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Abstract

We give the first construction of statistical Zaps. Our construction satisfies computational soundness
and relies on the quasi-polynomial hardness of learning with errors assumption.

1 Introduction

The notion of zero-knowledge (ZK) proofs [GMR85] is fundamental to modern cryptography. Put simply,
ZK proofs allow one to prove the validity of a statement while maintaining full privacy of the witness.

The feasibility of ZK proofs was first established in the interactive setting, where the prover and the
verifier execute a two party protocol. Subsequently, a rich line of work aimed at minimizing interaction in
ZK proofs was initiated. Goldreich and Oren [GO94] established the first barrier in this direction, proving
the impossibility of ZK proofs in two rounds. This led to the study of relaxed notions of privacy for proof
systems. One such notable notion is witness indistinguishability (WI), which guarantees that the proof does
not reveal which one of multiple witnesses for the statement was used in the computation.

Dwork and Naor [DN00] proved that unlike ZK, WI can, in fact, be achieved in two rounds, without
relying on a trusted setup. Specifically, they constructed two round WI with a public-coin verifier message,
which they termed Zaps, from non-interactive zero-knowledge (NIZK) proofs in the common random string
model [DMP88, FLS90]. By relying on known constructions of such NIZKs, this method can be used to
obtain Zaps from quadratic residuosity [DMP88], trapdoor permutations [FLS90] and the decisional linear
assumption over bilinear groups [GOS06]. More recently, Zaps were also constructed based on indistin-
guishability obfuscation [BP15]. Over the years, Zaps have found numerous applications in cryptography.

Statistical Zaps. All of the above constructions of Zaps only achieve computational WI property. In this
work, we study the stronger notion of statistical Zaps that achieve the WI property against computationally
unbounded verifiers. In other words, statistical Zaps achieve everlasting security.

Despite two decades of research, no constructions of statistical Zaps are currently known. This is in
contrast to NIZK, which is indeed known with statistical privacy [CCH+19, PS19] or even perfect privacy
[GOS06]. One notable reason for this disparity is that the method of [DN00] for constructing Zaps is not
applicable in the statistical case.

The recent work of Kalai, Khurana and Sahai [KKS18] comes close to achieving this goal. They con-
structed two round statistical WI with private-coin verifier message based on two round statistical sender-
private oblivious transfer (OT) [NP01, Kal05, HK12, BD18]. The use of a private-coin verifier message is,
in fact, instrumental to their approach (which builds on [JKKR17, BGI+17]). As such, a different approach
is required for constructing statistical Zaps with a public-coin verifier.

The public-coin verifier property of Zaps is crucial to many of its applications in cryptography. Indeed,
public-coin property immediately implies public verifiability, a property which is often used in the design of



round-efficient secure multiparty computation protocols (see, e.g., [HHPV18]). Moreover, it also allows for
the verifier message to be reusable across multiple proofs, a property which is often used, for example, in the
design of resettably-secure protocols (see, e.g., [DGS09]). We remark that neither public-verifiability nor
reusability, even in isolation, was previously known for statistical Zaps. Moreover, even in the computational
setting, these properties were only known to be achievable from a small set of assumptions.

1.1 Our Results

We give the first construction of statistical Zaps with computational soundness, a.k.a. statistical Zap ar-
guments. Our construction requires two key ingredients: a statistical sender-private OT scheme where the
receiver message is quasi-polynomially pseudorandom, and collision-intractable hash functions with quasi-
polynomial pseduorandom fake key property [PS19, CCH+19]. Both of these primitives can be realized
from the learning with errors (LWE) assumption with quasi-polynomial hardness.

Theorem 1.1. Assuming quasi-polynomial LWE, there exists a statistical Zap argument system.

In order to obtain our result, we depart significantly from previous approaches for constructing Zaps.
Specifically, our approach combines the recent statistical NIZK arguments of Peikert and Shiehian [PS19] in
a non-black-box manner with a two round public-coin statistically hiding extractable commitment scheme
(Section 3.2). Previously, such a commitment scheme in the private-coin setting was constructed and used
by [KKS18].

While we focus on the statistical setting, we note that our construction also yields the first computa-
tional Zap arguments based on quasi-polynomial LWE. Previously, computational Zaps were known based
on quadratic residuosity, trapdoor permutations, decisional linear assumption over bilinear groups, and in-
distinguishability obfuscation.

2 Preliminaries

For any two (discrete) probability distributions P and Q, let SD(P,Q) denote statistical distance between
P,Q. Let Z denote the set containing all integers. For any positive integer q, let Zq denote the set Z/qZ.
Let S be a discrete set, and let U(S) denote the uniform distribution over S. Throughout the paper, unless
specified otherwise, we use λ to denote the security parameter.

2.1 Learing with Errors

We first recall the learing with errors (LWE) distribution.

Definition 2.1 (LWE distribution). For positive integer n and modulus q, and an error distribution χ over
Z, the LWE distribution As,χ is the following distribution. First sample a uniform random vector a ← Znq ,
and an error e← χ, then output (a, 〈a, s〉+ e) ∈ Znq × Zq.

Standard instantiations of LWE distribution usually choose χ to be discrete Gaussian distribution over
Z.

Definition 2.2 (Quasi-polynomial LWE Assumption). There exists a polynomial n = n(λ) and a small real
constant c ∈ (0, 1/2) such that for any non-uniform probabilistic oracle adversary D(·)(·) that runs in time
2O(log4 λ), we have

Advλ(D) =
∣∣∣Pr
[
DU(Znq×Zq)(1λ) = 1

]
− Pr

[
s← Znq : DAs,χ(1λ) = 1

]∣∣∣ < c

Where the adversary is given oracle access to the uniform distribution U(Znq × Zq) or the LWE distribution
As,χ.
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In the following Lemma 2.3, we show that quasi-polynomial LWE assumption implies that any adversary
running in a slower quasi-polynomial time can only have inverse quasi-polynomial advantage.

Lemma 2.3. Assuming quasi-polynomial hardness of LWE, for any non-uniform probabilistic adversary D
that runs in time 2O(log2 λ), we have

Advλ(D) =
∣∣∣Pr
[
DU(Znq×Zq)(1λ) = 1

]
− Pr

[
s← Znq : DAs,χ(1λ) = 1

]∣∣∣ < 2−Ω(log4 λ)

Proof. We prove by contradiction. Suppose there exists an adversary D such that Advλ(D) ≥ 2− log4 λ for
infinitely many λ. Let ε = Advλ(D). Then we construct the following adversary D′(·)(·). The adversary D′
is given access to an oracle O, and is required to output a bit to tell if O = As,χ or O = U(Znq × Zq). The
strategy of D′ is described as follows.

Let Nλ = 2100 log4 λ.

1. Execute D for Nλ times. In i-th execution, i ∈ [Nλ], sample an si ← Znq . Execute DO(1λ) with
fresh randomness. For each oracle query made byD, forward the query to oracleO, and then obtain a
response (a, b). Let b′ = b+ 〈a, si〉 ∈ Zq.1 Forward (a, b′) to D. Let SO be the number of executions
where D outputs 1.

2. Execute DU(Znq×Zq)(1λ) for Nλ times with fresh randomness for every execution. For each oracle
query made by D, sample an element uniform at random from Znq ×Zq, and forward the sample toD.
Let SU be the number of executions where D outputs 1.

3. If SO > SU , output 1. If SO < SU , output 0. If SO = SU , output a random bit.

In the following, we assume Pr[s ← Znq : DAs,χ(1λ) = 1] = Pr[DU(Znq×Zq)(1λ) = 1] + ε. The proof
for the other case follows in the same manner, and is omitted.

WhenO = U(Znq ×Zq), SO and SU are subjected to two independent and identical distributions. Thus,
D′U(Znq×Zq)(1λ) outputs a random bit. We have that Pr[D′U(Znq×Zq)(1λ) = 1] = 1/2.

When O = As,χ, denote µO = E[SO], µU = E[SU ]. Now we lower bound the probability

Pr[D′As,χ(1λ) = 1] = 1− Pr[D′As,χ(1λ) = 0] ≥ 1− Pr[SO ≤ SU ]

≥ 1−
(

Pr

[
SO ≤

µO + µU
2

]
+ Pr

[
SU ≥

µO + µU
2

])
The first line comes from the fact that D′ outputs 0 only when SO < SU or SO = SU . The second line
follows from a union bound, since SO ≤ SU implies SO ≤ µP+µU

2 or SU ≥ µP+µU
2 .

From Chernoff bound, we have

Pr

[
SO ≤

µO + µU
2

]
≤ exp

(
−1

2

(
µO − µU

2µO

)2

µO

)
≤ exp

(
−1

8
ε2N

)

Pr

[
SU ≥

µO + µU
2

]
≤ exp

−
(
µO−µU

2µU

)2

2 + µO−µU
2µU

µU

 ≤ exp

(
−
(

1

2
ε2 +O(ε3)

)
N

)

Hence, Pr[D′As,χ(1λ) = 1] ≥ 1 − exp(−Ω(ε2N)). Thus, we have Advλ(D′) ≥ 1/2 − exp(−Ω(ε2N)) =

1/2 − neg(λ). Note that D′ runs in time 2O(log4 λ). We reach a contradiction with quasi-polynomial LWE
assumption.

1Here, we use the worst-case to average-case reduction for LWE [Reg05].
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2.2 Statistical Zap Arguments

Zaps [DN00] are two-round witness indistinguishable proof systems with a public-coin verifier message.
Below, we define statistical Zap arguments, i.e., Zaps that achieve statistical WI property and computational
soundness.

Let P denote the prover and V denote the verifier. We use Trans(P(1λ, x, ω)↔ V(1λ, x)) to denote the
transcript of an execution between P and V , where P and V both have input a statement x and P also has a
witness ω for x.

Definition 2.4. Let L be a language in NP. We say that a two round protocol 〈P,V〉 with a public-coin
verifier message is a statistical Zap argument for L if it satisfies the following properties:

Completeness For every x ∈ L, and witness ω for x, we have that

Pr
[
Trans(P(1λ, x, ω)↔ V(1λ, x)) is accepted by V

]
= 1

Computational Soundness For any non-uniform probabilistic polynomial time (cheating) prover P∗, there
exists a negligible function ν(·) such that for any x /∈ L, we have that

Pr
[
Trans(P∗(1λ, x)↔ V(1λ, x)) is accepted by V

]
< ν(λ)

Statistical Witness Indistinguishability For any (unbounded cheating) verifier V∗, there exists a negligi-
ble function ν(λ) such that for every x ∈ L, and witnesses ω1, ω2 for x, we have that

SD
(
Trans(P(1λ, x, ω1)↔ V∗(1λ, x)),Trans(P(1λ, x, ω2)↔ V∗(1λ, x))

)
< ν(λ)

3 Building Blocks

We need the following building blocks.

3.1 Statistical Sender Private Oblivious Transfer

Definition 3.1. A statistical sender private oblivious transfer (OT) is a tuple of algorithms (OT1,OT2,OT3):

OT1(1λ, b): On input security parameter λ, a bit b ∈ {0, 1}, OT1 outputs the first round message ot1 and
a state st.

OT2(1λ, ot1,m0,m1): On input security parameter λ, a first round message ot1, two bitsm0,m1 ∈ {0, 1},
OT2 outputs the second round message ot2.

OT3(1λ, ot2, st): On input security parameter λ, the second round message ot2, and the state generated by
OT1, OT3 outputs a message m.

We require the following properties:

Correctness For any b,m0,m1 ∈ {0, 1},

Pr
[
(ot1, st)← OT1(1λ, b), ot2 ← OT2(1λ, ot1,m0,m1),m← OT3(1λ, ot2, st) : m = mb

]
= 1
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Statistical Sender Privacy There exists a negligible function ν(λ) and an deterministic exponential time
extractor OTExt such that for any (potential maliciously generated) ot1, OTExt(1λ, ot1) outputs a
bit b ∈ {0, 1}. Then for any m0,m1 ∈ {0, 1}, we have

SD
(
OT2(1λ, ot1,m0,m1),OT2(1λ, ot1,mb,mb)

)
< ν(λ)

Quasi-polynomial Pseudorandom Receiver’s Message For any b ∈ {0, 1}, let ot1 be the first round mes-
sage generated by OT1(1λ, b). For any non-uniform probabilistic adversary D that runs in time
2O(log2 λ), we have

Advλ(D) =
∣∣∣Pr
[
D(1λ, ot1) = 1

]
− Pr

[
u← {0, 1}|ot1| : D(1λ, u) = 1

]∣∣∣ < 2−Ω(log4 λ)

Lemma 3.2. Assuming quasi-polynomial hardness of LWE, there exists a statistical sender private oblivious
transfer scheme.

Proof. A statistical sender-private OT scheme was recently constructed by [BD18]. Their construction
satisfies correctness and statistical sender privacy properties. Further, the receiver’s message in their scheme
is pseudorandom, assuming LWE. We observe that assuming quasi-polynomial LWE and using Lemma 2.3,
their scheme also satisfies quasi-polynomially pseudorandom receiver’s message property.

3.2 Public Coin Statistical-Hiding Extractable Commitment Scheme

We now define a statistical-hiding extractable commitment scheme. The notion and its construction are
adapted from [KKS18], with some slight modifications to fit in our application. The main difference between
our definition and that of [KKS18] is that we require the receiver’s first round message to be public coin as
opposed to private-coin.

Our syntax departs from the classical definition of commitment schemes. We consider a tuple of four
algorithms (Com1,FakeCom1,Com2,Dec), where Com1 corresponds to the honest receiver’s algorithm
that simply outputs a uniformly random string. Com2 corresponds to the committer’s algorithm that takes as
input a message m as well as a random string b′ of length µ and outputs a commitment string. We require
two additional algorithms: (1) FakeCom1 that takes a binary string b of length µ as input and produces a
first round message that “hides” the string b, and (2) Dec that takes as input a transcript generated using
FakeCom1 and Com2 and outputs the committed message if the strings b and b′ used for computing the
transcript are equal.

Let C,R denote the committer and the receiver, respectively. We now proceed to give a formal definition.

Definition 3.3. A public coin statistical hiding extractable commitment is a tuple (Com1,FakeCom1,Com2,Dec).
The commit phase and open phase are defined as follows.

Commitment Phase

Round 1 On input parameters (1λ, 1µ), R executes Com1 to sample a uniform random string com1. R
sends com1 to C.

Round 2 On input (1λ,m), C chooses b′ ← {0, 1}µ uniformly at random and computes com2 ← Com2(1λ,
1µ, com1,b

′,m; r) with randomness r. C sends (b′, com2) toR.

Opening Phase
C sends the message and the randomness (m, r) toR. R checks if com2 = Com2(1λ, 1µ, com1,b

′,m; r).

We require the following properties of the commitment scheme.
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Statistical Hiding There exists a negligible function ν(·), a deterministic exponential time algorithm ComExt,
and a randomized simulator Sim, such that for any fixed (potentially maliciously generated) com1,
ComExt(1λ, 1µ, com1) outputs b ∈ {0, 1}µ, and for any b′ 6= b, and m ∈ {0, 1}, we have

SD
(
Com2(1λ, 1µ, com1,b

′,m), Sim(1λ, 1µ, com1)
)
< µ · ν(λ) (1)

Quasi-polynomial Pseudorandom Receiver’s Message For any b ∈ {0, 1}µ, FakeCom1(1λ, 1µ,b) and
a uniform random string outputted by Com(1λ, 1µ) are quasi-polynomially indistinguishable. Specif-
ically, for any non-uniform adversary D that runs in time 2O(log2 λ), we have∣∣∣Pr[D(1λ, 1µ,Com1(1λ, 1µ)) = 1]− Pr[D(1λ, 1µ,FakeCom1(1λ, 1µ,b)) = 1]

∣∣∣ ≤ µ · 2−Ω(log4 λ)

Extractable FakeCom1 and Dec satisfy the following property. For any b ∈ {0, 1}µ, we have

Pr
[

(com1,st)←FakeCom1(1λ,1µ,b),

com2←Com2(1λ,1µ,com1,b,m)
: Dec(1λ, 1µ, st, com2) = m

]
= 1

Lemma 3.4. Assuming quasi-polynomial hardness of LWE, there exists a public coin statistical-hiding ex-
tractable commitment scheme.

We construct a public coin statistical hiding extractable commitment by slightly modifying the commit-
ment scheme of [KKS18]. Their construction already satisfies extractability and statistical hiding properties.
However, their construction, as originally described, is private coin.

We note that the receiver’s message in their scheme simply consists of multiple receiver messages of
a statistical sender-private OT scheme. Then, by instantiating their construction with an OT scheme that
satisfies quasi-polynomial pseudorandom receiver’s message property (see Section 3.1), their scheme can
be easily adapted to obtain a public coin statistical hiding extractable commitment. Specifically, in the
modified construction, the honest receiver’s algorithm Com(1λ, 1µ) simply computes a uniform random
string, while FakeCom1 corresponds to the receiver algorithm in the construction of [KKS18].

Construction. For completeness, here we describe the full construction adapted from [KKS18].

Com1(1λ, 1µ) : Output a uniform random string com1 ← {0, 1}|com1|.

FakeCom1(1λ, 1µ,b) : Parse b = (b1, b2, . . . , bµ). For each i ∈ [µ], execute (ot1,i, sti) ← OT1(1λ, bi).
Output com1 = (ot1,i)i∈[µ] and st = (sti)i∈[µ].

Com2(1λ, 1µ, com1,b
′,m) : Parse b′ = (b′1, b

′
2, . . . , b

′
µ), and com1 = (ot1,i)i∈[µ]. Sample uniform random

m1,m2, . . . ,mµ ∈ {0, 1} such that
⊕

i∈[µ]mi = m. For each i ∈ [µ], let mb′i,i
= mi, and sample

m1−b′i,i ← {0, 1}. Execute ot2,i ← OT2(1λ, 1µ,m0,i,m1,i). Output com2 := (ot2,i)i∈[µ].

Dec(1λ, 1µ, st, com2) : Parse st = (sti)i∈[µ], and com2 = (ot2,i)i∈[µ]. For each i ∈ [µ], execute m′i ←
OT3(1λ, ot2,i, sti). Let m′ =

⊕
i∈[µ]m

′
i. Output m′.

This completes the description of the scheme. We now argue each of the required properties.

Statistical Hiding We construct the following extracting algorithm ComExt(1λ, 1µ, com1 = (ot1,i)i∈[µ]).
For each i ∈ [µ], execute bi = OTExt(1λ, ot1,i). Output b = (bi)i∈[µ].

Let b = ComExt(1λ, 1µ, com1), then for any b′ 6= b, consider the following hybrids.
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Com2(1λ, 1µ, com1,b
′,m) : Sample (mi)i∈[µ] uniformly at random such that

⊕
i∈[µ]mi = m. For

each i ∈ [µ], set mi,b′i
= mi, and mi,1−b′i ← {0, 1}. Output (OT2(1λ, ot1,i,mi,0,mi,1))i∈[µ].

Hybrid(1λ, 1µ, com1,b
′,m) : Sample (mi)i∈[µ] uniformly at random such that

⊕
i∈[µ]mi = m. For

each i ∈ [µ], set mi,b′i
= mi, and mi,1−b′i ← {0, 1}. Output (OT2(1λ, ot1,i,mi,bi ,mi,bi))i∈[µ].

Sim(1λ, 1µ, com1) : Sample m1,m2, . . . ,mµ ← {0, 1}. Output (OT2(1λ, ot1,i,mi,mi))i∈[µ].

From the statistical-hiding property of underlying OT scheme, it follows that Com2 and Hybrid are
statistically close. Specifically, there exists a negligible function ν(·) such that:

SD
(
Com2(1λ, 1µ, com1,b

′,m),Hybrid(1λ, 1µ, com1,b
′,m)

)
< µ · ν(λ)

Next, we prove that Hybrid and Sim are identifical distributions. Denote I = {i∗ ∈ [µ]|bi∗ 6= b′i∗}.
Since b 6= b′, we have I 6= φ. Hence, the joint distribution (mi,bi)i∈[µ]\I is uniformly random. Since
bi∗ 6= b′i∗ for all i∗ ∈ I, (mi∗,bi∗ ) is sampled uniformly at random for all i∗ ∈ I. Hence, (mi,bi)i∈[µ]

is uniformly random. Hence, Hybrid(1λ, 1µ, com1,b
′,m) and Sim(1λ, 1µ, com1) are identical distri-

butions.

The statistical hiding property of the construction now follows by combining the above claims.

Quasi-polynomial Pseudorandom Receiver’s Message This property directly follows from the quasi-polynomial
pseudorandom receiver message property the OT scheme.

Extractable This property directly follows from the correctness of the OT scheme.

3.3 Correlation Intractable Hash Function

We start by defining searchable relations. The following definition is taken verbatim from [PS19].

Definition 3.5 (Searchable Relation [PS19]). We say that a relation R ⊆ X × Y is searchable in size S
if there exists a function f : X → Y that is implementable as a Boolean circuit of size S, such that if
(x, y) ∈ R then y = f(x).

Correlation intractable hash function is a family of keyed hash functions satisfying following property:
for any searchable relation R, it is hard for a computationally unbounded adversary to find an element x
such that (x, f(x)) ∈ R.

Definition 3.6 (Correlation Intractable Hash Function, slightly modified from [PS19]). Correlation In-
tractable Hash Function (CIH) is a triple of algorithms (KGen,FakeGen,H(·)(·)), with the following prop-
erties:

Let s = s(λ), ` = `(λ), d = d(λ) be poly(λ)-bounded functions. Let {Rλ,s,`,d}λ be a family of
searchable relations, where each relation R ∈ Rλ,s,`,d is searchable by a circuit of size s(λ), output length
`(λ) and depth d(λ).

Statistical Correlation Intractable There exists a negligible function ν(·) such that, for any relation R ∈
Rλ,s,`,d, and circuit Cλ that searches for a witness for R, we have

Pr
[
k ← FakeGen(1λ, 1|Cλ|, Cλ) : ∃x s.t. (x,Hk(x)) ∈ R

]
< ν(λ)
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Quasi-polynomial Pseudorandom Fake Key For any circuit Cλ with size s, output length `, and depth d,
KGen(1λ, 1|Cλ|) outputs an uniform random string. Furthermore, for any non-uniform adversary D
that runs in time 2O(log2 λ), we have∣∣∣Pr
[
D(1λ, 1|Cλ|,KGen(1λ, 1|Cλ|)) = 1

]
− Pr

[
D(1λ, 1|Cλ|,FakeGen(1λ, 1|Cλ|, Cλ)) = 1

]∣∣∣ ≤ 2−Ω(log4 λ)

Theorem 3.7. Assuming quasi-polynomial hardness of LWE, there exists a construction of correlation in-
tractable hash function with quasi-polynomial pseudorandom fake key.

Proof. The construction of such a function is given in [PS19, CCH+19]. Specifically, we use the con-
struction of [PS19], which satisfies statistical correlation intractability. Moreover, the FakeGen algorithm
in their construction simply consists of some ciphertexts that are pseudorandom assuming LWE. Thus, if
we assume quasi-polynomial hardness of LWE, their construction satisfies quasi-polynomial pseudorandom
fake key property.

For our application, We require a slightly stronger property than statistical correlation intractability
as defined above. Specifically, we require that the distinguishing probability in statistical correlation in-
tractability is 2−λ for a special class of relations.

We show in Corollary 3.8 that by using parallel repetition, we can construct a CIH with the above
property from any CIH.

Corollary 3.8 (Amplification of Statistical Correlation Intractability). 2 There exists a correlation intractable
hash function (KGen,FakeGen,H(·)(·)) such that the following additional property holds.

2−λ-Statistical Correlation Intractability Let {Cλ}λ be a family of Boolean circuits, where Cλ has poly-
nomial size s(λ), polynomial depth d(λ), and outputs a single bit. There exists a polynomial ` = `(λ)

such that the following holds. Let
−−→
Cλ,` be the circuit

−→
Cλ(c1, c2, . . . , c`) = (Cλ(c1), Cλ(c2), . . . , Cλ(c`)),

then for large enough λ,

Pr
[
k ← FakeGen

(
1λ, 1|

−−→
Cλ,`|,

−−→
Cλ,`

)
: ∃x s.t. Hk(x) =

−−→
Cλ,`(x)

]
< 2−λ

Proof. LetCin be the length of input toCλ. We prove this corollary from any CIH (KGen′,FakeGen′,H′(·)(·)),

where H′ is a hash function family {0, 1}Cin·`′ → {0, 1}`′ . Denote R−−−→
Cλ,`′

=
{

(x,
−−→
Cλ,`′(x))

}
. We construct

the following new CIH.

Parameters Set `(λ) = `′(λ) · λ.

KGen(1λ, 1|
−−→
Cλ,`|,

−−→
Cλ,`) : For each i ∈ [λ], execute ki ← KGen′(1λ, 1|

−−−→
Cλ,`′ |,

−−→
Cλ,`′) with fresh randomness.

Output k = (ki)i∈[λ].

FakeGen(1λ, 1|
−−→
Cλ,`|,

−−→
Cλ,`) : For each i ∈ [λ], execute ki ← FakeGen′(1λ, 1|

−−−→
Cλ,`′ |,

−−→
Cλ,`′) with fresh ran-

domness. Output k = (ki)i∈[λ].

Hk(c1, c2, . . . , c`) : For each i ∈ [λ], execute bi = Hk(c`′(i−1)+1, c`′(i−1)+2, . . . , c`′i), output b = (bi)i∈[λ].

2In fact, the CIH construction in [PS19] already satisfies this additional property. Here we give a generic transformation from
any CIH
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We now prove that the above construction satisfies 2−λ-statistical correlation intractability. For large enough
λ, ν(λ) < 1/2. Hence we have

Pr
[
k ← FakeGen(1λ, 1|

−−→
Cλ,`|,

−−→
Cλ,`) : ∃x = (xi)i∈[`] s.t. Hk(x) =

−−→
Cλ,`(x)

]
= Pr

[
∀i ∈ [λ], ki ← FakeGen(1λ, 1|

−−−→
Cλ,`′ |,

−−→
Cλ,`′) : ∃xi, xi ∈ R−−−→Cλ,`′

]
≤ (ν(λ))λ < 2−λ

The second line follows from the fact that ki are generated independently.

4 Our Construction

In this section, we describe our construction of a statistical Zap argument system for Graph Hamiltonicity,
which is an NP-Complete problem.

Notation. We describe some notation that is used in our construction. Let LHAM denote the Graph
Hamiltonicity language over graphs G = (V,E) of n vertices, where V denotes the set of vertices and
E denotes the set of edges in G. We slightly abuse notation and use G to denote its adjacency matrix
G = (Gi[s, t])s,t∈[n].

Let (Com1,FakeCom1,Com2,Dec) be a public coin statistically hiding extractable commitment scheme
(Definition 3.3). We set the parameter µ of the commitment scheme as Θ(log2 λ). Let (KGen,FakeGen,H(·)(·))
be a family of CIH (Definition 3.6). We choose the polynomial ` = `(λ) in Corollary 3.8 such that the CIH
is 2−λ-statistical correlation intractable.

Circuit Cst. Let Cst denote the following Boolean circuit.
Input: a n× n matrix c = (cs,t)s,t∈[n].
Output: a boolean value.

1. For any s, t ∈ [n], execute G[s, t] = Dec(1λ, 1µ, st, cs,t).

2. If G = (Gi[s, t])s,t∈[n] is a cycle graph, then output 0. Otherwise output 1.

For ease of exposition, we extend the notation Cst to a series of matrices (c1, c2, . . . , c`). Specifically,
Cst(c1, c2, . . . , c`) is defined as (Cst(c1), Cst(c2), . . . , Cst(c`)).

Construction. The verifier V and prover P are both given input the security parameter λ and a graph
G = (V,E) of n vertices. The prover is additionally given as input a witness ω for G.

Round 1 Verifier V computes and sends uniform random strings (com1 ← Com1(1λ, 1µ), k ← KGen(1λ,
1|Cst|), where Cst takes ` separate n× n matrices as input, and outputs ` bits.

Round 2 Prover P does the following:

1. Choose a random b′ ← {0, 1}µ.

2. Compute ` first round messages of Blum’s sigma protocol for Graph Hamiltonicity. Specifically,
for every i ∈ [`], first sample a random cycle graph Gi = (Gi[s, t])s,t∈[n]. Next, for each

s, t ∈ [n], compute ci[s, t] ← Com2(1λ, 1µ, com1,b
′, Gi[s, t]; r

(s,t)
i ) using randomness r(s,t)

i .
Finally let ci = (ci[s, t])s,t∈[n].

3. Compute (b1, b2, . . . , b`) = Hk(c1, . . . , c`).
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4. For every i ∈ [`], compute the answer to challenge bi in Blum’s sigma protocol. Specifically,
if bi = 0, then set zi = (Gi, (r

(s,t)
i )s,t∈[n]). Else, if bi = 1, then compute a one-to-one map

φ : G→ Gi such that φ(w) is the cycle Gi, and set zi = (φ, (r
(s,t)
i )(s,t)=φ(e),e/∈E).

5. Send Π = (b′, (ci)i∈[`], (zi)i∈[`]) to the verifier.

Verification Upon receiving the proof Π = (b′, (ci)i∈[`], (zi)i∈[`]), the verifier first computes (b1, b2, · · · , b`) =
Hk(c1, c2, . . . , c`), and then verifies each copy (ci, bi, zi) of the proof as in Blum’s protocol. Specifi-
cally, if bi = 0, then parse zi = (Gi, (r

(s,t)
i )s,t∈[n]) and check if ci = (Com2(1λ, 1µ, com1,b

′, Gi[s, t];

r
(s,t)
i )s,t∈[n] and Gi is a cycle graph. Otherwise if bi = 1, then parse zi = (φ, (r

(s,t)
i )(s,t)=φ(e),e/∈E)

and check if φ is a one-to-one map, and for each e /∈ E, and (s, t) = φ(e), check if ci[s, t] =

Com2(1λ, 1µ, com1,b
′, 0; r

(s,t)
i ). If all of the checks succeed, then accept the proof, otherwise reject.

This completes the description of our construction. Below, we prove that our construction satisfies
completeness.

Completeness. In our construction, both the prover and the verifier compute the challenges as (b1, b2, . . . , b`) =
Hk(c1, c2, . . . , c`). Hence, to prove that the verification succeeds, it suffices to prove that for each i ∈ [`],
zi is a valid answer to ci for the challenge bi. In a nutshell, this follows from the completeness of Blum’s
sigma protocol.

More specifically, if bi = 0, then in step 2,P computes ci = (Com2(1λ, 1µ, com1,b
′, Gi[s, t]; r

(s,t)
i ))s,t∈[n]

honestly with a random cycle graphGi. Therefore, the verification in this case succeeds. Otherwise if bi = 1,
we need to show that ci[s, t] = Com2(1λ, 1µ, com1,b

′, 0; r
(s,t)
i ) for every e /∈ E and (s, t) = φ(e). It suf-

fices to show that Gi[s, t] = 0 for such (s, t). Note that if e /∈ E, then φ(e) /∈ φ(G), since φ is a one-to-one
map. Hence, if (s, t) = φ(e), then Gi[s, t] = 0. This completes the proof.

In the next section, we prove that our construction satisfies statistical witness indistinguishability and
computational soundness.

5 Proofs of Security

5.1 Statistical Witness Indistinguishability

Theorem 5.1. The construction in Section 4 satisfies statistical witness indistinguishability. Specifically,
there exists a negligible function ν(λ) such that for every G ∈ LHAM every two witness ω1 and ω2 for
G, every (potentially maliciously computed) fixed first round message (com1, k), the second round prover
messages Π1 Π2 computed using ω1 and ω2 respectively, satisfy

SD(Π1,Π2) < 2−Ω(µ) + 2n2(`+ 1) · ν(λ)

Proof. We prove the theorem via a hybrid argument. For any fixed (com1, k), let b = ComExt(1λ, 1µ, com1).
Since b′ is sampled uniformly at random by the prover, Pr[b = b′] = 2−µ. Hence, with probability 1−2−µ,
b 6= b′. We now build a series of hybrids.

Hybrid H0 : (b′, c1, c2, . . . , c`, z1, z2, . . . , z`) = Π1, where each zj is computed honestly using ω1.

Hybrid Hj : Same as above except that z1, z2, . . . , zj−1 are computed using witness ω2, and zj , zj+1, . . . , z`
are computed using ω1.

Hybrid H1
j , (j = 0, 1, . . . , `):
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1. Sample b′ ← {0, 1}µ. Generate (ci)i∈[`]\{j} honestly in the same way as in the construction.

2. Compute b′j ← {0, 1}. Compute cj honestly in the same way as in the construction.

3. Let (b1, b2, . . . , bj , . . . , b`)← Hk(c1, c2, . . . , cj , . . . , c`). If b′j 6= bj , then goto 1, otherwise goto
4.

4. For i ∈ [1, j − 1], compute zi honestly for challenge bi using ω2. For i ∈ [j, `], compute zi
honestly for challenge bi using ω1. Output (b′, c1, c2, . . . , c`, z1, z2, . . . , z`).

Hybrid H2
j , (j = 0, 1, . . . , `):

1. Sample b′ ← {0, 1}µ. Generate (ci)i∈[`]\{j} honestly in the same way as in the construction.

2. Sample b′j ← {0, 1}. If b′j = 0, then compute cj honestly in the same way as in the construction,
and generate zj honestly. If b′j = 1, then sample a uniformly random one-to-one map φ. For
each e ∈ ω, (s, t) = φ(e), set Gj [s, t] = 1. For other edges, set Gj [s, t] = 0. For each s, t ∈ [n],
sample uniformly random r

(s,t)
j , and compute cj [s, t] := Com2(1λ, 1µ, com1,b

′, Gj [s, t]; r
(s,t)
j ).

Set zj = (φ, (r
(s,t)
j )e/∈G,(s,t)=φ(e)).

3. Let (b1, b2, . . . , bj , . . . , b`)← Hk(c1, c2, . . . , cj , . . . , c`). If b′j 6= bj , then goto 1, otherwise goto
4.

4. For i ∈ [1, j − 1], generate zi according to the challenge bi honestly using ω2. For i ∈ [j + 1, `],
generate zi according to the challenge bi honestly using ω1. Output (b′, c1, c2, . . . , c`, z1, z2, . . . ,
z`).

Hybrid H3
j , (j = 0, 1, . . . , `):

1. Sample b′ ← {0, 1}µ. Generate (ci)i∈[`]\{j} honestly in the same way as in the construction 4.

2. Sample b′j ← {0, 1}. If b′j = 0, then compute cj honestly in the same way as in the con-
struction, and generate zj honestly. If b′j = 1, then sample a uniformly random one-to-one

map φ. For each e /∈ E, (s, t) = φ(e), sample a uniformly random r
(s,t)
j , and compute

cj [s, t] := Com2(1λ, 1µ, com1,b
′, Gj [s, t]; r

(s,t)
j ). Further, for each e ∈ E, (s, t) = φ(e), com-

pute cj [s, t]← Sim(1λ, 1µ, com1), where Sim is the simulator for the public-coin statistical-hid-
ing extractable commitment scheme.

3. Let (b1, b2, . . . , bj , . . . , b`)← Hk(c1, c2, . . . , cj , . . . , c`). If b′j 6= bj , then goto 1, otherwise goto
4.

4. For i ∈ [1, j − 1], generate zi according to the challenge bi honestly using ω2. For i ∈ [j + 1, `],
generate zi according to the challenge bi honestly using ω1. Output (b′, c1, c2, . . . , c`, z1, z2, . . . , z`).

Hybrid H`+1: (b′, c1, c2, . . . , c`, z1, z2, . . . , z`) = Π2, where each zj are generated using ω2.

This completes the description of the hybrids. We now prove a series of lemmas to bound the statistical
distance between different adjacent hybrids. The proof then follows by combining the claims of the lemmas.

Lemma 5.2. SD(Hj ,H
1
j ) = 0

Proof. The difference between Hj and H1
j is that H1

j has a rejection sampling process on bj . Hence, we have

Pr[b′, c1, c2, . . . , c`, z1, z2, . . . , z`|H1
j ] = Pr[b′, c1, c2, . . . , c`, z1, z2, . . . , z`|Hj , bj = b′j ]

= Pr[b′, c1, c2, . . . , c`, z1, z2, . . . , z`|Hj ]

The second equality comes from the fact that b′j is chosen uniformly at random.

11



Lemma 5.3. SD(H1
j ,H

2
j ) = 0

Proof. The only difference between H1
j and H2

j is that in H1
j , we sample a cycle graph Gj uniformly at

random whereas in H2
j , we first sample the one-to-one map φ uniformly at random and then generate Gi =

φ(w). Hence, the distributions over (φ,Gi) in H1
j and H2

j are identical.

Lemma 5.4. SD(H2
j ,H

3
j ) < n2 · ν(λ) + 2−Ω(µ)

Proof. The difference between H2
j and H3

j is that in H3
j , we use the simulator of the public-coin statistical-

hiding commitment scheme for computing ci[s, t] for each e ∈ E, (s, t) = φ(e). However, since the
randomness r(s,t)

j for each such ci[s, t] is never opened, the claim follows from the statistical hiding property
of the commitment scheme.

Lemma 5.5. SD(H3
j ,Hj+1) < n2 · ν(λ) + 2−Ω(µ)

Proof. Note that proving SD(H3
j ,Hj+1) < n2 · ν(λ) + 2−Ω(µ) is symmetric to proving that SD(Hj ,H

3
j ) <

n2 · ν(λ) + 2−Ω(µ). The latter follows by combining Lemmas 5.2, 5.3, 5.4. The proof follows the same
strategy as previous lemmas.

5.2 Computational Soundness

Theorem 5.6. The construction in Section 4 satisfies computational soundness.

Proof. Suppose G /∈ LHAM and there exists a cheating prover P∗ such that Pr[P∗ succeeds] ≥ 1/λc for
infinite many λ. Then for each such λ, there must exist a b′0 such that Pr[P∗ succeeds ∧b′ = b′0] ≥ λ−c2−µ,
where b′ is outputted by the cheating prover P∗ in the second round.

b′0-Extractor Ext. We first describe an algorithm Ext that extracts a b′0 from any cheating prover P∗, such
that Pr[P∗ succeeds ∧ b′ = b′0] ≥ λ−c2−µ−1. Ext receives oracle access to P∗.

1. Initialize an empty multiset S = {}.

2. For j ∈ [21.5µ], set fresh random tape for P∗. Compute and send uniformly random first round mes-
sage (Com1(1λ, 1µ), k ← KGen(1λ, 1|Cst|)) to P∗. Let (b′(j), (c

(j)
i )i∈[`], (z

(j)
i )i∈[`]) be the response

of P∗. Execute the verifier algorithm; if verification suceeds, then append multiset S = S ∪ {b′(j)}.

3. Output b′0 that appears for the maximum number of times in the multiset S.

In the sequel, we denote pλ = Pr[P∗ succeeds].

Claim 5.7. The algorithm Ext runs in time O(21.5µ) = 2O(log2 λ). Furthermore, with probability 1 −
exp(−Ω(20.5µpλ)), it outputs a b′0 such that Pr[P∗ succeeds ∧ b′ = b′0] ≥ pλ/2−µ−1.

We defer the proof of the Claim 5.7 to the end of the proof of Theorem 5.6.
Now we use the extractor Ext to build the following hybrids.

Hybrid H0 : Compute b′0 ← Ext(P∗). Generate uniformly random string (com1 ← Com1(1λ, 1µ), k ←
KGen(1λ, 1|Cst|)). Send (com1, k) to P∗. Let (b′, (ci)i∈[`], (zi)i∈[`]) be the output of P∗.
If b′ = b′0 and (b′, (ci)i∈[`], (zi)i∈[`]) passes the verification, then the hybrid outputs 1, otherwise
outputs 0.
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Hybrid H1 : Compute b′0 ← Ext(P∗). Generate (com1, st)← FakeCom(1λ, 1µ,b′0), k ← KGen(1λ, 1|Cst|).
Send (com1, k) to P∗. Let (b′, (ci)i∈[`], (zi)i∈[`]) be the output of P∗.
If b′ = b′0 and (b′, (ci)i∈[`], (zi)i∈[`]) passes the verification, then the hybrid outputs 1, otherwise
output 0.

Hybrid H2 : Compute b′0 ← Ext(P∗). Generate (com1, st)← FakeCom(1λ, 1µ,b′0), k ← FakeGen(1λ, 1|Cst|,
Cst). Send (com1, k) to P∗. Let (b′, (ci)i∈[`], (zi)i∈[`]) be the output of P∗.
If b′ = b′0 and (b′, (ci)i∈[`], (zi)i∈[`]) passes the verification, then the hybrid outputs 1, otherwise
outputs 0.

This completes the description of the hybrids. We now prove Lemmas 5.8 and 5.9 to establish the
indistinguishability of the hybrids.

Lemma 5.8. |Pr[H0 = 1]− Pr[H1 = 1]| < 2−Ω(log4 λ).

Proof. We prove this Lemma by relying on quasi-polynomial pseudorandom receiver’s message property
of the commitment scheme (Definition 3.3). We build the following adversary D trying to distinguish the
receiver’s message of commitment scheme from random string.
D takes as input (1λ, 1µ, com1). Firstly,D computes b′0 ← Ext(P∗). Then, it generates k ← KGen(1λ, 1|Cst|)

and sends (com1, k) toP∗. Let (b′, (ci)i∈[`], (zi)i∈[`]) be the response ofP∗. If b′ = b′0 and (b, (ci)i∈[`], (zi)i∈[`])
passes the verification, then output 1. Otherwise output 0.

Now D(1λ, 1µ,Com1(1λ, 1µ)) simulates the environment of H0 for P∗. Hence,

Pr
[
D(1λ, 1µ,Com1(1λ, 1µ)) = 1

]
= Pr[H0 = 1]

Also, D(1λ, 1µ,FakeCom(1λ, 1µ,b′0)) simulates the environment of H1. Hence,

Pr
[
D(1λ, 1µ,FakeCom1(1λ, 1µ,b′0)) = 1

]
= Pr[H1 = 1]

From Claim 5.7,D runs in time 2O(log2 λ). Since the distributions Com(1λ, 1µ) and FakeCom(1λ, 1µ,b′0)
are quasi-polynomially indistinguishable,∣∣∣Pr

[
D(1λ, 1µ,Com1(1λ, 1µ)) = 1

]
− Pr

[
D(1λ, 1µ,FakeCom1(1λ, 1µ,b′0) = 1

]∣∣∣ < 2−Ω(log4 λ)

Thus, we derive that |Pr[H0 = 1]− Pr[H1 = 1]| ≤ 2−Ω(log4 λ).

Lemma 5.9. |Pr[H1 = 1]− Pr[H2 = 1]| < 2−Ω(log4 λ).

Proof. We prove this lemma by relying on quasi-polynomial pseduorandom fake key property of CIH. We
build adversary D trying to distinguish the fake CIH key from uniform random string.
D takes as input (1λ, 1µ, k). It first computes b′0 ← Ext(P∗). Next, it generates com1 ← FakeCom1(1λ, 1µ,b′0)

and sends (com1, k) toP∗. Let (b′, (ci)i∈[`], (zi)i∈[`]) be the response ofP∗. If b′ = b′0 and (b, (ci)i∈[`], (zi)i∈[`])
passes the verification, then output 1. Otherwise output 0.

Now D(1λ, 1|Cst|, k ← KGen(1λ, 1|Cst|)) simulates the environment of H1 for P∗. Hence,

Pr[D(1λ, 1|Cst|, k ← KGen(1λ, 1|Cst|)) = 1] = Pr[H1 = 1]

Also, D(1λ, 1|Cst|, k ← FakeGen(1λ, 1|Cst|, Cst)) simulates the environment of H2. Hence,

Pr[D(1λ, 1|Cst|, k ← FakeGen(1λ, 1|Cst|, Cst)) = 1] = Pr[H2 = 1]
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From Claim 5.7, D runs in time 2O(log2 λ). Since the distributions KGen(1λ, 1|Cst|) and FakeGen(1λ,
1|Cst|, Cst) are quasi-polynomially indistinguishable, we have

|Pr[D(1λ, 1|Cst|, k ← KGen(1λ, 1|Cst|)) = 1]− Pr[D(1λ, 1|Cst|, k ← FakeGen(1λ, 1|Cst|, Cst)) = 1]| < 2−Ω(log4 λ)

Thus, we derive |Pr[H1 = 1]− Pr[H2 = 1]| ≤ 2−Ω(log4 λ).

We now prove the following lemma to lower bound the probability that the output of H2 is 1.

Lemma 5.10. Pr[H2 = 1] ≥ λ−c2−µ−2 − 2 · 2−Ω(log4 λ)

Proof. From Claim 5.7, we have

Pr[H0 = 1] = Pr[b′0 ← Ext(P∗) : P∗ succeeds ∧ b′ = b′0]

≥ Pr
[
b′0 ← Ext(P∗) : P∗ succeeds ∧ b′ = b′0 ∧ Pr[P∗ succeeds ∧ b′ = b′0] > pλ2−µ−1

]
= Pr[P∗ succeeds ∧ b′ = b′0|Pr[P∗ succeeds ∧ b′ = b′0] > pλ2−µ−1]

· Pr[b′0 ← Ext(P∗) : Pr[P∗ succeeds ∧ b′ = b′0] > pλ2−µ−1]

> λ−c2−µ−1 ·
(
1− exp

(
−Ω(20.5µpλ)

))
≥ λ−c2−µ−2

Combining the above with the Lemma 5.8 and Lemma 5.9, we have Pr[H2 = 1] ≥ λ−c2−µ−2 − 2 ·
2−Ω(log4 λ).

In the remainder of the proof, we use the 2−λ-correlation intractability property of the CIH to reach a
contradiction. Towards this, we first show in the following lemma that H2 = 1 implies that there exists a
‘collision’ for CIH and Cst. Specifically, we show that any accepting proof in hybrid H2 such that b′ = b′0,
we can find a ‘collision’ for CIH and Cst.

Lemma 5.11. If hybrid H2 outputs 1, denote COM = (c1, c2, . . . , c`) in the accepting proof. Then Hk(COM) =
Cst(COM).

Proof. We will prove by contradiction. Denote (b1, b2, . . . , b`) = Hk(COM). Suppose there is an i ∈ [`]
such that bi 6= Cst(ci). Now we consider two cases: (1). bi = 0, Cst(ci) = 1, (2). bi = 1, Cst(ci) = 0.

For case (1), since bi = 0, zi must be of the form (Gi, (r
(s,t)
i )s,t∈[n]), where Gi is a cycle graph, and

ci[s, t] = Com2(1λ, 1µ, com1,b
′, Gi[s, t]; r

(s,t)
i ) for each s, t ∈ [n]. From the extractability property of the

commitment scheme and b′ = b′0, we have Dec(1λ, 1µ, st, ci[s, t]) = Gi[s, t]. Since Gi is a cycle graph,
Cst(ci) = 0. Therefore, we reach a contradiction.

For case (2), since bi = 1, zi must be the form (φ, (r
(s,t)
i )e/∈E,(s,t)=φ(e)), where φ is a one-to-one

map, and ci[s, t] = Com2(1λ, 1µ, com1,b
′, 0; r

(s,t)
i ) for each e /∈ E, (s, t) = φ(e). Let Gi[s, t] =

Dec(1λ, 1µ, st, ci[s, t]) for each s, t ∈ [n]. Since Cst(ci) = 0,Gi is a cycle graph. For each edge e′ = (s′, t′)
of the cycle graph, Gi[s′, t′] = 1. Now we will show that (φ−1(s′), φ−1(t′)) ∈ E. We show this by con-
tradiction. Suppose (φ−1(s′), φ−1(t′)) /∈ E, then ci[s

′, t′] = Com2(1λ, 1µ, com1,b
′, 0; r

(s′,t′)
i ). From

extractable property of commitment scheme, Dec(1λ, 1µ, st, ci[s′, t′]) = 0, which implies Gi[s′, t′] = 0.
Thus, we find a contradiction. Hence, for each edge e in cycle graph Gi, φ−1(e) is an edge in G. Now we
have found a Hamiltonian cycle φ−1(Gi) ⊆ G, which is a contradiction to G /∈ LHAM.

Combining Lemmas 5.10 and Lemma 5.11, we derive that

Pr
[
k ← FakeGen(1λ, 1|Cst|, Cst) : ∃COM,Hk(COM) = Cst(COM)

]
≥ λ−c2−µ−2 − 2 · 2−Ω(log4 λ)

However, the above contradicts the 2−λ-statistical correlation intractability of CIH.

We now finish the proof by proving Claim 5.7.
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Proof of Claim 5.7. Extractor Ext clearly runs in timeO(21.5µ). To lower bound the probability Pr[P∗ succeeds ∧
b′ = b′0], we first give a lower bound on the size of multiset S. Note that in Step 2 of description of Ext, a
new element is added to S with probability pλ. From Chernoff bound,

Pr[|S| > 21.5µpλ/2] = 1− Pr[|S| ≤ 21.5µpλ/2]

≥ 1− exp(−21.5µpλ/8)

From pigeonhole principle, b′0 outputted by Ext must appear at least |S|/2µ times in S. Now we have

Pr

[
b′0 ← Ext(P∗) : Pr[P∗ succeeds ∧ b′ = b′0] <

2−µpλ
2

]
= Pr

[
b′0 ← Ext(P∗) : Pr[b′ = b′0|P∗ succeeds]pλ <

2−µpλ
2

]
= Pr

[
b′0 ← Ext(P∗) : Pr[b′ = b′0|P∗ succeeds] < 2−µ/2

]
≤Pr

[
b′0 appears at least |S|/2µ times in S ∧ Pr[b′ = b′0|P∗ succeeds] < 2−µ/2

]
≤ exp

(
−1

6
|S|2−µ

)
The last inequality follows from Chernoff bound. When |S| ≥ 21.5µpλ/2, this probability is upper bounded
by exp

(
− 1

1220.5µpλ
)
. By the union bound, we have

Pr

[
b′0 ← Ext(P∗) : Pr[P∗ succeeds ∧ b′ = b′0] <

2−µpλ
2

]
≤ exp

(
−1

8
21.5µpλ

)
+ exp

(
− 1

12
20.5µpλ

)
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[BD18] Zvika Brakerski and Nico Döttling. Two-message statistically sender-private OT from LWE. In
Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part II, volume 11240 of LNCS,
pages 370–390. Springer, Heidelberg, November 2018.

[BGI+17] Saikrishna Badrinarayanan, Sanjam Garg, Yuval Ishai, Amit Sahai, and Akshay Wadia. Two-
message witness indistinguishability and secure computation in the plain model from new as-
sumptions. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part III, volume
10626 of LNCS, pages 275–303. Springer, Heidelberg, December 2017.

[BP15] Nir Bitansky and Omer Paneth. ZAPs and non-interactive witness indistinguishability from in-
distinguishability obfuscation. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015,
Part II, volume 9015 of LNCS, pages 401–427. Springer, Heidelberg, March 2015.

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D. Roth-
blum, and Daniel Wichs. Fiat-Shamir: from practice to theory. In Moses Charikar and Edith
Cohen, editors, 51st ACM STOC, pages 1082–1090. ACM Press, June 2019.

[DGS09] Yi Deng, Vipul Goyal, and Amit Sahai. Resolving the simultaneous resettability conjecture
and a new non-black-box simulation strategy. In 50th FOCS, pages 251–260. IEEE Computer
Society Press, October 2009.

15



[DMP88] Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Non-interactive zero-knowledge proof
systems. In Carl Pomerance, editor, CRYPTO’87, volume 293 of LNCS, pages 52–72. Springer,
Heidelberg, August 1988.

[DN00] Cynthia Dwork and Moni Naor. Zaps and their applications. In 41st FOCS, pages 283–293.
IEEE Computer Society Press, November 2000.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In 31st FOCS, pages 308–317. IEEE
Computer Society Press, October 1990.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof-systems (extended abstract). In 17th ACM STOC, pages 291–304. ACM Press, May 1985.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof systems.
Journal of Cryptology, 7(1):1–32, December 1994.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for NP. In
Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 339–358. Springer,
Heidelberg, May / June 2006.

[HHPV18] Shai Halevi, Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan Venkitasubra-
maniam. Round-optimal secure multi-party computation. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 488–520. Springer,
Heidelberg, August 2018.

[HK12] Shai Halevi and Yael Tauman Kalai. Smooth projective hashing and two-message oblivious
transfer. Journal of Cryptology, 25(1):158–193, January 2012.

[JKKR17] Abhishek Jain, Yael Tauman Kalai, Dakshita Khurana, and Ron Rothblum. Distinguisher-
dependent simulation in two rounds and its applications. In Jonathan Katz and Hovav Shacham,
editors, CRYPTO 2017, Part II, volume 10402 of LNCS, pages 158–189. Springer, Heidelberg,
August 2017.

[Kal05] Yael Tauman Kalai. Smooth projective hashing and two-message oblivious transfer. In Ronald
Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 78–95. Springer, Heidelberg,
May 2005.

[KKS18] Yael Tauman Kalai, Dakshita Khurana, and Amit Sahai. Statistical witness indistinguishability
(and more) in two messages. In Jesper Buus Nielsen and Vincent Rijmen, editors, EURO-
CRYPT 2018, Part III, volume 10822 of LNCS, pages 34–65. Springer, Heidelberg, April / May
2018.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In S. Rao Kosaraju, editor,
12th SODA, pages 448–457. ACM-SIAM, January 2001.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain) learning
with errors. IACR Cryptology ePrint Archive, 2019:158, 2019.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press, May
2005.

16


	Introduction
	Our Results

	Preliminaries
	Learing with Errors
	Statistical Zap Arguments

	Building Blocks
	Statistical Sender Private Oblivious Transfer
	Public Coin Statistical-Hiding Extractable Commitment Scheme
	Correlation Intractable Hash Function

	Our Construction
	Proofs of Security
	Statistical Witness Indistinguishability
	Computational Soundness


