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Abstract. In this paper, we analyze the security of AES in the case in which the
whitening key is a weak key.
After a systematization of the classes of weak-keys of AES, we perform an extensive
analysis of weak-key distinguishers (in the single-key setting) for AES instantiated with
the original key-schedule and with the new key-schedule proposed at ToSC/FSE’18
(which is faster than the standard key schedule and ensures a higher number of
active S-Boxes). As one of the main results, we show that (almost) all the secret-key
distinguishers for round-reduced AES currently present in the literature can be set
up for a higher number of rounds of AES if the whitening key is a weak-key.
Using these results as starting point, we describe a property for 9-round AES-128 and
12-round AES-256 in the chosen-key setting with complexity 264 without requiring
related keys. These new chosen-key distinguishers – set up by exploiting a variant
of the multiple-of-8 property introduced at Eurocrypt’17 – improve all the AES
chosen-key distinguishers in the single-key setting.
The entire analysis has been performed using a new framework that we introduce
here – called “weak-key subspace trails”, which is obtained by combining invariant
subspaces (Crypto’11) and subspace trails (FSE’17) into a new, more powerful, attack.
Weak-key subspace trails are defined by extending the invariant subspace approach to
allow for different subspaces in every round, something that so far only the subspace
trail approach and a generalization for invariant subspace and invariant set attacks
(Asiacrypt’18) were able to do. For an easier detection, we also provide an algorithm
which finds these weak-key subspace trails.
Keywords: AES · Key Schedule · Weak-Keys · Invariant Subspaces · Chosen-Key
Distinguisher
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1 Introduction
Block ciphers are certainly among the most important cryptographic primitives. Their
design and analysis are well advanced, and with today’s knowledge designing a secure block
cipher is a problem that is largely considered solved. Especially with the AES we have at
hand a very well analyzed and studied cipher that, after more than 20 years of investigation
still withstands all cryptanalytic attacks. However, new results on the AES still appear
regularly, especially within the last couple of years (e. g. [BR19; Bar+18; GRR17; Gra18;
RBH17]). While those papers do not pose any practical threat to the AES, they do give
new insights into the internals of what is arguably the cipher that is responsible for the
largest fraction of encrypted data worldwide.

Clearly, security of symmetric crypto is always security against specific attacks. The
number of available attacks has increased significantly ever since the introduction of
differential [BS90] and linear [Mat94] cryptanalysis in the early 1990. Besides the numerous
variations of linear and differential attacks, e. g. truncated differentials [Knu95], impossible
differentials [BBS99; Knu98], zero-correlation attacks [BR14], and multidimensional linear
cryptanalysis [HCN09] to name only a few, it turned out that in many cases combining
two attack vectors might lead to new, more powerful attacks. The most prominent
example is the combination of linear and differential cryptanalysis into differential-linear
cryptanalysis [LH94].

Another important aspect is that the attacker model is regularly changing. With
the introduction of statistical attacks, especially linear and differential cryptanalysis, the
attacker was suddenly assumed to be able to retrieve, or even choose, large amounts of
plaintext/ciphertext pairs. Later, in the related-key setting, the attacker became even
more powerful and was assumed to be able to choose not only plaintexts but also ask for
the encryption of chosen messages under a key that is related to the unknown secret key.
Finally, in the open-key model, the attacker either knows the key or has the ability to
choose the key herself.

While the practical impact of such models is often debatable, they actually might
become meaningful when the block cipher is used as a building block for other primitives,
in particular for the construction of hash-functions. Moreover, even if those considerations
do not pose practical attacks, they still provide very useful insights and observations that
strengthen our understanding of block ciphers in general, and on the AES in particular.

Our work builds upon the above in the sense that we combine previously separate
attacks to derive new results on the AES, both in the secret- and in the open-key model.

1.1 Our Contribution
A key is said to be “weak” if, used with a specific cipher, it makes the cipher behave in
some undesirable way (namely, if it makes the cipher weaker w.r.t. other keys). Even if
weak keys usually represent a very small fraction of the overall key-space, it is desirable
for a cipher to have no weak keys. The presence of a set of weak keys is usually related to
the details of the key-schedule, namely the algorithm that takes as input a master key and
outputs so-called round keys that are used in each round to mix the current state with the
key. While the concrete security of the AES and other well-known ciphers is well studied, it
is not clear what properties a good key schedule has to have. Even if there are some general
guidelines on what a key schedule should not look like, these guidelines are rather basic
and ensure mainly that trivial guess-and-determine or/and meet-in-the-middle attacks
or/and structural attacks (e.g. slide-attacks, symmetries, invariant subspace attacks) are
not possible.

Recently, more and more attacks on perfectly good ciphers [BKR11; Guo+16; KS99] –
that exploit only weak-keys and key schedule weaknesses – indicate that the research on
key schedule design principles is pressing. For the case in which the r-th round-key kr is
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simply defined by the XOR of the whitening key K and a round constant RCr, that is
kr = K ⊕RCr (a key-schedule largely used for lightweight ciphers), in [Bei+17] authors
show that a proper choice of round constants can easily avoid such properties related to
structural attacks. In this paper, we first analyze the security of AES instantiated with
a weak-key against secret-key distinguishers, both for the case of the AES key-schedule
and for the case of a recent proposed key-schedule based only on permutation of the byte
positions [Kho+17]. Then, we use these results as starting points in order to construct
new chosen-key distinguishers for AES in the single-key model.

1.1.1 Systematization of Knowledge: Weak-key Subspace Trail Cryptanalysis

First of all, we start by recalling the basic set-up of subspace trail cryptanalysis (see [GRR16;
GRR17; LTW18]) and invariant subspace attacks (see [LMR15; Lea+11]) in Section 2.
Our first main focus is to point out the important differences of these two attacks. As we
will explain, those concepts are not generalizations of each other but rather orthogonal
attack vectors. From this point of view, a natural step is to fill this gap, by combining
both approaches into a new, more powerful, attack. This is in line with what was done
previously with other attacks as mentioned above.

As invariant subspace attacks are weak-key attacks by nature, the new attack originating
from the combination of invariant subspace attacks and subspace trail cryptanalysis is a
weak-key attack as well. Here, weak-key refers to the fact that the attacks do not work
for any key, but rather only for a fraction of all keys (besides the fact that they heavily
depend on details of the key-schedule). Consequently, in Section 2 we coin the new strategy
weak-key subspace trail cryptanalysis. To be able to detect these trails, we provide an
algorithmic way, based on previous search algorithms for invariant subspaces.

1.1.2 Weak-Key Secret-Key Distinguishers for AES

Previously, invariant subspace attacks were only applied to ciphers with very simple key
schedule algorithms. As a result, ciphers where the round keys differed not only by round
constants seemed secure against this type of attacks. E.g. up to now, it seemed impossible
to apply invariant subspace attacks on the AES.

With our new combination of invariant subspace attacks and subspace trail cryptanalysis,
we overcome this inherently difficult problem. As a showcase of the increased possibilities
of our attack, and as the most important example anyway, in Sections 3.2 and 4 we present
several new observations on the AES. Using as starting point the invariant subspace found
by our algorithm and presented in Section 3.2, we show that (almost) all the secret-key
distinguishers for round-reduced AES currently present in the literature can be set up for
a higher number of rounds of AES if the whitening key is a weak-key.

In particular, we show that the secret-key distinguisher based on the multiple-of-n
property proposed at Eurocrypt 2017 [GRR17] can be extended by one round if the
(secret) whitening key is a weak-key. Moreover, we discuss and clarify the relation between
“weak-key truncated differential” and “weak-key subspace trail”, and compare it with
the strong connection that holds between subspace trails and truncated differentials (as
highlighted in [BLN17; GRR16; LTW18]). As a concrete application of such results, in
Appendix D we present examples of compression collisions for 6- and 7-round AES-256
used in Davies–Meyer, Miyaguchi-Preneel and Matyas-Meyer-Oseas construction.

As a side-result, we analyze the security of an alternative AES key schedule proposed
at FSE/ToSC 2018 [Kho+17], which is defined by a permutation of the byte positions only
and that aims to provide resistance against related key-differential attacks. In Section 3.2.3,
we show the importance of adding random constants at every round in order to prevent
the weak-key subspace trail attack proposed here.
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1.1.3 Chosen-Key Distinguisher for AES

Building up on those results we are able to construct new chosen-key distinguishers for
up to 9-round AES-128 and 12-round AES-256 in the single-key model and based on the
multiple-of-n (weak-key) property. This improves all the chosen-key distinguishers for AES
in the single-key setting. In particular, in Section 5 we exhibit a chosen-key distinguisher
with complexity 264 for 9-round AES-128 in the single-key model1, valid for 232 keys.

For these results we combine two weak-key subspace trails in an inside-out manner
and, instead of a simple truncated differential property at the plaintexts and ciphertexts,
we use a variant of the “multiple-of-n” property recently shown for AES in [GRR17].

Finally, we discuss the possibility to extend such results on full AES-128 and AES-256,
namely we show a non-random property for full AES-128 and AES-256 in the chosen-key
setting that seems difficult to produce generically.

1.2 Related Work

Regarding weak-key cryptanalysis, the most famous example of weak-keys is given for
the DES. The block cipher DES has a few specific keys termed “weak-keys” and “semi-
weak-keys” [MS87]. These are keys that cause the encryption mode of DES to act
identically to the decryption mode of DES (albeit potentially that of a different key).
Several other examples can be found in the literature, e. g. for Blowfish [KM07; Vau96],
PRESENT [Ohk09], or Piccolo [WW16]. Typical “weak-key” attacks (so called as these
attacks work only when a key of a special form is used, thus a “weak-key”) are the already
mentioned invariant subspace attack [LMR15; Lea+11], the invariant set (or nonlinear
invariant) attack [TLS16] and the recent work by Beyne [Bey18] for a generalization of
invariant subspace and invariant set attacks.

Weak-keys are much more often a problem where the adversary has some control over
what keys are used, such as when a block cipher is used in a mode of operation intended
to construct a secure cryptographic hash function. For example, in the Davies-Meyer
construction or the Miyaguchi-Preneel one can transform a secure block cipher into a secure
compression function. In a hash setting, block cipher security models such as the known-key
model (or the chosen-key model) makes sense since in practice the attacker has full access
and control over the internal computations. A classical example is the devastating effect
on the compression function security of weak-keys for a block cipher [Wei+12], which are
usually considered as a minor flaw for a block cipher if the set of these weak-keys is small.

The idea of known-key distinguishers was introduced by Knudsen and Rijmen in [KR07]
for their analysis of AES and a class of Feistel ciphers. They examined the security of these
block ciphers in a model where the adversary knows the key. To succeed, the adversary
has to discover some property of the attacked cipher that e. g. holds with a probability
higher than for an ideal cipher, or is generally believed to be hard to exhibit generically.
The idea of chosen-key distinguishers was popularized in the attack on the full-round
AES-256 [BK09; BKN09] in a related-key setting. This time the adversary is assumed
to have a full control over the key. A chosen-key attack was shown on 9-round reduced
AES-128 in [FJP13] in the related-key setting, and on 8-round AES-128 in [DFJ12] in
the single-key setting. Both the known-key and chosen-key distinguishers are collectively
known as open-key distinguishers.

1A 10-round known-key distinguisher for AES has been proposed by Gilbert [Gil14] at Asiacrypt 2014.
Echoing Grassi and Rechberger [GR17], in Section 5.1.2 we argue why such distinguisher can be considered
artificial. Briefly, the property of this distinguisher does not involve directly the plaintexts/ciphertexts,
but their encryption/decryption after one round.
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2 Weak-Key (Invariant) Subspace Trails
In the course of this section, we develop in a step by step manner the setting of “weak-key
subspace trails” in a general and consistent way. Within our systematization, we first
recapitulate the ideas and the differences between invariant subspaces and subspace trails.

2.1 Subspace Trails
Subspace trails have been first defined in [GRR16] and later used to attack e.g. reduced
round versions of AES [GRR17], PRINCE [GR16] and Simpira [Røn16]. Moreover, the
connection between subspace trails and truncated differential attacks has been studied in
details in [LTW18]. We refer to [GRR16] for more details about the concept of subspace
trails. Our treatment here is however meant to be self-contained.

We recall the definition of a subspace trail next. For this, let F denote a round function
of a key-alternating block cipher, and let U ⊕ a denote a coset of a vector space U . By U c
we denote the complementary subspace of U .

Definition 1 (Subspace Trails). Let (U1, U2, . . . , Ur+1) denote a set of r + 1 subspaces
with dim(Ui) 6 dim(Ui+1). If for each i = 1, . . . , r and for each ai, there exists (unique)
ai+1 ∈ U ci+1 such that

F (Ui ⊕ ai) ⊆ Ui+1 ⊕ ai+1,

then (U1, U2, . . . , Ur+1) is a subspace trail of length r for the function F . If all the previous
relations hold with equality, the trail is called a constant-dimensional subspace trail.

One important observation is the following. Consider a key-alternating cipher Ek using
F as a round function and where the round keys are xored in between the rounds, as
depicted below:

k Key Scheduling

m

k0

F

k1

F F

kr

c

In this case, a subspace trail for F will extend to a subspace trail for Ek for any choice of
round keys. This is a simple consequence as

F (Ui ⊕ ai) ⊆ Ui+1 ⊕ ai+1 implies Fki(Ui ⊕ ai) ≡ F (Ui ⊕ ai)⊕ ki ⊆ Ui+1 ⊕ a′i+1

for a suitable a′i+1 = ai+1 ⊕ ki (where ki is the i-th subkey). In other words, the key
addition changes only the coset of the subspace Ui+1, while it does not affect the subspace
itself. Thus, not only do subspace trails work for all keys, they are also completely
independent of the key schedule. Here, invariant subspace attacks behave very differently.

2.2 Invariant Subspace Attacks
Invariant subspace attacks, which can be seen as a general way of capturing symmetries,
have been first introduced in [Lea+11] in an attack on PRINTCipher. Later, those attacks
have been applied to several other (mainly lightweight) primitives, e. g. in [LMR15], where
a generic tool to detect them has been proposed.

As above, denoting by Fk(·) = F (·)⊕ k the round function of a key-alternating block-
cipher, let U ⊂ Fn2 be a subspace. Then, U is called an invariant subspace if there exist
constants a, b ∈ Fn2 such that Fk(U ⊕a) = U ⊕ b. In order to extend the invariant subspace
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U ⊕ ai 7→ U ⊕ ai+1 to the whole cipher, we need all round keys to be in specific cosets2 of
U namely, ki ∈ U ⊕ (ai+1 ⊕ bi) (where F (U ⊕ ai) = U ⊕ bi):

Fk(U ⊕ ai) = F (U ⊕ ai)⊕ k = U ⊕ bi ⊕ k︸︷︷︸
∈U⊕(ai+1⊕bi)

= U ⊕ ai+1.

Definition 2 (Invariant Subspace Trail). Let Kweak be a set of keys and k ∈ Kweak, with
k ≡ (k0, k1, . . . , kr) where kj is the j-th round key. For each k ∈ Kweak, the subspace U
generates an invariant subspace trail of length r for the function Fk(·) ≡ F (·)⊕ k if for
each i = 1, . . . , r there exists a non-empty set Ai ⊆ U c for which the following property
holds:

∀ai ∈ Ai : ∃ai+1 ∈ Ai+1 s.t. Fki(U ⊕ ai) ≡ F (U ⊕ ai)⊕ ki = U ⊕ ai+1.

All keys in the set Kweak are weak-keys.

2.3 Weak-Key Subspace Trails

When comparing subspace trail and invariant subspace attacks, two obvious but important
differences can be observed. First, subspace trails are clearly much more general as they
allow different spaces in the domain and co-domain of F . Second, subspace trails are by
far more restrictive, as not only one coset of the subspace has to be mapped to one coset
of (a potentially different) subspace, but rather all cosets have to be mapped to cosets.
For subspace trails, the later fact is the main reason for allowing arbitrary round keys.

The main idea for weak-key subspace trails is to stick to the property of invariant
subspace attacks where only few (even just one) cosets of a subspace are mapped to other
cosets of a subspace. However, borrowing from subspace trails, we allow those subspaces
to be different for each round. As this will again restrict the choice of round keys that
will keep this property invariant to a class of weak-keys we call this combination weak-key
subspace trails (or simply, weak subspace trails). The formal definition is the following.

Definition 3 (Weak-Key Subspace Trails). Let Kweak be a set of keys and k ∈ Kweak with
k ≡ (k0, k1, . . . , kr) where kj is the j-th round key. Further let (U1, U2, . . . , Ur+1) denote a
set of r + 1 subspaces with dim(Ui) 6 dim(Ui+1). For each k ∈ Kweak, (U1, U2, . . . , Ur+1)
is a weak-key subspace trail (WKST) of length r for the function Fk(·) ≡ F (·)⊕ k if for
each i = 1, . . . , r there exists a non-empty set Ai ⊆ U ci for which the following property
holds:

∀ai ∈ Ai : ∃ai+1 ∈ Ai+1 s.t. Fki(Ui ⊕ ai) ≡ F (Ui ⊕ ai)⊕ ki ⊆ Ui+1 ⊕ ai+1.

All keys in the set Kweak are weak-keys. If all the previous relations hold with equality,
the trail is called a weak-key constant-dimensional subspace trail.

Usually, the set Ai ⊆ U ci reduces to a single element ai, that is Ai ≡ {ai}. Moreover,
we can easily see that Definition 3 is a generalization of both Definitions 1 and 2:

• if Kweak is equal to the whole set of keys and if Ai = U ci , then it corresponds to
subspace trails;

• if Ui = Ui+1 for all i, then it corresponds to invariant subspace trails.

2It is not necessary that ai = ai+1 for all i in order to set up an invariant subspace attack.
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Security Problem. Clearly, a WKST allows greater freedom for an attacker. In compari-
son to invariant subspace attacks, WKSTs have the potential of being better applicable to
block ciphers with a non trivial key schedule. At the same time, with respect to subspace
trails it is not necessary for WKSTs to hold for all possible keys.

Interestingly, proving resistance against invariant subspace (or more generally invariant
sets) in the case of identical round keys (up to the addition of round constants) is well
understood, see [Bei+17]. However, the situation changes completely when considering
WKSTs and/or ciphers with a non-trivial key schedule. In those situations, the analysis
of [Bei+17] is no longer applicable and we do not have a generic approach to argue the
resistance against WKSTs.

It follows that the concept of WKSTs opens up many new opportunities and raises many
new, probably highly non-trivial questions on how to protect against it. In Appendix A,
we take a look at how we can find these algorithmically, while in the following we focus
on demonstrating the new opportunities by investigating the AES. How to (generically)
protect against those attacks is left as an open question for future research.

3 Preliminary – Subspace Trail Properties of the AES
The Advanced Encryption Standard [DR02] is a Substitution-Permutation network that
supports key sizes of 128, 192 and 256 bits. The 128-bit plaintext initializes the internal
state as a 4×4 matrix of bytes as values in the finite field F256, defined using the irreducible
polynomial x8 + x4 + x3 + x+ 1. Depending on the version of AES, Nr rounds are applied
to the state: Nr = 10 for AES-128, Nr = 12 for AES-192 and Nr = 14 for AES-256. One
round of AES can be described as R(x) = K ⊕MC ◦SR ◦ SB(x), where

• SubBytes (SB) – applying the same 8-bit to 8-bit invertible S-Box 16 times in parallel
on each byte of the state (it provides non-linearity in the cipher);

• ShiftRows (SR) – cyclic shift of each row to the left;

• MixColumns (MC) – multiplication of each column by a constant 4× 4 invertible
matrix MMC (MC and SR provide diffusion in the cipher);

• AddRoundKey (ARK) – XORing the state with a 128-bit subkey.

In the first round an additional AddRoundKey operation (using a whitening key) is applied,
and in the last round the MixColumns operation is omitted.

Key Schedule AES-128. As we consider only AES with 128-bit key in the main part of
this paper, we shall describe only its key schedule algorithm. The key schedule of AES-128
takes the user key and transforms it into 11 subkeys of 128 bits each. The subkey array
is denoted by W [0, . . . , 43], where each word of W [·] consists of 4 bytes and where the
first 4 words of W [·] are loaded with the user secret key. The remaining words of W [·] are
updated according to the following rule:

W [i][j] =
{
W [i][j − 4]⊕ SB(W [i+ 1][j − 1])⊕R[i][j/4] if j mod 4 = 0
W [i][j − 1]⊕W [i][j − 4] otherwise

where i = 0, 1, 2, 3, j = 4, . . . , 43 and R[·] is an array of predetermined constants.3

3The round constants are defined in GF (28)[X] as R[0][1] = X, R[0][r] = X ·R[0][r − 1] if r ≥ 2 and
R[i][·] = 0 if i 6= 0. For the following, let R[r] ≡ R[0][r].
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The Notation used in the Paper. Let x denote a plaintext, a ciphertext, an intermediate
state or a key. Then xi,j or xi+4×j with i, j ∈ {0, . . . , 3} denotes the byte in the row i and
in the column j. We denote by kr the key of the r-th round. If only one key is used, then
we denote it by k to simplify the notation. Finally, we denote by R one round of AES,
while we denote r rounds of AES by Rr. We sometimes use the notation RK instead of R
to highlight the round key K. As last thing, in the paper we often use the term “partial
collision” (or “collision”) when two texts belong to the same coset of a given subspace X.

3.1 Subspace Trails of AES
In this section, we recall the main concepts of the subspace trails of AES presented
in [GRR16]. In the following, we only work with vectors and vector spaces over F4×4

28 , and
we denote by {e0,0, . . . , e3,3} or {e0, ..., e15} the unit vectors of F4×4

28 (e. g. ei,j or ei+4×j
has a single 1 in row i and column j). We also recall that given a subspace X, the cosets
X ⊕ a and X ⊕ b (where a 6= b) are equal (X ⊕ a ≡ X ⊕ b) if and only if a⊕ b ∈ X.

Definition 4. The column spaces Ci are defined as Ci = 〈e0,i, e1,i, e2,i, e3,i〉.

Definition 5. The diagonal spaces Di and the inverse-diagonal spaces IDi are respec-
tively defined as Di = SR−1(Ci) ≡ 〈e0,i, e1,i+1, e2,i+2, e3,i+3〉 and IDi = SR(Ci) ≡
〈e0,i, e1,i−1, e2,i−2, e3,i−3〉, where the indexes are taken modulo 4.

Definition 6. The i-th mixed spaces Mi are defined asMi = MC(IDi).

Definition 7. For I ⊆ {0, 1, 2, 3}, let CI , DI , IDI andMI be defined as

CI =
⊕
i∈I
Ci, DI =

⊕
i∈I
Di, IDI =

⊕
i∈I
IDi, MI =

⊕
i∈I
Mi.

For completeness, we briefly describe the subspace trail notation using a more “classical”
one. If two texts t1 and t2 are equal except for the bytes in the i-th diagonal4 for each
i ∈ I, then they belong in the same coset of DI . Two texts t1 and t2 belong in the same
coset ofMI if the bytes of their difference MC−1(t1⊕ t2) in the i-th anti-diagonal for each
i /∈ I are equal to zero. Similar considerations hold for the spaces CI and IDI .

As shown in detail in [GRR16]:

• for any coset DI ⊕ a there exists unique b ∈ C⊥I such that R(DI ⊕ a) = CI ⊕ b;

• for any coset CI ⊕ a there exists unique b ∈M⊥I such that R(CI ⊕ a) =MI ⊕ b.

Theorem 1 ([GRR16]). For each I and for each a ∈ D⊥I , there exists one and only one
b ∈M⊥I such that

R2(DI ⊕ a) =MI ⊕ b.

Observe that if X is a generic subspace, X ⊕ a is a coset of X and x and y are two
elements of the (same) coset X ⊕ a, then x⊕ y ∈ X. It follows that:

Lemma 1. For all x, y and for all I ⊆ {0, 1, 2, 3}:

Pr
[
R2(x)⊕R2(y) ∈MI

∣∣ x⊕ y ∈ DI] = 1.

As demonstrated in [GRR16], we finally recall that for each I, J ⊆ {0, 1, 2, 3}: MI ∩
DJ = {0} if and only if |I|+ |J | ≤ 4. It follows that

4The i-th diagonal of a 4× 4 matrix A is defined as the elements that lie on row r and column c such
that r − c = i mod 4. The i-th anti-diagonal of a 4× 4 matrix A is defined as the elements that lie on row
r and column c such that r + c = i mod 4.
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Theorem 2 ([GRR16]). Let I, J ⊆ {0, 1, 2, 3} such that |I|+ |J | ≤ 4. For all x 6= y:

Pr
[
R4(x)⊕R4(y) ∈MI

∣∣ x⊕ y ∈ DJ] = 0.

Finally, for the follow-up, we introduce a generic subspace trail of length 1.

Definition 8. Let I be a subset of {(0, 0), (0, 1), . . . , (3, 2), (3, 3)} ≡ {(i, j)}0≤i,j≤3. Let

the subspace XI be defined as XI = 〈{ei,j}(i,j)∈I〉 ≡
{⊕

(i,j)∈I αi,j · ei,j
∣∣∀αi,j ∈ F28

}
.

In other words, XI is the set of elements given by linear combinations of {ei,j}(i,j)∈I ,
where ei,j ∈ F4×4

28 has a single 1 in row i and column j.

Theorem 3. For each I ⊆ {(0, 0), (0, 1), . . . , (3, 2), (3, 3)} ≡ {(i, j)}0≤i,j≤3 and for each
a ∈ X⊥I , there exists one and only one b ∈ Y⊥I such that R(XI ⊕ a) = YI ⊕ b, where
YI = MC ◦ SR(XI).

The complete proof5 of this Theorem is given in Appendix B. Such subspace trail cannot
be extended on two rounds for any generic XI , due to the non-linear S-Box operation of
the next round (that can destroy the linear relations that hold among the bytes).

3.2 (Weak-Key) Invariant Subspace Trail for AES
In this section, we present a subspace IS which is invariant for a key-less AES round, and
a set of weak-keys for AES-128 that allows to set up an invariant subspace trail for 2-round
AES-128. Similar results – presented in Appendix C – can be provided for AES-192 and
AES-256. Finally, we discuss a weakness of an alternative linear key-schedule for AES-128
proposed at ToSC/FSE 2018 [Kho+17], based on permutations of the byte positions.

3.2.1 Invariant Subspace IS for AES

Let the subspace IS be defined as

IS :=



a b a b
c d c d
e f e f
g h g h


∣∣∣∣∣∣∣∣ ∀a, b, c, d, . . . , h ∈ F28

 (1)

This subspace is invariant under a key-less round R(·) = MC ◦ SR ◦ SB(·), since

SB(IS) = IS SR(IS) = IS MC(IS) = IS.

This subspace – already presented and used in e. g. [Cha+17; Guo+13; Le+04] – can
easily be found by extending the result of Algorithm 1. It will be our starting point in
order to set up a weak-key invariant subspace trail for all versions of AES.

3.2.2 Weak-Keys of AES-128 & Invariant Subspace Trail

In the case of the AES key-schedule, under one of the 232 weak-keys in Kweak

Kweak :=



A A A A
B B B B
C C C C
D D D D


∣∣∣∣∣∣∣∣ ∀A,B,C,D ∈ F28

 (2)

5Here we limit ourselves to highlight that for each I ⊂ {(0, 0), (0, 1), . . . , (3, 2), (3, 3)} ≡ {(i, j)}0≤i,j≤3,
there exists J ⊆ {(i, j)}0≤i,j≤3 such that SR(XI) = XJ (or equivalently SR−1(XI) = XJ ).
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the subspace IS is mapped into a coset of IS after two complete AES rounds.
In more details, given k ∈ Kweak, let k̂ be the corresponding subkey after 2 rounds of

the key schedule (where k̂ /∈ Kweak in general). It follows that

IS R2
K◦ARK(·)−−−−−−−−→ IS ⊕ k̂

where RK(·) ≡ ARK ◦MC ◦SR ◦ SB(·), that is IS forms a weak invariant subspace of
length 2. In order to prove this result, it is sufficient to note that

1. Kweak ⊆ IS, which implies that IS ⊕ k = IS for all k ∈ Kweak;

2. the first round key derived from the key-schedule of Kweak – denoted by K ′w – is a
subset of IS

K ′w ≡


SB(B)⊕A⊕R[1] SB(B)⊕R[1] SB(B)⊕A⊕R[1] SB(B)⊕R[1]

SB(C)⊕B SB(C) SB(C)⊕B SB(C)
SB(D)⊕ C SB(D) SB(D)⊕ C SB(D)
SB(A)⊕D SB(A) SB(A)⊕D SB(A)


3.2.3 Key Schedules based on Permutation of the Byte Positions

The possibility to set up a weak invariant subspace trail depends on the concrete value
of the secret key and of the key schedule details. To better understand this point, here
we analyze another key-schedule recently proposed at ToSC/FSE 2018 [Kho+17] in the
case in which no random round-constant is added. Such a key-schedule is linear and it
is based on permutations of the byte positions: each subkey is the result of a particular
permutation applied to the whitening key defined as follows

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

→


11 15 3 7
12 0 4 8
1 5 9 13
2 6 10 14

 (3)

Such key-schedule has been proposed with the only goal to provide resistance against
related key-differential attacks: in [Kho+17, Sect. 6], authors “emphasize that [their] goal
here is to design a simple yet efficient key schedule that maximizes the number of active
Sboxes in the related-key model.”.

In the case in which random round-constants are added, an invariant subspace attack
that covers an unlimited number of rounds6 is very unlikely, as showed e.g. in [Bei+17]
(for the case of other ciphers). Hence, by adding random constants at every round, such
key-schedule is perfectly fine and could be a good candidate for future designs.

To emphasize the importance of such random round-constant addition, here we point
out that it is always possible to set up an “infinitely-long” weak invariant subspace in the
case in which no random round-constant is added. Indeed, consider the previous subspace
IS defined in Eq. (1) and assume that the whitening key belongs to such subspace. It
follows that any subkey generated by the previous permutation belongs to this subspace
(due to particular symmetries of the permutation), which implies the possibility to set up
an “infinitely-long” weak invariant subspace

IS MC ◦ SR ◦ SB(·)−−−−−−−−−−→ IS ·⊕k[r]−−−−→ IS (4)

for a set of 264 weak-keys K ∈ IS (for which all round-keys k[r] are in IS).
6Note that even in the case in which random round-constants are added, then it is potentially possible

to set up a finite weak invariant subspace trail (namely, that covers a limited number of rounds).
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Adding a (partial) S-Box Layer. Besides adding random round-constants, another possi-
ble way to prevent such invariant subspace attack is by adding non-linear operations in
the key-schedule. In [Kho+17, Sect. 6], authors propose to “tweak this design (without
increasing the tracking effort) by adding an S-Box layer every round to the entire first row
of the key state” (with the goal to increment the security against related-key differential
attacks). Due to the analysis just proposed and only in the case in which no round-constant
is added, here we show that this operation does not improve the security against the
presented invariant subspace attack. Indeed, note that the invariant subspace IS is still
mapped into itself even if an S-Box layer is applied to the entire first row of the key state:

SB(a) SB(b) SB(a) SB(b)
c d c d
e f e f
g h g h

 =


a′ b′ a′ b′

c d c d
e f e f
g h g h

 ∈ IS.
We emphasize that this problem can be easily fixed by applying such an S-Box layer every
round to the entire (e.g.) first column/diagonal. Indeed, in this last case, such S-Box layer
destroys the invariant subspace trail after few rounds. As a result, even in the case in
which no random round-constant are added, the partial S-Box layer applied every round
to the entire first column/diagonal7 is sufficient by itself to prevent “infinitely-long” weak
invariant subspace trails based on IS.

Follow-UpWorks: Key-Schedule based on Permutation. After the initial work [Kho+17],
other key-schedules based only on permutations have been recently proposed at SAC 2018
[Der+18]. Here we focus on the one proposed in [Der+18, Theorem 2], and defined by the
following byte-permutation:(

15 0 2 3 4 11 5 7 6 12 8 10 9 1 13 14).

As for the key-schedule proposed by Eq. (3), such key-schedule guarantees more security
than the AES one w.r.t. related-key differential attacks (at least 16 S-Boxes are active
over 5 rounds). At the same time, with respect to the key-schedule proposed in [Kho+17]
and only in the case in which no random round-constant is added, here an “infinitely-long”
invariant subspace trail can be set up for a set of 28 weak keys only, namely the whitening
key that belong into

IS(trivial) :=



x x x x
x x x x
x x x x
x x x x

 ∣∣∣∣∀x ∈ F28

.
This highlights an interesting difference between the key-schedule proposed in [Kho+17]
and the follow-up one proposed in [Der+18]. For every AES-like cipher and for every key-
schedule based only on permutation of the bytes and for which no random round-constant
is added, it is always possible to set up a trivial “infinitely-long” invariant subspace trail for
28 weak-keys of the form IS(trivial). The crucial point is that in the case of the key-schedule
proposed in [Kho+17], it is also possible to construct “infinitely-long” invariant subspace
trails that are non-trivial (namely, for the case of 264 weak-keys instead of just 28 ones).

Before going on, we remark one more time that both key-schedules are perfectly secure
and good candidates for future designs if random round-constants are added.

7For completeness, we emphasize that the same result holds in the case of the original AES key-schedule
without random constants. In other words, even if one removes the round-constant additions in the original
AES key-schedule, the possibility to set up an infinite long invariant subspace trails is prevented by the
presence of a partial S-Box layer in the key-schedule.
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3.3 Weak-Key Subspace Trail of AES: a Concrete Example
Finally, we present a (proper) weak-key subspace trail for AES. For simplicity, we limit
ourselves to focus on an S-Box defined by the inverse operation8 namely

∀x ∈ GF (28) : S(x) =
{

1/x ≡ x254, if x 6= 0,
0 otherwise

To achieve our goal, we look for subspaces V,W ⊂ GF (28) of dimension two and/or four
s. t.

S(V ⊕ v) ⊆W ⊕ w
for certain (not all) v, w ∈ GF (28), where V 6= W in general.

E. g. the subspace V of dimension four defined as V = 〈[0x01, 0x0c, 0x50, 0xb0], 0〉 =
{x ∈ GF (28) |x256⊕x = 0} is invariant under the S-Box – that is, S(V ) = V , since S(x)256⊕
S(x) = [(x254)]256⊕x254 = x254⊕x254 = 0 (remember that x2n−1 = 1 for all x ∈ GF (2n)),
while its cosets V ⊕ v for v 6= 0 are in general not invariant. In [BWP05], several subspaces
V,W ⊂ GF (28) of dimension two and four are defined such that V 6= W and S(V ⊕ v) ⊆
W ⊕w, like S (V ≡ 〈[0x02, 0x18, 0x61, 0xa0], 0〉) = (W ≡ 〈[0x06, 0x28, 0x58, 0x8b], 0〉) . All
these subspaces can be used to set up a weak-subspace trail for 1-round AES, e.g.

V ⊕ x ≡

 V x0,1 x0,2 x0,3
x1,0 V x1,2 x1,3
x2,0 x2,1 V x2,3
x3,0 x3,1 x3,2 V

 MC ◦ SR ◦S(Kw⊕·)−−−−−−−−−−−−→W ⊕ y ≡

W y0,1 y0,2 y0,3
W y1,1 y1,2 y1,3
W y2,1 y2,2 y2,3
W y3,1 y3,2 y3,3


for random value of x ∈ D⊥0 ≡ D1,2,3 (where y ∈ C1,2,3). Similarly, it is possible to set up
different and longer weak-key subspace trails.

The crucial point here is that this weak-key subspace trail is neither a subspace trail
nor an invariant subspace trail, since:

• initial and final subspaces are different (hence, it’s not an invariant subspace trail);

• it is not possible to choose any arbitrary coset of V, since each byte in the first
diagonal must belong to the subspace 〈[0x02, 0x18, 0x61, 0xa0]〉 (hence, they cannot
take any possible value as in the case of a subspace trail);

• the class of weak keys Kw corresponds to the subspace V ⊕ D1,2,3 (where V ⊂
D0), where each byte of the key in the first diagonal belongs to the subspace
〈[0x02, 0x18, 0x61, 0xa0]〉, while the bytes in the other diagonals can take any possible
values (hence, it does not hold for any key as in the case of a subspace trail).

4 Weak-Key Secret-Key Distinguishers for AES
As a first application of the invariant subspaces just found, we are going to show that
under the assumption of weak-keys it is possible to extend the secret-key distinguishers
present in the literature to more rounds. In the following, we present in detail only the
results for AES-128 for the encryption/forward direction (analogous results hold also in
the decryption/backward direction). Similar results can be obtained also for AES-192
and AES-256, using the corresponding weak-keys and weak-key invariant subspace trails
defined in Appendix C. The results – which have been practically tested using a C/C++
implementation – are summarized in Table 1. As concrete example of practical use cases of
these results, in Appendix D we present collisions for Matyas-Meyer-Oseas, Davies–Meyer
and Miyaguchi-Preneel compressing modes instantiated with 6- and 7-round AES-256.

8Analogous results can be obtained for the real AES, since the AES S-Box is affine equivalent to S(x),
that is AES-S-Box(x) = M · S(x)⊕ 0x63 where M is a 8× 8 binary (invertible) matrix.
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Table 1: Secret-key properties for round-reduced AES. In the following, we list the proper-
ties for round-reduced AES which are independent of the secret key, together with the
corresponding number of rounds. “Number of keys” denotes the number of keys (with
respect to the total space) for which a particular property holds for up to r rounds. Just
for simplicity, we do not add the distinguisher complexity (or equivalently, the probability
of the exploited property).

Property Version of AES Rounds Number of keys Reference

AES-128/256 3 All: 2128 / 2256 folklore
AES-128 5 All: 2128 [GR18]

AES-128/256 5 232 / 2128 § 4.1
Weak-key

AES-128 6 All: 2128 [BGL19; BR19]
Subspace Trail

AES-256 6/7/8 296 / 264 / 232 based on App. C.1 & § 4.1
AES-128/256 5 All: 2128 / 2256 [GRR17]
AES-128/256 6 232 / 2128 § 4.2Multiple-of-n
AES-256 7/8/9 296 / 264 / 232 based on App. C.1 & § 4.2

Assumption. From now on we assume that the secret key is a weak-key (that is, a key in
the set Kweak as described previously). We also emphasize that all the following results
are independent of the details of the S-Box and of the MixColumns operation.

4.1 Subspace Trail Distinguishers
In the case of AES, it is possible to set up subspace trail distinguishers for 3 and 4-round
AES. Both are independent of the secret-key, of the details of the S-Box and of the
MixColumns matrix (assuming branch number equal to five). In particular, the first one
exploits the fact that

Pr
[
R3(x)⊕R3(y) ∈MJ

∣∣ x⊕ y ∈ DI] = (28)−4|I|+|I|·|J|

as showed in detail in [GRR16], while for a random permutation Π the previous probability
is (approximately) equal to

Pr [Π(x)⊕Π(y) ∈MJ | x⊕ y ∈ DI ] = (28)−16+4|J|. (5)

In the following, we show that it is possible to extend the previous subspace trail
distinguisher for up to 5 rounds in the case of weak-keys. Focusing on the case of AES-128,
we have just seen that the subspace IS is mapped into a coset IS ⊕ a after two rounds
if the secret key is a weak-key. In other words, given two plaintexts x, y ∈ IS, then
R2(x)⊕R2(y) ∈ IS under a weak-key. By definition of IS and DI , note that9

Pr [z ∈ DI | z ∈ IS] =
{

2−32 I ≡ {0, 2}, {1, 3}
0 otherwise

(6)

where we assume that z /∈ DL for all L ⊆ {0, 1, 2, 3} s.t. |L| < |I| < 4. This is the starting
point for our results, together with the fact that Pr [z ∈ D0,2] = Pr [z ∈ D1,3] = 2−64 for a
generic text z.

9Note: the 1st and the 3rd diagonals of each text in IS are equal, as well as the 2nd and the 4th ones.
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4.1.1 Weak-Key Subspace Trail over 4-round AES-128

Since R2(DI⊕a) =MI⊕b (that is Pr
[
R2(x)⊕R2(y) ∈MI

∣∣ x⊕ y ∈ DI] = 1), it follows
that for an AES permutation and for a weak-key

Pr
[
R4(x)⊕R4(y) ∈MI

∣∣ x, y ∈ IS, k ∈ Kweak
]

= 2−32 if I ≡ {0, 2}, {1, 3},

while for a random permutation Π the probability is equal to 2−64 (see Eq. (5)).
This fact can also be re-written using the subspace trail notation.

Proposition 1. Consider 264 plaintexts in the subspace IS, and the corresponding ci-
phertexts after 4-rounds AES-128 encrypted under a weak-key k ∈ Kweak.

With probability 1 the ciphertexts are distributed as follows:

• there exist 232 (in 264) different cosets ofM0,2 s.t. each one of them contains exactly
232 ciphertexts;

• there exist 232 (in 264) different cosets ofM1,3 s.t. each one of them contains exactly
232 ciphertexts.

For a random permutation, each one of the previous events is satisfied with probability(264

232

)
·
∏232−1
i=0

[(
2−64)232−1·

(
1− i · 2−64)]≈ 2−270

.

A complete proof of this proposition can be found in Appendix E.1.1.

4.1.2 Weak-Key Subspace Trails over 5-round AES-128

Exploiting the fact that Pr[x ∈ CJ | x ∈MI ] = (28)−4|I|+|I|·|J| together with Eq. (6), it is
possible to set up a 5-round weak-key subspace trail distinguisher on AES.

Proposition 2. Let J ⊆ {0, 1, 2, 3} fixed. Then, the following probability holds:

Pr
[
R5(x)⊕R5(y) ∈MJ

∣∣ x, y ∈ IS, k ∈ Kweak
]

= 2−128+32·|J| + 2−95+16·|J| (7)

(with an error of magnitude 2−128).

A complete proof of this proposition just given can be found in Appendix E.1.2. Since
for a random permutation Π the probability of the same event is equal to 232·|J|−1

2128−1 ≈
2−128+32·|J| (where the approximation holds with an error of magnitude 2−128), it is
possible to distinguish the two cases for e.g. |J | = 3.

4.2 Weak-Key “Multiple-of-n” Property for 5- and 6-round AES-128
At Eurocrypt 2017, Grassi et al. [GRR17] presented the first property on 5-round AES (and
AES-like ciphers) which is independent of the secret key and of the details of the S-Box
and of the MixColumns. The result can be summarized as follows: Given 232·|I| plaintexts
in the same coset of a diagonal space DI , the number of different pairs of ciphertexts
that belong to the same coset ofMJ after 5-round AES is always a multiple of 8. The
“multiple-of-8” property is related to the “mixture differential” cryptanalysis presented in
[Gra18], and recently re-visited in [BCC19], where authors show that the above property
is an immediate consequence of an equivalence relation on the input pairs, under which
the difference at the output of the round function is invariant.

In the case of a weak-key, we are able to extend the previous result for up to 6-round
AES-128. The obtained results – which hold also in the decryption direction – are proposed
in the following Theorems:
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Theorem 4. Let IS andMI be the subspaces defined as before for a fixed I with 1 ≤ |I| ≤ 3.
Assume that the whitening key is a weak-key, that is it belongs to the set Kweak as defined
in Eq. (2). Given 264 plaintexts in IS, the number n of different pairs10 of ciphertexts
(ci = R5(pi), cj = R5(pj)) after 5-round AES for i 6= j that belong to the same coset of
MI (that is ci ⊕ cj ∈ MI) is a multiple of 128 (that is, ∃n′ ∈ N such that n = 128 · n′),
independently of the details of the S-Box and of the MixColumns matrix.

Proof. First of all, since the invariant subspace IS is mapped into a coset of IS after
2-round encryption, and similarly a coset ofMI is mapped into a coset of DI after 2-round
decryption, that is

∀k ∈ Kweak : IS R2(·)−−−−→
prob. 1

IS ⊕ a R(·)−−→ DI ⊕ a′
R2(·)−−−−→
prob. 1

MI ⊕ b′

we focus only on the middle round, and we prove the following equivalent result: given 264

plaintexts in a coset of IS, the number n of different pairs of ciphertexts (ci, cj) for i 6= j
that belong to the same coset of DI (that is ci ⊕ cj ∈ DI) after 1 round is a multiple of
128. This result can be achieved by observing that, given a pair of texts t1, t2 ∈ IS ⊕ a,
there exist other pair(s) of texts s1, s2 ∈ IS ⊕ a s.t.

• the following property holds with prob. 1:

R(t1)⊕R(t2) ∈ DI ⇔ R(s1)⊕R(s2) ∈ DI ;

• the texts s1, s2 are given by any different combination of the generating variables of
t1, t2.

By definition of IS, let t1 and t2 be as ti = a⊕
⊕7

j=0 x
i
j · (ej ⊕ ej+8) where xj ≡ xr+4×c

denotes the byte in the r-th row and in the c-th and (c+ 2)-th columns. For simplicity, let
ti ≡ (xi0, xi1, xi2, xi3, xi4, xi5, xi6, xi7).

Case: Different Generating Variables. Consider initially the case in which all the
generating variables are different, that is x1

j 6= x2
j for j = 0, 1, . . . , 7. Let St1,t2 be the

set of pairs of texts s1, s2 ∈ IS ⊕ a defined by swapping some generating variables of
t1 and t2. More formally, the set St1,t2 contains all 128 pairs of texts (s1, s2) for all
I ⊆ {0, 1, 2, 3, 4, 5, 6, 7} where

s1 = a⊕
7⊕

j=0

{[(
x1

j · δj(I)
)
⊕
(
x2

j ·
[
1− δj(I)

])]
·
(
ej ⊕ ej+8

)}

s2 = a⊕
7⊕

j=0

{[(
x2

j · δj(I)
)
⊕
(
x1

j ·
[
1− δj(I)

])]
·
(
ej ⊕ ej+8

)}
where the pairs (s1, s2) and (s2, s1) are considered to be equivalent, and where δx(A) is

the Dirac measure defined as δx(A) =
{

1 if x ∈ A
0 if x /∈ A

. By showing that

∀(s1, s2) ∈ St1,t2 : R(t1)⊕R(t2) = R(s1)⊕R(s2), (8)

it follows immediately that R(t1) ⊕ R(t2) ∈ DI ⇔ R(s1) ⊕ R(s2) ∈ DI for each
(s1, s2) ∈ St1,t2 . The equivalence Eq. (8) is due to the facts that the S-Box operation works
independently on each byte and that the XOR-sum is commutative. Since each set St1,t2
has cardinality 128, in the case in which one focuses on the pairs of texts with different

10Two pairs (s, t) and (t, s) are considered to be equivalent.
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generating variables, it follows that the multiple-of-128 property previously defined holds.

Generic Case. In the case in which some variables are equal, e. g. x1
j = x2

j for
j ∈ J ⊆ {0, . . . , 7} with |J | ≥ 1, the difference R(t1)⊕R(t2) is independent of the value of
x1
j = x2

j for each j ∈ J . Thus, the idea is to consider all the different pairs of texts given
by swapping one or more variables x1

l and x2
l for l = 0, 1, . . . , 7, where xj for j ∈ J can

take any possible value in F28 . Note that in the case in which 0 ≤ |J | < 8 variables are
equal, it is possible to identify

27−|J|︸ ︷︷ ︸
by swapping different gen. variables

× 28·|J|︸ ︷︷ ︸
due to equal gen. variables

= 27·(1+|J|) = 1281+|J|

different texts s1 and s2 in IS ⊕a that satisfy the condition R(t1)⊕R(t2) = R(s1)⊕R(s2).
More formally, given t1 and t2, the set St1,t2 contains all 27·(1+|J|) pairs of texts (s1, s2)
for all I ⊆ {0, 1, 2, 3, 4, 5, 6, 7} \ J and for all α0, . . . , α|J| ∈ F28 where

s1 = a⊕
⊕

j∈{0,...,7}\J

{[(
x1

j · δj(I)
)
⊕
(
x2

j ·
[
1− δj(I)

])]
·
(
ej ⊕ ej+8

)}
⊕
⊕
j∈J

αj ·
(
ej ⊕ ej+8

)
s2 = a⊕

⊕
j∈{0,...,7}\J

{[(
x2

j · δj(I)
)
⊕
(
x1

j ·
[
1− δj(I)

])]
·
(
ej ⊕ ej+8

)}
⊕
⊕
j∈J

αj ·
(
ej ⊕ ej+8

)

In conclusion, given plaintexts in the same coset of IS, the number of different pairs of
ciphertexts that belong to the same coset of DI after one round is a multiple of 128.

Theorem 5. Let IS, MJ and XI be the subspaces defined as before, for an arbitrary
J ⊆ {0, 1, 2, 3} and arbitraryI ⊂ {(0, 0), (0, 1), . . . , (3, 2), (3, 3)} ≡ {(i, j)}0≤i,j≤3. Assume
that the whitening key is a weak-key, i. e. it belongs to the set Kweak defined in Eq. (2).
Given 264 plaintexts in IS, the following properties hold independently of the details of the
S-Box:

• for 5-round AES-128, the number n of different pairs of ciphertexts (ci, cj) for i 6= j
that belong to the same coset of XI (i.e. ci ⊕ cj ∈ XI) is a multiple of 2, that is
∃n′ ∈ N such that n = 2 · n′.

• for 6-round AES-128, the number n of different pairs of ciphertexts (ci, cj) for i 6= j
that belong to the same coset of MJ (i.e. ci ⊕ cj ∈ MI) is a multiple of 2, that is
∃n′ ∈ N such that n = 2 · n′.

The proof of these properties – similar to the one given in Grassi et al. [GRR17] and
to the one already given – is proposed in details in Appendix E.2.

4.3 Practical Experiments
Most of the previous properties have been practically verified11. Here we briefly present
the practical results and we compare them with the theoretical ones.

All our distinguishers are based on IS and their practical verification requires at least
264 reduced-round AES encryptions. For this reason, we performed our experiments on
small-scale AES [CMR05], where each word is composed of 4-bit instead of 8 (note that
all previous results are independent of the details of the S-Box operation). This implies
that the dimension of IS reduces to 32 bits from 64.

Practical Results. For Theorem 4 and Theorem 5, we performed 5-round and 6-round
encryptions of IS for more than 100 randomly chosen weak-keys in Kweak. We counted the

11The source codes of the distinguishers/attacks will be made public with the publication of this paper.
It is also part of the submission as supplement material.
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Table 2: AES Chosen-Key Distinguishers. The computation cost is the cost to generate N -
tuples of plaintexts/ciphertexts. “SK” denotes a chosen-key distinguisher in the Single-Key
setting, while “RK” denotes a chosen-key distinguisher in the Related-Key setting. For
completeness, we mention that the known-key distinguishers presented in Gilbert [Gil14]
are excluded from this Table due to the arguments reported in Section 5.1.2.

AES Rounds Computations Property SK RK Reference

AES-128

8 224 Multiple Diff. Trail 3 [DFJ12]
8 213.4 Multiple Diff. Trail 3 [JNP13]
9 255 Multi-Collision Diff. 3 [FJP13]
9 264 Multiple-of-n (232 keys) 3 § 5.3

AES-192 9 216 Multiple Diff. Trail 3 [ZWZ19]

AES-256
9 224 Multiple Diff. Trail 3 [DFJ12]
12 264 Multiple-of-n (232 keys) 3 App. H.2

14 (full) 2120 Multi-Collision Diff. 3 [BKN09]

collisions in each of the four inverse diagonals space ID and observed the multiple-of-128
and multiple-of-2 properties hold for 5-round and 6-round encryptions, respectively. Similar
tests have been performed in order to check the multiple-of-2 property on the subspaces XI
as defined in Definition 8 for each |I| ≤ 4. Due to increased time and memory complexity,
these properties were not verified for |I| > 4. The experiment results – also performed in
the decryption direction – coincide with the results provided in Tables 1 and 2.

5 New Chosen-Key Distinguishers for AES
In this section we present new chosen-key distinguishers for AES in the single-key setting.
In particular, as major results, we are able to present the first candidate 9-round chosen-key
distinguisher for AES-128 and a 12-round candidate chosen-key distinguisher for AES-256,
both in the single-key setting. All the distinguishers that we present are based on the
(practically verified) multiple-of-n property proposed in Section 4.2.

The goal of an open-key distinguisher is to differentiate between a block cipher E
which allows to generate plaintext/ciphertext pairs which exhibit a rare relation, even for a
small set of keys or a single key, and an ideal cipher Π that does not have such a property.
However, this poses a definitional problem as it was shown already in [CGH04] that any
concrete implementable cipher (like the AES) can be trivially distinguished from an ideal
cipher. To the best of our knowledge, finding a proper formal definition that captures the
intuition behind chosen-key distinguishers has been a challenging task for the last fifteen
years and is still an open problem.

We do not attempt to address this formalization challenge here, but proceed in the way
that is custom in the literature to describe chosen-key distinguisher: (1st) describe the
rare property (see Section 5.2), (2nd) show that it can be efficiently constructed for the
block cipher usually using an inside-out approach (see Section 5.3 for 9-round AES-128
and Section 5.5 for 10-round AES-128), and (3rd) argue or prove in some model that any
generic method is less efficient or has low success probability (see Section 5.4).

Our results are summarized in Table 2: in order to compare the results, note that an
attack/distinguisher with no key difference is (logically) harder than an attack/distinguisher
for which key differences are allowed, since the attacker has less freedom.

As before, in the following we limit ourselves to give all the details for the AES-128
case, and we refer to Appendix H for the corresponding distinguishers on AES-256.
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5.1 Open-Key Distinguishers – State of the Art for AES
5.1.1 Chosen-Key Distinguishers – State of the Art for AES

To the best of our knowledge, the first chosen-key distinguisher for AES in the single-
key setting has been proposed in [DFJ12]. In there, the chosen-key model asks the
adversary to find two plaintexts/ciphertexts pairs and a key such that the two plaintexts
are equal in 3 diagonals and the two ciphertexts are equal in 3 anti-diagonals (if the final
MixColumns is omitted). Equivalently, using the subspace trail notation, the goal is to find
(p1, c1 ≡ R8(p1)) and (p2, c2 ≡ R8(p2)) for p1 6= p2 s.t. p1 ⊕ p2 ∈ DI and c1 ⊕ c2 ∈ MJ

for a certain I, J ⊆ {0, 1, 2, 3} s.t. |I| = |J | = 1.
This problem is equivalent to the one proposed in [GP10; JNPP14] in the known-

key scenario. In particular, the main (and only) difference is related to the freedom of
choosing the key, which allows to reduce the computational cost. In more details, for the
8-round AES-128 case it is possible to find the required pairs of plaintexts/ciphertexts
with 224 computations instead of 244 (≡ the cost in the known-key scenario), while the
computational cost in the case of an ideal cipher is of 264 in both cases. Later on, such
distinguisher has been improved in [JNP13]. For completeness, similar results have been
proposed for 9-round AES-256.

The chosen-key model has been popularized some years before by Biryukov et al.
[BKN09], since a distinguisher in this model has been extended to a related-key attack on
full AES-256. A related distinguisher for 9-round AES-128 has been proposed by Fouque
et al. [FJP13]. Both the chosen-key distinguisher proposed in these papers are in the
related-key setting. Here we briefly recall them, but we emphasize that we do not consider
related-keys in this article. In [BKN09], authors show that it is possible to construct
a q-multicollision on Davies-Meyer compression function using AES-256 in time q · 267,
whereas for an ideal cipher it would require on average q · 2

q−1
q+1 128 time complexity. A

similar approach has been exploited in [FJP13] to set up the first chosen-key distinguisher
for 9-round AES-128. Here, the chosen-key model asks the adversary to find a pair of
keys (k, k′) satisfying k ⊕ k′ = δ with a known (fixed) difference δ, and a pair of messages
(p1, c1 ≡ R9(p1)) and (p2, c2 ≡ R9(p2)) conforming to a partially instantiated differential
characteristic in the data part.

5.1.2 Gilbert’s Known-Key Distinguisher for AES

For completeness, we mention that a 10-round known-key distinguisher for AES has
been proposed by Gilbert [Gil14] at Asiacrypt 2014. In such case, the known-key model
asks the adversary to find a set of 264 (plaintext, ciphertext) pairs, that is (pi, ci) for
i = 0, . . . , 264 − 1, and two keys k0 and k10 with the following properties12:

1. with respect to the key k0, the bytes of {Rk0(pi)}i are uniformly distributed, or
equivalently that the partially encrypted texts {Rk0(pi)}i are uniformly distributed
among the cosets of DI for each I with |I| = 3;

2. with respect to the key k10, the bytes of {R−1
k10(ci)}i are uniformly distributed, or

equivalently that the partially decrypted texts {R−1
k10(ci)}i are uniformly distributed

among the cosets ofMJ for each J with |J | = 3.

We emphasize that such properties are not verified directly by the plaintexts and by the
ciphertexts but after one round encryption/decryption, and they involve keys k0 and k10

that can be different from the “real” encryption subkeys derived from k. The probability
that 264 (plaintext, ciphertext) generated by a random permutation satisfy the previous

12For this distinguisher, we abuse the notation kr to denote a key of a certain round r. We emphasize
that kr is not necessarily equal to the secret key, that is kr can be different from the “real” r-th subkey.
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property is 2−7 200. Thus, given 264 + 28 plaintexts/ciphertexts, the probability to find
among them a subset of 264 pairs of texts with the required properties is close to 1.

A distinguisher based on the Gilbert’s technique is different from all the previous
distinguishers up to 8 rounds present in the literature. For all distinguishers up to 8-
round (and for the distinguishers proposed in this paper), the property/relation R – that
the N-tuple of (plaintexts, ciphertexts) must satisfy – does not involve any operation
of the block cipher E. On the other hand, the previous Gilbert’s like distinguishers do
not satisfy this requirement, since in such cases the property/relation R involves and
re-uses some operations of E: indeed, instead of considering properties “directly” on the
plaintexts/ciphertexts, the idea is to show the existence of certain keys for which some
properties hold after one round encryption/decryption. As a result, even if Gilbert’s
known-key distinguisher leads to statements on more rounds of AES than ever before
(without related keys), in the same paper (see [Gil14, Abstract]) it is also observed that its
“impact on the security of [. . . ] AES when used as a known key primitive, e. g. in a hash
function construction, is questionable”.

Moreover, in order to support such a new kind of distinguisher, it is claimed in [Gil14]
that (1st) it seems technically difficult to use a stronger property than the uniform
distribution one to extend an 8-round known-key distinguisher to a 10-round one and
(2nd) it is impossible to use the same technique in order to extend a distinguisher for
more than 2 rounds. Recently, both claims have been disproved in [GR17], in which
authors exploit the same technique to propose (1st) a distinguisher on 10-round AES
based on truncated differential trails and (2nd) the first distinguisher on 12-round AES
obtained by extending an 8-round distinguisher. Hence, the problem to set up a 9 (or more)
rounds open-key distinguisher in the single-key setting for AES-128 without exploiting the
Gilbert’s technique is still open.

5.2 The “Simultaneous Multiple-of-n” Property
In our distinguisher, the chosen-key model asks the adversary to find a set of 264 (plaintexts,
ciphertexts), that is (pi, ci ≡ R9(pi)) for i = 0, . . . , 264 − 1 – where all the plaintexts/ci-
phertexts are generated by the same key – and a key such that the following “simultaneous
multiple-of-n” property is satisfied:

• for each J, I ⊆ {0, 1, 2, 3}, the number of different pairs of ciphertexts that belong to
the same coset ofMJ and the number of different pairs of plaintexts that belong to
the same coset of DI are a multiple of 128 = 27;

• for each J, I ⊂ {(0, 0), (0, 1), . . . , (3, 2), (3, 3)} ≡ {(i, j)}0≤i,j≤3, the number of differ-
ent pairs of ciphertexts that belong to the same coset of MC(XI) and the number of
different pairs of plaintexts that belong to the same coset of XJ are a multiple of 2.

For the follow-up, we emphasize that the subspaces X (defined as in Definition 8) are
independent, in the sense that e. g. the fact that the multiple-of-2 property is satisfied by
XI and/or XJ does not imply anything on XI∪J and vice-versa. This is due to the fact that
given XI and XJ , then XI ∪XJ $ XI∪J if XI∪J 6= F4×4

28 . As a result, any information about
the multiple-of-n property on XI ,XJ (and so XI ∪ XJ) is useless to derive information
about the multiple-of-n property on XI∪J \ (XI ∪ XJ) – assuming XI∪J 6= F4×4

28 .

5.3 9-round Chosen-Key Distinguisher for AES-128
To find a set of 264 plaintexts/ciphertexts with the required “simultaneous multiple-of-n”
property, the distinguisher exploits the fact that the required property can be fulfilled by
starting in the middle with a suitable set of texts. In particular, the idea is simply to choose
the key such that the subkey of the 4-th round k4 belongs the subset Kweak defined as in
Eq. (2). Thus, consider the invariant subspace IS defined as in Eq. (1), and define the
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264 plaintexts as the 4-round decryption of IS and the corresponding ciphertexts as the
5-round encryption of IS. Due to the secret-key distinguishers just presented, this set
satisfies the required “simultaneous multiple-of-n” property.

In more details, due to the assumption on the key (that is, k4 ∈ Kweak ⊆ IS), note
that the subspace IS is mapped into a coset of IS after two rounds of encryption and one
round of decryption, that is

∀k4 ∈ Kweak : IS ⊕ k̂ R−1(·)←−−−− IS R2(·)−−−→ IS ⊕ k̃.

Due to the results of Section 4.2 and since k4 ∈ Kweak, the multiple-of-n properties hold
with probability 1 on the plaintexts and on the ciphertexts

Multiple-of-n R−3(·)←−−−− IS ⊕ k̂ R−1(·)←−−−− IS R2(·)−−−→ IS ⊕ k̃ R3(·)−−−→ Multiple-of-n

It follows that the required set can be constructed using 264 computations. Moreover,
we emphasize that our experiments on the secret-key distinguishers of Section 4.2 implies
the practical verification of this distinguisher. What remains is to give arguments as to
why producing that property simultaneously on the plaintext and ciphertext side of an
ideal cipher is unlikely to be as efficient.

5.4 Achieving the “Simultaneous Multiple-of-n” Property Generically
In this case, the adversary faces a family of random and independent ideal ciphers
{Π(K, ·),K ∈ {0, 1}k}, where k = 128, 192, 256 respectively for the cases AES-128/192/256.
His goal is to find a key k and a set of 264 plaintexts/ciphertexts (pi, ci = Π(k, pi)) s.t. the
“simultaneous multiple-of-n” property is satisfied. As we are going to show, the probability
to find a set of 264 plaintexts/ciphertexts pairs (Xi, Yi) that satisfies the “simultaneous
multiple-of-n” property for a random permutation is upper bounded by 2−65 618.

As first thing, we discuss the freedom to choose the key. Since the adversary does
not know the details of the ideal cipher Π, he does not have any advantage to choose a
particular key instead of another one. For this reason, in the following we limit to consider
the case in which the permutation Π is instantiated by a fixed key chosen at random in
the set {0, 1}k – from now on we use the notation Π(pi) := Π(k, pi).

Exploiting the same strategy proposed in [Gil14], here we prove that the success
probability of any oracle algorithm of overall time complexity upper bounded by 264 is
negligible13 – see Appendix F for a complete proof of the following proposition.

Proposition 3. Given a perfect random permutation Π of {0, 1}128 (e. g. instantiated by
an ideal cipher with a fixed key uniformly chosen at random in {0, 1}k), consider N = 264

oracle queries made by any algorithm A to the perfect random permutation Π or Π−1.
Denote this set of 264 plaintexts/ciphertexts pairs by (Xi, Yi = Π(Xi)) for i = 0, . . . , 264−1.
The probability that A outputs a set of 264 plaintexts/ciphertexts pairs (Xi, Yi)i=0,...,264−1
that satisfies the “simultaneous multiple-of-n” property is upper bounded by 2−65 618.

What happens if the adversary performs more than 264 computations? To answer this
question, we first compute the probability that a random set of 264 plaintexts/ciphertexts
generated by the same key satisfies the “simultaneous multiple-of-n” property. As for-
mally showed in Appendix F, the “simultaneous multiple-of-n” property is satisfied with
probability [

(2−1)216−16 · (2−7)14
]2

= (2−65 618)2 ' 2−217

13We highlight that the proof of Proposition 3 is based on a strategy (very) similar to the one proposed
in Gilbert [Gil14] to prove that the uniform distribution (on 8- and 10-round AES) is generically hard.
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since (1st) there are
∑15
i=1
(16
i

)
= 216− 2 different subspaces XI for which the multiple-of-2

property holds, and among them there are 14 subspacesMI for which the multiple-of-128
property holds and (2nd) the probability that the number of collisions is a multiple of N
is ≈ 1/N . As a result, given 264 + 212 random texts, the player can find a set of 264 texts
that satisfy the required property both on the plaintexts and on the ciphertexts, since
it is possible to construct

(264+212

264

)
≈ (264)212

212! ' 2217.7 different sets of 264 texts (where
n! ' (n/e)n ·

√
2πn by Stirling’s approximation). On the other hand, the cost to identify

the right 264 texts among all the others is in general much higher than 264 computations:
Indeed, to have a chance of success higher than 95%, one must consider approximately
3 · 2131 236 different sets (note that 1− (1− 2−131 236)3·2131 236 ' 1− e−3 ≡ 0.95).

Moreover, consider the following. Given a set of random texts, suppose to change one
plaintext in order to modify the number of collisions in the subspace XI (or/and DI) for
a particular I. As a consequence, all the other numbers of collisions in the subspace XJ
(or/and DJ ) for all J 6= I change. Even if it is possible to have control of these numbers, a
problem arises since also the numbers of collisions among the ciphertexts in each subspace
MK and MC(XK) change, and in general it is not possible to predict such change in
advance. Indeed, since the the number of pairs of texts with 1 ≤ |J | ≤ 15 equal bytes
(that is, that belong to the same coset of a particular subspace XJ) is on average equal
to 2127 · 2−8·|J| ≥ 2127 · 2−8·15 = 27, it follows that that the change in one text modifies
all the numbers of collisions in each subspaces XJ (resp. MC(XJ)) – analogous for the
subspaces DI andMI . For all these reasons, we conjecture that that there is no (efficient)
strategy – that does not involve brute force search – to fulfill the required “simultaneous
multiple-of-n” property for which the cost is approximately of 264 computations (or lower).
The problem to formally prove this fact is left for future work.

Remarks. Before going on, we highlight that this claim/result is not true in general if one
considers only the multiple-of-n property (for n ≤ 8) in the subspaces DI andMJ , that is,
not for the generic subspaces X . For a broader understanding of the role of the invariant
subspace in the previous distinguishers, in Appendix G we discuss the (im)possibility to
set up an open-key distinguisher using the multiple-of-8 property proposed in [GRR17] for
more than 8-round AES.

5.5 “Simultaneous Properties” for 10-round (full) AES-128
Before going on, we mention that the previous chosen-key distinguisher can be potentially
extended to 10-round AES-128, by considering the following two possible approaches:

• add one round at the beginning (or at the end) at the previous distinguisher on
9-round + exploit a weaker property on the plaintexts (or on the ciphertexts);

• add one round in the middle at previous distinguisher on 9-round + exploit the
remaining degrees of freedom in the choice of the key.

As a result, for a given chosen key, both these two strategies allow us to find a set of
(plaintexts, ciphertexts) with some particular “simultaneously multiple-of-n” properties
similar to the ones defined for 9-round AES. In any case, we emphasize that we do not claim
anything regarding the possibility to exploit such strategies in order to set up chosen-key
distinguishers for 10-round (full) AES-128, since:

• as showed in Appendix H.1.1, in the case in which one adds one round at the
beginning (resp. at the end), one is forced to exploit a (very) weak multiple-of-n
property on the plaintexts (resp. on the ciphertexts). As a result, the gap between
the cost for the AES case and for the case of an adversary facing a family of random
and independent ideal ciphers becomes too small to set up a confident distinguisher;
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• as showed in Appendix H.1.2, in the case in which one adds one round in the middle
by using the remaining degrees of freedom in the choice of the key, one can re-exploit
exactly the same “multiple-of-n” properties proposed for the 9-round case. However,
the set up distingisher over 10-round AES-128 works for just one (chosen) key.

Acknowledgement. Authors thank Léo Perrin for useful discussion about weak-key
subspace trail. Authors also thank anonymous reviewers for their valuable comments.
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A Algorithmic Detection of Weak-Key Subspace Trails
Here we take a look at how we can find these algorithmically. To begin with, we recapitulate
how the algorithms for invariant subspaces [LMR15] and subspace trails work [LTW18].

F

F−1

vs.

U + as

. . .

U + a2

U + a1

V
+
b t

. .
.

V
+
b 2

V
+
b 1

F

Figure 1: To find invariant subspaces (left part), we iteratively compute the image of the
current subspace and map the span of it backwards through the inverse function, until the
process stabilizes. For subspace trails (right part), all cosets of the starting subspace get
mapped to a coset of the ending subspace. This implies that the derivative of the round
function is in the ending subspace.

First, Fig. 1 (left part) sketches the idea for invariant subspaces. Given a round function
F : Fn2 → Fn2 , the algorithm guesses a starting offset a for the affine subspace U ⊕ a and
then maps U ⊕ a forwards and back through F and F−1, every-time computing the span
of the image. If the subspace stabilizes, we have found an invariant subspace.

Second, Fig. 1 (right part) illustrates the main idea for subspace trails. The important
difference to invariant subspaces is that every coset of the starting subspace U is mapped
to some coset of the ending subspace V . The implication of this is, see [LTW18, Lemma 1],
the images of the derivatives ∆uF (·) := F (· ⊕ u)⊕ F (·) of the round function F span a
subspace of V . In other words, if U F→ V is a subspace trail, then

U
F→ span

(⋃
u∈U

Im(∆u(F ))
)
⊆ V.

We cannot exploit this fact for WKSTs, though. Instead we base the algorithm on the
idea for invariant subspaces.

Goal and Details of the Algorithm. Given a round function R : Fn2 → Fn2 and a key
schedule Ki : Fm2 → Fn2 for 0 ≤ i ≤ r rounds, the goal is to find two subspaces U, V ⊂ Fn2
and a subset S ⊆ Fm2 , s. t. every message m chosen from U and every key k ∈ S get
mapped to a ciphertext c = Ek(m) ∈ V , where the encryption uses the round function R
and key schedule Ki for the i-th round key. Thus, all master keys in S are weak-keys.

As a starting point, we assume that the zero message m = 0 is in our starting subspace
U0. This is anyway always the case, as we assume all Ui’s to be subspaces. Additionally,
we require that a certain key kweak – chosen by the user – is weak, thus in S. Since
kweak = 0 ∈ S is very often the case if invariant subspace attacks apply, we assume
kweak = 0 in the following. In particular, we have the following conditions:

0 ∈ Ui, R(Ui) ⊆ Ui+1,

Ki(S) ⊆ Ui, R(Ki(S)) ⊆ Ui+1. (9)
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Algorithm 1 Compute an initial Weak-key subspace trail
Precondition: A round function R : Fn2 → Fn2 and a key schedule Ki : Fn2 → Fn2 for

0 ≤ i ≤ r rounds. An upper bound max_rnd on the number of rounds to cover.
Postcondition: A weak-key subspace trail U0 → · · · → Ul over l rounds for a set S of

weak-keys.

1 function wkst(R,Ki,max_rnd)
2 S ← {0}
3 L← [U0 = {0,K0(0)}]
4 while for the last element Ui in L: dim(Ui) < n do
5 Ui+1 ← ∅
6 for enough x ∈R Ui do
7 Ui+1 ← Ui+1 ∪ {R(x)}
8 Ui+1 ← span(Ui+1 ∪ {Ki+1(k) | ∀k ∈ S})
9 append Ui+1 to L

10 if len(L) ≥ max_rnd then
11 return L
12 return (L, S)

Exploiting these conditions and starting at the above mentioned point, we can simply
compute the WKST forwards. We may want to check if the resulting trail is invariant,
for that we can simply compute the trail backwards at some point. For the complete
pseudocode14 see Algorithm 1.

The runtime of our algorithm depends on the while and for loop. The first loop iterates
over the subspaces in our trail and is thus bounded by the length of the WKST. For the
later loop, we have to iterate over “enough x”. Following the same argument as in [LTW18],
it follows that sampling n+100 random inputs is enough to compute the following subspace
with overwhelming probability.

B Generic Subspace Trail (of length 1) for AES – Proof
Here we give a complete proof regarding the subspace trail of length 1 set up using the
generic subspace X defined in Section 3.1.

First of all, we recall the definition of X .

Definition 9. Let I a subset of {(0, 0), (0, 1), . . . , (3, 2), (3, 3)} ≡ {(i, j)}0≤i,j≤3. Let the

subspace XI be defined as XI = 〈{ei,j}(i,j)∈I〉 ≡
{⊕

(i,j)∈I αi,j · ei,j
∣∣∀αi,j ∈ F28

}
.

Theorem 6. For each I ⊆ {(0, 0), (0, 1), . . . , (3, 2), (3, 3)} ≡ {(i, j)}0≤i,j≤3 and for each
a ∈ X⊥I , there exists one and only one b ∈ Y⊥I such that R(XI ⊕ a) = YI ⊕ b, where
YI = MC ◦ SR(XI).

Proof. To prove the Theorem, we simply compute R(XI ⊕ a). Since SubBytes is bijective
and operates on each byte independently, its only effect is to change the coset. In other
words, it simply changes the coset XI ⊕ a to XI ⊕ a′, where a′i,j = SB(ai,j) for each
i, j = 0, . . . , 3. ShiftRows simply moves the bytes of XI ⊕ a′ into SR(XI) ⊕ b

′ , where
b′ = SR(a′). Since MixColumns is a linear operation, it follows that MC(SR(XI)⊕ b

′) =
MC ◦ SR(XI)⊕MC(b′) = MC ◦ SR(XI)⊕ b

′′ . Key addition then changes the coset to
MC ◦ SR(XI)⊕ b.

14Only for simplicity, the update process for the set S is not included in the algorithm. More weak-keys
can be found by computing backward from the Ui’s, see Eq. (9) and the Sage implementation.
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C Weak-Key Invariant Subspace Trails of AES-256
Here we present the weak-invariant subspace trails for AES-256.

C.1 AES-256 Key-Schedule
In this case, the subkey array is denoted by W [0, . . . , 59], where here the first 8 words
of W [·] are loaded with the user secret key. The remaining words of W [·] are updated
according to the following rule:

W [i][j] =


W [i][j − 8]⊕ SB(W [i+ 1][j − 1])⊕R[i][j/8] if j mod 8 = 0
W [i][j − 8]⊕ SB(W [i][j − 1]) if j mod 8 = 4
W [i][j − 1]⊕W [i][j − 8] otherwise

where i = 0, 1, 2, 3, j = 8, . . . , 59 and R[·] is an array of predetermined constants.

C.2 Invariant Subspace – Weak-Keys of AES-256
For the case AES-256, a set of 2128 weak-keys is given by

Kweak :=



A0 A1 A0 A1 E0 E1 E0 E1

B0 B1 B0 B1 F 0 F 1 F 0 F 1

C0 C1 C0 C1 G0 G1 G0 G1

D0 D1 D0 D1 H0 H1 H0 H1


∣∣∣∣∣∣∣∣
∀Ai, . . . ,Hi ∈ F28

∀i = 0, 1


Under any of such keys, the subspace IS is mapped after two complete rounds into a coset
of IS, that is IS R2

K◦ARK(·)−−−−−−−−→ IS ⊕ k̂, where k̂ is the corresponding subkey after 2 rounds
of the key schedule.

For the follow-up, we also present three subspaces of Kweak for which it is possible to
construct a longer invariant subspace trail:

3-round: working with any of the 296 keys that satisfy A0 = A1, . . . D0 = D1, the
subspace IS is mapped after three complete rounds into a coset of IS, that is
IS R3

K◦ARK(·)−−−−−−−−→ IS ⊕ k̂′ where k̂′ is the subkey after 3 rounds.

4-round: working with any of the 264 keys that satisfy A0 = A1, . . . , H0 = H1, the
subspace IS is mapped after four complete rounds into a coset of IS, that is
IS R4

K◦ARK(·)−−−−−−−−→ IS ⊕ k̂′′ where k̂′′ is the subkey after 4 rounds.

5-round: working with any of the 232 keys that satisfy A0 = A1 = B0 = . . . = D0 = D1 = 0
and E0 = E1, . . . H0 = H1, the subspace IS is mapped after five complete rounds
into a coset of IS, that is IS R5

K◦ARK(·)−−−−−−−−→ IS ⊕ k̂′′′ where k̂′′′ is the subkey after 5
rounds.

The complete expressions of the subkeys involved for the previous results are given for
completeness in the following.

Details – Sub-Keys involved for AES-256

In order to prove the results proposed for AES-256 given before, we list here the subkeys
involved.

(1st) Consider the 296 keys that satisfy

A0 = A1, B0 = B1, C0 = C1, D0 = D1
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that is

{
A A A A E0 E1 E0 E1

B B B B F 0 F 1 F 0 F 1

C C C C G0 G1 G0 G1

D D D D H0 H0 H0 H1

 ∣∣ ∀A,B,C,D, . . . ,H0, H1 ∈ F28

}

The next subkey is given by
A⊕ SB(F 1)⊕R[1] SB(F 1)⊕R[1] A⊕ SB(F 1)⊕R[1] SB(F 1)⊕R[1]

B ⊕ SB(G1) SB(G1) B ⊕ SB(G1) SB(G1)
C ⊕ SB(H1) SB(H1) C ⊕ SB(H1) SB(H1)
D ⊕ SB(E1) SB(E1) D ⊕ SB(E1) SB(E1)


(2nd) Consider the 264 keys that satisfy

A0 = A1, B0 = B1, C0 = C1, D0 = D1, . . . , H0 = H1

The next subkey is given by
SB(F̂ ⊕R[1])⊕ E SB(F̂ ⊕R[1]) SB(F̂ ⊕R[1])⊕ E SB(F̂ ⊕R[1])

SB(Ĝ)⊕ F SB(Ĝ) SB(Ĝ)⊕ F SB(Ĝ)
SB(Ĥ)⊕G SB(Ĥ) SB(Ĥ)⊕G SB(Ĥ)
SB(Ê)⊕H SB(Ê) SB(Ê)⊕H SB(Ê)


where

Ê := SB(E), F̂ := SB(F ), Ĝ := SB(G), Ĥ := SB(H).
(3rd) Consider the 232 keys that satisfy

A0 = A1 = B0 = . . . = D0 = D1 = 0, E0 = E1, F 0 = F 1, . . . H0 = H1.

Then, the next subkeys is given by
SB( ˆ̂

G)⊕ F̂ ⊕R′[2] SB( ˆ̂
G)⊕R[2] SB( ˆ̂

G)⊕ F̂ ⊕R′[2] SB( ˆ̂
G)⊕R[2]

SB( ˆ̂
H)⊕ Ĝ SB( ˆ̂

H) SB( ˆ̂
H)⊕ Ĝ SB( ˆ̂

H)
SB( ˆ̂

E)⊕ Ĥ SB( ˆ̂
E) SB( ˆ̂

E)⊕ Ĥ SB( ˆ̂
E)

SB( ˆ̂
F )⊕ Ê SB( ˆ̂

F ) SB( ˆ̂
F )⊕ Ê SB( ˆ̂

F )


where

ˆ̂
E := SB(SB(E)), ˆ̂

F := SB(F̂ ⊕R[1]),
ˆ̂
G := SB(SB(G)), ˆ̂

H := SB(SB(H))

and R′[2] := R[1]⊕R[2].

D Practical Collisions for 7-round AES-256 Compressing
Modes

Many block cipher hashing modes contain XOR of input and output of the cipher. E.g.
given an input x = (x0, x1, ..., xn), the corresponding hash H = (H0 ≡ IV,H1, ...,Hn) can
be produced using

• the Davies–Meyer hash function: Hi = Exi(Hi−1)⊕Hi−1;
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• the Matyas-Meyer-Oseas hash function Hi = Eg(Hi−1)(xi)⊕ xi;

• the Miyaguchi–Preneel hash function Hi = Eg(Hi−1)(xi)⊕Hi−1 ⊕ xi.

In this section, we show how to produce collisions for some of such constructions exploiting
our invariant subspace IS. Since we assume the attacker is able to choose the initial value
IV , we propose our results in the compressing mode.

Using the result proposed in Appendix H.2.3 and when the first and second round keys
(namely, k1 and k2) are all zero, we have

IS ⊕ k0
R−1(·)←−−−− IS R6(·)−−−→ IS ⊕ k6,

where k0 and k6 are the initial and final round keys.
Since dimension of IS is 64, we expect to find a collision with (at least) 232 elements

in IS. In fact, since one can construct
(232

2
)

= 232 · (232 − 1)/2 ≈ 263, the probability to
find a collision is approximately 1− (1− 2−64)263 ≈ 1− e−1/2 ≈ 39.35%.

We performed two experiments by encrypting 232 elements in IS in an inside out
fashion by choosing the AES-256 key as

[k0‖k1] = [62636363 00000000 00000000 00000000‖00000000 00000000 00000000 00000000],

which makes first and second round keys zero. In our first experiment we used the smaller
invariant subspace15 IS ′ of dimension 32 where every column is identical

IS ′ :=


a a a a
b b b b
c c c c
d d d d


∣∣∣∣∣∣∣ ∀a, b, c, d ∈ F28

,
which is the same invariant subspace independently used in the cryptanalysis of construc-
tions using the unkeyed AES round permutation, recently e.g. for cryptanalysis of Haraka
hash function in [Jea16], and in the second one we chose 232 random elements in IS.

As a result, we got a 7-round collision in both cases for the Matyas-Meyer-Oseas or
Miyaguchi-Preneel compressing functions constructed with 7-round AES-256, where the
attacker choose IV (= H0) as k0. Note that since AES-256 block size is 128 bits and
key size is 256 bits, a g(·) conversion/padding function is used on the output to make it
suitable as the key. A very natural function g(·) : F2n 7→ F22n that turns out to be good
for our purpose is given by

g(x) = x‖ 0...0︸︷︷︸
n bit

∈ F22n

where ‖ denotes concatenation. Our collisions for 7-round AES-256 hashing modes are
provided in Table 3. Moreover, an perhaps a more natural application, these collisions
turn into collisions for Davies-Meyer compressing mode where the message block is fixed
to k0‖k1 and the plaintexts of Table 3 are used as IV s.

To the best of our knowledge, the best known collision attacks on AES compressing
modes are the trivial conversion of the Whirlpool attacks of [Lam+15]. They turn into
6-round collision attacks on every key length of AES which require 256 time and 232

memory complexity. Our collisions are on 7 rounds and require 232 time and 232 memory
15This choice is motivated by the fact that k1, k2, k3, k4 ∈ IS′. As a result:

IS′ ⊕ k0
R−1(·)
←−−−−− IS′

R5(·)
−−−−→ IS′ ⊕ k5

where IS′ ⊕ k5 ⊆ IS (since k5 ∈ IS \ IS′). Similar results can be potentially derived working directly on
IS.
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Table 3: Examples of compression collisions for 6 and 7-round AES-256 used in Matyas-
Meyer-Oseas construction where k0‖k1 = 62636363 00000000 00000000 00000000 00000000
00000000 00000000 00000000. Last round contains the matrix multiplication but not the
final key addition, which does not affect the collisions. These plaintexts are also collisions
for Miyaguchi-Preneel mode and pseudo-collisions for Davies-Meyer mode.

Plaintext Hash (i.e., Plaintext ⊕ Ciphertext)

7-round Collisions
6407503c0664335f 0664335f0664335f

4a2e96618b438711 284df5028b438711
c2e01a46a0837925 a0837925a0837925
fa8cca8ad93ff889 98efa9e9d93ff889
02cc0aa7b96b44b3 60af69c4b96b44b3

79b1f1b3c1415dd7 1bd292d0c1415dd7

6-round Collisions
b1b602e8d3d5618b d3d5618bd3d5618b

f85752eeb3488419 9a34318db3488419
d0122734b2714457 b2714457b2714457
e75dd657853eb534 853eb534853eb534
27f4f3b1459790d2 459790d2459790d2

c99eec4ba84135a3 abfd8f28a84135a3

e00159e982623a8a 82623a8a82623a8a
09315bee8a3b5978 6b52388d8a3b5978

be9c9a2adcfff949 dcfff949dcfff949
6eed06230c8e6540 0c8e65400c8e6540
497163fb2b120098 2b1200982b120098

a77bf28d6e087b35 c51891ee6e087b35

345684eb5635e788 5635e7885635e788
c82e26780c32ed63 aa4d451b0c32ed63

5ee850813c8b33e2 3c8b33e23c8b33e2
439ad67621f9b515 21f9b51521f9b515
7e4032701c235113 1c2351131c235113

2ecfb051888f27dd 4cacd332888f27dd

complexity where a time-memory tradeoff is also possible. Our attack is also valid for 6
rounds with the same complexities. It may be conceivable that local collision methods
from [BKN09] can be adapted to the compression collision setting we consider here. Note
however that this approach can not avoid to simultaniously require differences in both the
chaining as well as the message input of an AES-256-based compression functions, whereas
we only need a difference in one of the two.

E Proofs of Results given in Section 4

E.1 Proofs of Section 4.1
E.1.1 Proof of Prop. 1

As showed in Section 4.1, a subspace IS is mapped into a coset of IS after 2 rounds
AES-128 under a weak-key. By definition of IS ⊕ a, the first and the third diagonals (resp.
the second and the fourth) are equal. This means that:

• there are 232 texts that are equal in the first and the third diagonals, and that differ
in the second and in the fourth ones. By definition, these 232 texts belong to the
same coset of D1,3. It follows that after 2-round encryption, the 264 texts are divided
into 232 different cosets of D1,3;
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• equivalently, there are 232 texts that are equal in the second and in the fourth
diagonals, and that differ first and the third ones. By definition, these 232 texts
belong to the same coset of D0,2. It follows that after 2-round encryption, the 264

texts are divided into 232 different cosets of D0,2.

The result follows immediately from the fact that each coset of DI is mapped into a coset
ofMI after 2-round AES encryption – see Theorem 1.

In the case of a random permutation, note that

• there are
(264

232

)
different ways to divide 264 texts in sets of 232 elements;

• for each set, 232 texts are equal on two diagonals with prob.
(
2−64)232−1;

• the probability that these two diagonals are different for each set is equal to∏232−1
i=0

264−i
264 =

∏232−1
i=0

(
1− i · 2−64).

As a result, the probability for the case of a random permutation is given by

(
264

232

)
·

232−1∏
i=0

[(
2−64)232−1·

≤1︷ ︸︸ ︷(
1− i · 2−64)]≤ (264

232

)
·
(
2−64)264−233+1≈

≈ 1√
2π · (232 − 1)

·
(
264)264(

232
)232
·
(
264 − 232

)264−232 ·
(
2−64)264−233+1≈

≈
(
232)232

·(1− 2−32)264−232
·
(
2−64)264−233+1≈ 2−270

using Stirling’s approximation n! ≈ nn · e−n ·
√

2π · n.

E.1.2 Proof of Prop. 2

To compute the previous probability, we first recall the law of total probability. Given a
finite (or countably infinite) partition B1, . . . , Bn of a sample space events in a probability
space (Ω,F ,P) s. t. first Bi ∩Bj = ∅ for each i 6= j and second

⋃
iBi is the entire sample

space, then

Pr [A] =
n∑
i=1

Pr [A|Bi] · Pr [Bi]

It follows that for a fixed I:

Pr
[
R5(x)⊕R5(y) ∈MI

∣∣ x, y ∈ IS, k ∈ Kweak
]

=

=
{

Pr
[
R5(x)⊕R5(y) ∈MI

∣∣ R4(x)⊕R4(y) ∈M′
]
× Pr

[
R4(x)⊕R4(y) ∈M′

]}
+

+
{

Pr
[
R4(x)⊕R4(y) /∈M′

]
× Pr

[
R5(x)⊕R5(y) ∈MI

∣∣ R4(x)⊕R4(y) /∈M′
]}

=

= 2−64+16·|I| · 2−31 + 2−32·(4−|I|) · (1− 2−31) ' 2−95+16·|I| + 2−128+32·|I|

whereM′ =M0,2 ∪M1,3.

Difference w.r.t. the case of a Random Permutation. Since for a random permutation
Π the probability of the same event is equal to 232·|I|−1

2128−1 ≈ 2−128+32·|I| (where the approxi-
mation holds with an error of magnitude 2−128), it is possible to distinguish the two cases.
Just to have concrete numbers:
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• if |I| = 3 (I fixed), then Pr
[
R5(x)⊕R5(y) ∈MI

∣∣ x, y ∈ IS, k ∈ Kweak
]
' 2−32 +

2−47, while for a random permutation Pr [Π(x)⊕Π(y) ∈MI | x, y ∈ IS] = 2−32;

• if |I| = 2 (I fixed), then Pr
[
R5(x)⊕R5(y) ∈MI

∣∣ x, y ∈ IS, k ∈ Kweak
]

= 3 · 2−64,
while for a random permutation Pr [Π(x)⊕Π(y) ∈MI | x, y ∈ IS] = 2−64;

• if |I| = 1 (I fixed), then Pr
[
R5(x)⊕R5(y) ∈MI

∣∣ x, y ∈ IS, k ∈ Kweak
]

= 2−79,
while for a random permutation Pr [Π(x)⊕Π(y) ∈MI | x, y ∈ IS] = 2−96.

E.1.3 “Weak-Key Truncated Differential” versus “Weak-Key Subspace Trail”

Here we emphasize the relation and the difference between a “weak-key truncated differen-
tial” and a “weak-key subspace trail”. As highlighted in [BLN17; GRR16; LTW18], there
is a strong connection between subspace trails and truncated differentials. Here we clarify
the connection and the difference between the “weak-key truncated differential” and the
previous “weak-key subspace trail”.

As observed in the papers just cited, a truncated differential can be described as affine
spaces of differences:

Let Kweak be a set of weak-keys and let Ek(·) : Fn2 7→ Fn2 a cipher. For each key
k ∈ Kweak, a “weak-key truncated differential” of probability p is defined by a pair of
affine subspaces (U ⊆ Fn2 , s ∈ Fn2 ) and (V ⊆ Fm2 , t ∈ Fm2 ) for which:

Pr [Ek(x)⊕ Ek(x⊕ α⊕ s) ∈ V ⊕ t] = p.

where α ∈ U and x ∈ Fn2 .

The previous probability can be re-written as

Pr [Ek(x)⊕ Ek(y) ∈ V ⊕ t | x, y ∈ Fn2 s.t. x⊕ y ∈ U ⊕ s and k ∈ Kweak] = p.

The crucial point here is that (at least) one of the two initial plaintexts can be chosen in a
complete arbitrary way. In other words, the plaintext x can be chosen arbitrary in F2n ,
while the plaintext y must satisfy the condition x⊕ y ∈ U ⊕ s (i.e. y ∈ U ⊕ (s⊕ x)).

What about the “weak-key subspace trail” presented in Section 4.1? Referring to
Section 4.1, all probabilities presented there have the form

Pr [Ek(x)⊕ Ek(y) ∈ V ⊕ t | x, y ∈ U ⊕ s and k ∈ Kweak] = p.

(where U ⊕ s ≡ IS in our case). The crucial difference is that both x and y must belong
to the affine space U ⊕ s. In other words:

• in the case of a weak-key truncated differential, one of the two texts is completely
arbitrary (x ∈ F2n), while the other one must belong to a fixed affine subspace
(namely, y ∈ U ⊕ (s⊕ x));

• in the case of weak-key subspace trail, both the two texts must belong to the same
affine subspace (namely, x, y ∈ U ⊕ s).

This means that this second requirement does not involve just the difference between x
and y (as before), but the fact that both texts are in the same affine subspace.

In conclusion, while truncated differentials and subspace trails can be considered to be
equivalent, the same is not true for weak-key truncated differentials and weak-key subspace
trails. In particular, a weak-key subspace trail can be considered (a little) weaker than a
weak-key truncated differential, since there is less freedom on the choice of the inputs.
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E.2 Proofs of Weak-Key “Multiple-of-n” – Theorem 5
As before, since the invariant subspace IS is mapped into a coset of IS after 2-round
encryption, since a coset of XI is mapped into a coset of YI = SR−1 ◦MC−1(XI)after
1-round decryption (as showed in Theorem 3) and since a coset ofMJ is mapped into a
coset of DJ after 2-round decryption, that is

∀k ∈ Kweak : IS R2(·)−−−−→
prob. 1

IS ⊕ a R2(·)−−−→ YI ⊕ a′
R(·)−−−−→

prob. 1
XI ⊕ b′

∀k ∈ Kweak : IS R2(·)−−−−→
prob. 1

IS ⊕ a R2(·)−−−→ DJ ⊕ a′
R2(·)−−−−→
prob. 1

MJ ⊕ b′

the idea is to prove an equivalent results that involve only the two middle rounds. Given a
pair of texts t1, t2 ∈ IS ⊕ a, we prove that there exist other pair(s) of texts s1, s2 ∈ IS ⊕ a
such that

R2(t1)⊕R2(t2) = R2(s1)⊕R2(s2)
where the texts s1, s2 are obtained by swapping the diagonals of t1, t2. As before, this
implies that

R2(t1)⊕R2(t2) ∈ XI ⇔ R2(s1)⊕R2(s2) ∈ XI ;
R2(t1)⊕R2(t2) ∈ DJ ⇔ R2(s1)⊕R2(s2) ∈ DJ .

In order to prove the previous claim, we use the “Super-S-Box” notation [DR06], where

super-SBox(·) = SB ◦ARK ◦MC ◦SB(·). (10)

Case: Different Diagonals. As before, in the case in which the diagonals are different
(i. e., [x1

0, x
1
5, x

1
2, x

1
7] 6= [x2

0, x
2
5, x

2
2, x

2
7] and [x1

1, x
1
4, x

1
3, x

1
6] 6= [x2

1, x
2
4, x

2
3, x

2
6]), given t1 and t2

defined as
SR(ti) ≡

(
[xi0, xi5, xi2, xi7]︸ ︷︷ ︸

1st and 3rd columns

, [xi1, xi4, xi3, xi6]︸ ︷︷ ︸
2nd and 4th columns

)
where SR(·) denotes the ShiftRows operation, then R2(t1)⊕R2(t2) = R2(s1)⊕R2(s2) if
s1 and s2 are defined as

SR(si) ≡
(
[x3−i

0 , x3−i
5 , x3−i

2 , x3−i
7 ]︸ ︷︷ ︸

1st and 3rd columns

, [xi1, xi4, xi3, xi6]︸ ︷︷ ︸
2nd and 4th columns

)
.

To prove the previous fact, we first recall that 2-round encryption can be rewritten
using the “super-SBox” notation

R2(·) = ARK ◦MC ◦ SR ◦super-SBox ◦ SR(·).

Thus, we are going to prove that

super-SBox(t̂1)⊕ super-SBox(t̂2) = super-SBox(ŝ1)⊕ super-SBox(ŝ2) ∈ WI

where
t̂i = SR(ti) ∈ IS ⊕ SR(a) and ŝi = SR(si) ∈ IS ⊕ SR(a)

for i = 1, 2 (note that ti, si ∈ IS ⊕ a). Note that the first and the third columns of t̂i and
ŝi are equal, as well as the second and the fourth columns. Similar to the 5-round case,
since the first and the second columns (and so the third and the fourth ones) of t̂1 and t̂2
depend on different and independent variables, since the Super-S-Box works independently
on each column and since the XOR-sum is commutative, it follows the thesis.
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Generic Case. What happens if one diagonal is in common for the two texts, e.g.
[x1

0, x
1
5, x

1
2, x

1
7] = [x2

0, x
2
5, x

2
2, x

2
7] (analogous for [x1

1, x
1
4, x

1
3, x

1
6] = [x2

1, x
2
4, x

2
3, x

2
6])? As before,

in this case the difference R2(t1)⊕R2(t2) is independent of the values of such diagonal. It
follows that the pair of texts s1 and s2 can be constructed as

SR(si) ≡
(
[x3−i

0 , x3−i
5 , x3−i

2 , x3−i
7 ]︸ ︷︷ ︸

1st and 3rd columns

, [α0, α5, α2, α7]︸ ︷︷ ︸
2nd and 4th columns

)
or

SR(si) ≡
(

[xi1, xi4, xi3, xi6]︸ ︷︷ ︸
1st and 3rd columns

, [α0, α5, α2, α7]︸ ︷︷ ︸
2nd and 4th columns

)
where α0, α5, α2, α7 can take any possible values in F28 . Note that in this case, it is possible
to identify 2 · 232 = 233 different texts s1 and s2 in IS ⊕ a that satisfy the condition
R2(t1)⊕R2(t2) = R2(s1)⊕R2(s2). In conclusion, given plaintexts in the same coset of
IS, the number of different pairs of ciphertexts that belong to the same coset of XI and/or
DJ after two rounds is always a multiple of 2.

F Proof of Proposition 3
Assume all the pairs (Xi, Yi) result from queries to Π or Π−1. Consider a (random) set of
264 − 1 plaintexts/ciphertexts pairs {(Xi, Yi)}i=0,...,264−2 such that there exists (at least)
one plaintext/ciphertext pair (X̂, Ŷ ) for which the set {(Xi, Yi)}i=0,...,264−1 satisfies the
required multiple-of-n property. By assumption, the player can always find X̂ ′ (resp. Ŷ ′)
such that the “simultaneous multiple-of-n” property is satisfied for the plaintexts (resp.
for the ciphertexts). However, the oracle’s answer Ŷ ′ (resp. X̂ ′) is uniformly drawn from
{0, 1}128 \ {Y1, Y2, . . . , Y264−1} (resp. from {0, 1}128 \ {X1, X2, . . . , X264−1}). Therefore,
the probability that the answer to the N -th query allows the output of A to satisfy property
R (i. e. multiple-of-n) is upper bounded by (2−1)216−16 · (2−7)14 = 2−65 618 ' 2−216 since

• there are
∑15
i=1
(16
i

)
= 216 − 2 different subspaces XI for which the multiple-of-2

property holds, and among them there are 14 subspacesMI for which the multiple-
of-128 property holds;

• the probability that the number of collisions is a multiple of N is ≈ 1/N .

In order to prove this second point, we first show that the probabilistic distribution of
the number of collisions is a binomial distribution16.

Given a set of n pairs of texts, consider the event that m pairs belong to the same coset
of a subspace X . As first thing, we show that the probabilistic distribution of number
of collisions is simply described by a binomial distribution. By definition, a binomial
distribution with parameters n and p is the discrete probability distribution of the number
of successes in a sequence of n independent yes/no experiments, each of which yields
success with probability p. In our case, given n pairs of texts, each of them satisfies or
not the above property/requirement with a certain probability. Thus, this model can be
described using a binomial distribution, for which the mean µ and the variance σ2 are
respectively given by µ = n · p and σ2 = n · p · (1− p).

In our case, the number of pairs is given by
(264

2
)
' 2127, the probability that a pair of

texts belong to the same coset of XI is equal to 2−8·(16−|I|), while it is equal to 2−32·(4−|J|)

for the subspaces DJ andMJ .

16Note that the fact that “the probability that the number of collisions is a multiple of N is 1/N” is
obvious if the probabilistic distribution of the number of collisions is a uniform one, which is not the case.
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Probability that “the number of collision is even” is (approximately) 1/2 – Case:
subspaces XI . The probability that the number of collisions is even is given by

1
2 + 1

2 · (1− 2p)n

where note that n is an even number. In our case, since n ' 2127 and 2−120 ≤ p ≤ 2−8

(where the prob. 2−120 and 2−8 correspond resp. to the cases |I| = 15 and |I| = 1), the
previous probability is well approximated by 1/2 + 1/2 · (1− 2−7)2127 ≈ 1/2.

In order to prove the previous result, let X be a binomial distribution X ∼ B(n, p).
Combining the facts that

Pr [X even] + Pr [X odd] =
n∑

k=0

(
n

k

)
· pk · (1− p)n−k = [(1− p) + p]n = 1

Pr [X even]− Pr [X odd] =
n∑

k=0

(
n

k

)
· (−p)k · (1− p)n−k = [(1− p)− p]n

where

Pr [X even] =
n/2∑
k=0

(
n

2k

)
· p2k · (1− p)n−2k, Pr [X odd] =

n/2−1∑
k=0

(
n

2k + 1

)
· p2k+1 · (1− p)n−2k−1,

it follows that Pr [X even] = 1
2 + 1

2 · (1− 2p)n.

Probability that “the number of collision is a multiple of N” is (approximately) 1/N
– Case: subspaces MJ and DJ . In order to prove this result, we first approximate the
binomial distribution with a normal one. De Moivre-Laplace Theorem claims that the
normal distribution is a good approximation of the binomial one if the skewness of the
binomial distribution – given by (1− 2p)/

√
n · p · (1− p) – is close to zero. In our case,

since n ' 2127 and 2−96 ≤ p ≤ 2−32 (where the prob. 2−96 and 2−32 correspond resp.
to the cases |J | = 3 and |J | = 1), it follows that 2−47.5 ≤ skew ≤ 2−15.5, which means
that the normal approximation is sufficiently good. Thus, we approximate the binomial
distribution with a normal one N (µ = n · p, σ2 = n · p · (1 − p)), where the probability
density function is given by ϕ(x) = 1√

2π·σ2 e
− (x−µ)2

2σ2 .
In this case, what is the probability that the multiple-of-N collisions is satisfied? To

answer this question, it is sufficient to sum all the probabilities where the number of
collisions is a multiple-of-N (for N ∈ N and N 6= 0), that is∑

x∈Z

1√
2π · σ2

e−
(N·x−µ)2

2σ2 = 1
N
·
∑
x∈Z

1√
2π · σ̃2

e−
(x−µ̃)2

2σ̃2

︸ ︷︷ ︸
=1 by definition

= 1
N

where µ̃ = µ/N and σ̃2 = σ2/N2. Obviously, if N = 1, then this probability is equal to 1.

G On the Difficulty to set up “Multiple-of-n” Open-Key
Distinguishers Without Relying on Weak-Keys

In order to better understand the role of the invariant subspace, and hence the dependence
on weak-keys, in the previous construction, we briefly discuss the following problem: is
it possible to set up a similar distinguisher using the multiple-of-8 property proposed
in [GRR17] which holds for any key? We conjecture that this is hard.
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Given a coset of a diagonal space DI , the multiple-of-8 property holds (1) after 5-round
encryption and (2) after 3-round decryption. It follows that given a coset of CI in the
middle, then

∀k : Multiple-of-8 R−4(·)←−−−− CI ⊕ a
R4(·)−−−→ Multiple-of-8,

it is possible to achieve a simultaneous multiple-of-8 property on 8 rounds.

Distinguisher on 8 rounds? First of all, one may ask if this property is strong enough in
order to set up a chosen-key distinguisher. In order to answer this question, it is sufficient
to consider the case of an adversary faces a family of random and independent ideal ciphers
{Π(K, ·),K ∈ {0, 1}k}, where k = 128, 192, 256 respectively for the cases AES-128/192/256.
His goal is to find a key k and a set of 264 plaintexts/ciphertexts (pi, ci = Π(k, pi)) s.t. the
“simultaneous multiple-of-n” property is satisfied.

Working exactly as in Section 5, a random sets of 264 plaintexts/ciphertexts pairs
(Xi, Yi) satisfies the “simultaneous multiple-of-8” property with prob. (1/8)(2 · 14) = 2−84

(since (1) the probability that a number is a multiple of 8 is 1/8, (2) there are 14 different
subspaces DI and 14 different subspaces MI for I ⊆ {0, 1, 2, 3}). It follows that given
264 + 2 random texts, the adversary can construct

(264+2
264

)
≈ 2127 different sets of 264 texts.

Hence, it seems the simultaneous multiple-of-8 property is not strong enough in order to
set up a chosen-key distinguisher.

Extension to 9 rounds. Let’s assume that the previous 8-round distinguisher is valid. In
order to extend it to more rounds, a possibility can be to use a coset of DI ⊕MJ in the
middle. Here we show why this solution does not work.

First of all, observe that

DI ⊕MJ ⊕ a ≡
⋃

b∈DI⊕a

MJ ⊕ b ≡
⋃

b∈MJ⊕a

DI ⊕ b

Thus, consider 5-round encryption (similar for the decryption direction). The number of
collisions between the pairs of ciphertexts whose corresponding plaintexts are in the same
coset of DI is a multiple of 8 with prob. 1. However, it is not possible to claim anything
about the the pairs of ciphertexts whose corresponding plaintexts are in the same coset of
MJ , or for which one plaintext is in DI ⊕ a′ and the other inMJ ⊕ b′. As a result, one
looses any multiple-of-n property. A similar argumentation works also in the decryption
direction.

As we have just seen, the invariant subspace allows to solve this problem in the case
of weak-keys. The problem to set up a known-key distinguisher (for which the key does
not satisfy any particular property) that exploits the multiple-of-n property for more than
8-round AES is still open.

H Chosen-Key Distinguishers and “Simultaneous Property”
for AES-128 and AES-256

In Section 5.3, we have proposed a chosen-key distinguisher for 9-round AES-128. Here we
analyze the case in which such a distinguisher is extended to 10-round AES-128. Moreover,
using the same strategies, here we present similar results for AES-256. Since the strategies
used to set up these distinguishers is similar to the ones proposed for AES-128, we refer to
Sections 5.3 and 5.5 for all the details and we highlight here the main differences.
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H.1 “Simultaneous Property” for 10-round AES
H.1.1 “Simultaneous Property” for 10-round AES – Exploiting a Weaker Property

In the first approach, one is able to generate a set of 264 (plaintexts, ciphertexts), that is
(pi, ci ≡ R10(pi)) for i = 0, . . . , 264 − 1 – where all the plaintexts/ciphertexts are generated
by the same key – and a key such that the following “simultaneous multiple-of-n” property
is satisfied:

Plaintext: on the plaintexts, we re-use the previous properties:
(1st) for each J ⊆ {0, 1, 2, 3}, the number of different pairs of plaintexts that belong
to the same coset of DJ is a multiple of 128 = 27;
(2nd) for each I ⊆ {(0, 0), (0, 1), . . . , (3, 2), (3, 3)} ≡ {(i, j)}0≤i,j≤3, the number of
different pairs of plaintexts that belong to the same coset of XI are a multiple of 2;

Ciphertext: for each J ⊆ {0, 1, 2, 3}, the number of different pairs of ciphertexts that
belong to the same coset ofMJ is a multiple of 2.

Choosing one of the 232 keys proposed for the 9-round distinguisher given in Section 5.3,
it is possible to construct such set with a computational cost of 264. In more details:

• due to the assumption on the key (that is, k4 ∈ Kweak ⊆ IS), note that the
subspace IS is mapped into a coset of IS after two rounds encryption and one round
decryption, that is

∀k4 ∈ Kweak : IS ⊕ k̂ R−1(·)←−−−− IS R2(·)−−−→ IS ⊕ k̃;

• due to the results of Section 4.2, given k4 ∈ Kweak, (1st) the multiple-of-128 property
(on DJ) and the multiple-of-2 property (on XI) hold on the plaintexts while (2nd)
the multiple-of-2 property (onMJ) holds on the ciphertexts

Multiple-of-n R−3(·)←−−−− IS ⊕ k̂ R−1(·)←−−−− IS R2(·)−−−→ IS ⊕ k̃ R4(·)−−−→ Multiple-of-2

What about an adversary facing a family of random and independent ideal ciphers?
Due to previous analysis, the property on the plaintexts is satisfied with prob. 2−32 809 '
2−215 while the property on the ciphertexts is satisfied with prob. 2−14, for an overall
probability of 2−32 809 · 2−14 = 2−32 823 ' 2−215 .

In other words, the property on the ciphertexts is much weaker than the property on the
plaintexts. This fact can be potentially used to generate a set of 264 plaintexts/ciphertexts
with the required properties with a data cost of 3 · 278. Indeed, the attacker can easily
generate a set of 264 plaintexts that satisfy the “Multiple-of-n” property as described
before (e.g. he can generate such set using the fact that the 4-round AES decryption of
IS – namely R4(IS) – has the required “Multiple-of-n” property). Then, he simply asks
the oracle for the corresponding ciphertexts, which satisfy the “Multiple-of-2” property
with prob. 2−14. By repeating this process 3 · 214 times, the probability of success17 is
higher than 95%. The cost of such strategy (which includes both the generation of the
texts and the check that the property is satisfied) is at least of 278.

Even if this attack is faster than 2128, its cost is still (much) bigger than 264, which is
the cost to generate the required set of plaintexts/ciphertexts for the case of 10-round AES.
Remember that the goal in an open-key distinguisher is indeed to be able to generate the
requires set of plaintexts/ciphertexts with a similar (or even the same) cost for AES (or
the studied cipher) and for the ideal cipher. In this case, it is very unlikely that any generic

17The probability of success is given by 1− (1− 2−14)3·214≥0.95.
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attack can get close to that: even if we would allow unlimited time, the data complexity of
a generic attack would still need to be higher than 264. Indeed, working as in the 9-round
case, a simple brute force attack requires at least18 264 + 211 plaintexts/ciphertexts in
order to find a set of 264 plaintexts with the required properties. For all these reasons and
same as for the 9-round case (see our arguments from Section 5.4), we conjecture that the
data/computational cost of an adversary to generate such set is (much) higher than 264

computations.

H.1.2 “Simultaneous Property” for 10-round AES – Exploiting Degrees of Freedom
in the Weak-Key

In the second approach, the idea is to extend it to 10-round by adding one round in the
middle using the remaining degrees of freedom in the choice of the key.

In more details, referring to the 9-round distinguisher proposed in Section 5.3, if the
subkey k4 of the 4-th round belongs in Kweak (defined as in Eq. (2) and Section 3.2), it
follows that

Multiple-of-n R−3(·)←−−−− IS ⊕ a R−1(·)←−−−− IS R2(·)−−−→ IS ⊕ b R3(·)−−−→ Multiple-of-n

In other words, one exploits the fact that the subspace IS is mapped into a coset of it
after 2-round encryption and 1-round decryption for any subkey in Kweak.

By simple computation, there is a key in Kweak for which the subspace IS is mapped
into a coset of it after two rounds decryption. In more details, for the key k̂ ∈ Kweak
defined by

k̂ ≡ (A = 0x63⊕R[5], B = 0x63, C = 0x63, D = 0x63) ∈ Kweak

it follows that
IS ⊕ a R−2(·)←−−−− IS R2(·)−−−→ IS ⊕ b.

To see this, it is sufficient to compute one round of the key schedule
A⊕ 0x63⊕R[5] 0 0 0

B ⊕ 0x63 0 0 0
C ⊕ 0x63 0 0 0
D ⊕ 0x63 0 0 0

 1-round Key Schedule−−−−−−−−−−−−−−→ Kweak ≡


A A A A
B B B B
C C C C
D D D D

 ,
and to look for a key in Kweak that belongs to IS one round before. As a result, it follows
that for the key k̂ ≡ (A = 0x63 ⊕ R[5], B = 0x63, C = 0x63, D = 0x63) ∈ Kweak it is
possible to set up a distinguisher on 10 rounds19 since

Multiple-of-n R−3(·)←−−−− IS ⊕ a R−2(·)←−−−− IS R2(·)−−−→ IS ⊕ b R3(·)−−−→ Multiple-of-n

Using this observation, one is able to find a set of 264 plaintexts/ciphertexts, i.e.
(pi, ci ≡ R10(pi)) for i = 0, . . . , 264 − 1 – where all the plaintexts/ciphertexts are generated
by the same key – and a key such that

• for each J, I ⊆ {0, 1, 2, 3}, the number of different pairs of ciphertexts that belong to
the same coset ofMJ and the number of different pairs of plaintexts that belong to
the same coset of DI are a multiple of 128 ≡ 27;

18Note that
(264+211

264

)
≥ 232 823.

19For completeness, we discuss the relevance of a distinguisher that can be constructed for a single key
(which this does not mean – in general – that it holds for one key only). A single collision/near-collision/
or similar distinguishing property for a block-cipher based compression function or hash function would be
also a property of the cipher that holds (depending on the mode) for a single key. Assume this is found
with a non-generic approach. This simple example shows that, in principle, properties even for single keys
can be interesting.
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• for each J, I ⊆ {(0, 0), (0, 1), . . . , (3, 2), (3, 3)} ≡ {(i, j)}0≤i,j≤3, the number of differ-
ent pairs of ciphertexts that belong to the same coset of MC(XI) and the number of
different pairs of plaintexts that belong to the same coset of XJ are a multiple of 2.

Similar to the 9-round case, due to our arguments from Section 5.4 we conjecture that
the computational cost of an adversary to generate such set is (much) higher than 264

computations.

H.2 Chosen-key distinguisher for AES-256
Before presenting the distinguisher, we recall that:

• it is possible to set up a weak invariant subspace of length two/three/four/five for
2128/296/264/232 weak-keys of AES-256;

• due to the argumentation proposed in Section 4.2, it follows that the multiple-of-128
property holds for up to 7-round AES-256, while the multiple-of-2 property holds for
up to 9-round AES-256.

H.2.1 Chosen-Key Distinguisher for 12-round AES-256

Similarly, to set up the 12-round distinguisher of AES-256, one exploits the fact that

∀k ∈ Kweak : IS ⊕ a R−1(·)←−−−− IS R5(·)−−−→ IS ⊕ b

for each key in Kweak defined in Appendix C.2 where

A0 = A1 = B0 = . . . = D0 = D1 = 0, E0 = E1, F 0 = F 1, . . . ,H0 = H1.

H.2.2 “Simultaneous Property” for 13-round AES-256 – “Weaker” Property

As for AES-128, the simplest way to extend the previous distinguisher to 13-round is to
exploit a weaker property on (e.g.) the ciphertexts. As a result, while the property on
the plaintexts is unchanged, one is able to generate a set of 264 (plaintexts, ciphertexts),
that is (pi, ci ≡ R13(pi)) for i = 0, . . . , 264 − 1 – where all the plaintexts/ciphertexts are
generated by the same key – such that for each J ⊆ {0, 1, 2, 3}, the number of different
pairs of ciphertexts that belong to the same coset ofMI is a multiple of 2.

H.2.3 “Simultaneous Property” for 13-round AES-256 – Freedom of the Key

Another possibility to extend the previous distinguisher to 13-round is to exploit the
freedom in the key. In more details, in order to find a set of 264 (plaintexts, ciphertexts)
that satisfy the required “simultaneous multiple-of-n” properties for 13-round AES-256,
among the previous weak-keys the idea is to choose the sub-key defined by

k̂ ≡ (E0 = E1 = 0x63⊕R[5], F 0 = F 1 = 0x63, . . . ,H0 = 0, H1 = 0x63) ∈ Kweak

for which
IS ⊕ a R−2(·)←−−−− IS R5(·)−−−→ IS ⊕ b.

or
k̂ ≡ (E0 = E1 = F 0 = F 1 = . . . = H0 = 0, H1 = 0) ∈ Kweak

for which
IS ⊕ a R−1(·)←−−−− IS R6(·)−−−→ IS ⊕ b.
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H.2.4 “Simultaneous Property” for full AES-256

The previous “simultaneous properties” cover 13 rounds of AES-256. Here we show that it
is possible to consider a weaker property (e.g.) on the plaintexts to cover full AES-256 in
the single-key setting. In this case, one can generate a set of 264 (plaintexts, ciphertexts),
that is (pi, ci ≡ R14(pi)) for i = 0, . . . , 264 − 1 – where all the plaintexts/ciphertexts are
generated by the same key – and a key such that the following “simultaneous multiple-of-n”
property is satisfied:

Plaintext: on the plaintexts, we re-use the previous properties:
(1st) for each J ⊆ {0, 1, 2, 3}, the number of different pairs of plaintexts that belong
to the same coset of DJ is a multiple of 128 = 27;
(2nd) for each I ⊂ {(0, 0), (0, 1), . . . , (3, 2), (3, 3)} ≡ {(i, j)}0≤i,j≤3, the number of
different pairs of plaintexts that belong to the same coset of XI are a multiple of 2;

Ciphertext: for each J ⊆ {0, 1, 2, 3}, the number of different pairs of ciphertexts that
belong to the same coset ofMJ is a multiple of 2.

Choosing the key as before and due to the same arguments given for AES-128 and AES-192,
the computational cost to construct such set is of 264.

What about an adversary facing a family of random and independent ideal ciphers?
Due to previous analysis, the required properties holds with prob. 2−32 823 ' 2−215 for
a random set of texts. As before, a simple brute force attack requires at least 264 + 211

plaintexts/ciphertexts in order to find a set of 264 plaintexts with the required properties.
Due to our argumentations from Section 5.4, we conjecture that the computational cost of
an adversary to generate such set is (much) higher than 264 computations.
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