
Reducing the Cost of Implementing AES as a Quantum Circuit

Brandon Langenberg1,3, Hai Pham2, and Rainer Steinwandt2

1 PQSecure Technologies
Boca Raton, FL 33431

brandon.langenberg@pqsecurity.com
2 Department of Mathematical Sciences

Florida Atlantic University
Boca Raton, FL 33431

{hpham9,rsteinwa}@fau.edu
3 Department of Computer and Electrical Engineering and Computer Science

Florida Atlantic University
Boca Raton, FL 33431

Abstract. To quantify security levels in a post-quantum scenario, it is common to use the quantum resources
needed to attack AES as a reference value. Specifically, in NIST’s ongoing post-quantum standardization effort,
different security categories are defined that reflect the quantum resources needed to attack AES-128, AES-192,
and AES-256.
This paper presents a quantum circuit to implement the S-box of AES. Leveraging also an improved implementation
of the key expansion, we identify new quantum circuits for all three AES key lengths. For AES-128, the number of
Toffoli gates can be reduced by more than 88% compared to Almazrooie et al.’s and Grassl et al.’s estimates, while
simultaneously reducing the number of qubits. Our circuits can be used to simplify a Grover-based key search for
AES.

Keywords: quantum cryptanalysis; quantum circuit; Grover’s algorithm; AES

1 Introduction

Reacting to progress in the development of quantum computers, NIST has initiated a process to standardize crypto-
graphic primitives that are designed to remain secure in the presence of large-scale quantum computers [13]. To fix
security categories, NIST’s call for proposals offers the quantum resources for an exhaustive key search in the case
of AES-128, AES-192, and AES-256 as a reference point. Relevant cost measures include the number of qubits, the
number of T - and Clifford gates, and the T -depth. It is not hard to see that with exception of the highly structured
S-box—the SubByte transform—all of AES can be implemented by means of NOT and CNOT gates.

Contributions. Below we present a new quantum circuit to implement SubByte, which builds on a result by Boyar
and Peralta [6]. This approach allows a substantial reduction in the number of T -gates compared to the quantum
circuits proposed by Grassl et al. [8] and, more recently, by Almazrooie et al. [1]. Our circuit requires 32 qubits, 55
Toffoli gates, 314 CNOT gates, 4 NOT gates, Toffoli depth 40, and a total (NCT) depth of 298, including “cleaning
up” ancillas—a reduction of the Toffoli count by more than 88%. There are different options to compile Toffoli gates
into Clifford and T -gates, and the common quantum cryptanalytic approach is to first express AES as an NCT circuit,
i. e., with NOT, CNOT, and Toffoli gates. Consequently, in this paper we stay at the NCT level, leaving the choice of
a particular decomposition of Toffoli gates into more elementary building blocks to a subsequent synthesis step.

Moreover, building on [8, 1], we present new quantum circuits for all three standardized key lengths of AES, which
simultaneously offer savings in the number of qubits, the number of Toffoli gates, and the number of Clifford gates.

Organization. First, we briefly recall the structure of the S-box of AES and survey prior work to express this func-
tionality as a quantum circuit. Thereafter, we present our design for implementing SubByte in the NCT gate set and
integrate it into quantum circuits for AES-128, AES-192, and AES-256. We conclude with updated cost estimates for
an exhaustive key search with Grover’s algorithm for AES.

2 Preliminaries

For a full specification of AES we refer to [12], but we briefly recall the algebraic structure of SubByte.

2.1 The S-box of AES

The AES algorithm uses multiple different transformations, but as detailed in [8], with the exception of SubByte
all needed calculations can be expressed with NOT and CNOT gates alone. The non-linear SubByte transformation
takes a one byte input b ∈ F8

2 and substitutes it with a byte S(b) ∈ F8
2 obtained by applying the following two

operations:

1. Interpret b as coefficient vector of an element b ∈ F2[z]/(z
8 + z4 + z3 + z + 1), and replace b with the bitstring

b′ corresponding to b−1. For b = 0, set b′ = b.
2. Apply an affine transformation, which consists of multiplication by an invertible matrix followed by the addition

of a vector:

b′ 7−→



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1


· b′ +



1
1
0
0
0
1
1
0


In [12, Figure 7], SubByte is expressed as a traditional substitution table, but when aiming at an efficient quantum
circuit, one can try to leverage the available algebraic structure:

– Observing that the map S that defines SubBye is a permutation on F8
2 and therewith inherently reversible, we can

try to reduce the number of qubits by evaluating S “in place.”
– The affine map in the second step can be expressed with NOT and CNOT gates only, and one can focus on

minimizing resources for the binary field inversion step, possibly exploiting the presence of intermediate fields.

2.2 Prior work to implement SubByte as quantum circuit

Several authors looked into implementations of AES and its S-box as quantum circuits. In 2016, Grassl et al. [8] report
a quantum circuit that builds on the observation that SubByte is a permutation. They offer a circuit that maps |x〉with
x ∈ F8

2 to |S(x)〉 using only a single ancilla. However, the circuit (found by solving a word problem in a permutation
group) is quite large: while it requires only 9 qubits, it uses 1385 Toffoli plus 1551 CNOT or NOT gates.

In [8], another circuit is offered, which exploits the algebraic structure of SubByte and maps the input |x〉 |032〉
to |x〉 |S(x)〉 |024〉. With 40 qubits, this circuit needs only 512 Toffoli along with 469 CNOT and 4 NOT gates. Kim et
al. [11] suggest an improvement to the design in [8], saving one F28 -multiplication. Almazrooie et al. [1] improve on
Grassl et al.’s Toffoli count, using the same number of F28 -multiplications as Kim et al. Exploiting again the algebraic
structure of the S-box, Almazrooie et al. identify a quantum circuit with 56 qubits, 448 Toffoli gates, 494 CNOT gates,
and 4 NOT gates.

When aiming at a reduction of T -gates and T -depth, work on classical reversible circuits offers helpful results,
and it seems these have not been fully leveraged yet. For instance, in 2018, Saravanan and Kalpana [14] suggest
an implementation of SubByte involving only 35 Toffoli, 152 CNOT, and 4 NOT gates. This design (which again
exploits the algebraic structure of the S-box) produces dozens of “garbage outputs,” and for our purposes the cost to
“clean up” wires is to be taken into account. Still, combining Bennett’s method [4] with [14] leads to a quantum circuit
with a Toffoli count of only 2 · 35 = 70, less than one sixth of the Toffoli counts in [8, 1].

Exploring the S-box in AES from the perspective of identifying a low-depth combinational circuit, Boyar and
Peralta present in [7] a proposal with only 34 AND gates. Their design again leverages the algebraic structure of

2

SubByte, and by naı̈vely combining Boyar and Peralta’s work with Bennett’s method we could derive a quantum
circuit for the S-box of AES with no more than 68 Toffoli gates—though possibly a solid number of ancillas. As
starting point for our work we use an older design by Boyar and Peralta [6], which involves only 32 AND gates
to evaluate SubByte. Below, we transform the latter into a quantum circuit for SubByte that avoids the direct
application of Bennett’s method. In particular, this limits the number of Toffoli gates to 55, including all necessary
“clean up.”

3 Proposed quantum circuit for the S-box in AES

In [6], Boyar and Peralta discuss a technique for combinational logic optimization, which involves two steps. The first
step identifies non-linear circuit components and reduces the number of AND gates—which for our purposes can be
interpreted as saving Toffoli gates. The second step finds maximal linear components of the circuit and minimizes the
number of XOR gates needed—therewith reducing the number of CNOT gates.

3.1 Decomposition of the S-box by Boyar and Peralta

Making use of the intermediate fields F2 < F22 < F24 < F28 , Boyar and Peralta derive a representation S(x) =
B · F (U · x) with matrices B ∈ F8×18

2 , U ∈ F22×8
2 , and a non-linear function F : F22

2 −→ F18
2 . The matrices B and

U are given in [6, Appendix A], and the function F can be computed as shown in Figure 1.

t2 = y12 · y15 t3 = y3 · y6 t4 = t3 + t2
t5 = y4 · x7 t6 = t5 + t2 t7 = y13 · y16
t8 = y5 · y1 t9 = t8 + t7 t10 = y2 · y7
t11 = t10 + t7 t12 = y9 · y11 t13 = y14 · y17
t14 = t13 + t12 t15 = y8 · y10 t16 = t15 + t12
t17 = t4 + t14 t18 = t6 + t16 t19 = t9 + t14
t20 = t11 + t16 t21 = t17 + y20 t22 = t18 + y19
t23 = t19 + y21 t24 = t20 + y18

t25 = t21 + t22 t26 = t21 · t23 t27 = t24 + t26
t28 = t25 · t27 t29 = t28 + t22 t30 = t23 + t24
t31 = t22 + t26 t32 = t31 · t30 t33 = t32 + t24
t34 = t23 + t33 t35 = t27 + t33 t36 = t24 · t35
t37 = t36 + t34 t38 = t27 + t36 t39 = t29 · t38
t40 = t25 + t39

t41 = t40 + t37 t42 = t29 + t33 t43 = t29 + t40
t44 = t33 + t37 t45 = t42 + t41 z0 = t44 · y15
z1 = t37 · y6 z2 = t33 · x7 z3 = t43 · y16
z4 = t40 · y1 z5 = t29 · y7 z6 = t42 · y11
z7 = t45 · y17 z8 = t41 · y10 z9 = t44 · y12
z10 = t37 · y3 z11 = t33 · y4 z12 = t43 · y13
z13 = t40 · y5 z14 = t29 · y2 z15 = t42 · y9
z16 = t45 · y14 z17 = t41 · y8

Fig. 1. Non-linear portion F : F22
2 −→ F18

2 , (x7, y1, y2, . . . , y21) 7−→ (z0, . . . , z17) of the SubByte S-Box in AES as given in
[6, Appendix C, Figure 3].

From this, we see that no more than 32 Toffoli gates are needed to evaluate SubByte, but we still need to take
care of “cleaning up” ancillas—and would like to keep the number of qubits small. To optimize the linear portion
of SubByte, Boyar and Peralta derive short linear programs, which we do not reproduce here; they are available in

3

[6, Appendix C, Figures 2 and 4] and involve XOR and XNOR operations only. The four NOT gates in our quantum
circuit originate in the four XNOR gates used by Boyar and Peralta.

3.2 Deriving a compact quantum circuit

A naı̈ve conversion of Boyer and Peralta’s circuit yields a quantum circuit with 126 qubits, 32 Toffoli gates, 166 CNOT
gates and 4 NOT gates—not yet taking into account the “clean up” cost. The circuit we aim at is to map |x〉 |0a〉 to
|x〉S(x) |0a−8〉 with a small number a of ancilla qubits. Our circuit uses a = 24. We also identified a circuit with
a = 23, but that circuit came at the expense of increasing the Toffoli count by 2, and our primary objective is to reduce
the number of Toffoli gates.

To reduce the number of qubits in a straightforward translation, we notice that certain wires, after being accessed
for a few immediate computations, remain idle until the end. Uncomputing these wires early on, enables us to reuse
them instead of introducing additional ancillas. Another observation is that wires that store the output of the S-box
do not need to be cleaned up. Thus, we try to have Toffoli gates applied directly to those wires to avoid involving
them in the clean up process. Also, some computations would target a wire, and later on, the result is just added
somewhere else. We try to place gates so that such “intermediate wires” are avoided. The final circuit we obtain,
including “cleaning up”, requires 32 qubits, 55 Toffoli, 314 CNOT, and 4 NOT gates. The Toffoli depth is 40, and the
overall S-box depth is 298. Figure 2 gives a high-level view of the circuit, Appendix A gives a detailed description.

To produce the circuit description in Appendix A, we used the open-source software framework for quantum
computing ProjectQ [16, 10]. The 8-bit input of SubByte is represented by U; T and Z represent ancillas, which are
used in the intermediate computations and returned to zero at the end, and S represents the output of the S-box.

The main portion of the source code is the translation of equations in Figure 1. We treat U[0],. . . , U[7] as
basis elements, and we update them as we progress to provide needed input values for a calculation. For instance, to
compute t2, we first compute y12 and y15 and then apply a Toffoli gate. The value y12 can be obtained as a linear
combination of U[0], U[3], U[5], U[6], and we store this result on U[5]. Similarly, y15 is a linear combination
of U[0], U[3], U[4], U[6], and we store this result on U[4]. The Toffoli will use U[5], U[4] as controls and
target T[0], which is t2 at this moment. Our basis elements remain the same except for U[4] and U[5]. We have
U[0]+U[3]+U[4]+U[6] and U[0]+U[3]+U[5]+U[6] respectively for the next computation. We repeat this
technique until t45 is computed. Notice that we are able to reuse the qubit T[8].

The computations annotated by “for z16” to “for z14” are preparations for later usages, because we do not want to
uncompute Toffoli gates that can target output qubits directly. Some of the zi can be computed directly onto an output
qubit and copied to other designated locations. For others, we compute them onto the ancilla Z[0], then copy the
result to the needed output qubits before cleaning up Z[0] for reuse.

4 Quantum resource estimates for AES-{128, 192, 256}

Aside from the reduced S-box above, we offer a reduction for AES in terms of circuit depth as well as number of
qubits over prior work in [8, 1]. This saving is due to a new cost-saving design in the architecture of the key expansion
along with the reduced qubit requirements of our S-box. For our round generation, we adopt the “zig-zag” method
from [8]. This is kept identical in AES-128 and AES-256, and a minimal change is made at the very end for AES-192.
Expanding on ideas in [1], we recognize that by storing all k4n+3 for AES-128 and AES-256 and k4n+5 for AES-192
where n represents the round number, not only could we use a combination to construct future keys, but also gain the
ability to remove keys once they are no longer used in future constructions. Since there is a direct correlation between
T -depth and “S-box depth” (as the S-box is the only use of T -gates in our construction), we stop at S-box depth;
the S-box can be replaced if a different design is preferred. Note the S-box design proposed in this paper uses 8 less
qubits than [8] and 24 less qubits than [1] which allows for greater parallelization and thus a generally reduced “S-box
depth.”

4.1 Savings in AES-128

As part of the key expansion, various keywords ki are computed. Each k4n requires the use of four S-boxes and an
XOR of previous keys. After Round 3 (after k12), all keys have a similar structure which can be seen below. In our

4

|0〉0

|0〉5

|0〉4

|0〉6

|0〉3

|0〉2

|0〉1

|0〉8

|0〉9

|0〉7

|0〉13

|0〉10

|0〉11

|0〉12

|0〉26

|0〉14

|0〉15

|0〉16

|0〉17

|0〉18

|0〉19

|0〉20

|0〉30

|0〉29

|0〉24

|0〉22

|0〉23

|0〉25

|0〉21

|0〉31

|0〉27

|0〉28

|0〉0

|0〉5

|0〉4

|0〉6

|0〉3

|0〉2

|0〉1

|0〉8

|0〉9

|0〉7

|0〉13

|0〉10

|0〉11

|0〉12

|0〉26

|0〉14

|0〉15

|0〉16

|0〉17

|0〉18

|0〉19

|0〉20

|0〉30

|0〉29

|0〉24

|0〉22

|0〉23

|0〉25

|0〉21

|0〉31

|0〉27

|0〉28

|0〉0

|0〉5

|0〉4

|0〉6

|0〉3

|0〉2

|0〉1

|0〉8

|0〉9

|0〉7

|0〉13

|0〉10

|0〉11

|0〉12

|0〉26

|0〉14

|0〉15

|0〉16

|0〉17

|0〉18

|0〉19

|0〉20

|0〉30

|0〉29

|0〉24

|0〉22

|0〉23

|0〉25

|0〉21

|0〉31

|0〉27

|0〉28

Fig. 2. Circuit diagram for implementing SubByte with 32 qubits and 55 Toffoli gates; the input value x is stored on the top-most
eight wires; the output S(x) of SubByte is stored on the last 8 wires.

5

design, we store k4n+3 once round n has been fully computed. To save depth, each keyword will be constructed at the
same time as the round it is used in, except for round one. This is because the plaintext and cipher key (k0, k1, k2, and
k3) are XORed together to produce Round 0. However, both are required to construct Round 1, so Round 1 and k4 must
be constructed at sequential times. For the remaining rounds, the parallelization greatly reduces depth. For example,
during Round 2, all S-box computations for k8 as well as Round 2 can be computed with an S-box depth of one, using
320 auxiliary qubits. Once these S-boxes and MixColumns are computed, k8 can be XORed onto Round 1, followed
by the construction of k9, k10, and k11, each being XORed onto the round one construction. Thus, Round 2 is fully
computed, and k11 is stored, and this entire construction took a total S-box depth of one. When 320 auxiliary qubits are
not available, not all S-box computations can be done in parallel and the depth must be increased (up to 7). Round 1
(without k4), Round 2, removing Round 1, and Round 5 all are computed with an S-box depth of one.

k4 : k3, k0 k5 : k4, k1 k6 : k5, k2 k7 : k6, k3
k8 : k7, k3, k2, k1 k9 : k8, k7, k3, k2 k10 : k7, k3 k11 : k10, k7
k12 : k11, k7, k2 k13 : k12, k11, k3 k14 : k13, k11, k7 k15 : k14, k11
k16 : k15, k11, k7, k3 k17 : k16, k15, k7 k18 : k17, k15, k11 k19 : k18, k15
k20 : k19, k15, k11, k7 k21 : k20, k19, k11 k22 : k21, k19, k15 k23 : k22, k19
k24 : k23, k19, k15, k11 k25 : k24, k23, k15 k26 : k25, k23, k19 k27 : k26, k23
k28 : k27, k23, k19, k15 k29 : k28, k27, k19 k30 : k29, k27, k23 k31 : k30, k27
k32 : k31, k27, k23, k19 k33 : k32, k31, k23 k34 : k33, k31, k27 k35 : k34, k31
k36 : k35, k31, k27, k23 k37 : k36, k35, k27 k38 : k37, k35, k31 k39 : k38, k35
k40 : k39, k35, k31, k27 k41 : k40, k39, k31 k42 : k41, k39, k35 k43 : k42, k39

Fig. 3. The keys required to construct each key in AES-128. The leftmost column requires four S-boxes while the rightmost column
is what is stored at the end of each round.

While computing the keywords along with the rounds substantially reduces the overall depth, it does mean when
auxiliary qubits are unavailable, the 20 S-boxes (16 for the round and 4 for the key) may require an increased S-box
depth to be computed. While Round 2 has an S-box depth of one, Round 7 has an S-box depth of 7 since there are only
16 auxiliary qubits available (plus any qubits that have not stored part of Round 7 so far). Sometimes, round keys can
be computed during the clean up of previous rounds. For example, when reversing and cleaning up Round 8, the key
for Round 10 (k40) can be computed, thus needing only 16 S-boxes with a depth of 6 to compute Round 10 and thus
complete the computations of AES-128.

By storing k4n+3 for each n ≤ 7, once we get to Round 7, and store keyword k31, we can remove keywords k15,
k11, and k7 from Rounds 3, 2, and 1, thus gaining storage space to place keywords for Rounds 8, 9, 10 in this space.
This removal is done using S-boxes in reverse after the keys are returned to their k4n values. This is equivalent to the
“zig-zag” method used in [8] to remove rounds, but here we use it to remove keys. This saves 96 qubits over [8] and
64 qubits over [1] who only removed one keyword. Since each keyword uses four S-boxes, the removal requires the
use of 12 additional S-boxes for a substantial savings in qubits. The removal of keyword k15 can be done during the
removal of Round 5 without additional depth. Similarly, the removal of keyword k7 can be done during the construction
of Round 8 without additional depth. Thus, the S-box depth for the key expansion is two, which includes computing
k4 and removing k11, both with an S-box depth of one. If in the future, it is found the savings in qubits is not worth
the additional gates and a depth of three S-boxes, this can be ignored and extra qubits can be used. The total depth of
this circuit uses 47 S-boxes, 15 MixColumns computations with a depth of 39 each, and a depth of 142 to apply the
AddRoundKey to each round.

4.2 Savings in AES-192

AES-192 differs slightly in the key generation. Recall AES-192 only uses an S-box for every sixth key, and since only
four keys are needed per round, some rounds only need 16 S-boxes to be fully computed and some need 16 plus the
additional 4 for the key generation. So even though there are more rounds than in AES-128, there are less keywords

6

0

0
0

0

Qubits
0 - 15

32 - 47
16 - 31 k

0

k
0

k
0

k
0

k
0

k
0

k
0

k
0

48 - 63 k
1

k
1

k
1

k
1

k
1

k
1

k
1

k
1

80 - 95 k
2

k
2

k
2

k
2

k
2

k
2

k
2

k
264 - 79

112 - 127 k
3

k
3

k
3

k
3

k
3

k
3

k
3

k
396 - 111

144 - 159 k7k7 k7 k7 k7 k7 k7k7

128 - 143

176 - 191 k1
1

k1
1

k1
1

k1
1

k1
1

k1
1

k1
1

k1
1160 - 175

208 - 223 k1
5

k1
5

k1
5

k1
5

k1
5

k1
5

k1
5

k1
5192 - 207

240 - 255 k1
9

k1
9

k1
9

k1
9

k1
9

k1
9

k1
9

k1
9224 - 239

288 - 303
272 - 287 k2

3

k2
3

k2
3

k2
3

k2
3

k2
3

k2
3

k2
3256 - 271

k2
7

k2
7

k2
7

k2
7

k2
7

k2
7

k2
7

k2
7

k2
7

0

k2
8

0
320 - 335
304 - 319

k2
8

k2
9

k3
0

k3
1

k3
1

k2
8

k2
8

k2
8

k2
8

k2
8

k2
8

- 383
352 - 367

384 - 399

336 - 351

Ro
un

d
5

Ro
un

d
5

Ro
un

d
5

Ro
un

d
5

Ro
un

d
5

Ro
un

d
5

Ro
un

d
5

Ro
un

d
5

448 - 463
464 - 479

432 - 447
416 - 431
400 - 415

368

528 - 543 6-
1512 - 527

496 - 511 6-
0

6-
0480 - 495

560 - 575 6-
2

6-
2544 - 559

576 - 591

Ro
un

d
6

6-
3

6-
3

6-
3

Ro
un

d
6

Ro
un

d
6

Ro
un

d
6

6-
3

Ro
un

d
6

Ro
un

d
6

Ro
un

d
6

Ro
un

d
6

608 - 623
624 - 639

592 - 607

672 - 687
656 - 671 ⊕

0

An
ci

lla
ry

0

7-
1

0 0
0

640 - 655

M
ix

ed
 C

ol
um

ns

704 - 719
0 0688 - 703 ⊕

An
ci

lla
ry

0

7-
2

7-
2

0

An
ci

lla
ry

0 7-
3

0 Ro
un

d
7

⊕7-
3

7-
3

7-
3

Ro
un

d
7

0

An
ci

lla
ry

0
0 0

0

⊕

0

7-
0

7-
0

0

Ro
un

d
7

Ro
un

d
7

- 783
752 - 767
736 - 751

Ro
un

d
7

Ro
un

d
7

0 0 An
ci

lla
ry

0 0

Ro
un

d
7

720 - 735

848 - 863

Ro
un

d
4

Ro
un

d
4

Ro
un

d
4

Ro
un

d
4

Ro
un

d
4

Ro
un

d
4

Ro
un

d
4

Ro
un

d
4

816 - 831
800 - 815

832 - 847

784 - 799
768

0 An
ci

lla
ry

0 An
ci

lla
ry

0 An
ci

lla
ry

864 - 879 0 An
ci

lla
ry

00 An
ci

lla
ry

0 An
ci

lla
ry

0 An
ci

lla
ry

Fig. 4. AES-128 Diagram of Round 7 computations which have an S-box depth of seven. Each column represents an S-box depth
of one.

generated. By the time keyword k48 needs to be computed, k11 and smaller keys are no longer needed, thus k11 can
be reversed to k6 and then removed using an inverted S-box, thus saving 32 qubits for an additional 4 S-boxes.

Also, the “zig-zag” method used in [8] used the same amount of qubits for AES-256 as it did for AES-192. This
means there is room for additional rounds or space savings. While we did not reduce the number of qubits for the round
generation, we were able to use some of this additional space for the key expansion. Instead of placing Round 12 on the
remaining 128 qubits, we can reverse part of Round 10 and reuse those qubits to store part of Round 12, thus gaining
enough qubits to store round keys. Thus, when keyword k42 is generated, it is generated below where Round 11 is
stored, thus saving another 32 qubits for the cost of another 4 inverted S-boxes. Overall, we were able to save 64 qubits
over the results in [8]. The total depth of this circuit uses 41 S-boxes, 18 MixColumns, and a depth of 208 to apply
AddRoundKey to each round.

4.3 Savings in AES-256

The methods for AES-128 in Section 4.1 above apply equally here, but since the key constructions in AES-256 require
more previous keys, the removal of keys is not as simple. However, after Round 11 and key k47 is constructed, keys for

7

rounds three and two (k15 and k11) can be removed in the same fashion as above, and keys for Rounds 12 and 13 (k51
and k55) can be stored in their place. Also, after Round 13, key k23 can be removed and replaced with key material
for Round 14 (k59). This is a total saving of 96 qubits for the increased costs of 12 S-boxes with a total additional
depth of 3 S-boxes. The total depth of this circuit uses 54 S-boxes, 22 MixColumns, and a depth of 267 to apply
AddRoundKey to each round.

This method of computing the keywords during the round generation and only storing k4n+3 for AES-128 and
AES-256, and k4n+5 for AES-192 means the keys between k4n and this key need to be computed several times,
however this method is comparable to other methods of producing the additional keys directly in the rounds.

AES-192

1 1 1 1 2 2 1 1 1 1 1 2 3 3 2 1 1 2 1 1 7 6 2 2 1 7

Qubits
0 - 31 k0

K
E

Y
 E

X
P

A
N

S
IO

N

k0

R
ou

n
d

 0 k0

R
ou

n
d

 0 k0
32 - 63 k1 k1 k1 k1
64 - 95 k2 k2
96 - 127 k3 k3 k3 k3

k2 k2

128 - 159 k4 k4
160 - 191 k5 k5
192 - 223 k6 k6
224 - 255 k7 k7

0 0
k8256 - 287 0 0

k24384 - 415 0 0
k20352 - 383 0 0

320 - 351 0 0
288 - 319

k32448 - 479 0 0
k28416 - 447 0 0

R
em

ov
e

6

R
ou

n
d

 1
0

R
em

ov
e1

0576 - 607 0
544 - 575 0 0
512 - 543 0 0
480 - 511 0 0

608 - 639 0
640

R
ou

n
d

 1

R
em

ov
e

1

R
ou

n
d

 6
- 671 0

672 - 703 0

R
ou

n
d

 1
4

736 - 767 0

R
ou

n
d

 2

R
em

ov
e

2

R
ou

n
d

 7

R
em

ov
e

7

R
ou

n
d

 1
1

R
em

ov
e1

1704 - 735 0

R
ou

n
d

 1
3

768 - 799 0
800 - 831 0
832 - 863 0

R
ou

n
d

 3

R
em

ov
e

3

R
ou

n
d

 8

R
em

ov
e

8

R
ou

n
d

 1
2

864 - 895 0
896 - 927 0
928 - 959 0
960 - 991 0

R
ou

n
d

 4

R
em

ov
e

4

R
ou

n
d

 9

992 - 1023 0
1024 - 1055 0
1056 - 1087 0
1088 - 1119 0

R
ou

n
d

 5

1120 - 1151 0
1152 - 1183 0
1184 - 1215 0
1216

0 k56

Depth 54

k48
k52

k36
k40

k44

0
0

k12

- 1231 0

k16

Fig. 5. AES-256 Circuit Diagram showing when keys are constructed and the S-box depth of each round computation.

Table 1 summarizes the resources needed to implement AES with the approach suggested here. For comparison,

#NOT #CNOT #Toffoli S-box Depth Toffoli Depth #Qubits

AES-128 1,507 107,960 16,940 47 1,880 864
AES-192 1,692 125,580 19,580 41 1,640 896
AES-256 1,992 151,011 23,760 54 2,160 1,232

Table 1. Quantum resources to implement AES.

we also recall resource counts for designs proposed in [8, 1]. Comparing Table 2 with Table 1, we see that the revised
S-box design in combination with the changes to handling the key expansion enables attractive resource savings.

Grassl et al. [8] Almazrooie et al. [1]
#NOT #CNOT #Toffoli Toffoli Depth #qubits #NOT #CNOT #Toffoli Toffoli Depth #qubits

AES-128 1, 456 166, 548 151, 552 12, 672 984 1, 370 192, 832 150, 528 (not reported) 976

AES-192 1, 608 189, 432 172, 032 11, 088 1, 112 (not reported)
AES-256 1, 943 233, 836 215, 040 14, 976 1, 336 (not reported)

Table 2. Resource estimates for AES using designs from prior literature.

8

5 Exhaustive key search with Grover’s algorithm

For our discussion of leveraging Grover’s algorithm for an exhaustive key search, we follow the approach in [8], i. e.,
we assume a straightforward application of Grover’s algorithm, using our AES design to implement the pertinent
Grover operator. We leave it for future work to explore possible time-space trade-offs in the spirit of Kim et al.’s
work [11]. For Grover’s algorithm [9], we need a quantum circuit Uf : |x〉 |y〉 7−→ |x〉 |y ⊕ f(x)〉, where x ∈ {0, 1}k
represents a candidate key, and f(x) = 1 if the key x matches all given plaintext-ciphertext pairs, and f(x) = 0,
otherwise. Following Amento-Adelmann et al. [2], we assume that rk = dk/128e known plaintext-ciphertext pairs
are sufficient to avoid false positives in an exhaustive key search for AES-k (k ∈ {128, 192, 256}). Thus, taking into
account “cleaning up” of wires, we need to implement

– 2 AES instances (for r128 = 1 plaintext-ciphertext pair) for AES-128
– 4 AES instances (for r192 = 2 plaintext-ciphertext pairs) for AES-192
– 4 AES instances (for r256 = 2 plaintext-ciphertext pairs) for AES 256

Here, we do not distinguish between implementing encryption or decryption, as the latter can be obtained by running
encryption backwards, thereby not affecting the cost parameters we are looking at.

Remark 5.1. The above choices for r128, r192, and r256 are smaller than the ones used by Grassl et al. [8], but Amento-
Adelmann et al.’s [2] reasoning could be applied to argue for a smaller number of AES instances in [8], too. We are
not offering anything novel here — our contribution only affects the quantum circuit for AES.

5.1 Number of qubits

As noted in [2], multiple plaintext-ciphertext pairs can be tested sequentially or in parallel, trading gates and circuit
depth for the number of qubits. Prioritizing a smaller T -depth, here we choose the parallel option, as in [8], which
leads to a total qubit count of rk · qk + 1, where qk is the number of qubits needed to implement AES-k according to
Table 1:

– 1 · 864 + 1 = 865 qubits for a Grover-based key search in AES-128.
– 2 · 896 + 1 = 1, 793 qubits for a Grover-based key search in AES-192.
– 2 · 1, 232 + 1 = 2, 465 qubits for a Grover-based key search in AES-256.

5.2 Gate counts

Operator Uf . Inside the operator Uf , we need to compare the 128-bit outputs of the AES instances with rk given
ciphertexts. For this, we can use a 128 · rk-controlled NOT (plus some NOT gates, which we neglect and that depend
on the given ciphertext(s).) We also budget 2 · (rk−1) ·k CNOT gates to make the input key available to all rk parallel
AES instances (and uncomputing this operation at the end). And, of course, we need need to implement the actual
AES instances. From Table 1, we obtain the following resource estimates:

– AES-128: Two AES-instances require 2·16, 940 = 33, 880 Toffoli gates with a Toffoli depth of 2·1, 880 = 3, 760.
In addition, we need 2 · 1, 507 = 3, 014 NOT gates and 2 · 107, 960 = 215, 920 CNOT gates.

– AES-192: Four AES-instances require 4·19, 580 = 78, 320 Toffoli gates with a Toffoli depth of 2·1, 640 = 3, 280.
In addition, we need 4 · 1692 = 6, 768 NOT gates and 4 · 125, 580 + 2 · 192 = 502, 704 CNOT gates.

– AES-256: Four AES-instances require 4·23, 760 = 95, 040 Toffoli gates with a Toffoli depth of 2·2, 160 = 4, 320.
In addition, we need 4 · 1, 992 = 7, 968 NOT gates and 4 · 151, 011 + 2 · 256 = 604, 556 CNOT gates.

Grover operator. Grover’s algorithm repeatedly applies the operator

G = Uf ·
((
H⊗k (2 |0〉 〈0| − 12k)H

⊗k)⊗ 12

)
,

where |0〉 is the all-zero basis state of appropriate size. So in addition to Uf , further gates are needed. In this paper we
do not offer any improvements to those parts of the algorithm. Following [8], for the operator 2 |0〉 〈0|−12k , we budget
a k-fold controlled NOT gate. With bπ4 · 2

k/2c Grover iterations being used for AES-k, we can now give estimates in
the Clifford+T model and compare our results with prior work.

9

5.3 Overall cost

The above discussion does not rely on a particular translation from Toffoli gates to T -gates. For a comparison with
prior work, we proceed similarly as in [8]:

– The number of T -gates to realize an `-fold controlled NOT (` ≥ 5) is estimated as 32 · `− 84 (see [17]).
– Toffoli gates are assigned a cost of 7 T -gates plus 8 Clifford gates, a T -depth of 4, and a total depth of 8; this is

motivated by the decomposition in [3, Fig. 7(a)]. Certainly, other choices would be possible here; e. g., in [15],
Selinger offers a Toffoli decomposition with T -depth 1, using 7 T -gates, 18 Clifford gates, and 4 ancillas.

– To estimate the total number of Clifford gates, we count only the Clifford gates in the AES-instances, plus the
2 · (rk − 1) · k CNOT gates inside Uf for the parallel processing of plaintext-ciphertext pairs.

– To estimate depth and T -depth we only take the depth and T -depth of AES-k into account (ignoring in particular
the two multi-controlled NOT gates). For the S-box used in this paper, the (Clifford+T) depth is about 600.

With this, the estimated total cost for a Grover-based attack against AES-k is as follows.

– AES-128:
• T -gates: bπ4 · 2

64c · (7 · 33, 880 + 32 · 128 − 84 + 32 · 128 − 84) ≈ 1.47 · 281 T -gates with a T -depth of
bπ4 · 2

64c · 4 · 3, 760 ≈ 1.44 · 277.
• Clifford gates: bπ4 · 2

64c · (8 · 33, 880 + 3, 014 + 215, 920) ≈ 1.46 · 282
• Circuit Depth: bπ4 · 2

64c · 2 · (47 · 600 + 15 · 39 + 142) ≈ 1.39 · 279

– AES-192:
• T -gates: bπ4 · 2

96c · 7 · (78, 320 + 32 · 192 − 84 + 32 · 256 − 84) ≈ 1.68 · 2114 T -gates with a T -depth of
bπ4 · 2

96c · 4 · 3, 280 ≈ 1.26 · 2109.
• Clifford gates: bπ4 · 2

96c · (8 · 78, 320 + 6, 768 + 502, 704) ≈ 1.71 · 2115
• Circuit Depth: bπ4 · 2

96c · 2 · (41 · 600 + 18 · 39 + 254) ≈ 1.23 · 2111

– AES-256:
• T -gates: bπ4 · 2

128c · 7 · (95, 040 + 32 · 256 − 84 + 32 · 256 − 84) ≈ 1.02 · 2147 T -gates with a T -depth of
bπ4 · 2

128c · 4 · 4, 320 ≈ 1.66 · 2141.
• Clifford gates: bπ4 · 2

128c · (8 · 95, 040 + 7, 968 + 604, 556) ≈ 1.03 · 2148
• Circuit Depth: bπ4 · 2

128c · 2 · (54 · 600 + 22 · 39 + 267) ≈ 1.61 · 2143

Table 3 summarizes the main resource counts; for comparison we also include the estimates reported in [8].

6 Conclusion

The above discussion establishes that fewer quantum resources for an exhaustive key search in AES are required than
previously reported. In particular, the number of Toffoli – and therewith the number of costly T -gates – can be reduced.
These savings can be achieved in tandem with reducing the T -depth, the number of Clifford gates, and the number of
qubits needed. Even for AES-128, the established quantum resource estimates remain well beyond currently available
technology, but for a quantitative interpretation of the security categories offered by NIST in [13], it may be helpful to
take the revised resource estimates into account.

Acknowledgments

The authors would like to thank Mathias Soeken for making us aware of the work in [7] during a discussion with one
of the authors at a Dagstuhl Seminar on quantum cryptanalysis. RS is in part supported through NATO SPS Project
G5448 and through NIST awards 60NANB18D216 and 60NANB18D217.

10

Grassl et al. [8] this paper

AES-128:
#qubits 2, 953 865

#T -gates 1.19 · 286 1.47 · 281
T -depth 1.06 · 280 1.44 · 277
#Clifford gates 1.55 · 286 1.46 · 282
overall depth 1.16 · 281 1.39 · 279

AES-192:
#qubits 4, 449 1, 793

#T -gates 1.81 · 2118 1.68 · 2114
T -depth 1.21 · 2112 1.26 · 2109
#Clifford gates 1.17 · 2119 1.71 · 2115
overall depth 1.33 · 2113 1.23 · 2111

AES-256:
#qubits 6, 681 2, 465

#T -gates 1.41 · 2151 1.02 · 2147
T -depth 1.44 · 2144 1.66 · 2141
#Clifford gates 1.83 · 2151 1.03 · 2148
overall depth 1.57 · 2145 1.61 · 2143

Table 3. Revised resource estimates in the Clifford+T model for a Grover-based key search for AES-k.

References

1. Mishal Almazrooie, Azman Samsudin, Rosni Abdullah, and Kussay N. Mutter. Quantum reversible circuit of AES-128.
Quantum Information Processing, 17(5):112, 2018.

2. Brittanney Amento-Adelmann, Markus Grassl, Brandon Langenberg, Yi-Kai Liu, Eddie Schoute, and Rainer Steinwandt.
Quantum Cryptanalysis of Block Ciphers: A Case Study. Poster at Quantum Information Processing QIP 2018, 2018.

3. Matthew Amy, Dmitri Maslov, Michele Mosca, and Martin Roetteler. A Meet-in-the-Middle Algorithm for Fast Synthesis
of Depth-Optimal Quantum Circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
32(6):818–830, 2013.

4. Charles H. Bennett. Logical Reversibility of Computation. IBM Journal of Research and Development, 17(6):525–532, 1973.
5. Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user language. Journal of Symbolic

Computation, 24(3–4):235–265, 1997.
6. Joan Boyar and René Peralta. A New Combinational Logic Minimization Technique with Applications to Cryptology. In Paola

Festa, editor, International Symposium on Experimental Algorithms SEA 2010, volume 6049 of Lecture Notes in Computer
Science, pages 178–189. Springer, 2010. Preprint available at https://eprint.iacr.org/2009/191.

7. Joan Boyar and René Peralta. A depth-16 circuit for the AES S-box. Cryptology ePrint Archive: Report 2011/332, June 2011.
Available at https://eprint.iacr.org/2011/332.

8. Markus Grassl, Brandon Langenberg, Martin Roetteler, and Rainer Steinwandt. Applying Grover’s Algorithm to AES: Quan-
tum Resource Estimates. In Tsuyoshi Takagi, editor, Post-Quantum Cryptography PQCrypto 2016, volume 9606 of Lecture
Notes in Computer Science, pages 29–43. Springer, 2016.

9. Lov K. Grover. A Fast Quantum Mechanical Algorithm for Database Search. In Proceedings of the 28th Annual ACM
Symposium on the Theory of Computing STOC 1996, pages 212–219, 1996.

10. Thomas Häner, Damian S. Steiger, Krysta Svore, and Matthias Troyer. A software methodology for compiling quantum
programs. Quantum Science and Technology, 3, 2018. Preprint available at https://arxiv.org/abs/1604.01401.

11. Panjin Kim, Daewan Han, and Kyung Chul Jeong. Time–space complexity of quantum search algorithms in symmetric crypt-
analysis: applying to AES and SHA-2. Quantum Information Processing, 17:339, 2018.

12. NIST. Advanced Encryption Standard (AES). Federal Information Processing Standards Publication 197, November 2001.
13. NIST. Submission Requirements and Evaluation Criteria for the Post-Quantum Cryptography Standardization Pro-

cess, 2017. Available at https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/
documents/call-for-proposals-final-dec-2016.pdf.

14. P. Saravanan and P. Kalpana. Novel Reversible Design of Advanced Encryption Standard Cryptographic Algorithm for Wireless
Sensor Networks. Wireless Personal Communications, 100(4):1427–1458, 2018.

11

15. Peter Selinger. Quantum circuits of T -depth one. Physical Review A, 87(4):042302, 2013.
16. Damian S. Steiger, Thomas Häner, and Matthias Troyer. ProjectQ: An Open Source Software Framework for Quantum Com-

puting. CoRR, abs/1612.08091, 2016.
17. Nathan Wiebe and Martin Roetteler. Quantum arithmetic and numerical analysis using Repeat-Until-Success circuits. Quantum

Information & Computation, 16(1–2):34–178, 2016.

A Description of our quantum circuit for SubByte in ProjectQ

import math
from p r o j e c t q . ops import CNOT, Measure , X, T o f f o l i
from p r o j e c t q import MainEngine
from p r o j e c t q . meta import Compute , Uncompute
from p r o j e c t q . backends import C i r c u i t D r a w e r , ResourceCoun te r ,

C l a s s i c a l S i m u l a t o r
import p r o j e c t q . l i b s . math

d r a w i n g e n g i n e = C i r c u i t D r a w e r ()
r e s o u r c e c o u n t e r = R e s o u r c e C o u n t e r ()
sim = C l a s s i c a l S i m u l a t o r ()
eng = MainEngine (sim)

def aes−box (eng) :

U = eng . a l l o c a t e q u r e g (8)

T = eng . a l l o c a t e q u r e g (1 5)

Z = eng . a l l o c a t e q u r e g (1)

S = eng . a l l o c a t e q u r e g (8)

i n pu t m = [0] ∗ (8)
ou tpu t m = [0] ∗ (8)

w i th Compute (eng) :
CNOT | (U[0] ,U[5])
CNOT | (U[3] ,U[5])
CNOT | (U[6] ,U[5])
CNOT | (U[0] ,U[4])
CNOT | (U[3] ,U[4])
CNOT | (U[6] ,U[4])
T o f f o l i | (U[5] ,U[4] , T [0]) # t 2
CNOT | (T [0] , T [5])

CNOT | (U[1] ,U[3])
CNOT | (U[2] ,U[3])
CNOT | (U[7] ,U[3])
T o f f o l i | (U[3] ,U[7] , T [0]) # t 6

CNOT | (U[0] ,U[6])
CNOT | (U[0] ,U[2])

12

CNOT | (U[4] ,U[2])
CNOT | (U[5] ,U[2])
CNOT | (U[6] ,U[2])
T o f f o l i | (U[6] ,U[2] , T [1]) # t 7
CNOT | (T [1] , T [2])

CNOT | (U[2] ,U[1])
CNOT | (U[4] ,U[1])
CNOT | (U[5] ,U[1])
CNOT | (U[7] ,U[1])
CNOT | (U[1] ,U[0])
CNOT | (U[6] ,U[0])
T o f f o l i | (U[1] ,U[0] , T [1]) # t 9

CNOT | (U[1] ,U[6])
CNOT | (U[0] ,U[2])
T o f f o l i | (U[6] ,U[2] , T [2]) # t 1 1

CNOT | (U[6] ,U[3])
CNOT | (U[7] ,U[2])
T o f f o l i | (U[3] ,U[2] , T [3]) # t 1 2
CNOT | (T [3] , T [4])

CNOT | (U[1] ,U[6])
CNOT | (U[5] ,U[6])
CNOT | (U[2] ,U[0])
CNOT | (U[4] ,U[0])
CNOT | (U[7] ,U[0])
T o f f o l i | (U[6] ,U[0] , T [3]) # t 1 4

CNOT | (U[6] ,U[3])
CNOT | (U[2] ,U[0])
T o f f o l i | (U[3] ,U[0] , T [4]) # t 1 6

CNOT | (T [3] , T [1]) # t 1 9

CNOT | (U[1] ,U[3])
CNOT | (U[7] ,U[4])
T o f f o l i | (U[3] ,U[4] , T [5]) # t 4

CNOT | (T [5] , T [3]) # t 1 7

CNOT | (T [4] , T [0]) # t 1 8

CNOT | (T [2] , T [4]) # t 2 0

CNOT | (U[1] ,U[6])
CNOT | (U[2] ,U[6])
CNOT | (U[3] ,U[6])
CNOT | (U[6] , T [3]) # t 2 1

13

CNOT | (U[0] ,U[1])
CNOT | (U[3] ,U[1])
CNOT | (U[1] , T [0]) # t 2 2

CNOT | (U[1] ,U[5])
CNOT | (U[4] ,U[5])
CNOT | (U[6] ,U[5])
CNOT | (U[7] ,U[5])
CNOT | (U[5] , T [1]) # t 2 3

CNOT | (U[1] ,U[4])
CNOT | (U[3] ,U[4])
CNOT | (U[5] ,U[4])
CNOT | (U[4] , T [4]) # t 2 4

T o f f o l i | (T [3] , T [1] , T [6]) # t 2 6
CNOT | (T [0] , T [3]) # t 2 5

CNOT | (T [4] , T [7])
CNOT | (T [6] , T [7]) # t 2 7

CNOT | (T [0] , T [6]) # t 3 1
T o f f o l i | (T [3] , T [7] , T [0]) # t 2 9

CNOT | (T [1] , T [8])
CNOT | (T [4] , T [8]) # t 3 0

T o f f o l i | (T [6] , T [8] , T [9]) # t 3 2

c l e a n up T [8] :
CNOT | (T [4] , T [8])
CNOT | (T [1] , T [8])
#T [8] i s f r e e t o r e u s e

CNOT | (T [4] , T [9]) # t 3 3
CNOT | (T [9] , T [1]) # t 3 4

CNOT | (T [7] , T [8])
CNOT | (T [9] , T [8]) # t 3 5

T o f f o l i | (T [4] , T [8] , T [1 0]) # t 3 6

c l e a n up T [8] aga in :
CNOT | (T [9] , T [8])
CNOT | (T [7] , T [8])
#T [8] i s f r e e t o r e u s e

CNOT | (T [1 0] , T [1]) # t 3 7
CNOT | (T [1 0] , T [7]) # t 3 8

14

T o f f o l i | (T [0] , T [7] , T [3]) # t 4 0

CNOT | (T [3] , T [8])
CNOT | (T [1] , T [8]) # t 4 1

CNOT | (T [0] , T [1 1])
CNOT | (T [9] , T [1 1]) # t 4 2

CNOT | (T [0] , T [1 2])
CNOT | (T [3] , T [1 2]) # t 4 3

CNOT | (T [9] , T [1 3])
CNOT | (T [1] , T [1 3]) # t 4 4

CNOT | (T [1 1] , T [1 4])
CNOT | (T [8] , T [1 4]) # t 4 5

CNOT | (U[0] ,U[2])
CNOT | (U[1] ,U[2])
CNOT | (U[6] ,U[2]) # f o r z16

CNOT | (U[1] ,U[4])
CNOT | (U[3] ,U[4])
CNOT | (U[5] ,U[4]) # f o r z1

CNOT | (U[1] ,U[6])
CNOT | (U[3] ,U[6])
CNOT | (U[4] ,U[6])
CNOT | (U[5] ,U[6])
CNOT | (U[7] ,U[6]) # f o r z11

CNOT | (U[1] ,U[0])
CNOT | (U[3] ,U[0]) # f o r z13

CNOT | (U[0] ,U[3])
CNOT | (U[2] ,U[3])
CNOT | (U[6] ,U[3]) # f o r z14

T o f f o l i | (T [0] ,U[3] , S [2]) # z14
CNOT | (S [2] , S [5])

CNOT | (U[0] ,U[3])
T o f f o l i | (T [1 2] ,U[3] , S [6]) # z12
CNOT | (S [6] , S [2])
CNOT | (S [6] , S [5])
CNOT | (U[0] ,U[3])

T o f f o l i | (T [1] ,U[4] , S [1]) # z1
CNOT | (S [1] , S [3])
CNOT | (S [1] , S [4])

15

CNOT | (U[7] ,U[4])
T o f f o l i | (T [1 3] ,U[4] , S [7]) # z0
CNOT | (S [7] , S [1])
CNOT | (S [7] , S [2])
CNOT | (S [7] , S [3])
CNOT | (S [7] , S [5])
CNOT | (U[7] ,U[4])

T o f f o l i | (T [3] ,U[0] , S [6]) # z13
CNOT | (S [6] , S [7])

CNOT | (U[3] ,U[6])
T o f f o l i | (T [1 1] ,U[6] , S [0]) # z15
CNOT | (S [0] , S [2])
CNOT | (U[3] ,U[6])

T o f f o l i | (T [1 4] ,U[2] , S [0]) # z16
CNOT | (S [0] , S [1])
CNOT | (S [0] , S [3])
CNOT | (S [0] , S [4])
CNOT | (S [0] , S [5])
CNOT | (S [0] , S [6])
CNOT | (S [0] , S [7])

T o f f o l i | (T [9] ,U[7] , Z [0]) # z2
CNOT | (Z [0] , S [2])
CNOT | (Z [0] , S [4])
CNOT | (Z [0] , S [5])
CNOT | (Z [0] , S [7])
T o f f o l i | (T [9] ,U[7] , Z [0])

w i th Compute (eng) :
CNOT | (U[0] ,U[5])
CNOT | (U[3] ,U[5])
T o f f o l i | (T [1 2] ,U[5] , Z [0]) # z3

CNOT | (Z [0] , S [0])
CNOT | (Z [0] , S [3])
CNOT | (Z [0] , S [5])
CNOT | (Z [0] , S [7])
Uncompute (eng)

wi th Compute (eng) :
CNOT | (U[1] ,U[6])
CNOT | (U[2] ,U[6])
CNOT | (U[3] ,U[6])
CNOT | (U[4] ,U[6])
T o f f o l i | (T [3] ,U[6] , Z [0]) # z4

CNOT | (Z [0] , S [0])
CNOT | (Z [0] , S [3])
CNOT | (Z [0] , S [4])

16

CNOT | (Z [0] , S [5])
CNOT | (Z [0] , S [6])
Uncompute (eng)

wi th Compute (eng) :
CNOT | (U[0] ,U[6])
CNOT | (U[1] ,U[6])
CNOT | (U[2] ,U[6])
CNOT | (U[4] ,U[6])
CNOT | (U[5] ,U[6])
T o f f o l i | (T [0] ,U[6] , Z [0]) # z5

CNOT | (Z [0] , S [4])
CNOT | (Z [0] , S [6])
CNOT | (Z [0] , S [7])
Uncompute (eng)

wi th Compute (eng) :
CNOT | (U[0] ,U[7])
CNOT | (U[1] ,U[7])
CNOT | (U[2] ,U[7])
CNOT | (U[4] ,U[7])
CNOT | (U[5] ,U[7])
CNOT | (U[6] ,U[7])
T o f f o l i | (T [1 1] ,U[7] , Z [0]) # z6

CNOT | (Z [0] , S [0])
CNOT | (Z [0] , S [1])
CNOT | (Z [0] , S [2])
Uncompute (eng)

wi th Compute (eng) :
CNOT | (U[0] ,U[7])
CNOT | (U[3] ,U[7])
CNOT | (U[4] ,U[7])
CNOT | (U[5] ,U[7])
T o f f o l i | (T [1 4] ,U[7] , Z [0]) # z7

CNOT | (Z [0] , S [0])
CNOT | (Z [0] , S [1])
CNOT | (Z [0] , S [5])
CNOT | (Z [0] , S [6])
Uncompute (eng)

wi th Compute (eng) :
CNOT | (U[1] ,U[6])
CNOT | (U[2] ,U[6])
CNOT | (U[3] ,U[6])
T o f f o l i | (T [8] ,U[6] , Z [0]) # z8

CNOT | (Z [0] , S [2])
CNOT | (Z [0] , S [5])
CNOT | (Z [0] , S [6])
Uncompute (eng)

17

wi th Compute (eng) :
CNOT | (U[0] ,U[3])
CNOT | (U[2] ,U[3])
T o f f o l i | (T [1 3] ,U[3] , Z [0]) # z9

CNOT | (Z [0] , S [0])
CNOT | (Z [0] , S [1])
CNOT | (Z [0] , S [3])
CNOT | (Z [0] , S [4])
Uncompute (eng)

wi th Compute (eng) :
CNOT | (U[0] ,U[6])
CNOT | (U[2] ,U[6])
CNOT | (U[3] ,U[6])
T o f f o l i | (T [1] ,U[6] , Z [0]) # z10

CNOT | (Z [0] , S [0])
CNOT | (Z [0] , S [1])
CNOT | (Z [0] , S [3])
CNOT | (Z [0] , S [4])
CNOT | (Z [0] , S [5])
Uncompute (eng)

CNOT | (U[2] ,U[6])
CNOT | (U[3] ,U[6])
T o f f o l i | (T [8] ,U[6] , S [2]) # z17
CNOT | (U[3] ,U[6])
CNOT | (U[2] ,U[6])

T o f f o l i | (T [9] ,U[6] , S [5]) # z11

X | S [1]
X | S [2]
X | S [6]
X | S [7]

Uncompute (eng)

18

