
WIDESEAS: A lattice-based PIR scheme

implemented in EncryptedQuery

Dominic Dams∗

q2dominic@gmail.com

Jeff Lataille†

jeff.lataille@envieta.com

Rino Sanchez†

rino.sanchez.math@google.com

John Wade†

john.wade@envieta.com

July 27, 2019

Abstract

We introduce the WIDESEAS protocol for lattice-based Private Infor-
mation Retrieval (PIR), and we give performance numbers for its recent
implementation in the EncryptedQuery open-source PIR software. This
protocol uses the fully homomorphic Brakerski–Fan–Vercauteren (BFV)
encryption scheme, as opposed to the Paillier scheme, which is used in
all earlier versions of EncryptedQuery. We show that the homomorphic
capabilities of BFV result in smaller query sizes (due to a query-shrinking
technique based on batching and ciphertext multiplication), higher re-
sponse generation rates (due to using relinearization to keep ciphertexts
small; due to caching certain products of query elements in the NTT
domain; due to using the distributive law to achieve a quadratic reduc-
tion in the total number of ciphertext multiplications; due to using lazy

∗Work performed during internship at Envieta Systems, LLC.
†Work performed while working as a Senior Mathematician for Envieta Systems, LLC.

1

reduction to speed up modular multiplies; and, due to exploiting proper-
ties of inverse NTTs over periodic data, and forward NTTs over sparse
data, for the purpose of accelerating plain multiplications), and compara-
ble response sizes (due to using modulus switching to discard redundant
ciphertext information prior to transmitting the response). For instance,
running a single thread (with Turbo Boost disabled) on a MacBook Pro
equipped with a 2.8 GHz Intel core i7, and using a 20-bit hash and a
215-byte data chunk size (which allows us to search for a single targeted
selector), our implementation can (i) generate a query of size 64 MiB in
around 0.41 seconds, (ii) process a query against a 1 TiB database (com-
prised of 220-many 1 MiB records) at a rate of 23.67 MiB/s (which is
at least two orders of magnitude faster than the Paillier-based version of
EncryptedQuery), and (iii) generate a response of size 4 MiB in around
0.51 days. We expect a speed up on server class machines. Our imple-
mentation uses the Microsoft SEAL library along with a small amount of
custom code.

2

CONTENTS CONTENTS

Contents

1 Introduction 5

2 Detailed description of BFV 6

2.1 About SEAL . 7

2.2 Basic mathematical setup . 7

2.2.1 Algebra . 7

2.2.2 Probability . 10

2.3 Key generation . 12

2.3.1 On measurements . 14

2.4 Encryption . 15

2.5 Decryption . 16

2.5.1 Decryption of fresh ciphertexts 21

2.6 Noise under operations . 26

2.6.1 Ciphertext addition . 28

2.6.2 Plaintext multiplication 33

2.6.3 Ciphertext multiplication 36

2.6.4 Relinearization . 41

2.7 Modulus switching . 43

2.8 Batching . 45

3 WIDESEAS protocol 46

3.1 Naive approach . 46

3.2 Shrinking the query . 47

3.3 Concrete system parameters . 49

3.4 Noise growth . 51

3.5 Query size . 51

3.6 Response size . 52

4 Homomorphic optimizations 54

4.1 Caching subproducts . 55

4.2 Summing products . 56

4.3 NTT caching . 56

4.4 Lazy reduction . 57

3

CONTENTS CONTENTS

4.5 Periodic NTT’s . 57

5 Performance numbers 59

5.1 A comparison with SEAL PIR 60

6 Conclusion 65

A Group algebras and Fourier analysis 65

B Fourier transform 66

C NTT’s as twisted Fourier transforms 72

4

1 INTRODUCTION

1 Introduction

A Private Information Retrieval (PIR) protocol allows a client to retrieve items
from a database without revealing either the query term or the retrieved items.
The database is assumed to be public, and there is no restriction that the
client only learn the specific item. For example, the trivial PIR protocol is
to download the entire database and then perform the search locally. A non-
trivial PIR protocol aims to reduce the communication cost in terms of the data
transmitted and received, as well as to reduce the computational costs for both
the client and the database server.

A PIR protocol can be divided into three phases between two parties, a
Querier and a Responder. In the first phase, called query generation, the
Querier generates a private key and a query for a specific list of query terms, or
(targeted) selectors. The Querier then transmits the query to the Responder. In
the second phase, called response generation, the Responder reads items from
the database and generates the response using the query. The Responder then
transmits the response back to the Querier. In the third phase, called response
processing, the Querier decrypts the response and extracts the underlying
plaintext values. The computational and communication costs of a PIR protocol
can be evaluated according to the following dimensions:

1. Query Term Batching: The number of query terms that can be pro-
cessed in one query.

2. Query Generation Time: The per-core time to generate a query; this
is closely related to the encryption speed of the underlying cryptosystem.

3. Query Size: The size of the query (in bytes, say).

4. Response Processing Rate: The per-core rate (in bytes per second,
say) at which the database items are processed into the response.

5. Response Size: The size of the response (in bytes, say).

6. Reponse Decryption Time: The per-core time to decrypt the response;
this is closely related to the decryption speed of the underlying cryptosys-
tem.

In this report, we introduce the WIDESEAS protocol for lattice-based Pri-
vate Information Retrieval (PIR), and we give performance numbers for its
recent implementation in the EncryptedQuery open-source PIR software1. This
protocol is a lattice-based variant of the WIDESKIES protocol [1] that is used in
all earlier versions of EncryptedQuery. The WIDESEAS protocol uses the fully
homomorphic Brakerski–Fan–Vercauteren (BFV) encryption scheme, whereas

1https://enquery.net/encryptedquery

5

https://enquery.net/encryptedquery

2 DETAILED DESCRIPTION OF BFV

the WIDESKIES protocol uses the Paillier scheme [2]. We show that the ho-
momorphic capabilities of BFV result in smaller query sizes (due to a query-
shrinking technique based on batching and ciphertext multiplication), higher
response generation rates (due to using relinearization to keep ciphertexts small;
due to caching certain products of query elements in the NTT domain; due to
using the distributive law to achieve a quadratic reduction in the total number
of ciphertext multiplications; due to using lazy reduction to speed up modular
multiplies; and, due to exploiting properties of inverse NTTs over periodic data,
and forward NTTs over sparse data, for the purpose of accelerating plain mul-
tiplications), and comparable response sizes (due to using modulus switching to
discard redundant ciphertext information prior to transmitting the response).
For instance, running a single thread (with Turbo Boost disabled) on a Mac-
Book Pro equipped with a 2.8 GHz Intel core i7, and using a 20-bit hash and
a 215-byte data chunk size (which allows us to search for a single targeted se-
lector), our implementation can (i) generate a query of size 64 MiB in around
0.41 seconds, (ii) process a query against a 1 TiB database (comprised of 220-
many 1 MiB records) at a rate of 23.67 MiB/s (which is at least two orders of
magnitude faster than the Paillier-based version of EncryptedQuery), and (iii)
generate a response of size 4 MiB in around 0.51 days. We expect a speed up on
server class machines. Our implementation uses the Microsoft SEAL library2

along with a small amount of custom code.

This report is organized as follows. In §2, we describe the BFV fully ho-
momorphic cryptosystem as implemented in Microsoft’s SEAL library. The
operations required for the WIDESEAS protocol are emphasized. In §3, we
provide a high-level summary of the WIDESEAS protocol for PIR. We begin
by presenting a basic (naive) approach, and then we describe various enhance-
ments. We also provide a concrete parameter set, and we analyze noise growth,
query size and response size with respect to this set. In §4, we discuss certain
optimizations we have made to the basic WIDESEAS computation described in
§3. These optimizations, all of which are implemented in EncryptedQuery, do
not change the underlying algorithm, but they greatly improve its performance.
Finally, in §5, we present various performance measurements. These measure-
ments were done using gcc-7 on an Oracle VM VirtualBox running Ubuntu
18.04.1 LTS (Bionic Beaver) on a MacBook Pro laptop running MacOS Sierra
using a 2.8 GHz Intel core i7 and with Turbo Boost disabled.

2 Detailed description of BFV

This section describes the Brakerski–Fan–Vercauteren (BFV) fully homomor-
phic cryptosystem as implemented in Microsoft’s SEAL library. The operations
required for the WIDESEAS protocol are emphasized. See Fan–Vercauteren
[3] or the SEAL manual [4] for more details. The scheme uses the following
parameters, which will be explained below:

2https://www.microsoft.com/en-us/research/project/microsoft-seal/

6

https://www.microsoft.com/en-us/research/project/microsoft-seal/

2.1 About SEAL 2 DETAILED DESCRIPTION OF BFV

d = 2k degree of ring extension, with k ≥ 0
q ciphertext modulus
t plaintext modulus, with 2 ≤ t < q

Table 1: BFV Parameters

In the WIDESEAS protocol, t is prime, while q is square-free with four prime
divisors, and both t and q are odd. Therefore, in the sequel, we shall always
assume that both t and q are odd. This will somewhat simplify the analysis.

2.1 About SEAL

The Simple Encrypted Arithmetic Library (SEAL) is an easy-to-use open-source
homomorphic encryption library developed by researchers in the Cryptography
Research Group at Microsoft Research. SEAL is written in standard C++. It
has no external dependencies, so it is easy to compile in many different environ-
ments. SEAL is licensed under the MIT license.

2.2 Basic mathematical setup

2.2.1 Algebra

Let Φ2d(x) = xd + 1 be the 2d-th cyclotomic polynomial. The central mathe-
matical object in the BFV cryptosystem is the ring of integers

O := Z[x]/Φ2d(x)Z[x]

in the 2d-th cyclotomic field extension Q⊗ZO of Q. We shall sometimes identify
elements of O with their representatives in Z[x] of least degree.

Let n be a positive integer. By extension of scalars, the Z/nZ-algebra

On := (Z/nZ)⊗Z O

is the reduction modulo n of O. The natural projection

pn : Z→ Z/nZ

induces a natural projection

πn : O → On,

which, in turn, induces a natural projection

Pn : O[X]→ On[X],

7

2.2 Basic mathematical setup 2 DETAILED DESCRIPTION OF BFV

where X is a formal variable distinct from x. In case n is a prime number, and,
therefore, Z/nZ is a (finite) field, we sometimes write Fn for Z/nZ, in which
case On = Fn ⊗Z O. The map pn has a unique set-theoretic section

sn : Z/nZ→ Z

with image
[
− bn/2c, b(n− 1)/2c

]
. This map induces a set-theoretic section

σn : On → O

for the projection πn, which, in turn, induces a set-theoretic section

Sn : On[X]→ O[X]

for the projection Pn. The image of σn consists precisely of those elements of O
represented in Z[x] by polynomials over Im sn, that is to say,

Im σn = (sn (Z/nZ) [x] + Φ2d(x)Z[x]) /Φ2d(x)Z[x].

Similarly,
Im Sn = σn (On) [X].

Put
tn := sn ◦ pn : Z→ Im sn,

τn := σn ◦ πn : O → Im σn,

and
Tn := Sn ◦ Pn : O[X]→ Im Sn.

As pn ◦ sn = 1Z/nZ, it follows that each of tn, τn and Tn is idempotent. Lest the
reader suppose these maps are homomorphisms, we note the following results:

Lemma 1. Let n be a positive integer. Regarding the maps tn, τn, and Tn, the
following are true:

1. They fail to commute with their respective addition operations.

2. They commute with their respective point-wise multiplication operations,
if, and only if, n ∈

{
1, 2, 3

}
.

Proof. In order to prove the first claim above, we begin by observing that
tn(n) = 0 and ntn(1) = n. As 0 6= n in Z, the result for tn follows. The
corresponding results for τn and Tn then follow by extension.

The second claim follows from the fact that Im tn is a multiplicatively closed
set, if, and only if, n ∈

{
1, 2, 3

}
.

8

2.2 Basic mathematical setup 2 DETAILED DESCRIPTION OF BFV

The family of maps (τn)n≥1 will be used to provide connections between
arbitrary members of the family (On)n≥1 . Likewise, the family of maps (Tn)n≥1

will be used to provide connections between arbitrary members of the family
(On[X])n≥1 . Indeed, for each positive integer n, the ring On is bijective with
the set Im τn, via σn, and, similarly, the ring On[X] is bijective with the set
Im Tn, via Sn. Furthermore, for all positive integers n1 and n2, with n1 ≤ n2,
the restriction to Im τn1 of τn2 agrees with idempotent τn1 , and, similarly,
the restriction to Im Tn1

of Tn2
agrees with idempotent Tn1

. In particular,
Im τn1

⊆ Im τn2
and Im Tn1

⊆ Im Tn2
. The following pair of technical lemmas

will be used frequently and implicitly in the sequel.

Lemma 2. If n1 and n2 are positive integers, then

tn1n2
(n1tn2

(z)) = tn1n2
(n1z) ,

for all z ∈ Z, and analogous results hold for τn1n2
and Tn1n2

.

Proof. The result for tn1n2
is an immediate consequence of the fact that the

integers tn2
(z) and z are congruent modulo n2, if, and only if, the integers

n1tn2
(z) and n1z are congruent modulo n1n2. The results for τn1n2

and Tn1n2

then follow easily by (coefficient-wise) extensions.

Lemma 3. Let n be a positive integer. If f ((Xi)i∈I) ∈ Z
[
(Xi)i∈I

]
is a poly-

nomial over Z in a family of formal variables (Xi)i∈I , then

tn
(
f
(
(tn(zi))i∈I

))
= tn (f ((zi)i∈I)) ,

for any family of integers (zi)i∈I , and analogous results hold for τn and Tn.

Proof. By definition, tn = sn◦pn, and the claim follows from the fact that pn is a
ring homomorphism and pn◦tn = pn. The lemma then follows by extension.

Finally, the derivation-like map

dn : Z→ Z

given by
dn : z 7→ (z − tn(z))n−1

induces a derivation-like map

δn : O → O

given by
δn : r 7→ (r − τn(r))n−1,

which, in turn, induces a derivation-like map

Dn : O[X]→ O[X]

9

2.2 Basic mathematical setup 2 DETAILED DESCRIPTION OF BFV

given by
Dn : f(X) 7→ (f(X)− Tn (f(X)))n−1.

For z ∈ Z, r ∈ O, and f(X) ∈ O[X], we have the developments

z = tn(z) + ndn(z),

r = τn(r) + nδn(r),

and
f(X) = Tn (f(X)) + nDn (f(X))

to the base n.

In the BFV cryptosystem, the plaintext space is given by τt (O) , while
the ciphertext space is given by the subset Tq (O[X]) of the polynomial ring
O[X]. A short polynomial is defined as an element of τ3 (O) , which always
shall be sampled in a uniformly random manner. Finally, we mention here that
elements of On are measured (e.g., via the `∞-norm) indirectly, by measuring
their corresponding lifts under σn in O, or, more precisely, in Z[x], via the
natural section (i.e., minimal degree pre-image) of the projection of Z[x] onto
O.

2.2.2 Probability

In the BFV cryptosystem, an error polynomial is an element of O sampled
from the error distribution χ defined as the coefficient-wise extension of the
truncated discrete Gaussian distribution having mean zero and standard devi-
ation

σ = 8/
√

2π ≈ 3.19.

Here, the SEAL library takes, by default, B = d6 ∗ σe = 20, for the truncation
bound, since sampling a value more than 6 standard deviations from the mean is
highly unlikely for any Gaussian variate. With this choice of truncation bound,
the truncated distribution is almost indistinguishable from the non-truncated
distribution. Thus, letting

ν =

B∑
x=−B

exp

(
−2−1

(
x− 0

σ

)2
)

be the normalization factor, and writing f : Z → [0,1] for the probability mass
function, we find, for each integer x,

f(x) =

{
ν−1 exp

(
−2−1

(
x−0
σ

)2) |x| ≤ B
0 |x| > B.

10

2.2 Basic mathematical setup 2 DETAILED DESCRIPTION OF BFV

Note that

ν =

B∑
x=−B

exp

(
−2−1

(
x− 0

σ

)2
)

≈
∫ B

−B
exp

(
−2−1

(
x− 0

σ

)2
)

dx

≈
∫ ∞
−∞

exp

(
−2−1

(
x− 0

σ

)2
)

dx

= σ
√

2π

= 8.

In hopes of aiding the reader’s intuition, we provide the following approximation
to the truncated discrete Gaussian distribution underlying χ on its support:

x f(x)

-20 .0000000004
-19 .0000000025
-18 .0000000153
-17 .0000000852
-16 .0000004309
-15 .0000019763
-14 .0000082165
-13 .0000309626
-12 .0001057575
-11 .0003274214
-10 .0009188082
-9 .0023370329
-8 .0053879913
-7 .0112592915
-6 .0213263903
-5 .0366138798
-4 .0569765644
-3 .0803653565
-2 .1027456873
-1 .1190639915
0 .1250602760
1 .1190639915
2 .1027456873
3 .0803653565
4 .0569765644
5 .0366138798
6 .0213263903
7 .0112592915
8 .0053879913
9 .0023370329

10 .0009188082
11 .0003274214
12 .0001057575
13 .0000309626
14 .0000082165
15 .0000019763
16 .0000004309
17 .0000000852
18 .0000000153
19 .0000000025
20 .0000000004

Table 2: Truncated discrete Gaussian
(
µ = 0, σ = 8/

√
2π, B = d6σe = 20

)
Intuitively, each uniform sample x between ±B, inclusive, is accepted with
probability f(x). For example, approximately every eighth x = 0 sample is
accepted, whereas only (approximately) every 231-st x = 20 sample is accepted.

11

2.3 Key generation 2 DETAILED DESCRIPTION OF BFV

2.3 Key generation

Key generation proceeds as follows:

Input: -
Output: the private/public key pair

1. s
$←− τ3(O)

2. a
$←− τq(O)

3. e← χ
4. b← τq(as+ e)
5. pubkey =

[
− b, a

]
6. privkey = s
7. return privkey, pubkey

Table 3: Key Generation

Here, and in the sequel, x
$←− X means that the value x is sampled in a uniformly

random manner from the set X.

As a warm-up to working with the probability distributions from which the
various polynomials in the BFV scheme are sampled, let us consider the extremal
and expected sizes of the coefficients in as + e, prior to application of τq. This
specific information will not be used in the sequel, but the arguments employed
in deducing it will be used more generally throughout. It is the authors’ hope
that the reader will benefit from first hearing these arguments in an especially
simple situation.

First, consider the extremal sizes of the coefficients in as+e. By the Triangle
Inequality,

‖as+ e‖∞ ≤ ‖as‖∞ + ‖e‖∞,

so we may focus separately on as and e. Now, each coefficient in a is at most
(q − 1)/2 in magnitude, whereas each coefficient in s has magnitude no larger
than unity. It follows that each coefficient in as is at most d ((q − 1)/2) in
magnitude, that is to say,

‖as‖∞ ≤ d ((q − 1)/2) .

Each coefficient in e is at most B in magnitude, hence,

‖e‖∞ ≤ B.

Putting these two results together, we find

‖as+ e‖∞ ≤ ‖as‖∞ + ‖e‖∞
≤ d ((q − 1)/2) +B,

12

2.3 Key generation 2 DETAILED DESCRIPTION OF BFV

which gives the extremal values of the coefficients in as + e. In WIDESEAS,
we take d = 8192, q ≈ 2218, and B = 20, in which case d ((q − 1)/2) + B is
a 230-bit number, hence, each coefficient in as + e is no larger than around
2230 ≈ 4096q in magnitude. Of course, the coefficients in τq(as + e) lie strictly
between ±(q − 1)/2, inclusive, by definition of τq.

Second, consider the expected sizes of the coefficients in as + e. Each co-
efficient in as is the sum of d independent and identically distributed random
variables, and each of these d random variables is the product of two indepen-
dent random variables, one over a uniform distribution on {−1, 0, 1}, and the
other over a uniform distribution on

{
− (q − 1)/2, . . . , (q − 1)/2

}
. Since these

two discrete variates are independent, the mean of their product is the product
of their means, that is to say, the mean of their product is 0×0 = 0. Since these
two independent variates each have mean zero, it follows that the variance of
their product is the product of their variances. As the individual variances are

((1− (−1)) + 1)
2 − 1

12
=

2

3

and
(((q − 1)/2− (−(q − 1)/2)) + 1)

2 − 1

12
=
q2 − 1

12
,

it follows that the variance of the product is(
2

3

)(
q2 − 1

12

)
=
q2 − 1

18
.

Now, as mentioned above, each coefficient in as is the sum of d of these random
variables. The mean of this sum is just the sum of the d means, which is zero,
since all d variables involved have mean zero. Furthermore, as the d random
variables being summed are independent, it follows that the variance of their
sum is the sum of their variances, which is

d

(
q2 − 1

18

)
.

But, by the Central Limit Theorem, each coefficient in as is approximately
described by a Gaussian random variable, since each coefficient is described by
a sum of d independent and identically distributed random variables, and, in
practice, d is large (i.e., d = 8192). Thus, in the light of our deductions above,
we find that each coefficient in as is described by a Gaussian random variable

with mean zero and variance d
(
q2−1

18

)
. Finally, summing this Gaussian with

(a smooth approximation to) the truncated discrete Gaussian from which the
coefficients in e were sampled, and, using the fact that these two Gaussians are
independent, we deduce that each coefficient in as+e is described by a Gaussian
random variable having mean zero and variance

d

(
q2 − 1

18

)
+ σ2.

13

2.3 Key generation 2 DETAILED DESCRIPTION OF BFV

In WIDESEAS, we take d = 8192, q ≈ 2218, and σ = 8/
√

2π, in which case each
coefficient in as + e is described by a Gaussian with mean zero and variance
approximately 444-bits, which is around (16q)2. It follows that coefficients in
as+ e almost always lie between ±6× (16q) = ±96q. Thus, even though in the
paragraph above we were able to use the `∞-norm to quickly deduce that the
coefficients in as+ e may be no larger than around 4096q in magnitude, a more
careful statistical analysis has revealed that the coefficients in as+e very rarely
have magnitude larger than 96q.

2.3.1 On measurements

In the previous section, we first measured elements of O using the `∞-norm, and
then we made more careful measurements using statistical techniques based on
the Central Limit Theorem (CLT). In the R-LWE literature, measurements
typically are made using the canonical norm. In this short section, we show
that the canonical norm-based approach is essentially equivalent to our CLT-
based approach in the current setting. Consequently, since we find the CLT-
based approach to be the more intuitive of the two, we shall employed it alone
in the sequel.

The canonical embedding

ε : Q⊗Z O → Cd

maps each field element

a = f(x) + Φ2d(x)Q[x]

to the vector of the evaluations of the polynomial f(x) at the complex roots of
Φ2d(x), that is to say,

ε (a) =
(
f
(
ωj2d

))
j
.

Here, ω2d ∈ C is a primitive (2d)-th root of unity, and the index j ranges over a
complete set of reduced residues modulo 2d. Note that polynomials congruent
modulo Φ2d(x) necessarily have identical evaluations at the complex roots of
Φ2d(x), hence, the canonical embedding is well-defined. The canonical norm
‖a‖can is defined as the Hermitian norm of ε(a), so that

‖a‖2can := ‖ε(a)‖22 =
∑
j

∣∣f(ωj2d)
∣∣2.

Thus, if we let
ρ : Q⊗Z O → Q[x]

be the section map taking each field element onto its representative of least
degree, then the above result may be written as

‖a‖2can =
∑
j

∣∣∣ (ρ(a))
(
ωj2d

) ∣∣∣2. (1)

14

2.4 Encryption 2 DETAILED DESCRIPTION OF BFV

Now, assume the coefficients of ρ(a) are given by independent random variables
over identical distributions having mean 0 and variance σ2. Consider the ex-
pected value of ‖a‖2can. On the one hand, by taking expectations of both sides
of equation (1), we find

E
(
‖a‖2can

)
= E

∑
j

| (ρ(a)) (ωj2d)|
2

=
∑
j

E
(
| (ρ(a)) (ωj2d)|

2
)

≈
∑
j

E
(
| (ρ(a)) (ω2d)|2

)
= dE

(
| (ρ(a)) (ω2d)|2

)
. (2)

On the other hand, by Parseval's Theorem,

∑
j

∣∣∣ (ρ(a))
(
ωj2d

) ∣∣∣2 = d

d−1∑
i=0

∣∣ρ(a)i
∣∣2,

where (ρ(a)i)
d−1
i=0 ∈ Q are the coefficients of ρ(a). Hence,

‖a‖2can = d

d−1∑
i=0

∣∣ρ(a)i
∣∣2. (3)

Taking expectations of both sides of equation (3), we find

E
(
‖a‖2can

)
= d

(
dσ2
)
. (4)

Comparing equations (2) and (4), we deduce

dE
(
| (ρ(a)) (ω2d)|2

)
≈ d

(
dσ2
)
,

or, equivalently,
E
(
| (ρ(a)) (ω2d)|2

)
≈ dσ2. (5)

The expression on the left-hand side of (5) is a measure of the dispersion in a
under the canonical norm-based approach to measurement. The expression on
the right-hand side of (5) is a measure of the dispersion in a under the CLT-
based approach to measurement. Thus, these two approaches are essentially
equivalent, as claimed.

2.4 Encryption

Messages m ∈ τt(O) are encrypted as follows:

15

2.5 Decryption 2 DETAILED DESCRIPTION OF BFV

Input: public key
[
− b, a

]
; message m ∈ τt(O)

Output: linear ciphertext c(X) ∈ Tq (O[X]) encrypting m

1. u
$←− τ3(O)

2. e1, e2 ← χ
3. c0 ← τq (((−b)u+ e1) + ∆m)
4. c1 ← τq(au+ e2)
5. c(X)← c0 + c1X
6. return c(X)

Table 4: Encryption

Here, ∆ is defined using the division algorithm for natural numbers, via

q = t∆ + rt(q),

where 0 ≤ rt(q) < t. In particular, ∆ = bq/tc, which, as t ≥ 2, is no larger than
q/2. Note that the sums (−b)u + e1 and au + e2 occurring during encryption
are, effectively, “public keys” generated from the same “private key” u. In fact,
the former sum has the form of a public key generated from u and based on the
public parameter −b, while the latter sum has the form of a public key generated
from u and based on the public parameter a. Thus, encryption is effected, first,
by choosing a “private key” u; second, by generating a pair of public keys from
u based on the public parameters given by the components of the public key
[−b,a]; and, third, by using the public key created from −b to create a masked
version of the scaled plaintext ∆m. Of course, the “private key” u need not
actually be kept secret, insofar as it may be made public without violating the
security model of the cryptosystem.

2.5 Decryption

Decryption of a ciphertext c(X) ∈ Tq (O[X]) works as follows:

Input: privkey s; ciphertext c(X) ∈ Tq (O[X])
Output: decryption of c(X) in τt(O)

1. m′ ← τt
(⌊
q−1 ⊗ (tτq (c(s)))

⌉)
2. return m′

Table 5: Decryption

Here, for a given group element a ∈ (qt)−2Z ⊗Z O, the corresponding ring
element bae ∈ O is obtained by rounding each coefficient of a, with respect to

16

2.5 Decryption 2 DETAILED DESCRIPTION OF BFV

the basis (
q−1 ⊗

(
xj + Φ2d(x)Z[x]

))d−1

j=0
,

to its nearest integer.

In carrying out the decryption algorithm, we need not look at elements of
O any more closely than modulo qt, that is to say, at any point during the
algorithm, we may safely replace any given quantity by its image under τqt. In
fact, as ∥∥τq (c(s))

∥∥
∞ ≤ (q − 1) 2−1,

it follows ∥∥tτq (c(s))
∥∥
∞ ≤ t (q − 1) 2−1

< (qt− 1) 2−1,

where the last inequality follows from the assumption that t > 1. We deduce

τqt (tτq (c(s))) = tτq (c(s)) ,

and the claim follows immediately from the fact that ring elements a and b in
O are congruent modulo qt, if, and only if, their corresponding group elements
q−1 ⊗ a and q−1 ⊗ b in (qt)−2Z⊗Z O are congruent modulo t, that is to say, in
the quotient group (

(qt)−2Z⊗Z O
)
/ (tZ⊗Z O) .

Also, as ∥∥q−1 ⊗ tτq (c(s))
∥∥
∞ ≤

(
t (q − 1) 2−1

)
q−1

=
((

(q − t) 2−1
)

+ q
(
(t− 1) 2−1

))
q−1

= (1− qt−1)2−1 + (t− 1)2−1

< 2−1 + (t− 1)2−1,

we deduce ∥∥⌊q−1 ⊗ tτq (c(s))
⌉∥∥
∞ ≤ (t− 1)2−1,

and, therefore, the reduction modulo t operation at the close of the decryption
algorithm is actually trivial.

Although the above algorithm for decryption might appear somewhat ab-
struse at first blush, it actually has a highly intuitive interpretation. In fact, the
algorithm amounts to writing tτq (c (s)) in the mixed-radix system

{
1, q, tq

}
rel-

ative to the sections τq and τt (i.e., in terms of the digits given by their images),
so that

tτq (c(s)) = τq(d0) + qτt(d1), (6)

where d0, d1 ∈ O, and then extracting the coefficient of q, that is, the “most
significant digit” τt(d1). From this point of view, it is apparent that in order for

17

2.5 Decryption 2 DETAILED DESCRIPTION OF BFV

the decryption algorithm to correctly recover the underlying plaintext m, it is
both necessary and sufficient that τt(d1) = m. In detail, write

tτq (c(s)) = τq (tτq (c(s))) + qδq (tτq (c(s)))

= τq (tc(s)) + qδq (tτq (c(s))) ,

and then write

δq (tτq (c(s))) = τt (δq (tτq (c(s)))) + tδt (δq (tτq (c(s)))) .

Deduce

tτq (c(s)) = τq (tc(s)) + qτt (δq (tτq (c(s)))) + qtδt (δq (tτq (c(s)))) .

As noted above,
δt (δq (tτq (c(s)))) = 0O,

and, therefore,
τt (δq (tτq (c(s)))) = δq (tτq (c(s))) ,

so that
tτq (c(s)) = τq (tc(s)) + qδq (tτq (c(s))) . (7)

We claim that the decryption algorithm returns the “most significant digit”
δq (tτq (c(s))) . In fact, scale tτq (c(s)) by q−1, and then round each coefficient
to its nearest integer. Thus, compute

q−1 ⊗ tτq (c(s)) = q−1 ⊗ τq (tc(s)) + q−1 ⊗ qδq (tτq (c(s)))

= q−1 ⊗ τq (tc(s)) + 1⊗ δq (tτq (c(s))) ,

and then deduce ⌊
q−1 ⊗ tτq (c(s))

⌉
= δq (tτq (c(s))) ,

since ∥∥τq (tc(s))
∥∥
∞ ≤ (q − 1) 2−1

implies ∥∥q−1 ⊗ τq (tc(s))
∥∥
∞ ≤

(
1− q−1

)
2−1 < 2−1,

which, in turn, implies ⌊
q−1 ⊗ τq (tc(s))

⌉
= 0O.

Finally, (trivially) reduce modulo t, and thereby obtain the decrypt

τt
(⌊
q−1 ⊗ tτq (c(s))

⌉)
= δq (tτq (c(s)))

as the result of the decryption algorithm. Observe that we have thus extracted
the “most significant digit” of tτq (c(s)) , as claimed. Furthermore, observe that
the decryption algorithm correctly recovers the underlying plaintext m if, and
only if,

δq (tτq (c(s))) = m,

18

2.5 Decryption 2 DETAILED DESCRIPTION OF BFV

or, equivalently
tτq (c(s)) = τq (tc(s)) + qm,

as claimed.

In order to study more closely the possible obstructions to correct decryption,
write

tτq (c(s)) = (tτq (c(s))− qm) + qm,

and put
ν (c (s)) := τqt (tτq (c(s))− qm) = τqt (tc(s)− qm) ,

so that
tτq (c(s)) = τqt (tτq (c(s))) = τqt (ν (c (s)) + qm) .

The polynomial ν (c (s)) is called the noise in the ciphertext c(X). Note that
the development of tτq (c(s))− qm in the mixed-radix system

{
1, q, qt

}
is given

by

tτq (c(s))− qm = τq (tc (s)) + qτt (δq (tτq (c(s)))−m) + qtδt (δq (tτq (c(s)))−m) .

Here, the “most significant digit” δt (δq (tτq (c(s)))−m) has `∞-norm no larger
than unity. In fact, since

δq (tτq (c(s))) = τt (δq (tτq (c(s))))

and

m = τt(m),

we deduce ∥∥δq (tτq (c(s)))−m
∥∥
∞ ≤ 2

(
(t− 1) 2−1

)
= t− 1

= (−1) + t · 1,

from which the claim follows. In any case, we deduce

ν (c (s)) = τq (tc (s)) + qτt (δq (tτq (c(s)))−m) .

It follows from the discussion above that c(X) decrypts to m, if, and only if,

ν (c (s)) = τq (tc(s)) ,

if, and only if,
‖ν (c (s)) ‖∞ ≤ (q − 1) 2−1,

if, and only if,
‖ν (c (s)) ‖∞ < q2−1,

if, and only if,
− log2

(
(2‖ν (c (s)) ‖∞) q−1

)
> 0.

19

2.5 Decryption 2 DETAILED DESCRIPTION OF BFV

The quantity
β (c(s)) := − log2

(
(2‖ν (c (s)) ‖∞) q−1

)
is called the noise budget in the ciphertext c(X). It is measured in bits. In
actual practice (e.g., in the SEAL library), the noise budget is usually only
estimated. An exact calculation of the noise budget would require a knowledge
of not only the private key, but also the underlying plaintext. Since noise budget
calculations are usually done only while choosing parameters for implementing
a given circuit, and, since random plaintexts are typically used in this situation,
estimating the noise budget in a way that depends on the private key but not
on the plaintext relieves the programmer of having to store random plaintexts.
The method used for estimating the noise budget hinges on the equality

τq (tc (s)) = τq (ν (c (s))) ,

since this equality shows that the reduction modulo q of the noise can be com-
puted solely from a knowledge of c (s) . Thus, if we estimate the noise by its
reduction modulo q, then we can estimate the noise budget without a knowl-
edge of the underlying plaintext, via

β (c(s)) ≈ − log2

(
(2‖τq (ν (c (s))) ‖∞) q−1

)
= − log2

(
(2‖τq (tc (s)) ‖∞) q−1

)
.

Write
ν̃ (c(s)) := τq (ν (c(s)))

and
β̃ (c(s)) := − log2

(
(2‖ν̃ (c (s)) ‖∞) q−1

)
for the estimated noise and the estimated noise budget, respectively. In this way,
we are discarding all but the “least significant digit” information in the noise,
that is to say, we are discarding the “most significant digit” in our estimate.
As it is precisely the latter digit that determines whether or not the noise has
carried over into the plaintext, it follows that we can never actually detect noise
overflow using SEAL’s estimation procedure. Nevertheless, we can monitor the
estimated noise budget, and then set parameters so that it never falls too close
to zero. Equivalently, we can set parameters so that the norm of the estimated
noise never climbs too close to (q − 1)2−1.

In summary, decryption of c(X) is performed by writing

tτq (c(s)) = τq (tc(s)) + qδq (tτq (c(s))) ,

and then extracting the “digit” δq (tτq (c(s))) . The decryption algorithm recov-
ers the underlying plaintext if, and only if, the noise

ν (c(s)) := τqt (tτq (c(s))− qm)

has positive budget

β (c(s)) := − log2

(
(2‖ν (c (s)) ‖∞) q−1

)
.

20

2.5 Decryption 2 DETAILED DESCRIPTION OF BFV

In practice, we use the estimates

ν̃ (c(s)) := τq (ν (c(s)))

and
β̃ (c(s)) := − log2

(
(2‖ν̃ (c (s)) ‖∞) q−1

)
for the noise and budget, respectively, and we set parameters so that the esti-
mated budget always is sufficiently positive.

Although the above decryption algorithm applies to ciphertexts

c(X) =
∑
i

ciX
i ∈ Tq (O[X])

of arbitrary degree, we will not need to decrypt non-linear ciphertexts in the
WIDESEAS protocol. Indeed, we use a technique called relinearization (see
§ 2.6.4) to reorganize non-linear ciphertexts into linear ones directly after they
are formed. More specifically, immediately upon multiplying two linear cipher-
texts, we relinearize the resulting quadratic ciphertext back down to a linear
ciphertext.

2.5.1 Decryption of fresh ciphertexts

A ciphertext is called fresh if it is the direct result of the encryption algorithm.
Encryption parameters are chosen so that, in particular, the noise ν (c (s)) in a
fresh ciphertext c(X) is precisely the least significant digit in tτq (c(s)) , while the
message m is precisely the most significant digit in tτq (c(s)) . As homomorphic
operations are performed on c(X), the noise tends to increase in magnitude,
hence, the noise budget tends to decrease in measure. Eventually, the noise
(literally) carries over into the most significant digit in tτq (c(s)) , that is to say,
into the message m. This results in a decryption error, since the decryption
algorithm simply returns this second digit.

The goal of this section is to bound the noise in a fresh ciphertext. To do
this, let us determine under which conditions the decryption algorithm correctly
recovers the plaintext underlying a given fresh ciphertext. In this situation,

c0 = τq (((−b)u+ e1) + ∆m)

= τq (((−τq(as+ e))u+ e1) + ∆m)

= τq (((−(as+ e))u+ e1) + ∆m)

= τq(−asu− eu+ e1 + ∆m),

21

2.5 Decryption 2 DETAILED DESCRIPTION OF BFV

from which it follows

τq(c0 + c1s) = τq (τq(−asu− eu+ e1 + ∆m) + τq(au+ e2)s)

= τq ((−asu− eu+ e1) + ∆m+ (au+ e2)s)

= τq(−asu− eu+ e1 + ∆m+ aus+ e2s)

= τq(−eu+ e2s+ e1 + ∆m)

= τq (τq (−eu+ e2s+ e1) + ∆m) .

Put
ν0 := τq (−eu+ e2s+ e1) .

Then,
πq (τq(c0 + c1s)) = πq(ν0 + ∆m),

which means
τq(c0 + c1s)− (ν0 + ∆m) ∈ Ker πq.

Write this difference as qδ0, with δ0 ∈ O, so that

τq(c0 + c1s) = ν0 + ∆m+ qδ0.

Multiply throughout by t,

tτq(c0 + c1s) = tν0 + t∆m+ qtδ0

= tν0 + (q − rt(q))m+ qtδ0

= (tν0 − rt(q)m) + qm+ qtδ0

= ν (c (s)) + q (m+ t (δqt (tν0 − rt(q)m) + δ0)) ,

where

ν (c (s)) = τqt ((tν0 − rt(q)m) + qtδ0)

= τqt ((tν0 − rt(q)m)

is the noise in c (X) . Write

ν (c (s)) = τq (ν (c (s))) + qτt (δq (ν (c (s)))) .

Deduce, in turn,

τq (ν (c (s))) = τq (tν0 − rt(q)m)

δq (ν (c (s))) = δq (τqt (tν0 − rt(q)m))

τt (δq (ν (c (s)))) = τt (δq (τqt (tν0 − rt(q)m)))

δt (δq (ν (c (s)))) = δt (δq (τqt (tν0 − rt(q)m))) .

But, we already know
δt (δq (ν (c (s)))) = 0O,

22

2.5 Decryption 2 DETAILED DESCRIPTION OF BFV

since the noise lies in Im τqt. It follows

δt (δq (τqt (tν0 − rt(q)m))) = 0O,

hence,

δq (τqt (tν0 − rt(q)m)) = τt (δq (τqt (tν0 − rt(q)m))) = τt (δq (ν (c (s)))) ,

hence,

ν (c (s)) = τq (tν0 − rt(q)m) + qδq (τqt (tν0 − rt(q)m)) ,

and, therefore,

q−1 ⊗ tτq(c0 + c1s) = q−1 ⊗ τq (tν0 − rt(q)m)

+ 1⊗ (δq (τqt (tν0 − rt(q)m)) +m+ t (δqt (tν0 − rt(q)m) + δ0)) .

Rounding all coefficients on either side of the last equation to their nearest
integers,⌊
q−1 ⊗ tτq(c0 + c1s)

⌉
= δq (τqt (tν0 − rt(q)m)) +m+ t (δqt (tν0 − rt(q)m) + δ0) .

Finally, reducing modulo t, we obtain

τt
(⌊
q−1 ⊗ tτq(c0 + c1s)

⌉)
= δq (τqt (tν0 − rt(q)m)) +m

as the result of the decryption algorithm. It follows that decryption recovers m
if, and only if,

δq (τqt (tν0 − rt(q)m)) = 0O,

or, equivalently,

τq (τqt (tν0 − rt(q)m)) = τqt (tν0 − rt(q)m) ,

or, equivalently,
τq (tν0 − rt(q)m) = τqt (tν0 − rt(q)m) .

On the one hand, we have verified (in the special case of a fresh ciphertext) the
general result that the decryption algorithm recovers the underlying plaintext
if, and only if, the “most significant digit” in the noise vanishes. On the other
hand, we have demonstrated (in the special case of a fresh ciphertext) that the
noise may be written as

ν (c(s)) = τqt (tν0 − rt(q)m) ,

where
ν0 = τq (τq (c(s))−∆m) = τq (c(s)−∆m) .

In point of fact, no special properties of ν0 were used to deduce this expression
for the noise, and the argument may be easily adapted to show that an arbitrary
(possibly unfresh) ciphertext may be likewise expressed.

23

2.5 Decryption 2 DETAILED DESCRIPTION OF BFV

We now bound the noise in a fresh ciphertext. This analysis will hinge on
the special expression for ν0 in the case of a fresh ciphertext. Since the noise
satisfies

ν (c (s)) = τqt (tν0 − rt(q)m) ,

it suffices to bound the difference tν0 − rt(q)m. In fact,∥∥τqt (tν0 − rt(q)m)
∥∥
∞ ≤

∥∥tν0 − rt(q)m
∥∥
∞.

This follows from the coefficient-wise extension of the following result:

Lemma 4. Let n, z ∈ Z, with n ≥ 2. If |z| is developed to the base n, via

|z| = tn(|z|) + ndn(|z|),

then tn(|z|) ≤ |z|.

Proof. The opposite inequality tn(|z|) > |z| holds, if, and only if,

tn(|z|) > tn(|z|) + ndn(|z|),

which, in turn, holds, if, and only if, 0 > dn(|z|), which is impossible, as |z| ≥ 0
forces dn(|z|) ≥ 0.

We deduce ∥∥ν (c (s))
∥∥
∞ ≤

∥∥tν0 − rt(q)m
∥∥
∞

≤ t
∥∥ν0

∥∥
∞ + rt(q)

∥∥m∥∥∞.
But, as

ν0 = τq (−eu+ e2s+ e1) ,

we may deduce from the above lemma that∥∥ν0

∥∥
∞ ≤

∥∥− eu+ e2s+ e1

∥∥
∞.

Therefore,∥∥ν (c (s))
∥∥
∞ ≤ t (‖eu‖∞ + ‖e2s‖∞ + ‖e1‖∞) + rt(q)‖m‖∞
< t(2Bd+B) + rt(q)

(
t2−1

)
= t
(
B(2d+ 1) + rt(q)2

−1
)
.

Thus, if the parameters t, q, d, and B are chosen so that

t
(
B(2d+ 1) + rt(q)2

−1
)
< q2−1, (8)

then fresh ciphertexts always will decrypt correctly. In the WIDESEAS proto-
col, these parameters are chosen as follows:

24

2.5 Decryption 2 DETAILED DESCRIPTION OF BFV

B = 20
d = 213

q ≈ 2218

t ≈ 232

rt(q) ≈ 229

Table 6: WIDESEAS BFV Parameters

In this situation,

t
(
B(2d+ 1) + rt(q)2

−1
)
≈ 263 � q2−1,

which implies that fresh ciphertexts always will decrypt correctly in WIDESEAS.
Of course, this upper bound on the `∞-norm of the noise in a fresh ciphertext
is highly pessimistic. Let us compute the expected value of the norm of the
noise. Again, it suffices to analyze the pre-image −eu + e2s + e1 of the noise
under τq. First, each coefficient in e1 is described by a random variable over a
discrete Gaussian with mean zero, variance σ2, and truncation at B. Second,
each coefficient in −eu is described by a sum of d independent and identically
distributed random variables, each of which is the product of two independent
random variables, namely, one over a discrete Gaussian distribution with mean
zero, variance σ2, and truncation at B, and one over a discrete uniform distri-
bution on the set {−1, 0, 1}, and, thus, with mean zero and variance

((1− (−1)) + 1)
2 − 1

12
=

2

3
.

It follows that each coefficient in −eu is described by a random variable over
a Gaussian distribution with mean zero and variance (2d/3)σ2. Third, each
coefficient in e2s is likewise described as those in eu. Finally, since these three
Gaussian variates are independent, it follows that their sum is described by a
random variable over a Gaussian distribution with mean zero and variance

σ2 + (2d/3)σ2 + (2d/3)σ2 = (1 + 4d/3)σ2.

It follows that each coefficient in t (−eu+ e2s+ e1) is described by a random
variable over a Gaussian distribution with mean zero and variance

(1 + 4d/3) (tσ)2.

Assuming that each coefficient of the plaintext m is described by a random
variable over a discrete uniform distribution on the set τt (O) , we deduce that
each coefficient in rt(q)m is described by a random variable over a uniform
distribution on rt(q)τt (O) with mean zero and variance

(rt(q))
2

(
((t/2)− (−t/2) + 1)

2 − 1

12

)
= (rt(q))

2

(
(t+ 1)

2 − 1

12

)
.

25

2.6 Noise under operations 2 DETAILED DESCRIPTION OF BFV

In all, each coefficient in tν0− rt(q)m is described by a sum of two independent
random variables, namely, one over a Gaussian distribution with mean zero and
variance (1 + (4d/3)) (tσ)2, and one over a uniform distribution on rt(q)τt (O)
with mean zero and variance

(rt(q))
2

(
(t+ 1)

2 − 1

12

)
.

In WIDESEAS, the corresponding standard deviations are such that√
1 + (4d/3)(tσ) ≈ 240

and

rt(q)

√
(t+ 1)

2 − 1

12
≈ 262,

with rt(q) = 661, 215, 791 ≈ 229. The probability mass function of the sum of
a Gaussian variate with an independent uniform variate is got by convolving
the component mass functions, and its exact expression is given by a scaled
difference of (oppositely dilated and identically translated) erf functions. Nev-
ertheless, machine experiments suggest that this mass function does not differ
too greatly from that of its Gaussian component. For this reason, we shall ig-
nore the uniform term in our noise analysis. Then, nearly all noise polynomials
are seen to (approximately) satisfy

‖ν (c (s)) ‖∞ ≤ 6 · 240.

It follows that nearly all fresh ciphertexts formed under the WIDESEAS proto-
col have noise budgets satisfying

β (c (s)) ≥ − log2

(
2
(
6 · 240

)
2−218

)
= 176− log2(3)

≈ 174.

Reassuringly, this number, which we have here deduced from first principles,
is, on average, the value of SEAL’s estimate for the noise budget in a fresh
ciphertext based on the WIDESEAS parameters. For reference, we record the
following useful heuristic, which follows easily from the preceding discussion:

Lemma 5. In the BFV cryptosystem, the noise budget of a fresh ciphertext
c(X) satisfies

β (c(s)) ≈ log2

(
qt−1

)
− log2

(
(12)

√
1 + (4d/3)σ

)
.

2.6 Noise under operations

We have defined the noise ν (c (s)) in a ciphertext c(X) (encrypting a plaintext
m, via a private key s) as

ν (c (s)) = τqt (tτq (c(s))− qm) = τqt (tc(s)− qm) ,

26

2.6 Noise under operations 2 DETAILED DESCRIPTION OF BFV

and we have established the alternative expression

ν (c(s)) = τqt (tν0 − rt(q)m) ,

where
ν0 = τq (τq (c(s))−∆m) = τq (c(s)−∆m) .

Also, we have shown that c(X) decrypts to m if, and only if,

ν (c (s)) = τq (tc(s)) ,

if, and only if,
‖ν (c (s)) ‖∞ ≤ (q − 1) 2−1,

if, and only if,
‖ν (c (s)) ‖∞ < q2−1,

if, and only if,
− log2

(
(2‖ν (c (s)) ‖∞) q−1

)
> 0,

where the quantity

β (c(s)) = − log2

(
(2‖ν (c (s)) ‖∞) q−1

)
is the noise budget in the ciphertext c(X). Finally, we have indicated that in
practice (e.g., in the SEAL library), we actually use the estimates

ν̃ (c(s)) := τq (ν (c(s)))

and
β̃ (c(s)) := − log2

(
(2‖ν̃ (c (s)) ‖∞) q−1

)
for the noise and budget, respectively,

As mentioned in the previous section, homomorphic operations tend to in-
crease the norm of the noise. The three homomorphic operations used in
WIDESEAS are ciphertext addition (i.e., adding together a pair of ciphertexts),
plaintext multiplication (i.e., multiplying a ciphertext by a plaintext), and ci-
phertext multiplication (i.e., multiplying together a pair of ciphertexts). It turns
out that the noise in a sum of ciphertexts is roughly the sum of the noises in the
summands. Therefore, the noise increase incurred by homomorphic addition
usually is low. The noise in a product of a ciphertext by a plaintext constant
is roughly the product of the noise of the ciphertext by the size of the support
of the plaintext constant. Therefore, the noise increase incurred by plain multi-
plication usually is moderate. The noise growth in ciphertext multiplication is
considerable, and, consequently, the circuit implemented by WIDESEAS is of
multiplicative depth only 2. In the following three sections, we make precise this
intuition regarding the behavior of the noise under homomorphic operations.

27

2.6 Noise under operations 2 DETAILED DESCRIPTION OF BFV

2.6.1 Ciphertext addition

Let c(1)(X) = c
(1)
0 + c

(1)
1 X and c(2)(X) = c

(2)
0 + c

(2)
1 X be linear ciphertexts

encrypting plaintext messages m1 and m2, respectively. The operation(
c(1)(X), c(2)(X)

)
7→ Tq

(
c(1)(X) + c(2)(X)

)
is called ciphertext addition. The ciphertext

Tq

(
c(1)(X) + c(2)(X)

)
= τq

(
c
(1)
0 + c

(2)
0

)
+ τq

(
c
(1)
1 + c

(2)
1

)
X

is called the ciphertext sum of c(1)(X) and c(2)(X). It has a natural interpre-
tation as an encryption of the message sum τt (m1 +m2) . In fact, from

τq

(
Tq

(
c(1)(X) + c(2)(X)

)
(s)
)

= τq

(
τq

(
c
(1)
0 + c

(2)
0

)
+ τq

(
c
(1)
1 + c

(2)
1

)
s
)

= τq

((
c
(1)
0 + c

(2)
0

)
+
(
c
(1)
1 + c

(2)
1

)
s
)

= τq

((
c
(1)
0 + c

(1)
1 s
)

+
(
c
(2)
0 + c

(2)
1 s
))

= τq

(
c(1)(s) + c(2)(s)

)
= τq

(
τq

(
c(1)(s)

)
+ τq

(
c(2)(s)

))
= τq

(
c(1)(s)

)
+ τq

(
c(2)(s)

)
− qδq

(
τq

(
c(1)(s)

)
+ τq

(
c(2)(s)

))
,

we deduce

τqt

(
tτq

(
Tq

(
c(1)(X) + c(2)(X)

)
(s)
))

= τqt

(
tτq

(
c(1)(s)

)
+ tτq

(
c(2)(s)

))
.

As

τqt

(
tτq

(
c(1)(s)

)
+ tτq

(
c(2)(s)

))
= τqt

(
ν
(
c(1)(s)

)
+ ν

(
c(2)(s)

)
+ q (m1 +m2)

)
,

we deduce that the decryption

τt

(⌊
q−1 ⊗

(
tτq

(
Tq

(
c(1)(X) + c(2)(X)

)
(s)
))⌉)

of the ciphertext sum Tq
(
c(1)(X) + c(2)(X)

)
is given by

τt

(⌊
q−1 ⊗

(
ν
(
c(1)(s)

)
+ ν

(
c(2)(s)

))⌉
+ (m1 +m2)

)
.

It follows that Tq
(
c(1)(X) + c(2)(X)

)
is an encryption of τt (m1 +m2) with noise

ν
(
Tq

(
c(1)(X) + c(2)(X)

)
(s)
)

= τqt

(
ν
(
c(1)(s)

)
+ ν

(
c(2)(s)

))
.

28

2.6 Noise under operations 2 DETAILED DESCRIPTION OF BFV

Writing

ν
(
c(1) (s)

)
= τq

(
tc(1) (s)

)
+ qτt

(
δq

(
tτq

(
c(1)(s)

))
−m1

)
and

ν
(
c(2) (s)

)
= τq

(
tc(2) (s)

)
+ qτt

(
δq

(
tτq

(
c(2)(s)

))
−m2

)
,

we find that
⌊
q−1 ⊗

(
ν
(
c(1)(s)

)
+ ν

(
c(2)(s)

)) ⌉
is congruent modulo t to⌊

q−1 ⊗
(
τq

(
tc(1) (s)

)
+ τq

(
tc(2) (s)

))⌉
+ τt

(
δq

(
tτq

(
c(1)(s)

))
−m1

)
+ τt

(
δq

(
tτq

(
c(2)(s)

))
−m2

)
.

We deduce that Tq
(
c(1)(X) + c(2)(X)

)
decrypts to τt (m1 +m2) , if, and only if,

the sum of the “most significant digits” in ν
(
c(1)(s)

)
and ν

(
c(2)(s)

)
, plus the

carry into the “second column”, is congruent modulo t to zero. In particular,
if c(2)(X) and c(2)(X) are fresh ciphertexts, so that their most significant digits
vanish, then the ciphertext sum decrypts to τt (m1 +m2) , if, and only if, there
is no carry into the second column in the addition of the noises. In general, as

ν
(
Tq

(
c(1)(X) + c(2)(X)

)
(s)
)

= τqt

(
ν
(
c(1)(s)

)
+ ν

(
c(2)(s)

))
,

it follows that the noise budget

β
(
Tq

(
c(1)(X) + c(2)(X)

)
(s)
)

of the sum of the ciphertexts satisfies

− log2

((
2
∥∥∥τqt (ν (c(1)(s)

)
+ ν

(
c(2)(s)

))∥∥∥
∞

)
q−1
)
.

But, as∥∥∥τqt (ν (c(1)(s)
)

+ ν
(
c(2)(s)

))∥∥∥
∞
≤
∥∥∥ν (c(1)(s)

)
+ ν

(
c(2)(s)

)∥∥∥
∞

≤
∥∥∥ν (c(1)(s)

)∥∥∥
∞

+
∥∥∥ν (c(2)(s)

)∥∥∥
∞
,

it follows that the noise is no smaller than

− log2

(((
2
∥∥∥ν (c(1)(s)

)∥∥∥
∞

)
q−1
)

+
((

2
∥∥∥ν (c(2)(s)

)∥∥∥
∞

)
q−1
))

.

We may use this lower bound to express the noise budget of the ciphertext
sum in terms of the noise budgets of the ciphertext summands, via the follow-
ing elementary identity, which expresses the logarithm of a sum as a weighted
arithmetic mean of the logarithms of the summands (with a correction term
coming from entropy):

29

2.6 Noise under operations 2 DETAILED DESCRIPTION OF BFV

Lemma 6. If a and b are positive real numbers, then

log(a+ b) =

(
a

a+ b

)
log(a) +

(
b

a+ b

)
log(b) +H

(
a

a+ b
,

b

a+ b

)
, (9)

where H is the Shannon (binary) entropy function.

Proof. The difference

(a+ b) log(a+ b)− a log(a)− b log(b)

may be written as

a log(a+ b) + b log(a+ b)− a log(a)− b log(b),

which, in turn, may be written as

(a log(a+ b)− a log(a)) + (b log(a+ b)− b log(b)) ,

which, in turn, may be written as

a log

(
a+ b

a

)
+ b log

(
a+ b

b

)
,

which, in turn, may be written as

−a log

(
a

a+ b

)
− b log

(
b

a+ b

)
.

Thus,

(a+ b) log(a+ b)− a log(a)− b log(b) = −a log (a/(a+ b))− b log (b/(a+ b)) .

Scaling by (a+ b)−1,

log(a+ b)−
(

a

a+ b

)
log(a)−

(
b

a+ b

)
log(b) = H

(
a

a+ b
,

b

a+ b

)
.

The result follows by rearranging terms.

Now, taking

a = 2
∥∥∥ν (c(1)(s)

)∥∥∥
∞
q−1

and
b = 2

∥∥∥ν (c(2)(s)
)∥∥∥
∞
q−1

in the lemma, and putting
p = a/(a+ b),

so that
b/(a+ b) = 1− p,

30

2.6 Noise under operations 2 DETAILED DESCRIPTION OF BFV

we find, upon multiplying throughout by −1 in (9), that

− log2

((
2
∥∥∥ν (c(1)(s)

)∥∥∥
∞
q−1
)

+
(

2
∥∥∥ν (c(2)

)∥∥∥
∞
q−1
))

may be written as

pβ
(
c(1)(s)

)
+ (1− p)β

(
c(2)(s)

)
−H(p, 1− p).

We deduce

β
(
Tq

(
c(1)(X) + c(2)(X)

)
(s)
)
≥ pβ

(
c(1)(s)

)
+ (1− p)β

(
c(2)(s)

)
−H(p, 1− p).

Thus, we have derived an inequality connecting the noise budget of the sum
with the noise budgets of the summands, as promised. In fact, more can be said
along these lines. As p and 1− p sum to unity,

Min
(
β
(
c(1)(s)

)
, β
(
c(2)(s)

))
≤ pβ

(
c(1)(s)

)
+ (1− p)β

(
c(2)(s)

)
≤ Max

(
β
(
c(1)(s)

)
, β
(
c(2)(s)

))
.

And, as the negative of the binary entropy lies between −1 and 0, inclusive,

Min
(
β
(
c(1)(s)

)
, β
(
c(2)(s)

))
− 1 ≤ pβ

(
c(1)(s)

)
+ (1− p)β

(
c(2)(s)

)
−H(p, 1− p)

≤ Max
(
β
(
c(1)(s)

)
, β
(
c(2)(s)

))
.

In particular,

Lemma 7. The noise budget of the sum of the ciphertexts c(1)(X) and c(2)(X)
satisfies

β
(
Tq

(
c(1)(X) + c(2)(X)

)
(s)
)
≥ Min

(
β
(
c(1)(s)

)
, β
(
c(2)(s)

))
− 1.

As H(p, 1 − p) = 1, if, and only if, c(1)(X) and c(2)(X) have identical
noise budgets, it follows that this condition is actually necessary for the noise
budget of the sum to decrease by an entire bit. This condition is not sufficient,
however, since what is really needed is for ν

(
c(1)(s)

)
and ν

(
c(2)(s)

)
to interfere

constructively.

The entropy-based approach followed above allows for other useful deduc-
tions. For example, if∥∥∥ν (c(1)(s)

)∥∥∥
∞
�
∥∥∥ν (c(2)(s)

)∥∥∥
∞
,

then
p ≈ 1,

31

2.6 Noise under operations 2 DETAILED DESCRIPTION OF BFV

and
1− p ≈ 0,

and, therefore,
H(p, 1− p) ≈ 0,

so that, in this case,

β
(
Tq

(
c(1)(X) + c(2)(X)

)
(s)
)
≥ pβ

(
c(1)(s)

)
+ (1− p)β

(
c(2)(s)

)
−H(p, 1− p)

≈ pβ
(
c(1)(s)

)
.

As another example, we note that the above arguments may easily be extended
from two up to any finite number N of ciphertext summands. In fact, let(
c(i)(X)

)N
i=1

be ciphertexts. Put

ai := 2
∥∥∥ν (c(i)(s))∥∥∥

∞
q−1,

for all i such that 1 ≤ i ≤ N. Put

A :=

N∑
i=1

ai,

and define
pi := aiA

−1,

for all i such that 1 ≤ i ≤ N. An easy generalization of the identity in the above
lemma then reveals

β

(
Tq

(
N∑
i=1

c(i)(X)

)
(s)

)
≥ − log2

(
N∑
i=1

2
∥∥∥ν (c(i)(s))∥∥∥

∞
q−1

)

=

N∑
i=1

piβ
(
c(i)(s)

)
−H

(
(pi)

N
i=1

)
,

which, again, connects the noise budget of the sum with the noise budgets of
the summands. Similar to the case of two summands, we find that, since the
(pi)

N
i=1 sum to unity,

Min

((
β
(
c(i)(s)

))N
i=1

)
≤

N∑
i=1

piβ
(
c(i)(s)

)
≤ Max

((
β
(
c(i)(s)

))N
i=1

)
.

32

2.6 Noise under operations 2 DETAILED DESCRIPTION OF BFV

Furthermore, since the negative of the N -ary entropy lies between − log2(N)
and 0, inclusive,

Min

((
β
(
c(i)(s)

))N
i=1

)
− log2(N) ≤

N∑
i=1

piβ
(
c(i)(s)

)
−H

(
(pi)

N
i=1

)
≤ Max

((
β
(
c(i)(s)

))N
i=1

)
.

In particular,

Lemma 8. The noise budget of the sum of the ciphertexts
(
c(i)(X)

)N
i=1

satisfies

β

(
Tq

(
N∑
i=1

c(i)(X)

)
(s)

)
≥ Min

((
β
(
c(i)(s)

))N
i=1

)
− log2(N).

Finally, since the N -ary entropy attains its maximum if, and only if, the mem-

bers of the family of ciphertexts
(
c(i)(X)

)N
i=1

have pair-wise identical noise bud-
gets, it follows that this condition is actually necessary for the noise budget
to decrease by log2(N). This condition is not sufficient, however, since what is

really needed is for the
(
ν
(
c(i)(s)

))N
i=1

to interfere constructively.

In the WIDESEAS protocol, the response to a query consists of a sequence of
ciphertexts, each of which is the sum of 232 ciphertexts having pair-wise (nearly)
identical noise budgets β. It then follows immediately from the preceding result
that the noise budget of each of these sums is generally no smaller than

β − log2

(
232
)

= β − 32.

Thus, we need allot only 32 bits in the budget in order to accommodate the
sum. Reassuringly, this result, which we have here derived from first principles,
generally agrees with the actual noise budget consumption observed during our
experiments with the SEAL library. Note that, since fresh ciphertexts in the
WIDESEAS scheme have noise budgets around 174 bits, it follows that we still
have 142 bits left to accommodate plaintext and ciphertext multiplications.

Although the preceding discussion has pertained only to the addition of
linear ciphertexts, it turns out that ciphertexts of arbitrary degree may be
added in the same manner. In the WIDESEAS protocol, we shall only need
to add linear ciphertexts.

2.6.2 Plaintext multiplication

Let c(X) = c0 + c1X be a linear ciphertext encrypting a plaintext message m,
and let p ∈ τt (O) be any given plaintext. Write

p =

d−1∑
j=0

ajx
j + Φ2d(x)Z[x],

33

2.6 Noise under operations 2 DETAILED DESCRIPTION OF BFV

with (aj)
d−1
j=0 ∈ Z satisfying (1 − t)2−1 ≤ aj ≤ (t − 1)2−1, for each j such that

0 ≤ j ≤ d− 1. The operation

(p, c(X)) 7→ Tq (pc(X))

is called plaintext multiplication. The ciphertext

Tq (pc(X)) = τq (pc0) + τq (pc1)X

is called the plaintext-ciphertext product of p with c(X). It has a natural
interpretation as an encryption of the message product τt (pm) . In fact, from

τq (Tq (pc(X)) (s)) = τq (τq (pc0) + τq (pc1) s)

= τq ((pc0) + (pc1) s)

= τq (p (c0 + c1s))

= τq (pc(s))

= τq (pτq (c(s))) ,

we deduce

τqt (tTq (pc(X)) (s)) = τqt (ptτq (c(s)))

= τqt (pν (c(s)) + q(pm)) ,

and, therefore, the decryption

τt

(⌊
q−1 ⊗ (tτq (Tq (pc(X)) (s)))

⌉)
of the plaintext-ciphertext product Tq (pc(X)) is given by

τt

(⌊
q−1 ⊗ (pν (c(s)))

⌉
+ pm

)
,

and, therefore, Tq (pc(X)) is an encryption of τt (pm) with noise

ν (Tq (pc(X)) (s)) = τqt (pν (c(s))) .

Writing
ν (c (s)) = τq (tc (s)) + qτt (δq (tτq (c(s)))−m) ,

we find that
⌊
q−1 ⊗ (pν (c(s)))

⌉
is congruent modulo t to⌊

q−1 ⊗ (pτq (tc (s)))
⌉

+ pτt (δq (tτq (c(s)))−m) .

We deduce that Tq (pc(X)) decrypts to τt (pm) , if, and only if, the product of
the “most significant digit” in ν (c(s)) with p, plus the carry into the second
column coming from the product of the “least significant digit” in ν (c(s)) with
p, is congruent modulo t to zero, that is to say,

τt (δq (pτq (tc(s))) + pτt (δq (tτq (c(s)))−m)) = 0O.

34

2.6 Noise under operations 2 DETAILED DESCRIPTION OF BFV

In particular, if c(X) is a fresh ciphertext, so that its most significant digit
vanishes, then the plaintext-ciphertext product decrypts to τt (pm) , if, and only
if, there is no carry into the second column in the product of p with the noise
in c(s).

Now, for each j, with 0 ≤ j ≤ d−1, the multiplication operator on O induced
by xj + Φ2dZ[x] leaves τn (O) set-wise invariant, for all positive integers n. It
follows that the induced scalar action of this operator on O[X] leaves invariant
the set of ciphertexts Tq (O[X]) . Put

c(j)(X) :=
(
xj + Φ2dZ[x]

)
· c(X).

Then, we also have (
xj + Φ2dZ[x]

)
ν (c(s)) = ν

(
c(j)(s)

)
.

It follows that c(X) and c(j)(X) have identical noise budgets. As

pν (c(s)) =

d−1∑
j=0

ajν
(
c(j)(s)

)
,

and, therefore,

ν (Tq (pc(X)) (s)) = τqt (pν (c(s)))

= τqt

d−1∑
j=0

ajν (c(s))
(j)

 ,

we deduce

β (Tq (pc(X)) (s)) = − log2

2

∥∥∥∥∥τqt
d−1∑
j=0

ajν
(
c(j)(s)

)∥∥∥∥∥
∞

 q−1

 .

But, as∥∥∥∥∥τqt
d−1∑
j=0

ajν
(
c(j)(s)

)∥∥∥∥∥
∞

≤

∥∥∥∥∥
d−1∑
j=0

ajν
(
c(j)(s)

)∥∥∥∥∥
∞

≤
d−1∑
j=0

|aj |
∥∥∥ν (c(j)(s))∥∥∥

∞

=

d−1∑
j=0

|aj |
∥∥ν (c(s))

∥∥
∞

=

d−1∑
j=0

|aj |

∥∥ν (c(s))
∥∥
∞

≤
(
(t− 1)2−1

) ∣∣Supp (p)
∣∣ · ∥∥ν (c(s))

∥∥
∞,

we deduce the following result:

35

2.6 Noise under operations 2 DETAILED DESCRIPTION OF BFV

Lemma 9. The noise budget of a product of a plaintext p with a ciphertext
c(X) satisfies

β (Tq (pc(X)) (s)) ≥ − log2

(
(t− 1)2−1

)
− log2

(∣∣Supp (p)
∣∣)+ β (c(s)) .

In WIDESEAS, plaintext-ciphertext products always feature plaintexts hav-
ing degrees and support sizes given by divisors of d = 213. Therefore, since
t ≈ 232, the greatest effect that such a product can have on the noise budget is
around

log2

(
(232 − 1)2−1

)
+ log2

(
213
)
≈ 31 + 13 = 44

bits. In actual practice, plaintexts tend to be randomized, in which case the term
corresponding to log2

(
(t− 1)2−1

)
may be replaced by a much smaller bound. In

WIDESEAS, plaintext-ciphertext multiplications usually consume no more than
around 5 bits of the noise budget. Thus, the WIDESEAS protocol consumes
around 32 bits of the noise budget doing ciphertext addition, and around 5
bits doing plaintext-ciphertext multiplication. As fresh ciphertexts have noise
budgets of around 174 bits, it follows that there still remain around

174− (32 + 5) = 137

bits of noise left in the budget, which, as discussed in the proceed two sections,
we shall use for performing ciphertext multiplications with follow on relineariza-
tions.

Although the preceding discussion has pertained only to linear ciphertexts,
it turns out that ciphertexts of arbitrary degree may be multiplied by plaintexts
in the same manner. In the WIDESEAS protocol, we shall not have a need to
scale any but linear ciphertexts.

2.6.3 Ciphertext multiplication

Let c(1)(X) = c
(1)
0 + c

(1)
1 X and c(2)(X) = c

(2)
0 + c

(2)
1 X be linear ciphertexts

encrypting plaintext messages m1 and m2, respectively. The operation(
c(1)(X), c(2)(X)

)
7→ Tq

(⌊
q−1 ⊗

(
tc(1)(X)c(2)(X)

)⌉)
is called ciphertext multiplication. Here, b−e denotes the mapping of(

(qt)−2Z⊗Z O
)

[X]

onto O[X] induced by the usual mapping of (qt)−2Z⊗Z O onto O. Put

c0 := c
(1)
0 c

(2)
0

c1 := c
(1)
0 c

(2)
1 + c

(1)
1 c

(2)
0

c2 := c
(1)
1 c

(2)
1 .

36

2.6 Noise under operations 2 DETAILED DESCRIPTION OF BFV

The ciphertext

Tq

(⌊
q−1 ⊗

(
tc(1)(X)c(2)(X)

)⌉)
= τq

(⌊
q−1 ⊗ (tc0)

⌉)
+ τq

(⌊
q−1 ⊗ (tc1)

⌉)
X

+ τq
(⌊
q−1 ⊗ (tc2)

⌉)
X2

is called the ciphertext product of c(1)(X) with c(2)(X). It has a natural
interpretation as an encryption of the message product τt (m1m2) . In fact,

τq

(
Tq

(⌊
q−1 ⊗

(
tc(1)(X)c(2)(X)

)⌉)
(s)
)

is equal to

τq
(
τq
(⌊
q−1 ⊗ (tc0)

⌉)
+ τq

(⌊
q−1 ⊗ (tc1)

⌉)
s+ τq

(⌊
q−1 ⊗ (tc2)

⌉)
s2
)
.

Write
τ(qt)2 (t(tc0)) = a0 + (qt)b0,

τ(qt)2 (t(tc1)) = a1 + (qt)b1,

τ(qt)2 (t(tc2)) = a2 + (qt)b2.

As

τqt
(⌊
q−1 ⊗ (tc0)

⌉)
= τqt

(⌊
(qt)−1 ⊗ (t(tc0))

⌉)
= b0,

τqt
(⌊
q−1 ⊗ (tc1)

⌉)
= τqt

(⌊
(qt)−1 ⊗ (t(tc1))

⌉)
= b1,

τqt
(⌊
q−1 ⊗ (tc2)

⌉)
= τqt

(⌊
(qt)−1 ⊗ (t(tc2))

⌉)
= b2,

it follows that

τq
(⌊
q−1 ⊗ (tc0)

⌉)
+ τq

(⌊
q−1 ⊗ (tc1)

⌉)
s+ τq

(⌊
q−1 ⊗ (tc2)

⌉)
s2

and
b0 + b1s+ b2s

2

are congruent modulo q. We deduce that the decryption of the ciphertext prod-
uct is given by

τt
(⌊
q−1 ⊗

(
tτq
(
b0 + b1s+ b2s

2
)) ⌉)

= τt
(⌊
q−1 ⊗

(
t
(
b0 + b1s+ b2s

2
)) ⌉)

.

Furthermore, as

q−2 ⊗ τ(qt)2 (t(tc0)) = q−2 ⊗ a0 + q−1 ⊗ (tb0) ,

q−2 ⊗ τ(qt)2 (t(tc1)) = q−2 ⊗ a1 + q−1 ⊗ (tb1) ,

37

2.6 Noise under operations 2 DETAILED DESCRIPTION OF BFV

q−2 ⊗ τ(qt)2 (t(tc2)) = q−2 ⊗ a2 + q−1 ⊗ (tb2) ,

it follows that
q−1 ⊗

(
t
(
b0 + b1s+ b2s

2
))

may be written

q−2 ⊗
((
τ(qt)2 (t(tc0)) + τ(qt)2 (t(tc1)) s+ τ(qt)2 (t(tc2)) s2

)
−
(
a0 + a1s+ a2s

2
))
.

But,
τ(qt)2 (t(tc0)) + τ(qt)2 (t(tc1)) s+ τ(qt)2 (t(tc2)) s2

is congruent modulo (qt)2 to

(t(tc0)) + (t(tc1)) s+ (t(tc2)) s2 =
(
tc(1)(s)

)(
tc(2)(s)

)
,

which, in turn, is congruent modulo (qt)2 to(
tτq

(
c(1)(s)

))(
tτq

(
c(2)(s)

))
=
(
ν
(
c(1)(s)

)
+ qm1 + (qt)δ1

)(
ν
(
c(2)(s)

)
+ qm2 + (qt)δ2

)
.

Here, we recall that δ1, δ2 ∈ O have `∞-norms at most unity. It follows

τ(qt)2 (t(tc0)) + τ(qt)2 (t(tc1)) s+ τ(qt)2 (t(tc2)) s2

is congruent modulo (qt)2 to

ν
(
c(1)(s)

)
ν
(
c(2)(s)

)
+ q

(
ν
(
c(1)(s)

)
m2 +m1ν

(
c(2)(s)

))
+ (qt)

(
δ1ν

(
c(2)(s)

)
+ ν

(
c(1)(s)

)
δ2

)
+ q2 (m1m2)

+ (q2t) (δ1m2 +m1δ2) ,

and, therefore,

q−2 ⊗
(
τ(qt)2 (t(tc0)) + τ(qt)2 (t(tc1)) s+ τ(qt)2 (t(tc2)) s2

)
is congruent modulo t2 to

q−2 ⊗
(
ν
(
c(1)(s)

)
ν
(
c(2)(s)

))
+ q−1 ⊗

(
ν
(
c(1)(s)

)
m2 +m1ν

(
c(2)(s)

))
+ q−1 ⊗

(
t
(
δ1ν

(
c(2)(s)

)
+ ν

(
c(1)(s)

)
δ2

))
+ 1⊗ (m1m2)

+ 1⊗ (t (δ1m2 +m1δ2)) .

As
q−1 ⊗

(
t
(
b0 + b1s+ b2s

2
))

38

2.6 Noise under operations 2 DETAILED DESCRIPTION OF BFV

is congruent modulo t to the integer rounding of

q−2⊗
((
τ(qt)2 (t(tc0)) + τ(qt)2 (t(tc1)) s+ τ(qt)2 (t(tc2)) s2

)
−
(
a0 + a1s+ a2s

2
))
,

it must also be congruent modulo t to the sum of the product m1m2 with the
integer part of

q−2 ⊗
(
ν
(
c(1)(s)

)
ν
(
c(2)(s)

))
+ q−1 ⊗

(
ν
(
c(1)(s)

)
m2 +m1ν

(
c(2)(s)

))
+ q−1 ⊗

(
t
(
δ1ν

(
c(2)(s)

)
+ ν

(
c(1)(s)

)
δ2

))
− q−2 ⊗

(
a0 + a1s+ a2s

2
)
.

We have thus shown:

Lemma 10. If c(1)(X), c(2)(X) ∈ Tq (O[X]) are ciphertexts encrypting plaintext
messages m1 and m2, respectively, then their product

Tq

(⌊
q−1 ⊗

(
tc(1)(X)c(2)(X)

)⌉)
is an encryption of τt (m1m2) with noise given by the reduction modulo qt of⌊

q−1 ⊗
(
ν
(
c(1)(s)

)
ν
(
c(2)(s)

)
−
(
a0 + a1s+ a2s

2
)) ⌉

+ ν
(
c(1)(s)

)
m2 +m1ν

(
c(2)(s)

)
+ t
(
δ1ν

(
c(2)(s)

)
+ ν

(
c(1)(s)

)
δ2

)
.

If both ciphertext factors have noise levels beneath the noise floor of q2−1, then
the noise increase in their product is bounded by a scalar on the order of 2td2.

Proof. Only the final claim remains to be shown. Thus,

‖a0 + a1s+ a2s
2‖∞ ≤ ‖a0‖∞ + ‖a1s‖∞ + ‖a2s

2‖∞
≤
(
(qt)2−1

)
+
(
(qt)2−1

)
d+

(
(qt)2−1

)
d2

=
(
(qt)2−1

) ((
d3 − 1

)
(d− 1)

−1
)
,

hence,

‖a0 + a1s+ a2s
2‖∞q−1 ≤

(
t2−1

) ((
d3 − 1

)
(d− 1)

−1
)
.

Let M denote the maximum value of the noises of the two factors, so that
1 ≤M ≤ (qt− 1) 2−1. Then,∥∥∥ν (c(1)(s)

)
ν
(
c(2)(s)

)∥∥∥
∞
≤ dM2,

39

2.6 Noise under operations 2 DETAILED DESCRIPTION OF BFV

hence, ∥∥∥ν (c(1)(s)
)
ν
(
c(2)(s)

)∥∥∥
∞
q−1 ≤ dM2q−1.

We deduce∥∥∥⌊q−1 ⊗
(
ν
(
c(1)(s)

)
ν
(
c(2)(s)

)
−
(
a0 + a1s+ a2s

2
)) ⌉∥∥∥

∞
q−1

≤ dM2q−1 +
(
t2−1

) ((
d3 − 1

)
(d− 1)

−1
)
.

As ∥∥∥ν (c(1)(s)
)
m2 +m1ν

(
c(2)(s)

)∥∥∥
∞
≤ 2

(
dMt2−1

)
= dMt

and

t
∥∥∥δ1ν (c(2)(s)

)
+ ν

(
c(1)(s)

)
δ2

∥∥∥
∞
≤ t (2 (dM))

= 2dMt,

it follows that the `∞-norm of the noise of the product is no larger than

dM2q−1 +
(
t2−1

) ((
d3 − 1

)
(d− 1)

−1
)

+ 3dMt.

In particular, if the maximal noise M is such that M < q2−1, so that

Mq−1 < 2−1,

then we deduce that the noise of the product is less than

dM2−1 +
(
t2−1

) ((
d3 − 1

)
(d− 1)

−1
)

+ 3dMt < dM2−1 +
(
t2−1

) (
3d2
)

+ 3dMt

< dM + 2td2 + 3dMt.

Thus, the ratio of the noise to M is less than

d+ 2td2M−1 + 3dt ≤ d+ 2td2 + 3dt.

It follows that the noise is multiplied by a factor on the order of 2td2.

Interestingly, the previous result shows that the noise does not grow quadrati-
cally upon multiplication, but, rather, it is multiplied by a factor on the order
of 2td2, which is independent of q.

In WIDESEAS, we take t ≈ 232 and d = 213, hence, each ciphertext multi-
plication increases the noise by a factor no greater than around

2 · 232 ·
(
213
)2

= 259.

40

2.6 Noise under operations 2 DETAILED DESCRIPTION OF BFV

It follows that each ciphertext multiplication consumes at most 59 bits of the
noise budget. Of course, this bound is highly pessimistic. However, even by
using the tightest bounds met with in the proof of the above lemma, we can
conclude only that the noise consumption is at most around 57 bits. Never-
theless, a more careful statistical analysis of the noise is possible, and such an
analysis reveals that ciphertext multiplication very rarely (i.e., “6σ”) consumes
more than around 45 bits of the noise budget. Reassuringly, this result, which
we have derived from first principles, agrees with our observations made while
experimenting with the SEAL library. We mention here that WIDESEAS has
multiplicative depth equal to 2, hence, we need to allot around 2 · 45 = 90 bits
in our budget to accomodate the two multiplications. In all, the protocol so far
consumes around 32 bits of the noise budget doing ciphertext addition, around 5
bits doing plaintext-ciphertext multiplication, and around 90 bits doing cipher-
text multiplication. As fresh ciphertexts in WIDESEAS have noise budgets of
around 174 bits, it follows that there still remain around

174− (32 + 5 + 90) = 174− 127 = 47

bits of noise left in the budget. In the next section, we shall see that around 10
of these remaining bits will be used to convert quadratic ciphertexts to linear
ciphertexts. We will then have around 37 bits left in our budget, which is enough
to comfortably cover freak outliers and other random accidents.

Although the preceding discussion has pertained only to linear ciphertexts,
it turns out that ciphertexts of arbitrary degree may be multiplied together in
the same manner. In the WIDESEAS protocol, we shall not have a need to
multiply any but linear ciphertexts.

2.6.4 Relinearization

In the previous section, we saw that, in general, the product of two linear
ciphertexts

c
(1)
0 + c

(1)
1 X

and
c
(2)
0 + c

(2)
1 X

is, perhaps unsurprisingly, a quadratic ciphertext

c0 + c1X + c2X
2.

In this section, we discuss a technique called relinearization, which transforms
a quadratic ciphertext into a linear ciphertext. Our discussion closely follows
that given in the SEAL manual [4]. In fact, the manual’s description is quite
nice and succinct, and we essentially repeat it here using the notation of this
paper.

Intuitively, relinearization slices up the coefficient c2 into multiple parts,
each having sufficiently small norm, and then redistributes these parts across

41

2.6 Noise under operations 2 DETAILED DESCRIPTION OF BFV

the coefficients c0 and c1. The slicing aspect is effected by choosing a positive
integral base T (independently of the plaintext modulus t) and then developing
c2 to the base T , via

c2 =

l∑
i=0

T ic
(i)
2 ,

where l := logT (q) and the family of digits
(
c
(i)
2

)l
i=0

comes from τT (O) . This

technique hinges on the use of a relinearization key rlk, which consists of

masked versions of the
(
T is2

)l
i=0

. Specifically,

rlk =
([

rlk
(i)
0 , rlk

(i)
1

])l
i=0

,

where
rlk

(i)
0 = τq

(
− (ais+ ei) + T is2

)
and

rlk
(i)
1 = ai,

for all i such that 0 ≤ i ≤ l. Here, the (ai)
l
i=0 are sampled uniformly at random

from τq (O) , while the (ei)
l
i=0 are randomly chosen error polynomials coming

from O. As rlk contains masked versions of the
(
T is2

)l
i=0

, which are neither

real samples of the R-LWE distribution, nor real encryptions of the
(
T is2

)l
i=0

,
this technique introduces an extra assumption on the BFV scheme, namely, that
the scheme is still secure when the adversary has access to rlk. This property is
a form of weak circular security.

Now, define

c′0 := τq

(
c0 +

l∑
i=0

rlk
(i)
0 c

(i)
2

)
and

c′1 := τq

(
c1 +

l∑
i=0

rlk
(i)
1 c

(i)
2

)
,

and check

τq (c′0 + c′1s) = τq

(
c0 + c1s+ c2s

2 −
l∑
i=0

c
(i)
2 ei

)
.

The foregoing shows that the base T has the following effects:

1. As the size of the relinearization key is 1 + l, it follows that the sizes of T
and rlk vary indirectly.

2. The number of multiplications in the relinearization step is 2l ≈ 2 logT (q),
where the multiplications are between elements of τT (O) and τq (O) .

42

2.7 Modulus switching 2 DETAILED DESCRIPTION OF BFV

3. The noise introduced by relinearization is bounded by (1 + l)BTd2−1,
hence, greater T results in greater noise.

Note that the noise introduced by relinearization is independent of the noise
present in the ciphertext being relinearized. Furthermore, we only need to
relinearize after a ciphertext multiplication, which, itself, causes the underlying
noise to grow. Therefore, we should choose T large enough to ensure that the
relinearization noise is of the same order as the noise contained in a ciphertext
resulting from multiplying two fresh ciphertexts. In fact, this strategy furnishes
us with a minimal value of T that we might consider using. Although this
strategy minimizes the relinearization noise, the WIDESEAS protocol uses a
different strategy, namely, one that minimizes the relinearization time and space.
In this approach, we take T very large, say, T = d√qe, since then we only have
two slices to take care off. For such large T , the size of the noise after the first
relinearization typically will make a huge jump, but all following relinearizations
will not cause the noise to increase. As WIDESEAS follows this approach, it
turns out that the relinearization done after the first ciphertext multiplication
consumes around 10 bits of the noise budget, but the relinearization done after
the second ciphertext multiplication usually consumes none of the budget.

In all, the WIDESEAS protocol consumes around 32 bits of the noise budget
doing ciphertext addition, around 5 bits doing plaintext-ciphertext multiplica-
tion, around 90 bits doing ciphertext multiplication, and around 10 bits doing
relinearization. As fresh ciphertexts have noise budgets of around 174 bits, it
follows that there still remain around

174− (32 + 5 + 90 + 10) = 174− 137 = 37

bits of noise left in the budget. This “surplus” is enough to cover freak outliers
and other random accidents.

2.7 Modulus switching

In this section, we discuss modulus switching, which can be used to improve
efficiency in both time and space. Our discussion closely follows that given in
the documentation to Microsoft’s SEAL library. In fact, the documentation on
this topic is quite nice and succinct, and we essentially repeat it here using the
notation of this paper.

Modulus switching is a technique for widdling down the encryption param-
eters along a so-called modulus switching chain. The top link in the chain
holds the original encryption parameters. As we move down the chain one link
at a time, we recursively remove a single prime factor from the current cipher-
text modulus, so that the sizes of the ciphertext moduli decrease as we move
down along the chain. This continues until the parameter set is no longer valid
(e.g., the plaintext modulus t is larger than the current ciphertext modulus).

43

2.7 Modulus switching 2 DETAILED DESCRIPTION OF BFV

Freshly encrypted ciphertexts always belong to the highest level of the chain,
inasmuch as they correspond to the original (full) ciphertext modulus q. As
homomorphic operations are performed, and, consequently, as noise begins to
build, we may choose to “switch down” along the modulus chain. Thus, if
q = q0q1q2q3 is originally a product of four mutually distinct primes having bit
lengths 55, 55, 54, and 54, respectively, and, if c(X) is a ciphertext resulting
from one or more homomorphic operations, then the effect of a first modulus
switch is to redistribute the modulo q3 information present in c(X) across the
primes q0, q1, and q2, in the same way that this is usually done in Residue Num-
ber System (RNS) computations. The resulting ciphertext is then, essentially,
encrypted with respect to the ciphertext modulus q0q1q2. A second switch redis-
tributes the modulo q2 information across q0 and q1, and, therefore, results in a
ciphertext that, essentially, is encrypted with respect to the ciphertext modulus
q0q1. A third switch redistributes the modulo q1 information into the q0 compo-
nent, and, therefore, results in a ciphertext that, essentially, is encrypted with
respect to the ciphertext modulus q0. This switching process may be visualized
thusly:

ciphertext modulus Level
q0q1q2q3 3 (highest)
q0q1q2 2
q0q1 1
q0 0 (lowest)

Figure 1: Modulus switching chain

The SEAL library indexes the prime factors of q in decreasing order of size, and,
therefore, each modulus switch always removes the current smallest factor.

In order to understand the potential benefit got from modulus switching,
observe that the size of a given ciphertext depends linearly on the number
of prime factors in the ciphertext modulus. Thus, if there is no need nor any
intention to perform any additional computations on a given ciphertext, then we
might as well switch it down to the smallest (i.e., lowest) parameter level in the
modulus chain prior to sending it to the private key holder for decryption. Now,
at first blush, it might appear that proceeding in this way will sometimes lead
to a loss of noise budget. Indeed, as the plaintext modulus t is fixed, it follows
that continually decreasing the size of the ciphertext modulus necessarily results
in ever lower initial noise budgets. It turns out that this lost noise budget is
actually not an issue, at least, that is, if we proceed with care. Thus, let c(X) be
a ciphertext with respect to q = q0q1q2q3, and suppose that c(X) is the result of
sufficiently many homomorphic operations that its noise budget is just slightly
below the level we would have in a fresh ciphertext created after performing
a single modulus switch (i.e., a fresh ciphertext with respect to the ciphertext

44

2.8 Batching 2 DETAILED DESCRIPTION OF BFV

modulus q0q1q2). Surprisingly, perhaps, in this situation, modulus switching has
no effect at all on the current noise budget of c(X). In general, there is no harm
at all in shaving off some factors from the ciphertext modulus after performing
enough computations. Indeed, with respect to the switched down modulus, the
ciphertext (i) still decrypts correctly (presumably), (ii) is of a smaller size, and
(iii) is such that future computations done on it will be more efficient, since
it is smaller. We note that, in SEAL’s implementation of BFV, the modulus
switching technique is not necessary, and, by default, it is switched off. In any
case, the programmer chooses when and what to switch.

In WIDESEAS, the initial ciphertext modulus is a product of four mutually
distinct primes. The modulus is switched by the Responder a total of three
times during the response generation phase: Once after the first ciphertext
multiplications, and then twice after performing the column sums. This ensures
that the response transmitted to the Querier is as small as possible.

2.8 Batching

When the plaintext modulus t is a prime such that π2d(t) = π2d(1), the field
Ft has a full complement of 2d-th roots of unity. Consequently, the cyclotomic
polynomial Φ2d(x) splits completely over Ft, and, therefore, the ring Ot has a
unique decomposition (up to ordering) as a direct sum of ϕ(2d) = d minimal
ideals, each isomorphic as an algebra with Ft. The partition of unity in Ot as
a sum of primitive, mutually orthogonal idempotent elements, which effect the
projections onto these summands, is termed a Number Theoretic Trans-
form (NTT) over Ft. Arithmetic in Ot is that of modular polynomials when
it is seen from the standpoint of the standard primitive element basis. How-
ever, the arithmetic appears as point-wise operations when it is viewed from
the perspective of the basis of idempotents (i.e., in the NTT domain). Con-
sequently, multiplication in the NTT domain is a great deal simpler and more
efficient than it is in the primitive element basis. In point of fact, it is more
efficient to (i) transform ring elements into their NTT expressions, (ii) multiply
these expressions together in a point-wise manner, and then (iii) transform the
resulting products back into the primitive element basis, than it is to directly
multiply elements in the primitive element basis. The speed up factor is log-
arithmic in the degree d of Φ2d(x). The foregoing applies equally well to the
ciphertext modulus q.

In WIDESEAS, we take advantage of this algebraic structure for the pur-
pose of batching multiple data points together within a single plaintext. For
instance, each plaintext in the decrypted response holds one data chunk per tar-
geted selector. Additionally, we choose the ciphertext modulus q as a product of
four mutually distinct “NTT-friendly” primes, so that, on the one hand, arith-
metic modulo q may be (i) analyzed into mutually orthogonal components with
respect to the factors of q, and then (ii) synthesized in the end to obtain results
modulo q, and, on the other hand, we may take advantage of the computational

45

3 WIDESEAS PROTOCOL

gains, with respect to multiplication, attendant with NTTs.

3 WIDESEAS protocol

This section provides a high-level summary of the WIDESEAS protocol for PIR.
We begin by presenting the basic (naive) approach, and then we describe various
enhancements.

3.1 Naive approach

The naive approach begins with the query generation phase. Thus, the
Querier encrypts a family of plaintexts (mi)

L
i=1 coming from τt (O) . Here, L =

2h, where h is the hash size in bits, and each plaintext is either 0O or a distinct
power xj + Φ2d(x)Z[x], where j is such that 0 ≤ j ≤ d − 1. The latter case
corresponds to targeted selectors. In this way, the Querier produces a family(
c(i)(X)

)L
i=1

of linear ciphertexts coming from τq (O) . This family is termed
the query, and each of its members is called a query element. The query
generation phase closes with the Querier transmitting (e.g., as a flat file) the
query to the Responder.

The response generation phase begins with the Responder receiving the
query from the Querier. Using the query elements, together with the data
stream (

a(j)
)
j
,

where, for each j, the “column”

a(j) =
(
a

(j)
i

)L−1

i=0

consists of L-many “chunks” of data such that a
(j)
i comes from a database record

whose selector hash is i, the Responder computes the “column sums”(
Y (j)

)
j
,

where, for each j,

Y (j) := τq

(
L∑
i=1

a
(j)
i c(i)(X)

)
.

This involves plaintext-ciphertext multiplication along with ciphertext addition.
The family

(
Y (j)

)
j

of column sums obtained in this way is termed the response.

The response generation phase closes with the Responder transmitting (e.g., as
a flat file) the response to the Querier, so that it may be decrypted.

Finally, the response processing phase begins with the Querier receiving
the response from the Responder. Using the private encryption key, the Querier

46

3.2 Shrinking the query 3 WIDESEAS PROTOCOL

decrypts each element of the response, and then parses the resulting plaintexts
to extract the queried data.

The main drawback to this approach is that the query must be of the same
size (i.e., L) as the database, and query sizes are significantly larger with BFV
than they are with Paillier, due to the fact that BFV ciphertexts are much larger
than Paillier ciphertexts (e.g., 0.5 MiB vs. 768 B).

3.2 Shrinking the query

By using the fully homomorphic properties of BFV it is possible to reduce the
query size. In fact, the WIDESEAS protocol uses ciphertext multiplications for
the purpose of effecting logical conjunctions of query terms. This has the effect
of reducing the query size, but it comes at the cost of requiring the Responder to
expand the query prior to processing it into the response. In WIDESEAS, the
expanded query is formed from four subqueries. We assume throughout that
the hash size in bits is h = 32, since that is the default setting in WIDESEAS.
However, all that is required is for h to be divisible by four, since the unexpanded
query will consist of four equally-sized subqueries.

Suppose there are T targeted selectors (sm)
T−1
m=0 , where 1 ≤ T ≤ d = 2k. By

replacing T with the smallest divisor of d that is greater than or equal to T ,
and then padding by zeros as necessary, we may assume that T divides d. For
each m such that 0 ≤ m ≤ T − 1, the selector sm shall correspond to the slots
numbered m

(
dT−1

)
through (m+ 1)

(
dT−1

)
− 1 in the plaintext NTT domain.

Let (
am224 + bm216 + cm28 + dm20

)T−1

m=0

be the 32-bit hash values corresponding to the targeted selectors. For simplicity,
we assume these hash values are pair-wise distinct. Our query shall consist of
the encryptions of the plaintexts in the four lists

L(a) =
(
p

(a)
i

)28−1

i=0
,

L(b) =
(
p

(b)
j

)28−1

j=0
,

L(c) =
(
p

(c)
k

)28−1

k=0
,

L(d) =
(
p

(d)
l

)28−1

l=0
.

Here, the list L(a) is defined in such a way that, for each m such that 0 ≤ m ≤
T − 1, and, for each i such that 0 ≤ i ≤ 28 − 1, the slots numbered m

(
dT−1

)
through (m + 1)

(
dT−1

)
− 1 in the NTT domain expression for the plaintext

p
(a)
i all are occupied either by 0Ft

or 1Ft
, with the latter case holding, if, and

only if, i = am. The three other lists are similarly defined. Next, consider the

47

3.2 Shrinking the query 3 WIDESEAS PROTOCOL

Kronecker products

L(a) ⊗ L(b) =
(
τt

(
p

(a)
i p

(b)
j

))28−1

i,j=0

and

L(c) ⊗ L(d) =
(
τt

(
p

(c)
k p

(d)
l

))28−1

k,l=0
.

For each 0 ≤ m ≤ T−1, the slots numberedm
(
dT−1

)
through (m+1)

(
dT−1

)
−1

in the NTT domain expression for the plaintext τt

(
p

(a)
i p

(b)
j

)
all are occupied

either by 0Ft
or 1Ft

, with the latter case holding, if, and only if, i = am and
j = bm. Similarly, the slots numbered m

(
dT−1

)
through (m + 1)

(
dT−1

)
− 1

in the NTT domain expression for the plaintext τt

(
p

(c)
k p

(d)
l

)
all are occupied

either by 0Ft
or 1Ft

, with the latter case holding, if, and only if, k = cm and
l = dm. Finally, consider the Kronecker product(

L(a) ⊗ L(b)
)
⊗
(
L(c) ⊗ L(d)

)
=
(
τt

(
p

(c)
i p

(d)
j p

(c)
k p

(d)
l

))28−1

i,j,k,l=0
.

The slots numbered m
(
dT−1

)
through (m+ 1)

(
dT−1

)
− 1 in the NTT domain

expression for the plaintext τt

(
p

(a)
i p

(b)
j p

(c)
k p

(d)
l

)
all are occupied either by 0Ft

or

1Ft , with the latter case holding, if, and only if,

i = am

j = bm

k = cm

l = dm.

Thus, through the use of a circuit having multiplicative depth equal to 2, we
have expanded the four smaller lists into the full query.

The foregoing idea can be extended. In WIDESEAS, we take h = 32 = 25,
hence, we might extend the above circuit to one of depth 5. This would result
in a query consisting of 32 lists, each of length 232/32 = 2, rather than 4 lists,
each of length 232/4 = 28. However, there are several downsides to using a larger
multiplicative depth. In fact, let us regard the dimension d as being fixed. On
the one hand, the plaintext modulus t would need to be quite small in order for
the noise budget to accomodate the additional ciphertext multiplications and
plaintext-ciphertext multiplications. On the other hand, in order for the system
to support batching, t must be at least 1 + 2d, so that it may meet the NTT
constraint of π2d(t) = π2d(1). Also, for a fixed q, the plaintext modulus t should
be as large as possible in order to (i) maximize the plaintext processing rate,
and (ii) minimize the coefficient-wise expansion rate of qt−1. Thus, the depth 2
circuit employed in WIDESEAS is a kind of compromise. It reduces the query
expansion time (on the Responder’s side) by reducing the number of ciphertext
multiplications required to expand the query, but it does this at the cost of
increasing the query size.

48

3.3 Concrete system parameters 3 WIDESEAS PROTOCOL

3.3 Concrete system parameters

In this section, we give concrete parameters for an instantiation of the WIDESEAS
protocol.

There are three main parameters in BFV, namely, the polynomial degree d,
the ciphertext modulus q, and the plaintext modulus t. Let us look at each in
its turn.

First, consider the degree d. Increasing d has the desirable effect of increasing
the security level, while also having the undesirable effect of increasing the size
of fresh ciphertexts. The latter effect leads to a diminished overall performance
(by slowing down all ciphertext operations).

Second, consider the ciphertext modulus q. Increasing q has the desirable
effect of increasing the noise budget in a fresh ciphertext, since, by Lemma 5,

the initial noise budget is on the order of log2

(
qt−1d−2−1

)
bits, while also

having the undesirable effect of decreasing the security level. Thus, if a large
noise budget is required for a complicated computation, then a large ciphertext
modulus needs to be used, and the reduction in the security level must be
countered by simultaneously increasing the degree d, even though this will result
in a worse performance.

Finally, consider the plaintext modulus t. Increasing t has the undesirable
effect of decreasing the noise budget in fresh ciphertexts, and it also has the
undesirable effect of consuming more of the noise budget under homomorphic
multiplications. In fact, by Lemma 9, plaintext-ciphertext multiplication con-
sumes up to around log2 (dt) bits, while, according to Lemma 10, ciphertext
multiplication consumes up to around log2

(
d2t
)

bits. Thus, it is important
always to choose minimal t.

To make parameter selection easier for the user, the SEAL library has con-
structed sets of largest safe ciphertext moduli for 128-bit and 192-bit secu-
rity levels for various choices of the degree d. These default parameters fol-
low the recommendations found in the Security Standard Draft available at
http : //HomomorphicEncryption.org.

We selected the following parameter set at the 128-bit security level for use
in WIDESEAS:

d 213

q0 36,028,797,005,856,769 (55 bits)
q1 36,028,797,001,138,177 (55 bits)
q2 18,014,398,492,704,769 (54 bits)
q3 18,014,398,491,918,337 (54 bits)
q 421,249,165,509,532,207,033,449,784,325,084,270,503,814,638,792,416,755,348,439,564,289 (218 bits)
t 4,295,049,217 (33 bits)

rt(q) 661,215,791 (30 bits)

h 25

L 2h

expansion factor logt(q) ≈ 7

Table 7: BFV Parameters

49

3.3 Concrete system parameters 3 WIDESEAS PROTOCOL

This parameter set supports a data chunk size of up to

d (log28 (t) B) ≈ 215 B.

It supports a hash size of up to 32 bits (i.e., h = 25). Each query can support
up to φ(2d) = d targeted selectors at a time. We note that the expansion factor
is 3.5 times greater than that of the Paillier-based version of EncryptedQuery.
Accordingly, the sizes of the raw (i.e., fully expanded) query and the raw (i.e.,
not fully modulus switched) response are larger than those in Paillier. In fact,
with h = 32, the raw query size is around 2 PiB, as compared with 3 TiB
for Paillier. However, the raw query size can be reduced using the method
from §3.2 based on logical conjunctions, via ciphertext multiplication. This is
the approach followed in WIDESEAS, and, for the system parameter set given
above, it reduces the query size from 2 PiB down to around 0.5 GiB. This is
6, 144 times smaller than the corresponding query size with Paillier. (Note:
The Responder only partially expands the query, resulting in two lists, each
consisting of 216-many linear ciphertexts. This partially expanded query takes
up 64 GiB of storage, which still is much better than the 2 PiB required to
store the fully expanded query. In point of fact, the Responder can actually
expand the query up the point at which there are three lists, two of length 28

and one of length 216. This cuts the necessary storage down to around 32 GiB.)
Likewise, the raw response size can be reduced using a technique called modulus
switching, which essentially discards all ciphertext information lying below the
noise floor. Again, this is the approach followed in WIDESEAS.

The above ciphertext modulus q is SEAL’s default modulus for d = 213.
This is the largest possible ciphertext modulus at the 128-bit security level.
This modulus is the product of 4 primes, namely, two of size 55 bits and two of
size 54 bits. As each prime factor is stored in a single 64-bit machine word, it
follows that the size of a fresh ciphertext is (2d) (32 B) = 0.5 MB.

We have chosen the plaintext modulus t = 4, 295, 049, 217 because it is the
smallest NTT-friendly prime greater than 232, and, as such, it allows us to
store four bytes of plaintext per coefficient while also reaping all the benefits of
batching.

In the polynomial domain, a plaintext is a polynomial of degree less than
d with coefficients from Ft. In the NTT domain, a plaintext is an array of d slots,
or components, each of which contains an element of Ft (i.e., (1 + blog2(t)c) bits).
In WIDESEAS, plaintexts usually begin in the NTT domain, and are trans-
formed to the polynomial domain only for operational reasons. Thus, for d =
8192, t = 32 bits, and a single targeted selector, each plaintext accumulation
will process

(213)× (4 B) = 32 KiB

of data. For larger numbers of selectors, the plaintext may need to be frag-
mented. For example, if there are 32 targeted selectors, then the plaintext can
hold (

213/25
) (

22 B
)

= 210 B

50

3.4 Noise growth 3 WIDESEAS PROTOCOL

per selector.

3.4 Noise growth

In WIDESEAS, there are four sources of noise: ciphertext multiplication, relin-
earization, plaintext-ciphertext multiplication, and ciphertext addition. Analyz-
ing the growth of the noise growth during a sequence of operations is non-trivial.
On the one hand, there are analytic methods for bounding the noise (e.g., using
either the infinity norm or the canonical norm), which we have already dis-
cussed. On the other hand, the noise budget can be computed either exactly
(from a knowledge of the private key and the underlying plaintext) or approx-
imately (from a knowledge of just the private key). This can be done during
the design phase for the purpose of validating parameters. The following table
gives mean noise budget approximations (computed from a knowledge of just
the private key) as measured along the WIDESEAS circuit:

0. initialization 174
1. ciphertext multiplication (level-1) 129
2. relinearization 119
3. plaintext-ciphertext multiplication 114
4. ciphertext addition 98
5. ciphertext multiplication (level-2) 53
6. relinearization 53
7. ciphertext addition 37

Figure 2: Average noise budget consumption along WIDESEAS circuit

Thus, with the given parameters, we find that, on average, ciphertext multiplica-
tion consumes around 45 bits of the noise budget, while plaintext multiplication
consumes around 3 bits. The first relinearization operation costs around 10
bits, but subsequent relinearizations are essentially free. The ciphertext addi-
tions (used in computing the column sums) cost a total of around 32 bits, since
there are 232 additions per column sum.

3.5 Query size

Let h be the hash size in bits. An unexpanded query consists of d lists,
each consisting of 2h/d ciphertexts. Such a query is sent by the Querier to the
Responder, who, in turn, must expand it by taking the Kronecker product of the

d lists. This results in a list of
(
2h/d

)d
= 2h ciphertexts, which is the expanded

query.

For example, if h = 32 and d = 4, then an unexpanded query consists

51

3.6 Response size 3 WIDESEAS PROTOCOL

of 4 lists of 28 ciphertexts each, hence, an unexpanded query has a total of
(4)
(
28
)

= 1024 ciphertexts. As each ciphertext has size 0.5 MiB under the
standard WIDESEAS parameter set, it follows that, in this case, an unex-
panded query has size (1024)(0.5 MiB) = 0.5 GiB. Compared with the size of a
fully expanded query, which consists of 232 ciphertexts, this yields a reduction
factor of 210/232 = 2−22. Again, if h = 20 and d = 4, then an unexpanded query
consists of 4 lists of 25 ciphertexts each, hence, an unexpanded query has a total
of (4)(25) = 128 ciphertexts. Assuming each ciphertext has size 0.5 MiB, it fol-
lows that, in this case, an unexpanded query has size (128)(0.5 MiB = 64 MiB.
Compared with the size of a fully expanded query, which consists of 220 cipher-
texts, this yields a reduction factor of 27/220 = 2−13. Let us now compare this
last example with the corresponding case using the Paillier-based WIDESKIES
protocol. As this protocol does not support ciphertext multiplication (i.e., it
is only partially homomorphic), we necessarily have d = 1. Typically, we have
h = 20 = h/d. As each ciphertext is a 6144-bit integer, this yields a query size
of 768 MiB, which is then seen to be 12 times larger than the corresponding
unexpanded query size in WIDESEAS.

We note that, in WIDESEAS, the query is never actually fully expanded, at
least, insofar as the fully expanded query is never expected to reside in either
memory or storage at any point during processing. Rather, the Responder
expands the query only up to the point at which there are just two lists, each
of length 2h/2. Items coming from these two lists are multiplied as needed,
and the resulting products are immediately discarded after being sent to the
accumulator. without saving In point of fact, it is actually possible to expand
the query only up to the point at which there three lists, two of length 2h/4

and one of length 2h/2. In any case, the Responder never needs to store the
extremely large (e.g., 2 PiB, if h = 32) fully expanded query.

3.6 Response size

In this section, we show that the size of the response is a function of four
independent variables, namely, the ciphertext expansion factor F , the bucket
expansion factor G, the size D of the database entries, and the number T of
query terms.

First, embedding smaller plaintext values into much larger ciphertexts leads
to a ciphertext expansion factor, F , which is given by the ratio of the ciphertext
size to the plaintext size. In the BGV cryptosystem, the expansion factor is

F = 2d log(q)/(d log(t))

= 2 log(q)/ log(t)

= 2 logt (q) .

In WIDESEAS, q ≈ 2218 and t ≈ 232, hence, F ≈ 13.625. This is much larger
than the expansion factor of logN

(
N2
)

= 2 for Paillier. Fortunately, modulus
switching can be used to reduce the expansion. In fact, q is 218-bit number given

52

3.6 Response size 3 WIDESEAS PROTOCOL

by the product of four distinct (approximately) equally-sized primes, and each
switching operation removes one of these primes. Thus, each switch removes
around 1/4 of the bits in q. In WIDESEAS, the modulus is switched once
following the first ciphertext multiplication (during query expansion), and then
it is switched twice following the full column sum. As a result of these three
switches, the final coefficient modulus is around (1/4)(218 bits) ≈ 55 bits, and,
therefore, the expansion factor is around

2 logt(2
55) ≈ 3.4375,

which is within a factor of 2 of Paillier’s factor 2.

Second, hash collisions lead to a row expansion factor E. Thus, suppose the
database has 2g entries (i.e., records), and let the hash size in bits be h, so that
the effective list size is 2h. On average, each hash value will have

E = 2g/2h = 2g−h

database entries as preimages. For example, if there are 232 database entries
and 220 hash values, then each hash value will have 212 entries on average. Using
a larger hash size reduces the entry-wise factor E, but it also expands the query
size. However, the tradeoff here turns out to be favorable. In fact, consider
queries consisting of d = 4 lists, with hash size h. The query size is then around
4 · 2h

4 times the size of a ciphertext. Let s ∈ (1/4)N. Increasing the hash size by
4s is equivalent to scaling the query size by 2s, since

4 · 2
4s+h

4 = 2s
(

4 · 2h
4

)
.

This, in turn, is equivalent to scaling the entry expansion factor E by 1/24s,
since

2g/24s+h =
1

24s

(
2g/2h

)
=

1

24s
E.

In particular, taking s = 1, we find that doubling the query size has the effect
of reducing E by a factor of 24. As soon as s ≥ (g− h)/4, the hash size satisfies
4s + h ≥ (g − h) + h = g. In this situation, E has been reduced by a factor of
at least 2g−h = E, hence, the entry expansion factor is at most unity, and no
expansion occurs. Thus, technically, we must define E via

E := max(1, 2g−h).

Third, the size of the response scales linearly with the database entry size
D. If C is the plaintext chunk size, then a data entry of size D is spread across
D/C ciphertexts. In fact, each ciphertext (i.e., column sum) contains exactly
one data chunk per targeted selector.

Fourth, if there are T query terms, then the response size will be T times
larger than for a single query term. This is to be expected, because supporting

53

4 HOMOMORPHIC OPTIMIZATIONS

multiple query terms only amortizes the cost of query generation and the result-
ing query size. Note that the data chunk size (in bits) satisfies C ≈ d log2(t)T−1,
hence,

D/C ≈ DT/ (d log2(t)) .

Finally, we combine these four factors in order to estimate the response size
under the WIDESEAS protocol:

Lemma 11. Let h be the hash size in bits. A query made with T targeted
selectors on a database consisting of 2g entries, each of length D bits, results in
a response of size

FEDT = 2 logt (q) max(1, 2g−h)DT bits.

Proof. There are E hits per hash value, since, for each hash value, there are
E database entries whose tag hashes to the given value. Each of these E hits
corresponds to D/C ciphertexts, where C is the data chunk size (in bits), since
a single data chunk for each targeted selector is stored in each ciphertext. But,
C ≈ (d log2(t))/T , since each plaintext holds d log2(t) bits in total, and these
bits are shared evenly between the T targeted selectors. Thus, each of the
E hits per hash value corresponds to D/ ((d log2(t)) /T) = (DT)/ (d log2(t))
ciphertexts. This yields a total of

E ((DT) / (d log2(t))) = (EDT) / (d log2(t))

ciphertexts in the response. As each ciphertext has size 2d log2(q) bits, it follows
that the total number of bits in the response is given by

(2d log2(q)) ((EDT) / (d log2(t))) .

But, as the ciphertext expansion factor F satisfies

F = (2d log2(q)) / (d log2(t)) ,

we deduce that the total number of bits in the response may be written as
FEDT, as claimed.

For example, if g = 32 = h, then the WIDESEAS scheme has a combined
FE expansion factor of around 3.44, whereas, in the WIDESKIES scheme, this
factor is around

2 max(1, 232−20) = 213,

which is more than two thousand times larger.

4 Homomorphic optimizations

In this section, we discuss certain optimizations we have made to the basic
WIDESEAS computation described above. These enhancements, all of which
are implemented in EncryptedQuery, do not change the underlying algorithm,
but they greatly improve its performance.

54

4.1 Caching subproducts 4 HOMOMORPHIC OPTIMIZATIONS

4.1 Caching subproducts

We recall the response generation phase. First, the Responder receives the
unexpanded query (

(cn,m)
28−1
m=0

)4

n=1

from the Querier. Second, the Responder expands the query by computing and
storing the products

(c1,ic2,jc3,kc4,l)
28−1
i,j,k,l=0 .

In order to minimize the multiplicative depth of the circuit, and, thereby, mini-
mize the noise budget consumption, these products are computed along a binary
tree. In order to minimize the size of the ciphertexts, relinearization and mod-
ulus switching are performed after each multiplication. Third, the Responder
processes one or more columns of data chunks drawn from a database. With

each such column, the data is initially encoded as plaintexts (pi,j,k,l)
28−1
i,j,k,l=0

in the NTT domain, which then are transformed by the inverse NTT to yield

(p̃i,j,k,l)
28−1
i,j,k,l=0 . Here, p̃ is the inverse NTT encoding of the plaintext data p.

Finally, the column sum

C =
∑
i,j,k,l

p̃i,j,k,lc1,ic2,jc3,kc4,l, (10)

is computed. The collection of column sums thus computed constitutes the
Response, which the Responder transmits to the Querier for processing.

The most expensive part (i.e., the bottleneck) of the response generation
is the ciphertext multiplication. It would be convenient to hold the family of
products

(c1,ic2,jc3,kc4,l)
28−1
i,j,k,l=0

in memory. However, this turns out to be infeasible. In fact, since each of the
four component families (

(cn,m)
28−1
m=0

)4

n=1

has 28 members, it follows that the product family has
(
28
)4

= 232 members.
Since each member of the product family is a single (relinearized) ciphertext, it
follows that each such member has size

(21)(213)(25 B) = 219 B.

Therefore, the product family has size

(232)(219 B) = 251 B = 2 PiB.

This is too large to hold in memory. Instead, the Responder forms two tables(
c12,i+j28

)216−1

i,j=0
:= (c1,ic2,j)

28−1
i,j=0

55

4.2 Summing products 4 HOMOMORPHIC OPTIMIZATIONS

and (
c34,k+l28

)28−1

k,l=0
:= (c3,kc4,l)

28−1
k,l=0

of relinearized subproducts. Each of these tables has 216 entries, hence, each has
size 32 GiB. After forming these lists, the Responder then switches the modulus
by one prime factor. This reduces the modulus from four prime factors to just
three prime factors, hence, it reduces the size of each list by a factor of 3/4,
so that each list then has size 24 GiB. This is small enough to fit the inner list(
c34,k+l28

)28−1

k,l=0
on a single multi-core node. The outer list

(
c12,i+j28

)28−1

i,j=0
can

be computed once and shared across columns, or, it can be computed on the
fly, since it is not the bottleneck.

4.2 Summing products

Using the two expanded lists, the column computation becomes

C =

216−1∑
i,j=0

p̃i,jc12,ic34,j . (11)

This sum has 232 terms. If it is computed naively, then it requires 232 cipher-
text multiplications and 232 plaintext multiplications. Now, it turns out that
ciphertext multiplication is around 7 times slower than plaintext multiplication.
In fact, with the given system parameters, each ciphertext multiplication can
be performed in around 21ms, whereas each plaintext multiplication can be per-
formed in around 3ms. It follows that 232 ciphertext multiplications corresponds
to around 7·232 ≈ 235 plaintext multiplications. Thus, ciphertext multiplication
is the computational bottleneck.

We reduce the number of ciphertext multiplications, and, thereby, move the
bottleneck on to the plaintext multiplications, by using the distributive law to
rewrite the above sum as

C =

216−1∑
i=0

c12,i

216−1∑
j=0

p̃i,jc34,j . (12)

Computed according to this form, the sum still performs 232 plaintext multi-
plications, but now it performs just 216 ciphertext multiplications, which corre-
sponds to around 7·216 ≈ 219 plaintext multiplications. It follows that plaintext
multiplication is now the bottleneck. In the next two sections, we present tech-
niques for speeding up this operation.

4.3 NTT caching

In Equation 12, the ciphertexts (c34,j)
216−1
j=0 can be stored in the NTT domain. In

fact, the algorithm for plaintext multiplication involves operation (e.g., round-
ing) that fails to commute with the CRT. Thus, the inner loop computation

56

4.4 Lazy reduction 4 HOMOMORPHIC OPTIMIZATIONS

consists of NTT transforming the plaintext, performing a pointwise product
between the transformed plaintext and the NTT-domain ciphertext, and then
accumulating the result. Unfortunately, the outer loop computation cannot be

performed in the same way. More specifically, the ciphertexts (c12,i)
216−1
i=0 can-

not be stored in the NTT domain. This is because the algorithm for ciphertext
multiplication requires that the CRT basis be extended by several supplemen-
tal primes, so that, effectively, the multiplication can be performed over the
integers, and then scaled by t/q and rounded.

4.4 Lazy reduction

The multiply-accumulate operation can (and does) use lazy reduction. To see
this, we start by observing that this operation is actually performed separately
modulo each of the (four) CRT primes, and each such prime fits entirely within
a single machine word (i.e., 64 bits), since the primes are at most 56 bits long.
Fix any one of the four primes. We deduce that the product of any two residues
modulo this prime fits comfortably within two machine words. Now, the SEAL
library uses generic Barrett reduction to reduce the result of the multiplication.
Barrett reduction (or Montgomery reduction) converts the modular operation
into several multiplication operations along with shifting operations. These
multiplications can be amortized by summing multiple products and then per-
forming a single reduction. The GCC C extension int128 type makes this
operation simple to implement, and the compiler generates fast multiplication
and addition-with-carry instructions.

4.5 Periodic NTT’s

During the response generation phase of the WIDESEAS protocol, data chunks
drawn from database records are embedded into ciphertexts, via plaintext-
ciphertext multiplication, as follows.

First, each data chunk is inserted into a plaintext in the NTT domain.
Suppose there are T targeted selectors, where, without loss of generality, T is
a divisor of d. Each selector is allotted d/T NTT slots, hence, each data chunk
consists of d/T four byte values (since t is just over four bytes in length). As the
Responder generally does not know whether or not a given data chunk actually
corresponds to one of the targeted selectors, it follows that the Responder must
attempt to embed each data chunk into its corresponding query element. Just
in case a given data chunk does, in fact, correspond to a targeted selector,
the Responder must embed it into each and every (d/T)-long window of NTT
slots. These T -many slots correspond in some order to the T -many targeted
selectors. In this way, the Responder covers all possibilities. In detail, consider

the data chunk (ai)
d/T
i=0 , where each ai is a four byte value embedded in Ft, The

Responder repeats this data chunk T times, so that it then covers all d NTT
slots. The plaintext p̃ thus formed has period d/T and frequency T (its period

57

4.5 Periodic NTT’s 4 HOMOMORPHIC OPTIMIZATIONS

repeats T times). The Responder then applies the inverse NTT to this plaintext,
resulting in the polynomial plaintext p. Since the NTT domain expression has
frequency T , it follows from standard properties of the NTT that p has its
support contained within TZ/dZ. In fact, the d-point inverse NTT applied to
the periodic extension of the data chunk is equivalent to the (d/T)-point inverse

NTT applied to just the data chunk itself. Thus, let (dj)
(d/T)−1
j=0 ∈ Ft be a

data chunk consisting of (d/T)-many four byte values. Periodically extend this
sequence so that its frequency is T , and embed the resulting sequence in an
NTT domain plaintext

p̃ := (ei)
d−1
i=0 .

For each j such that 0 ≤ j ≤ (d/T)−1, and, for each k such that 0 ≤ k ≤ T −1,
we have ek(d/T)+j = dj . Let m be a natural number such that 0 ≤ m ≤ d − 1.
Denote by ω2d ∈ Ft a primitive (2d)-th root of unity. If the inverse NTT is
applied to p̃, then the coefficient of xg, for any g such that 0 ≤ g ≤ d− 1, is

d−1
d−1∑
m=0

em
(
ω2m+1

2d

)g
= d−1

T−1∑
k=0

(d/T)−1∑
j=0

ek(d/T)+j

(
ω

2(k(d/T)+j)+1
2d

)g

= d−1
T−1∑
k=0

(d/T)−1∑
j=0

dj

(
ωkTω

j
dω2d

)g

= d−1

T−1∑
k=0

(ωgT)
k

(d/T)−1∑
j=0

dj (ωgd)
j

ωg2d

= d−1

(
T−1∑
k=0

(ωgT)
k

)(d/T)−1∑
j=0

dj (ωgd)
j

ωg2d

=

{(
(d/T)

−1∑(d/T)−1
j=0 dj (ωgd)

j
)
ωg2d if g ≡T 0

0 otherwise.

It follows that only
(
xlT
)(d/T)−1

l=0
have coefficients that are possibly non-zero, so

that the support is contained within TZ/dZ, as claimed. Moreover, for each l
such that 0 ≤ l ≤ (d/T)− 1, the coefficient of xlT is given by

(d/T)
−1

(d/T)−1∑
j=0

dj

(
ω2j+1

2(d/T)

)l
.

It follows that the d-point inverse NTT is equivalent to a (d/T)-point inverse
NTT, as claimed. Now, the approach based on d points requires around d log(d)
operations. The approach based on (d/T) points requires around (d/T) log(d/T)
operations. Thus, in case T is a proper divisor of d, the (d/T)-point approach
is faster than the d-point approach by a factor of

T logd/T (d) = T (1− logd (T))
−1
.

58

5 PERFORMANCE NUMBERS

In case T = d, so that 1 = d/T , the (d/T)-point transform is trivial, hence, it
is infinitely faster than the d-point approach. In the situation of WIDESEAS,
we have the following speed ups coming from this optimization:

T
⌊
T (1− logd (T))

−1 ⌉
20 1
21 2
22 5
23 10
24 23
25 52
26 119
27 277
28 666
29 1,664
210 4,437
211 13,312
212 53,248
213 ∞

Table 8: Speed up factors for d = 213

Of course, this same optimization applies dually to the forward NTT. This is
quite convenient for us, since, after inverse transforming the periodic plaintext
data, the very next step in the WIDESEAS protocol is to compute the forward
NTT of the reductions modulo the prime factors of the ciphertext modulus q.
Each of these forward NTTs can be performed as a (d/T)-point forward NTT,
which is faster than a d-point forward NTT, unless T = 1. In WIDESEAS, q
has four prime factors, hence, this savings is fourfold.

We remark that the periodicity-related property exploited above is actually
a well-known property of the Discrete Fourier Transform (DFT). In fact, the
d-point NTT is a twisted version (by ω2d) of the d-point DFT, and, a function
f : Z/dZ→ Ft has its support contained within a subgroup H ≤ Z/dZ, if, and

only if, its Fourier transform f̂ : Z/dZ
∧

→ Ft is constant on the cosets of the

annihilator Ann(H) of H in the dual group Z/dZ
∧

.

5 Performance numbers

In this section, we present results from some experiments we have run with
our implementation of WIDESEAS in EncryptedQuery. Among other things,
the results highlight the reciprocal relationship between the number of targeted
selectors and the response generate rate, along with the direct relationships be-
tween the number of targeted selectors and the query and response generation

59

5.1 A comparison with SEAL PIR 5 PERFORMANCE NUMBERS

times. In all, we summarize (in Table 9) the results of fourteen different exper-
iments. These experiments correspond to the fourteen possible choices for the
number of targeted selectors, T. For each experiment, the values of d, q, and t
are as in §3.3, but the hash size h is 20 bits, rather than 32 bits, as it is in
§3.3. The database always has size 1 TB, and it always consists of 220-many
records. Each record splits into 25T -many data chunks, and each data chunk
has size (4(d/T)) B. In each of the fourteen different experiments, the query
has size 64 MiB, and the response has size 4 MiB. The reported timings were
extrapolated from timings on single columns.

T query gen. time (s) resp. gen. time (days) resp. gen. rate (MiB/s)
20 0.41 0.51 23.67
21 0.51 0.64 19.01
22 0.49 0.89 13.67
23 0.56 1.36 8.93
24 0.66 2.40 5.06
25 0.97 4.42 2.75
26 1.39 8.64 1.41
27 2.22 17.22 0.71
28 3.73 34.53 0.35
29 7.39 65.56 0.19
210 17.66 131.41 0.09
211 31.66 255.35 0.05
212 54.80 527.93 0.02
213 109.59 1059.15 0.01

Table 9: Experimental results

These measurements were done using gcc-7 on an Oracle VM VirtualBox run-
ning Ubuntu 18.04.1 LTS (Bionic Beaver) on a MacBook Pro laptop running
MacOS Sierra using a 2.8 GHz Intel core i7 and with Turbo Boost disabled.

5.1 A comparison with SEAL PIR

We first recall the basic PIR protocol followed by Microsoft in their SEAL PIR
paper [5].

The Querier chooses a single targeted selector 0 ≤ j < d, and then encrypts
the plaintext τt

(
xj + Φ2d(x)Z[x]

)
. This sole ciphertext constitutes the entirety

of the query. The Querier then sends this query to the Responder, who proceeds
to expand it. The effect of the expansion is to create d-many ciphertexts from
the query ciphertext, with the i-th such ciphertext encrypting either zero or one,
where the latter case holds, if, and only if, i = j. Now, in order to explain how
query expansion is performed, we must first recall several mathematical results.

60

5.1 A comparison with SEAL PIR 5 PERFORMANCE NUMBERS

Let K = Q[x]/Φ2d(x)Q[x] be the 2d-th cyclotomic extension of Q. Let

f(x) + Φ2d(x)Q[x] =

d−1∑
k=0

akx
k + Φ2d(x)Q[x]

be an element of K. Let G = 〈g〉 be a cyclic group of order d, and denote by
K[G] the group algebra of G over K. Recall that K[G] consists precisely of the
K-valued functions on G. Write

Gal (K/Q) = (γr)
d−1
r=0 ,

where, for each r,

γr : f(x) + Φ2d(x)Q[x] 7→ f
(
x2r+1

)
+ Φ2d(x)Q[x].

Consider the K-valued function F on G mapping gr ∈ G to the r-th Galois
conjugate of f, that is to say,

F (gr) = f
(
x2r+1

)
+ Φ2d(x)Q[x].

In terms of the standard basis for K[G],

F =

d−1∑
r=0

F (γr) δG (gr)

=

d−1∑
r=0

(
f
(
x2r+1

)
+ Φ2d(x)Q[x]

)
δG (gr) .

As ωd = x2 + Φ2d(x)Q[x] is in K, it follows that K is a splitting field for G.

Therefore, we may compute the Fourier transform of F. Thus, let Ĝ = (χk)
d−1
k=0

be the group of simple K-valued characters on G, where, for each k,

χk : g 7→ ωkd = x2k + Φ2d(x)Q[x].

The function F has the Fourier expansion

F =

d−1∑
k=0

F̂
(
χ−1
k

)
d−1χk,

where, for each k,

F̂
(
χ−1
k

)
=

d−1∑
r=0

F (gr)χ−1
k (gr)

=

d−1∑
r=0

f
(
x2r+1

) (
ω−kd

)r
+ Φ2d(x)Q[x]

=

d−1∑
r=0

f
(
x2r+1

) (
x−2k

)r
+ Φ2d(x)Q[x]. (13)

The following lemma shall be used to simplify these coefficients.

61

5.1 A comparison with SEAL PIR 5 PERFORMANCE NUMBERS

Lemma 12. (Simpson’s multi-section formula [6]) Let g(y) =
∑
i biy

i be any
formal series in y over a commutative ring R. Assume ωm ∈ R is a primitive
m-th root of unity. If 0 ≤ k < m, then

m−1
m−1∑
r=0

g (ωrmy)
(
ω−km

)r
=
∑
i≡mk

biy
i.

Proof. We compute

m−1
m−1∑
r=0

g (ωrmy)
(
ω−km

)r
= m−1

m−1∑
r=0

(∑
i

bi (ωrmy)
i

)(
ω−km

)r
= m−1

m−1∑
r=0

∑
i

ωri−rkm biy
i

=
∑
i

m−1

(
m−1∑
r=0

(
ωi−km

)r)
biy

i

=
∑
i≡mk

biy
i,

where the last equality follows from the fact that
∑
r

(
ωi−km

)r
is either zero or

m, with the latter case holding, if, and only if, i−k is congruent to zero modulo
m.

Specializing this result to our situation, and fixing 0 ≤ k < d, we find, working
modulo Φ2d(x),

akx
k =

∑
i≡dk

aix
i

= d−1
d−1∑
r=0

f (ωrdx)
(
ω−kd

)r
= d−1

d−1∑
r=0

f
(
x2rx

) (
x−2k

)r
= d−1

d−1∑
r=0

f
(
x2r+1

) (
x−2k

)r
,

which recovers the frequency-k Fourier coefficient of F computed above in (13),
up to scalar multiplication by d−1. We deduce that the Fourier expansion of F

62

5.1 A comparison with SEAL PIR 5 PERFORMANCE NUMBERS

may be written as

F =

d−1∑
k=0

(
d−1

d−1∑
r=0

f
(
x2r+1

) (
x−2k

)r
+ Φ2d(x)Q[x]

)
χk

=

d−1∑
k=0

(
akx

k + Φ2d(x)Q[x]
)
χk.

Effectively, this procedure extracts the terms of f(x), which, essentially, is the
same thing as extracting the coefficients of f(x). It follows that this procedure
is akin to the “divided power” derivations introduced by Teichmüller [7]. We
record this result in the following lemma:

Lemma 13. Let K = Q[x]/Φ2d(x)Q[x] be the 2d-th cyclotomic extension of Q.
Let

f(x) + Φ2d(x)Q[x] =

d−1∑
k=0

akx
k + Φ2d(x)Q[x]

be an element of K. Let G = 〈g〉 be a cyclic group of order d, and let K[G] be
the group algebra of G over K. Let F ∈ K[G] be the K-valued function on G
mapping gr ∈ G to the r-th Galois conjugate of f, that is to say,

F (gr) = f
(
x2r+1

)
+ Φ2d(x)Q[x],

for all 0 ≤ r < d. The Fourier expansion of F is given by

F =

d−1∑
k=0

(
akx

k + Φ2d(x)Q[x]
)
χk.

Now, in case f(x) corresponds to the distinguished “targeted selector” monomial
xj , we deduce from Simpson's formula

F̂
(
χ−1
k

)
≡Φ2d(x)

{
0 if k 6≡d j
xj if k ≡d j.

.

The SEAL PIR query expansion algorithm computes this Fourier transform
homomorphically. Moreover, the k-th Fourier coefficient is scaled (via plaintext-
ciphertext multiplication) by x−k, yielding, for general f(x),

F̂
(
χ−1
k

)
x−k ≡Φ2d(x) ak,

which, in case f(x) = xj , gives

F̂
(
χ−1
k

)
x−k ≡Φ2d(x)

{
0 if k 6≡d j
1 if k ≡d j.

.

The k-th ciphertext thus obtained encrypts either zero or one, with the latter
case holding, if, and only if, k and j are congruent modulo d. We note that

63

5.1 A comparison with SEAL PIR 5 PERFORMANCE NUMBERS

this final normalization is not essential, insofar as the Querier may alternatively
handle the wrap around during extraction. Nevertheless, scaling by x−k is
inexpensive, inasmuch as it is effected by rotations with possible sign changes.

Upon expanding the query, the Responder proceeds to use plaintext-ciphertext
multiplication to embed data into each element of the expanded query and then
the Responder sums these products. By construction, the resulting sum en-
crypts the data corresponding to the targeted selector. This sum constitutes
the response, which is then sent to the Querier for decryption and data extrac-
tion. Using Microsoft’s reference implementation3, we obtained the following
performance numbers.

entries entry degree log2(t) DB dim. query response query gen. response gen.
(B) (bits) (MiB) (MiB) (s) (days)

220 210 212 12 2 0.125 640 0.002 0.66

220 210 213 12 2 0.0625 1280 0.003 0.55

220 28 211 12 2 0.0625 1280 0.001 0.54

220 28 212 12 2 0.125 2560 0.004 1.65

220 28 213 12 2 0.25 5120 0.004 1.54

Table 10: SEAL PIR results

By comparison, WIDESEAS has query and response sizes of 64 MiB and 4 MiB,
respectively. Thus, the query size in SEAL PIR is 1.6 to 6.6 times smaller than
that in WIDESEAS, while the response size in WIDESEAS is 160 to 1280 times
smaller than that in SEAL PIR. The response generation in WIDESEAS is 1.06
to 3.24 times faster than that in SEAL PIR. In order to accomodate multi-
ple selectors, Microsoft’s team uses probabilistic batch codes (PBC). However,
Microsoft’s implementation of SEAL PIR does not include this capability. Al-
ternatively, we can generalize the single selector approach to multiple selectors
in a straightforward fashion. Thus, we simply have the query be an encryption
of the sum of all the powers of x that correspond to selectors, that is to say,
we essentially encrypt the characteristic function of the set of targeted selec-
tors. The Fourier transform then splits this into encryptions of the individual
powers, which is exactly what we want. For example, if the targeted selectors
correspond to indices 3, 11, 30 and 55, then we simply encrypt the plaintext
polynomial x3 + x11 + x30 + x55. When we apply the Fourier transform to this
ciphertext, we obtain a list of encrypted Fourier coefficients, all of which en-
crypt zero, except for the frequency-3, 11, 30 and 55 coefficients, which encrypt
x3, x11, x30 and x55, respectively. We can, therefore, plaintext multiply all coef-
ficients by their corresponding data chunks, and then perform the column sum,
as usual.

3https://github.com/microsoft/SealPIR

64

https://github.com/microsoft/SealPIR

A GROUP ALGEBRAS AND FOURIER ANALYSIS

6 Conclusion

This report has introduced the WIDESEAS protocol for lattice-based Private
Information Retrieval (PIR), and we have given performance numbers for its
recent implementation in the EncryptedQuery open-source PIR software. This
protocol uses the fully homomorphic Brakerski–Fan–Vercauteren (BFV) encryp-
tion scheme, as opposed to the Paillier scheme, which is used in all earlier ver-
sions of EncryptedQuery. We have shown that the homomorphic capabilities of
BFV result in smaller query sizes (due to a query-shrinking technique based on
batching and ciphertext multiplication), higher response generation rates (due
to using relinearization to keep ciphertexts small; due to caching certain prod-
ucts of query elements in the NTT domain; due to using the distributive law to
achieve a quadratic reduction in the total number of ciphertext multiplications;
due to using lazy reduction to speed up modular multiplies; and, due to ex-
ploiting properties of inverse NTTs over periodic data, and forward NTTs over
sparse data, for the purpose of accelerating plain multiplications), and com-
parable response sizes (due to using modulus switching to discard redundant
ciphertext information prior to transmitting the response). For instance, run-
ning a single thread (with Turbo Boost disabled) on a MacBook Pro equipped
with a 2.8 GHz Intel core i7, and using a 20-bit hash and a 215-byte data chunk
size (which allows us to search for a single targeted selector), our implementa-
tion can (i) generate a query of size 64 MiB in around 0.41 seconds, (ii) process
a query against a 1 TiB database (comprised of 220-many 1 MiB records) at a
rate of 23.67 MiB/s (which is at least two orders of magnitude faster than the
Paillier-based version of EncryptedQuery), and (iii) generate a response of size
4 MiB in around 0.51 days. We expect a speed up on server class machines. Our
implementation uses the Microsoft SEAL library along with a small amount of
custom code.

A Group algebras and Fourier analysis

In this section, we recall the notion of Fourier analysis over finite cyclic groups.

Let G be a finite cyclic group of order |G|. Let F be a field of characteris-
tic prime to |G|, and assume that F contains a primitive |G|-th root of unity
ω|G|. The group algebra, F[G], of G over F is defined as the set of all F-valued
functions on G under point-wise addition (i.e., f1 + f2 : g 7→ f1(g) + f2(g))
and convolutional multiplication (i.e., f1 ∗ f2 : g 7→

∑
ab=g f1(a)f2(b)). The

standard basis for the free F-module F[G] is the set of characteristic functions
(δG(g))g∈G on the singleton subsets of G. The coefficients of f ∈ F[G] with
respect to the standard basis are given by the values of f on G, via

f =
∑
g∈G

f(g)δG(g).

Fix any generator g0 ∈ G, and let λg0 : G→ Z/|G|Z be the (discrete) logarithm

65

B FOURIER TRANSFORM

to the base g0. Also, let η : Z/|G|Z→ 〈ω|G|〉 denote the isomorphism of groups
given by the reduction of the epimorphism η : Z → 〈ω|G|〉 determined by the

assignment η : 1 7→ ω|G|. Finally, let ε ∈ EndZ
(
〈ω|G|〉

)
be the map determined

by the prescription ε : ω|G| 7→ ω|G|. The simple F-valued characters on G are
given by the family of group homomorphisms (χk : G→ F)k∈Z/|G|Z , where

χk := εk ◦ η ◦ λg0 ,

for each k ∈ Z/|G|Z. Here, εk denotes the order k point-wise power of ε. The

set of these characters is, itself, a group, Ĝ, under point-wise multiplication
of functions. As each character is, in particular, an F-valued on G, it follows
Ĝ ⊂ F[G]. In point of fact, this subset is actually a basis (called the Fourier
basis) for F[G] over F. The scaled Fourier basis

(
χ|G|−1

)
χ∈Ĝ consists of orthogo-

nal primitive idempotents, hence, both addition and multiplication of functions
are performed in a point-wise (i.e., coefficient-wise) manner when functions are
written in this basis. The change of coordinates map from the standard basis to
the scaled Fourier basis is termed a (discrete) Fourier Transform (DFT), and the
coefficients of a given function f ∈ F[G] with respect to the scaled Fourier basis
are termed its Fourier coefficients. By the orthogonality and idempotency of
the characters,

f =
∑
χ∈Ĝ

f ∗ χ|G|−1

=
∑
χ∈Ĝ

∑
g∈G

(∑
x∈G

f(x)χ(x−1g)|G|−1

)
δ(g)

=
∑
χ∈Ĝ

∑
g∈G

(∑
x∈G

f(x)χ−1(x)

)
χ(g)δ(g)

 |G|−1

=
∑
χ∈Ĝ

(∑
x∈G

f(x)χ−1(x)

)∑
g∈G

χ(g)δ(g)

 |G|−1

=
∑
χ∈Ĝ

f̂
(
χ−1

)
χ|G|−1,

where
f̂
(
χ−1

)
:=
∑
x∈G

f(x)χ−1(x),

for all χ ∈ Ĝ.

B Fourier transform

In this section, we take three progressively lower-level views of the notion of the
Fourier transform on the finite cyclic group G of order d. Let F be a splitting field

66

B FOURIER TRANSFORM

for G, and write Ĝ for the group of simple F-valued characters on G. We identify
G with its double dual using the natural isomorphism between them. The reader
will observe that, for each f ∈ F[G], and, for each χ ∈ Ĝ, we denote by f̂(χ−1)
the Fourier coefficient

∑
x∈G f(x)χ−1(x) corresponding to the character (i.e.,

“frequency”) χ. In the literature, this same coefficient is more commonly (and

more confusingly) denoted by f̂(χ).

High-level view. By the universal property of free modules, the natural in-
clusions of G and Ĝ into each other’s group algebras give rise to the following
commutative diagram:

F[G]

G Ĝ

F[Ĝ]

εG
∧

δĜ

∧
δG

εG

εĜ

δĜ

δG

∧
εĜ
∧

The map εG
∧

: F[G] → F[Ĝ] is called the Fourier transform on G. It makes the
following assignments:

δG(x) 7→ (εG(x) : χ 7→ χ(x))

d−1χ 7→ δĜ(χ−1)

f 7→
∑
χ∈Ĝ

f̂(χ)δĜ(χ) = f̂

ˆ̂f 7→ d(f̂ ◦ ∧−1

Ĝ
) = ˆ̂̂f.

The map εĜ
∧

: F[Ĝ] → F[G] is called the Fourier transform on Ĝ. It makes the
following assignments:

δĜ(χ) 7→ χ

d−1εG(x) 7→ δG(x−1)

f̂ 7→
∑
x∈G

ˆ̂f (εG(x)) δG(x) = ˆ̂f = d
(
f ◦ ∧−1

G

)
ˆ̂̂f 7→ ˆ̂̂̂

f.

The composite map εĜ
∧
◦ εG
∧
∈ EndF(F[G]) satisfies

εĜ
∧
◦ εG
∧

: f 7→ d
(
f ◦ ∧−1

G

)
= ˆ̂f.

67

B FOURIER TRANSFORM

Now, on the one hand, the square of this composite map takes f to
ˆ̂̂̂
f. On the

other hand, we find, by inspection, that the square of this composite map takes
f to d2f. We deduce

ˆ̂̂̂
f = d2f.

The map δG
∧

: F[Ĝ] → F[G] is called the inverse Fourier transform on G,

although it is defined on F[Ĝ] and not on F[G]. It makes the following assign-
ments:

εG(x) 7→ δG(x)

δĜ(χ) 7→ d−1(χ ◦ ∧−1
G)

f̂ 7→ f

The map δĜ

∧

: F[G] → F[Ĝ] is called the inverse Fourier transform on Ĝ, al-

though it is defined on F[G] and not on F[Ĝ]. It makes the following assignments:

δG(x) 7→ d−1εG(x−1)

d−1χ 7→ d−1δĜ(χ)

f 7→ d−1
(
f̂ ◦ ∧−1

Ĝ

)
=
∑
χ

f̂(χ−1)d−1δĜ(χ)

ˆ̂f 7→ f̂ .

The composite map δG
∧

◦ δĜ
∧

∈ EndF(F[G]) satisfies

δG
∧

◦ δĜ
∧

: f 7→ d−1(f ◦ ∧−1
G) = d−2 ˆ̂f.

Now, on the one hand, the square of this composite map takes f to d−4 ˆ̂̂̂
f. On

the other hand, we find, by inspection, that the square of this composite map
takes f to d−2f. We recover the result

d−4 ˆ̂̂̂
f = d−2f,

that is,
ˆ̂̂̂
f = d2f.

Finally, it follows that the composite map

δG
∧

◦ δĜ
∧

◦ εĜ
∧
◦ εG
∧
∈ EndF(F[G])

is the identity map, since it takes f onto d−2 ˆ̂̂̂
f = f. In some approaches to

Fourier analysis, the transform is viewed as an endomorphism on F[G] by fixing

an isomorphism between G and Ĝ. Under this approach, the preceding result
effectively shows that the transform always has order 4, hence, that its eigen-
values always are 4-th roots of unity, independent of the order d of the cyclic
group G.

68

B FOURIER TRANSFORM

Medium-level view. The group algebra F[G] is a free F-module on the set
G. By the universal property of free modules, each f ∈ F[G] lifts uniquely to an

F-linear form f̂ on F[G], and, conversely, each linear form λ ∈ (F[G])
∗

is the lift
of a unique F-valued function on G, namely, the function uniquely determined
by the restriction to δG(G) of λ, so that

λ = λ ◦ νδG(G) ◦ δG
∧

,

where
νδG(G) : δG(G)→ F[G]

is the natural inclusion map. As the mapping f 7→ f̂ of F[G] onto its dual is
F-linear, it follows that this mapping is a non-singular bilinear form on F[G].
Furthermore, as

f̂1(f2) = f̂2(f1),

for all f1,f2 ∈ F[G], this form is symmetric, so that, in particular, any matrix
representing this mapping with respect to dual bases is a symmetric matrix.

The basis
(
δ̂(x)

)
x∈G

in (F[G])
∗

is dual to the standard basis (δ(x))x∈G in F[G],

since

δ(x1)
∧

(δ(x2)) = (δ(x1)) (x2) =

{
1 x2 = x1

0 x2 6= x1

.

Similarly, the basis (χ̂)χ∈Ĝ in (F[G])
∗

is dual to the basis of primitive orthogonal

idempotents
(
d−1χ

)
χ∈Ĝ in F[G], since

χ−1
1

∧

(d−1χ2) = d−1
∑
x∈G

χ2(x)χ−1
1 (x) = d−1

∑
x∈G

(
χ2 · χ−1

1

)
(x) =

{
1 χ2 = χ1

0 χ2 6= χ1

.

It follows that for each f ∈ F[G],∑
x∈G

δ(x)
∧

(f)δ(x) = f =
∑
χ∈Ĝ

χ−1
∧

(f)d−1χ

and ∑
x∈G

f̂ (δ(x)) δ(x)
∧

= f̂ =
∑
χ∈Ĝ

f̂
(
d−1χ−1

)
χ
∧
.

Using symmetry and bilinearity, we may write these identities as∑
x∈G

f(x)δ(x) = f =
∑
χ∈Ĝ

f̂(χ−1)d−1χ

and ∑
x∈G

f(x)δ(x)
∧

= f̂ =
∑
χ∈Ĝ

f̂
(
χ−1

)
d−1χ

∧
.

69

B FOURIER TRANSFORM

Now, the restriction to G
∧

of each f̂ ∈ (F[G])
∗

uniquely defines an element of the

group algebra F[G
∧

], and, conversely, each function ϕ ∈ F[G
∧

] is the restriction to

G
∧

of a unique F-linear form λ on F[G], namely,

λ =
∑
χ∈Ĝ

ϕ(χ−1)d−1χ
∧
,

since the restriction to Ĝ of d−1χ
∧

is δĜ(χ−1). It follows that the map taking

f̂ ∈ (F[G])
∗

onto its restriction to G
∧

in F[Ĝ] is an isomorphism of F-modules.
Therefore, the mapping obtained by pre-composing this map with the above
bilinear form on F[G] is an F-module isomorphism of F[G] onto F[G

∧
]. In point

of fact,

Lemma 14. The map taking each f ∈ F[G] onto the restriction to Ĝ of its

lift f̂ to (F[G])
∗

is an isomorphism of F-algebras, where the multiplication law
on F[G] is given by functional convolution, and where the multiplication law on

F[G
∧

] is given by point-wise products.

Proof. The character group Ĝ of G consists of all homomorphisms taking G into
the group of units F× of the F-algebra F. By the universal property of group
algebras, the lift χ

∧
of each χ ∈ Ĝ is an algebra homomorphism of F[G] into

F, that is to say, each χ
∧

is a multiplicative linear form on F[G], and these are
precisely the non-zero multiplicative linear forms on F[G]. It follows that for
each f1,f2 ∈ F[G],

f1 ∗ f2

∧

=
∑
χ∈Ĝ

f1 ∗ f2

∧

(χ−1)d−1χ
∧

=
∑
χ∈Ĝ

χ−1
∧

(f1 ∗ f2)d−1χ
∧

=
∑
χ∈Ĝ

χ−1
∧

(f1)χ−1
∧

(f2)d−1χ
∧

=
∑
χ∈Ĝ

f̂1(χ−1)f̂2(χ−1)d−1χ
∧
.

Restricting to Ĝ, and recalling that d−1χ
∧

restricts to δ(χ−1) ∈ F[Ĝ], it follows

f1 ∗ f2 7→
∑
χ∈Ĝ

f̂1(χ−1)f̂2(χ−1)δ(χ−1) =
∑
χ∈Ĝ

f̂1(χ)f̂2(χ)δ(χ),

which is the point-wise product of the images of f1 and f2.

The map figuring in the above lemma is called the Fourier transform on G.

70

B FOURIER TRANSFORM

Low-level view. Let
νĜ : Ĝ→ F[G]

be the natural set-theoretic inclusion map. Applying the left exact contravariant
functor

F = HomSets(−, F)

to the exact sequence

0 Ĝ F[G]
νĜ

over the category Sets of sets yields the exact sequence

HomSets(F[G], F) F[Ĝ] 0,
F(νĜ)

over the category of F-algebras. Here, the addition and multiplication operations
on HomSets(F[G], F) are point-wise defined, and the F-algebra map F(νĜ) takes

each F-valued function on F[G] to its restriction to Ĝ. The kernel of F(νĜ) is the

annihilator of Ĝ in HomSets(F[G], F). Each F ∈ HomSets(F[G], F) is congruent
modulo Ker F

(
νĜ
)

to at least one linear form on F[G]. In fact, F is congruent
to the linear form λ(F) ∈ (F[G])

∗
given by

λ(F) =
∑
χ∈Ĝ

F (χ)d−1χ−1
∧

,

since, for each χ0 ∈ Ĝ,

(λ(F)) (χ0) =
∑
χ∈Ĝ

F (χ)d−1χ−1
∧

(χ0) = F (χ0)d−1χ−1
0

∧

(χ0) = F (χ0),

which shows that F and λ(F) have identical restrictions to Ĝ. Conversely, dis-
tinct linear forms on F[G] cannot be congruent modulo Ker νT

Ĝ
, since each such

form is completely determined by its values on the linear basis Ĝ of F[G]. It
follows that F(νĜ) induces a linear isomorphism

νT : (F[G])
∗ → F[Ĝ],

since there exists a unique F-linear form on F[G] having a prescribed restriction

to Ĝ. Now, we may naturally identify G with its double dual
̂̂
G, via the group

isomorphism
x 7→ ε(x) : χ 7→ χ(x).

This map, together with the trivial map on F, induces an isomorphism of alge-
bras

F[G] 7→ F[
̂̂
G].

71

C NTT’S AS TWISTED FOURIER TRANSFORMS

But, as Ĝ forms a basis for F[G], it follows that the set of linear extensions of

the elements of F[
̂̂
G] is precisely the dual space (F[G])

∗
of F[G]. Thus, we have

a natural isomorphism

F[
̂̂
G]→ (F[G])

∗
.

Composing the three preceding isomorphisms, we obtain a natural map

Φ : F[G]→ F[
̂̂
G]→ (F[G])

∗ → F[Ĝ].

The map Φ is such that

Φ : δ(x) 7→ Φ (δ(x)) : χ 7→ χ(x).

Thus,

Φ(f) : χ 7→
∑
x∈G

f(x)χ(x) = f̂(χ),

and, therefore, with respect to the standard basis in F[Ĝ],

Φ(f) =
∑
χ∈Ĝ

((F(f)) (χ)) δ(χ)

=
∑
χ∈Ĝ

f̂(χ)δ(χ)

= f̂ .

We have shown that there is a natural isomorphism of algebras

Φ : F[G]→ F[Ĝ]

mapping f ∈ F[G] onto f̂ ∈ F[Ĝ], where

f̂(χ) :=
∑
x∈G

f(x)χ(x).

The map Φ is called the Fourier transform on G over F. The coefficients of
f ∈ F[G] with respect to the Fourier basis are given (up to scaling) by the
Fourier transform, via

f =

d∑
k=1

f̂(χ)d−1χ−1.

C NTT’s as twisted Fourier transforms

Let G be a finite cyclic group of order d. Let F be a field of characteristic prime
to d. Assume F contains the d-th roots of unity. The d-point NTT over F used in

72

REFERENCES REFERENCES

BFV is a twisted version of the Fourier transform on G over F. In fact, consider
the mapping

ε : F[x]→ F[G]

determined by the identity map on F along with the assignment

x 7→ ωδ(g).

This mapping is surjective with kernel Φ2d(x)F[x], so there is an induced algebra
isomorphism

ε : O → F[G]

taking
x+ Φ2d(x)F[x] 7→ ωδ(g).

Here, O denotes the reduction F ⊗Z O. Under this isomorphism, the standard
basis in F[G] corresponds to the monomial basis in O, while the Fourier basis
in F[G] corresponds to the Number Theoretic Transform (NTT) basis(
d−1ε−1(χk)

)d
k=1

in O. It follows that the NTT basis consists of orthogonal
primitive idempotents, and

O =

d⊕
k=1

Fd−1ε−1(χk)

as an internal direct sum. The transformation on O effecting the change from
the monomial basis to the NTT basis is termed a Number Theoretic Transform,
and the coefficients of a given element a ∈ O with respect to the NTT basis are
termed the element’s NTT coefficients. These coefficients correspond under
ε with the Fourier coefficients of ε(a) ∈ F[G]. In fact,

ε−1 : f =

d∑
k=1

f̂(χ−1
k)d−1χk 7→

d∑
k=1

f̂(χ−1
k)d−1ε−1(χk).

Consequently, NTTs may be computed efficiently using any of the various fast
Fourier transform algorithms.

References

[1] E. A. Williams et al., “WIDESKIES: SCALABLE PRIVATE INFORMA-
TION RETRIEVAL.” http://homes.sice.indiana.edu/henry/courses/

b609/s17/cache/pirk.incubator.apache.org/papers/wideskies_

paper.pdf. Online; accessed June 30, 2019.

[2] P. Paillier, “Public-key cryptosystems based on composite degree residuosity
classes,” in Advances in Cryptology - EUROCRYPT ’99, International Con-
ference on the Theory and Application of Cryptographic Techniques, Prague,
Czech Republic, May 2-6, 1999, Proceeding [2], pp. 223–238.

73

http://homes.sice.indiana.edu/henry/courses/b609/s17/cache/pirk.incubator.apache.org/papers/wideskies_paper.pdf
http://homes.sice.indiana.edu/henry/courses/b609/s17/cache/pirk.incubator.apache.org/papers/wideskies_paper.pdf
http://homes.sice.indiana.edu/henry/courses/b609/s17/cache/pirk.incubator.apache.org/papers/wideskies_paper.pdf

REFERENCES REFERENCES

[3] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic encryp-
tion,” IACR Cryptology ePrint Archive, vol. 2012, p. 144, 2012.

[4] Kim Laine, “Simple Encrypted Arithmetic Library 2.3.1.” https:

//www.microsoft.com/en-us/research/uploads/prod/2017/11/

sealmanual-2-3-1.pdf. Online; accessed May 14, 2019.

[5] S. Angel, H. Chen, K. Laine, and S. Setty, “Pir with compressed queries and
amortized query processing,” IEEE SP, vol. May, pp. 962–979, 2018.

[6] T. Simpson, “Ciii. the invention of a general method for determining the
sum of every 2d, 3d, 4th, or 5th, et cetera term of a series, taken in order;
the sum of the whole series being known.,” Philosophical Transactions of the
Royal Society of London, vol. 51, pp. 757–759, 1757.

[7] O. Teichmüller, “Differentialrechnung bei charakteristik p,” J. Reine Angew.
Math., vol. 175, pp. 89–99, 1936.

74

https://www.microsoft.com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf

	Introduction
	Detailed description of BFV
	About SEAL
	Basic mathematical setup
	Algebra
	Probability

	Key generation
	On measurements

	Encryption
	Decryption
	Decryption of fresh ciphertexts

	Noise under operations
	Ciphertext addition
	Plaintext multiplication
	Ciphertext multiplication
	Relinearization

	Modulus switching
	Batching

	WIDESEAS protocol
	Naive approach
	Shrinking the query
	Concrete system parameters
	Noise growth
	Query size
	Response size

	Homomorphic optimizations
	Caching subproducts
	Summing products
	NTT caching
	Lazy reduction
	Periodic NTT's

	Performance numbers
	A comparison with SEAL PIR

	Conclusion
	Group algebras and Fourier analysis
	Fourier transform
	NTT's as twisted Fourier transforms

