the invariant that it is registered (as a functionality) to Gtick whenever H 6= ∅.

Time management: When activated with the first registration command, the ledger prepends to its actions
above the following steps: it asks for the clock tick to Gtick and stores the variable internally as lastTick and
sets τL := 0.
It further activates the adversary with restricting query (Respond, (start, sid)) and resumes with normal
registration after receiving the immediate acknowledgment from the adversary.

Handling initial stakeholders: If during round τL= 0, the ledger did not receive a registration from each
initial stakeholder, i.e., P ∈ SinitStake, the functionality halts.

Extension Parameters: The extension is parameterized by shiftLB, shiftUB, timeSlackep, timeSlacktotal, and
the epoch length R.

Functionality Gledger with Export-Clock Extension

48

Extension Variables: The extension introduces the new variables timeP for each registered party P ∈ P (initial
value (−1, 0)).

Upon receiving any input I from any party or from the adversary, send (clock-read, sidC) to Gtick and
upon receiving response (clock-read, sidC , tick) set d = 1 if lastTick 6= tick and 0 otherwise. Set τL := τL + d.
Do the following if τL > 0 (otherwise, ignore input):

1. Updating synchronized/desynchronized party set:
(a) Let P̂ ⊆ PDS denote the set of desynchronized honest parties that have been registered (continuously) to

the ledger,Gtick, and the GRO since time τ ′ < τL − Delay.

(b) For each party P ∈ P̂ with timeP = (e, t), ensure valid range of timestamps: verify that t ≤ τL and that for
any party P′ ∈ H \ PDS with timeP′ = (e′, t′), it holds that |t− t′| ≤ timeSlacktotal, if e = e′ it also holds
that |t− t′| ≤ timeSlackep and that |e− e′| ≤ 1. Otherwise, assign to timeP the value timeP′ .

(c) Set PDS := PDS \ P̂.

(d) For any synchronized party P ∈ H \ PDS , if P is not registered to the clock, then consider it
desynchronized, i.e., set PDS ∪ {P}.

2. If I was received from an honest party P ∈ P:
(a) Set ~ITH := ~ITH ||(I,P, τL);
(b) Compute ~N = (~N1, . . . , ~N`) := ExtendPolicy(~ITH , state, NxtBC, buffer, ~τstate) and if ~N 6= ε set

state := state||Blockify(~N1)|| . . . ||Blockify(~N`) and ~τstate := ~τstate||τ `L, where τ `L = τL|| . . . , ||τL.
(c) For each BTX ∈ buffer: if Validate(BTX, state, buffer) = 0 then delete BTX from buffer. Also, reset

NxtBC := ε.
(d) If there exists Uj ∈ H \ PDS such that |state| − ptj > windowSize or ptj < |statej |, then set

ptk := |state| for all Uk ∈ H \ PDS .

3. Increase the party time stamps in a new round:
(a) For all P ∈ H \ PDS do: parse timeP as (e, t) and set timeP ← (e, t+ d). If P is stalled and t+ d divRL > e

then PDS ∪ {P}.

4. If the calling party P is stalled or time-unaware (according to the defined party classification), then no further
actions are taken. Otherwise, depending on the above input I and its sender’s ID, Gledger executes the
corresponding code from the following list:
• Submitting a transaction:

If I = (submit, sid, tx) and is received from a party P ∈ P or from A (on behalf of a corrupted party P)
do the following

(a) Choose a unique transaction ID txid and set BTX := (tx, txid, τL,P)
(b) If Validate(BTX, state, buffer) = 1, then buffer := buffer ∪ {BTX}.
(c) Send (submit, BTX) to A.

• Reading the state:
If I = (read, sid) is received from a party P ∈ H \ PDS with timeP = (e, t) s.t. e ≥ 0 and t ≥ 0, then
return (read, sid, ε to the requester. Else, set statep := state|min{ptp,|state|} and return
(read, sid, statep) to the requester. If the requester is A then send (state, buffer, ~ITH) to A.

• Maintaining the ledger state:
If I = (maintain-ledger, sid,minerID) is received by an honest party P ∈ P and (after updating ~ITH as
above) predict-time(~ITH) = τ̂ > τL then send (clock-update, sidC) to Gtick. Else send I to A.
Additionally, before losing the activation, if P ∈ H \ PDS , parse timeP as (e, t) and if tdivRL > e then set
timeP ← (e+ 1, t) (and otherwise, do not update the timestamp).

49

• The adversary proposing the next block:
If I = (next-block, hFlag, (txid1, . . . , txid`)) is sent from the adversary, update NxtBC as follows:

(a) Set listOfTxid← ε

(b) For i = 1, . . . , ` do: if there exists BTX := (x, txid,minerID, τL, Uj) ∈ buffer with ID txid = txidi then
set listOfTxid := listOfTxid||txidi.

(c) Finally, set NxtBC := NxtBC||(hFlag, listOfTxid) and output (next-block, ok) to A.

• The adversary setting state-slackness:
If I = (set-slack, (Ui1 , p̂ti1), . . . , (Ui` , p̂ti`)), with {Pi1 , . . . ,Pi`} ⊆ H \ PDS is received from the
adversary A do the following:

(a) If for all j ∈ [`] : |state| − p̂tij ≤ windowSize and p̂tij ≥ |stateij |, set pti1 := p̂ti1 for every j ∈ [`]
and return (set-slack, ok) to A.

(b) Otherwise set ptij := |state| for all j ∈ [`].

• The adversary setting the state for desychronized parties:
If I = (desync-state, (Ui1 , state′i1), . . . , (Ui` , state′i`)), with {Ui1 , . . . , Ui`} ⊆ PDS is received from the
adversary A, set stateij := state′ij for each j ∈ [`] and return (desync-state, ok) to A.

• Reading the time:
If I = (export-time, sid) is received from a party P ∈ H \ PDS then parse timeP as (e, t). If e ≥ 0 and
t ≥ 0 then return (export-time, sid, timeP) to the requester. Otherwise, return (export-time, sid,⊥).

• The adversary setting when the shift happens:
If I = (apply-shift, sid, (P, s)) is received from the adversary A and P ∈ H \ PDS then do the following:

(a) Parse timeP as (e, t). If tmodRL 6= 0 return to the adversary.
(b) Verify that shiftLB ≤ s ≤ shiftUB. If the check fails, return to the adversary.
(c) Set t′ ← t+ s and verify correct range of timestamps:

Check that t′ ≤ τL and that for each party P′ ∈ H \ PDS with timetime′ = (e′′, t′′), it holds that
|t′ − t′′| ≤ timeSlacktotal, |e′ − e′′| ≤ 1, and if e′ = e′ verify that |t′ − t′′| ≤ timeSlackep.

(d) If all checks succeeds, set timeP ← (e, t′). Otherwise, set timeP ← timeP′ where P′ is the
lexicographically smallest identity of H \ PDS . Return activation to the adversary.

• The adversary setting the timestamp for desynchronized parties:
If I = (set-time, sid,P, time) is received from the adversary A do the following: if P ∈ PDS then set
timeP ← time

E.3 Extend Policy

For completeness, we state here the extend policy of [2] and mark in blue the minor modification. Note that
the default block mechanism DefaultExtension is identical to [2] and thus omitted.

function ExtendPolicy(~ITH , state, NxtBC, buffer, ~τstate)
// First, create a default honest client block as alternative:
~Ndf ← DefaultExtension(~ITH , state, NxtBC, buffer, ~τstate) // Extension if adversary violates policy.
Let τL be current ledger time (computed from ~ITH)
// The function must not have side-effects: Only modify copies of relevant values.
Create local copies of the values buffer, state, and ~τstate.
// Now, parse the proposed block by the adversary
Parse NxtBC as a vector ((hFlag1, NxtBC1), · · · , (hFlagn, NxtBCn))
~N ← ε // Initialize Result
// Determine the time of the state block which is windowSize blocks behind the head of the state

Algorithm ExtendPolicy for Gledger

50

if |state| ≥ windowSize then
Set τlow ← ~τstate[|state| − windowSize + 1]

else
Set τlow ← 1

end if
oldValidTxMissing← false // Flag to keep track whether old enough, valid transactions are inserted.
for each list NxtBCi of transaction IDs do

// Compute the next state block
// Verify validity of NxtBCi and compute content
Use the txid contained in NxtBCi to determine the list of transactions
Let ~tx = (tx1, . . . , tx|NxtBCi|) denote the transactions of NxtBCi
if tx1 is not a coin-base transaction then

return ~Ndf

else
~Ni ← tx1
for j = 2 to |NxtBCi| do

Set sti ← blockifyB(~Ni)
if ValidTxB(txj , state||sti) = 0 then

return ~Ndf

end if
~Ni ← ~Ni||txj

end for
Set sti ← blockifyB(~Ni)

end if
// Test that all old valid transaction are included
if the proposal is declared to be an honest block, i.e., hFlagi = 1 then

for each BTX = (tx, txid, τ ′,P) ∈ buffer of an honest party P with time τ ′ < τlow − Delaytx do
if ValidTxB(tx, state||sti) = 1 but tx 6∈ ~Ni then

oldValidTxMissing← true
end if

end for
end if
~N ← ~N || ~Ni
state← state||sti
~τstate ← ~τstate||τL
// Must not proceed with too many adversarial blocks
i← max{{windowSize} ∪ {k | stk ∈ state ∧ proposal of stk had hFlag = 1}} // Determine most
// recent honestly-generated block in the interval behind the head.
if |state| − i ≥ advBlckswindow then

return ~Ndf

end if
// Update τlow: the time of the state block which is windowSize blocks behind the head of the
// current, potentially already extended state
if |state| ≥ windowSize then

Set τlow ← ~τstate[|state| − windowSize + 1]
else

Set τlow ← 1
end if

end for
// Final checks (if policy is violated, it is enforced by the ledger):
// Must not proceed too slow or with missing transaction.
if τlow > 0 and τL − τlow > maxTimewindow then // A sequence of blocks cannot take too much time.

return ~Ndf

else if τlow = 0 and τL − τlow > 2 · maxTimewindow then // Bootstrapping cannot take too much time.

51

return ~Ndf

else if oldValidTxMissing then // If not all old enough, valid transactions have been included.
return ~Ndf

end if
return ~N

end function

E.4 The Proof of Theorem 5

Proof (of Theorem 5). For the simulation part, we observe that compared to the simulator of the protocol
Ouroboros Genesis in [2], the protocol Ouroboros Chronos does only introduce code such that the entire
process of honest parties can still be simulated perfectly inside the simulator. All added procedures can be
emulated by the simulator who is emulating the honest parties code, extracts their states and times, and
sets the ledger parameter appropriately. We give the simulator in Section E.5.

We thus define the bad events that any constraints imposed by the above choice of parameters
would prohibit the simulator in correctly setting the ledger state or the time (the events are called
BAD-CP,BAD-CQ,BAD-CG, and BAD-TIME-RANGE in the simulation).

We first observe that violating the state parameters implies either violation of common-prefix, chain
quality or chain-growth in the execution (i.e., we have a identical-until-bad simulation). Furthermore, the
protocol is designed such that the activation pattern is still predictable by an efficiently computable predicate
predict-time, since for the maintain-ledger it is by design fixed how many inputs are need to reach the
FinishRound statement in the code.

Finally, the weak liveness of transactions holds since whenever a transaction is in the network at least
∆ < tjoin rounds, it will eventually be included in the next high-quality block (i.e., a block with hFlag = 1)
(and in the real-world by any alert party proposing a block) as long as the transaction is still valid. Considering
that the analysis conditions no collisions among random oracle outputs, we obtain an upper bound of
exp(−Ω(κ)) + exp(ln poly(κ)−Ω(k)) + exp(ln poly(κ)−Ω(R)), where poly(κ) denotes the polynomial upper
bound on the runtime of Z measured with respect to the security parameter κ. (Note that in particular, the
parameters L and Q of the security bound can simply be upper bounded by this polynomial.) This settles
that the chosen parameters do not impose a restriction on the ideal-world adversary except with negligible
probability.

We next turn to the export-clock extension parameters. First, setting RL = R is identical to the real
world. Second, the simulator is given enough activation in every round s.t. whenever a synchronized party
reaches a synchronization slot i · R = i · RL, it can input a shift value. Next, by Lemma 3 it is clear that
shiftLB = −2∆ and timeSlackep = ∆ by Lemma 2. What remains to show is that we can essentially bound
the (1) overall skew between two adjacent epochs by 2∆ and (2) that no party ever shifts its clock by
more than ∆. Both claims follow from directly from strengthening Lemma 3 as done in Lemma 9. By the
preceeding analysis, the probability that any constraint is violated, and thus BAD-TIME-RANGE is triggered,
is also in this case bounded by a negligible function of the above form for our choice of parameters. ut

Lemma 9. Consider the same setting as in Lemma 3. Let sl be the synchronization slot of epoch ep and
let SP

i be the set of beacons of an alert party P that is used for synchronization. Furthermore, assume that
Skew∆[sl] is not violated in this execution. Then it holds that

1. The shift shift party P computes is upper bounded by the maximal recommendation recom(SB), SB ∈ SP
i

for which slotnum(SB) = s for some s ∈ [(ep−1)R, . . . , (ep−1)R+R/6] and for which that it was created
by an alert party P′ in slot s. By the Lemma assumption, this is upper bounded by ∆.

2. After the shift, party P reports a time-stamp that is at most 2∆ off of any alert party’s time stamp in
this round.

Proof (Sketch). The first part of the claim follows from the observation that Timestamp(SB) recorded by P is
received after P′ created the beacon. Thus, the term slotnum(SB)− Timestamp(SB). If at the objective time

52

the beacon was created the creator reported slot s, party P’ local timestamp (used to measure arrival times
in epoch ep) differs by d to the creator’s timestamp, then the recommendation is upper bounded by d, as
delays can make the term only smaller. The limited skew Skew∆[s] at that slot s further says that d ≤ ∆.
Since the alertly generated beacons are in the majority as argued in Lemma 3 the median is bounded by ∆
as well.

To prove the second item, note that it is sufficient to show that the difference in reported time stamp of
party P in slot sl after the synchronization procedure to any alert party P′ that has not yet made the clock
adjustment for synchronization slot sl is at most 2∆. First by 1., the party’s shift is upper bounded by ∆.
Since by Skew∆[sl], any other alert party P′ that has not yet passed synchronization slot sl, will report a time
stamp sl′ ≥ sl −∆. Finally, similarly to the maximal shift, the lower bound on the shift can be obtained
by examining the recommendation computed by alertly generated beacons slotnum(SB) − Timestamp(SB).
Analogous to the above case, if at the objective time the beacon was created the creator reported slot s,
party P’ local timestamp (used to measure arrival times in epoch ep) differs by at most d to the creator’s
timestamp, then the recommendation is lower bounded by d−∆. Again, assuming Skew∆[sl] is not violated,
this is lower bounded by −2∆. Since any alert party that has not yet made its adjustment reports a local
time stamp larger equal to sl −∆, the adjustment of P in this round will not increase the distance to any
alert party that has not yet passed the synchronization slot to more than 2∆. ut

E.5 Simulator used in the UC realization

Below we present the simulator used in the proof that the UC implementation of Ouroboros Chronos securely
realizes the ledger functionality Gledger with the clock extension. The simulator shares a lot of similarities
with the simulator provided in [2] and is given below for the sake of concreteness.

Overview:
– The simulator internally emulates all local UC functionalities by running the code (and keeping the state) of
FVRF, FKES, F∆INIT, Fbc

N-MC, F tx
N-MC, and F sync

N-MC.
– The simulator mimics the execution of Ouroboros Chronos for each honest party P (including their state and

the interaction with the hybrids).
– The simulator emulates a view towards the adversary A in a black-box way, i.e., by internally running

adversary A and simulating his interaction with the protocol (and hybrids) as detailed below for each hybrid.
To simplify the description, we assume A does not violate the theorem assumptions (as they are enforced by
a wrapper WPoS

OG (·)as in [2]).
– For global functionalities, the simulator simply relays the messages sent from A to the global functionalities

(and returns the generated replies). Recall that the ideal world consists of the dummy parties, the ledger
functionality, the clock, and the random oracle.

Party sets:
– As defined in the main body of this paper, honest parties are categorized. We denote Salert the alert parties

(synchronized and executing the protocol) and use SsyncStalled shorthand for parties that are synchronized
(and hence time aware and online) but stalled. Finally, we denote by PDS all honest but de-synchronized
parties (both operational or stalled).

– For each registered honest party, the simulator maintains the local state containing in particular the local
chain C(P)

loc , the time ton it remembers when last being online. For each party P, the simulator stores the
reported time timeP = (e, localTime), and the flags updateStateP,τL , updateTimeP,τL , and updateInitTimeP,τL
(initially false) to remember whether this party has completed its core maintenance tasks in (objective) round
τL to update the state and its time (where the initial time for each party is a separate case), respectively.
Note that an registered party is registered with all its local hybrids.

– Upon any activation, the simulator will query the current party set from the ledger, the clock, and the
random oracle to evaluate in which category an honest party belongs to. If a new honest party is registered to

Simulator Sledg (Part 1 - Main Structure)

53

the ledger, it runs the initialization procedure for this party in each new round until the party is initialized
(P.isInit becomes true).

– We assume that the simulator queries upon any activation for the sequence ~ITH , and the current time τL from
the ledger. We note that the simulator is capable of determining predict-time(·) of Gledger.

Messages from the Clock:
– Upon receiving (clock-update, sidC ,P) from Gtick, if P is an honest registered party, then remember that

this party has received such a clock update (and the environment gets an activation). Otherwise, send
(clock-update, sidC ,P) to A.

Messages from the Ledger:
– Upon receiving (Respond, (start, sid)) from Gledger, send (Respond, (DefineOffset, sid)) in the name of F∆INIT to

the adversary. Upon receiving the response (DefineOffset, sid, o1, . . . , on), store the avlues and relay the
ansower to the simulated instance of F∆INIT.

– Upon receiving (submit, BTX) from Gledger where BTX := (tx, txid, τ,P) forward (multicast, sid, tx) to the
simulated network F tx

N-MC in the name of P. Output the answer of FN-MC to the adversary.
– Upon receiving (maintain-ledger, sid,minerID) from Gledger, extract from ~ITH the party P that issued this

query. If P has already completed its round-task, then ignore this request. Otherwise, execute
SimulateMaintenance(P, τL).

Simulation of Functionality FINIT towards A:
– The simulator relays back and forth the communication between the (internally emulated) F∆INIT functionality

and the adversary A acting on behalf of a corrupted party.
– If at time localTime = 0, a corrupted party P ∈ SinitStake registers via (ver keys, sid,P, vvrf

P , vkes
P) to FINIT,

then input (register, sid) to Gledger on behalf of P.

Simulation of the Functionalities FKES and FVRF towards A:
– The simulator relays back and forth the communication between the (internally emulated) hybrids and the

adversary A (either direct communication, communication to A caused by emulating the actions of honest
parties, or communication of A on behalf of a corrupted party).

Simulation of the Network Fbc
N-MC (over which chains are sent) towards A:

– Upon receiving (multicast, sid, (Ci1 , Ui1), . . . , (Ci` , Ui`) with a list of chains and corresponding parties from
A (or on behalf some corrupted P ∈ Pnet), then do the following:
1. Relay this input to the simulate network functionality and record its response to A.
2. Execute ExtendLedgerState(τL)
3. Provide A with the recorded output of the simulated network.

– Upon receiving (multicast, sid, C) from A on behalf of some corrupted party P , then do the following:
1. Relay this input to the simulate network functionality and record its response to A.
2. Execute ExtendLedgerState(τL)
3. Provide A with the recorded output of the simulated network.

– Upon receiving (fetch, sid) from A on behalf some corrupted P ∈ Pnet forward the request to the simulated
Fbc

N-MC and return whatever is returned to A.
– Upon receiving (delays, sid, (Tmidi1 ,midi1), . . . , (Tmidi` ,midi`)) from A: Forward the request to the

simulated Fbc
N-MC and record the answer to A. Before giving this answer to A, query the ledger state state

and execute AdjustView(state, τL).
– Upon receiving (swap, sid,mid,mid′) from A: Forward the request to the simulated Fbc

N-MC and record the
answer to A. Before giving this answer to A, query the ledger state state and execute
AdjustView(state, τL).

Simulator S∆ledg (Part 2 - Black-Box Interaction)

54

Simulation of the Network F tx
N-MC (over which transactions are sent) towards A:

– Upon receiving (multicast, sid,m) from A with list a transaction m from A on behalf some corrupted
P ∈ Pnet, then do the following:
1. Submit the transaction to the ledger on behalf of this corrupted party, and receive for the transaction id

txid.
2. Forward the request to the internally simulated F tx

N-MC, which replies for each message with a message-ID
mid

3. Remember the association between mid and the corresponding txid
4. Provide A with whatever the network outputs.

– Upon receiving (fetch, sid) from A on behalf some corrupted P ∈ Pnet forward the request to the simulated
F tx

N-MC and return whatever is returned to A.
– Upon receiving (delays, sid, (Tmidi1 ,midi1), . . . , (Tmidi` ,midi`)) from A forward the request to the simulated
F tx

N-MC and return whatever is returned to A.
– Upon receiving (swap, sid,mid,mid′) from A forward the request to the simulated F tx

N-MC and return
whatever is returned to A.

Simulation of the Network F sync
N-MC (over which beacons are sent) towards A:

– Upon receiving (multicast, sid,m) from A with a beacon m from A on behalf some corrupted P ∈ Pnet,
then do the following:
1. Forward the request to the internally simulated F sync

N-MC, which replies for each message with a message-ID
mid

2. Remember the association between each mid and the corresponding beacon.
3. Provide A with whatever the network outputs.

– Upon receiving (fetch, sid) from A on behalf some corrupted P ∈ Pnet behave analogously to above for
F tx

N-MC.
– Upon receiving (delays, sid, (Tmidi1 ,midi1), . . . , (Tmidi` ,midi`)) from A behave analogously to above for
F tx

N-MC.
– Upon receiving (swap, sid,mid,mid′) from A behave analogously to above for F tx

N-MC.

procedure SimulateMaintenance(P, localTime)
Simulate the (in the UC interruptible manner) the maintenance procedure of party P as in the protocol in
round τL when the party reports localtime P.localTime, i.e., run LedgerMaintenance(Cloc,P, sid, k, s, R, f) for
this simulated party.
if party P gives up activation then then

if party P has completed JoinProc(·) and updateInitTimeP,τL is false then
Execute AdjustTime(τL) and then set updateInitTimeP,τL ← true.

end if
if party P has reached the instruction SelectChain(·) and updateStateP,τL is false then

Execute ExtendLedgerState(τL) and then set updateStateP,τL ← true.
end if
if party P has reached the instruction SyncProc(·) and updateTimeP,τL is false then

Execute AdjustTime(τL) and then set updateTimeP,τL ← true.
end if
if party P has reached the instruction FinishRound(P) in round τL then

Send (clock-update, sidC ,P) to A if Sledg has received such an input in round τL
end if
Return activation to A

end if
end procedure

Simulator Sledg (Part 3 - Internal Procedures)

55

procedure ExtendLedgerState(τL)
for each synchronized party P ∈ Salert ∪ SsyncStalled of round localTime do

Let C(P)
loc be the party’s currently stored local chain.

// Note: In the following the internally simulated party state is not changed
Determine the number of fetches ρ(P) ∈ {0, 1} this party is still going to make in this round τL.
If ρ(P) > 0 then let C(P)

1 , . . . , C(P)
k be the chains contained in the receiver buffer ~M (P) of Fbc

N-MC with delay
at most ρ(P).
Re-evaluate CP ← SelectChain() using the additoinal chains as well and let this resulting chain’s encoded
state be ~stP.

end for
Let ~st be the longest state among all such states ~stP, P ∈ Salert ∪ SsyncStalled from above.
Compare ~stdk with the current state state of the ledger
if |state| > | ~stdk| then // Only pointers need adjustments

Execute AdjustView(state)
end if
if state is not a prefix of ~stdk then // Simulation fails

Abort simulation: consistency violation among synchronized parties. // Event BAD-CPk
end if
Define the difference diff to be the block sequence s.t. state||diff = ~stdk.
Parse diff := diff1|| . . . ||diffn.
for j = 1 to n do

Map each transaction tx in this block to its unique transaction ID txid. If a transaction does not yet
have a txid, then submit it to the ledger first and receive the corresponding txid from Gledger

Let listj = (txidj,1, . . . , txidj,`j) be the corresponding list for this block diffj
if coinbase txidj,1 specifies a party honest at block creation time then

hFlagj ← 1
else

hFlagj ← 0
end if
Output (next-block, hFlagj , listj) to Gledger (receiving (next-block, ok) as an immediate answer)

end for
if Fraction of blocks with hFlag = 0 in the recent k blocks > 1− µ then

Abort simulation: chain quality violation. // Event BAD-CQµ,k

else if State increases less than k blocks during the last k
τCG

rounds then
Abort simulation: chain growth violation. // Event BAD-CGτCG,k/τCG

end if
// If no bad event occurs, we can adjust pointers into this new state.
Execute AdjustView(state||diff)

end procedure

procedure AdjustTime(P, τL)
if P completed JoinProc in this round τL then

// Note that this party is about to become synchronized and to report time.
Take the simulated timestamp timeP and send (set-time, sid,P, timeP) to Gledger.

end if
if τL = 0 and P is an initial stakeholder Ui then

Send (apply-shift, sid, (Ui, oi)) to Gledger, where the oi are the initial offsets by A as recorded above.
else if P.localTime modR = 0 then

Take the simulated timestamp timeP and the simulated shift shift of this party.
if The range of timestamps of parties in Salert ∪ SsyncStalled is invalid then

Abort simulation: time-range violation. // Event BAD-TIME-RANGE
else

Send (apply-shift, sid, (P, shift)) to Gledger.

56

end if
end if

end procedure

F On Using the Exported Clock

The goal of this section is to give an overview on how external protocols could make use of the timing service
provided by Ouroboros Chronos.

F.1 General Considerations

Cryptographic protocols can use the exported clock of Chronos and make use of the provided times-
tamps. It is instructive to see different cases depending on the parameters of the clock. For example, if
timeSlackep = timeSlacktotal = 0, and shiftLB = shiftUB = 0, then we have an equivalent formulation of
the global clock of previous works. Each weakening of the parameters will result in a higher-level protocol
to require specific reactions. This is, however, possible: for example, if shifts are to be expected but still
timeSlackep = timeSlacktotal = 0, then the parties will know that some strange behavior could happen
around the generation boundaries. However, the behavior is limited and predictable based on the clock
parameters. For example, parties could stall their operations until the generation boundary switched and
depending on the shift, resume their operations later at a specific time. Furthermore, by the limited shift,
and the guaranteed advancement the parties will proceed and, if the protocol uses explicit knowledge of
shiftLB and shiftUB, liveness can be explicitly quantified. If parties can further be skewed, in addition to the
above, the higher level protocol has to be resilient against small variations in the time-stamps. Again, the
level of resilience required is clearly defined by parameters timeSlacktotal and timeSlackep.

F.2 Clock Properties in Optimistic Network Models

In the above cryptographic treatment, we made worst-case assumptions regarding the delivery times of the
synchronization beacons and chains. One can ask the question how well Chronos adjusts to more optimistic
network models, i.e., how the clock parameters get more precise if Chronos is executed in a less adversarial
environment. We can infer some rough estimates based on our analysis by formally imposing restrictions on
the delays occurring in the network and then reworking the derivation of the main clock properties along the
lines of Lemma 9. We exemplify this with two examples. Let us assume that we have initial coordination,
i.e., that all parties obtain the genesis block in the same objective round. Let us further assume that all
messages sent in round ` are guaranteed to be delivered in round `+ 1—or more generally in round `+m.
Along the lines of Lemma 9, we observe that the timestamps reported by alert parties are very coordinated.
In fact, if τ denotes objective time (as recorded inside Gtick), then each alert party reports time t = τ −m · e
(where e is the generation number) and thus the clock parameters of the ledger would in this case be
shiftLB = shiftUB = −m and timeSlackep = 0, timeSlacktotal = m. Even more, in this case, any external
protocol can recompute the objective time (as recorded by Gtick) from a timestamp (e, t) of an alert party
by the adjustment t + e ·m and thereby obtain a perfect “global clock” whenever this particular “network
parameter” m is known.

More realistically, if we consider delays in an interval of the form [m−d,m+d] ⊆ [0, ∆] then the arguments
of Lemma 9 suggest the clock parameters shiftLB = −m − 3d, shiftUB = −m + 3d and timeSlackep = 2d,
timeSlacktotal = m+3d. In this case, the above proposed time-adjustment t+e·m, based on the characteristic
value m of the network, would yield an approximation of the objective τ in the order of the width 2d of the
interval (note that this naturally matches our security analysis when choosing m = d and 2d = ∆, i.e., when
m is the center of [0, ∆]).

In the above considerations, the term 2d refers to a logical width measured in number of rounds. Depend-
ing on the message sizes and the physical time duration of one round, if messages that a party needs to send

57

during round ` are always sent at the end of round `, then a logical width of 2d ≈ 0 might not be unrealistic
to achieve. Also, an accurate approximation of the “typical delay” parameter m seems in principle feasible.
Hence, obtaining quite accurate approximations of objective time (as recorded internally by Gtick) seems
achievable by Ouroboros Chronos in networks that have a somewhat predictable behavior. This, however,
depends heavily on the implementations and the network stack and a more accurate study is part of future
work.

G Summaries of main protocol state variables and parameters

G.1 Overview of the main state variables of Ouroboros Chronos.

Variable Description
localTime,sl The party’s current time-stamp. In the staking context we call the

time slot.
ep The epoch that sl belongs to.
Cloc The local chain the party adopts based on which it does staking

and exports the ledger state.
isInit A variable to keep track of whether initialization is complete.
twork A value to steer when the party executes the staking procedure for

the next time.
buffer The buffer of transactions.
futureChains A buffer to store chains that are not yet processed, for example

because they contain blocks that belong to the logical future of this
party.

TimestampSB(·) A map that assigns to each synchronization beacon a pair (a, b),
where a is a numerical value (the arrival time) and b is an indication
of whether a is final or not.

Timestamp(·) Shorthand for the first (and numerical) element of the pair
TimestampSB(·).

lastTick The last tick received from Gtick. Used to infer when a round change
occurs.

isSync A party stores its synchronization status, as it can infer when its
time and state become reliable.

EpochUpdate(·) An function table to remember which clock adjustments have been
done already. Used to update beacon arrival times.

fetchCompleted A variable to store whether the round messages have been fetched.
lastTimeAlert The local time stamp the party was alert the last time. Used for

rejoining if the party was only stalled.
T ep

P The threshold of this party to evaluate slot leadership in (current)
epoch ep.

vvrf
P , vkes

P The public keys of this party to interact with FKES and FVRF.

Fig. 4. Overview of the main state variables of Ouroboros Chronos.

G.2 Overview of main ledger elements such as parameters and state variables.

58

Core Ledger Parameter Description
windowSize The window size (number of blocks) of the sliding window. In the

realization statement, it is typically set to the common-prefix pa-
rameter.

Validate Decides on the validity of a transaction with respect to the current
state. Used to clean the buffer of transactions. If the protocol fixes a
validation predicate, say ValidTxOC, then the realization statement
holds with Validate(BTX, state, buffer) := ValidTxOC(tx, state).

Blockify The function to format the ledger state output. If the protocol fixes
a particular function, say blockifyOC, the ledger will use the same in
the realization proof.

predict-time The function to predict the real-world time advancement.
Ouroboros Chronos has a predictable time-advancement
predict-timeOC as it can inferred from the honest inputs when the
protocol will call FinishRound after finishing its round operations.

Delay A general delay parameter for the time it takes for a newly joining
(after the onset of the computation) miner to become synchronized.
In this paper, it corresponds to the duration of the joining proce-
dure.

Policy Parameter (ExtendPolicy) Description
maxTimewindow Minimal Growth: In maxTimewindow rounds at least windowSize

blocks have to be inserted into the ledger state. The value in the
realization proof will depend on the chain-growth property.

advBlckswindow A limit advBlckswindow of adversarial blocks (i.e., contributed blocks
that do not need to employ higher standards) in each window of
windowSize state blocks. This ensures a minimal fraction of blocks
that contain all old and valid transactions. The value in the realiza-
tion proof will depend on the chain-quality property.

Delaytx An extra parameter to define when a transaction is old. In this
work, this will be much less than Delay as it will only depend on
the network delay.

Export-Time Parameter Description
timeP A variable that will represent the (idealized) clock value that the

party reports as its local time. A party will export pairs (e, t), where
t is the current local time, and e is the epoch.

shiftLB, shiftUB Limits on the shift values an adversary can impose at generation
boundaries

RL The parameter characterizing generation boundaries (similar to
epochs): if a party’s timestamp (e, t) is such that t = iRL + 1 (for
the first time), then the party moves to the next generation.

timeSlacktotal An upper bound between t and t′ of two synchronized parties P
and P′ reporting (e, t) and (e′, t′) as their respective time timeP
and timeP′ , respectively.

timeSlackep An upper bound between t and t′ of two synchronized parties P
and P′ reporting (e, t) and (e′, t′) as their respective time timeP
and timeP′ , respectively whenever e = e′

Fig. 5. Overview of main ledger elements such as parameters and state variables. As in [3, Definition 2], we always
assume that blockifyOC and ValidTxOC do not disqualify each other.

59

	Ouroboros Chronos: Permissionless Clock Synchronization via Proof-of-Stake
	Introduction
	Overview of our Techniques

	Our Model
	The New Protocol: Ouroboros Chronos
	Overview and Main Challenges
	Party Types
	Technical Overview with Differences to Ouroboros Genesis
	Basic Operation
	Registration and Special Procedures
	Mode of Operation for Alert Parties
	Further Ledger Queries
	De-Registration and Re-Joining

	The Synchronization Procedure of Ouroboros Chronos
	The Joining Procedure for New Parties of Ouroboros Chronos

	Security Analysis
	Security Assumptions: Alert and Participating Stake Ratio
	Blockchain Security Properties
	Setting with Static Registration
	Single-Epoch Analysis with -Bounded Skew
	Properties of SyncProc
	Lifting to Multiple Epochs

	Newly Joining Parties
	The Dynamic-Availability Setting
	From Logical-Time to Objective-Time Guarantees
	Composable Guarantees of Ouroboros Chronos and its Clock Properties

	Completing the Setup Functionality Description
	Genesis Block Distribution and Implicit Clock Initialization

	Completing the Chronos Protocol Description
	The Main Protocol Instance
	Ledger Maintenance
	Process Beacons and Arrival Times
	Registration and De-registration
	Initialization
	Fetching information and stake distribution; time update
	Chain Verification and Beacon Validity
	Select Chain
	The Genesis Chain Selection Rule
	The Staking Procedure
	Code of the Synchronization Procedure
	Reading the Ledger State
	Simulate Clock Adjustments
	The round finish procedure

	Single-Epoch Security with Static Registration and -Bounded Skew
	The Simplified Chain-Selection Rule maxvalid-mc
	From Executions to Forks
	Protocol-Induced Distribution of the Characteristic String
	Single-Epoch Security Properties
	Switching to maxvalid-bg

	Further Analytic Details and Omitted Proofs
	The Proof of Lemma 1
	The Proof of Lemma 2
	The Proof of Lemma 3
	The Proof of Theorem 2
	The Proof of Lemma 4
	The Proof of Lemma 5
	The Proof of Theorem 3

	Realization of the Ledger Functionality with Export-Clock Extension (in the [tick]-world)
	The Ledger Functionality and Security Theorem
	The Formal Description of the Functionality
	Extend Policy
	The Proof of Theorem 5
	Simulator used in the UC realization

	On Using the Exported Clock
	General Considerations
	Clock Properties in Optimistic Network Models

	Summaries of main protocol state variables and parameters
	Overview of the main state variables of Ouroboros Chronos.
	Overview of main ledger elements such as parameters and state variables.

