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Abstract. One way of attacking ECDSA with wNAF implementation
for the scalar multiplication is to perform a side-channel analysis to col-
lect information, then use a lattice based method to recover the secret
key. In this paper, we reinvestigate the construction of the lattice used in
one of these methods, the Extended Hidden Number Problem (EHNP).
We find the secret key with only 3 signatures, thus reaching the the-
oretical bound given by Fan, Wang and Cheng, whereas best previous
methods required at least 4 signatures in practice. Our attack is more
efficient than previous attacks, in particular compared to times reported
by Fan et al. at CCS 2016 and for most cases, has better probability
of success. To obtain such results, we perform a detailed analysis of the
parameters used in the attack and introduce a preprocessing method
which reduces by a factor up to 7 the overall time to recover the secret
key for some parameters. We perform an error resilience analysis which
has never been done before in the setup of EHNP. Our construction is
still able to find the secret key with a small amount of erroneous traces,
up to 2% of false digits, and 4% with a specific type of error. We also
investigate Coppersmith’s methods as a potential alternative to EHNP
and explain why, to the best of our knowledge, EHNP goes beyond the
limitations of Coppersmith’s methods.

Keywords: Public key cryptography · ECDSA · side-channel attack ·
windowed Non-Adjacent Form · Lattice techniques.

1 Introduction

The Elliptic Curve Digital Signature Algorithm (ECDSA) [17], first proposed in
1992 by Scott Vanstone [34], is a standard public key signature protocol widely
deployed. ECDSA is used in the latest library TLS 1.3 [27], the encryption stan-
dard OpenPGP [7] and smart cards [26]. It is also implemented in the well-known
library OpenSSL [33], and can be found in cryptocurrencies such as Bitcoin [21],
Ethereum [6] and Ripple [31, 8]. It benefits from a high security based on the
hardness of the elliptic curve discrete logarithm problem and a fast signing al-
gorithm due to its small key size. Because of this, it is recognized as a standard
signature algorithm by several institutes such as ISO since 1998, ANSI since
1999, and IEEE and NIST since 2000.
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The ECDSA signing algorithm requires the computation of a scalar mul-
tiplication of a point P on an elliptic curve by an ephemeral key k. Since this
operation is time-consuming and often the most time-consuming part of the pro-
tocol, it is necessary to use an algorithm that is efficient. The Non Adjacent Form
(NAF) and its windowed variant (wNAF) were introduced as an alternative to
the binary representation of the nonce k to reduce the execution time of the scalar
multiplication. Indeed, the NAF representation does not allow two non-zero dig-
its to be consecutive, thus reducing the Hamming weight of the representation of
the scalar. This improves on the execution time as the latter is dependent on the
number of non-zero digits. The wNAF representation is present in implementa-
tions such as for Bitcoin, as well as in the libraries Cryptlib, BouncyCastle and
Apple’s Common-Crypto. Moreover, until very recently (May 2019), wNAF was
present in all three branches of OpenSSL.

However, implementing the scalar multiplication using wNAF representation
makes the protocol vulnerable. Indeed, with wNAF, a common way to attack
ECDSA is to first collect valuable information on the ephemeral key k leaked by
side-channel attacks before using this knowledge to recover the secret key.

Side-channel attacks were first introduced about two decades ago by Kocher
et al. [19], and have since been used to break many implementations, and in par-
ticular cryptographic primitives such as AES [2], RSA [1], and ECDSA [17]. They
allow to recover secret information otherwise hidden from the public throughout
observable leakage. For instance, in our case, this leakage corresponds to differ-
ences in the execution time of a part of the signing algorithm, observable by
monitoring the cache. This corresponds to a specific type of side-channel attacks
called cache timing attacks.

In the case of ECDSA, cache side-channel attacks such as flush+reload [36,
37] have been used to recover information about the sequence of operations used
to execute the scalar multiplication. These operations are either doubling or ad-
dition depending on the bits of k. This information is usually referred to as a
double-and-add chain or the trace of k. The main question considered at this
point is how many traces need to be collected to successfully recover the se-
cret key. Indeed, from an attacker’s perspective, the least traces necessary, the
more efficient the attack is. This quantity depends on how much information can
be extracted from a single trace and how combining information from multiple
traces is used to recover the key. In this paper, we work on the latter to minimize
the number of traces needed.

The nature of the information obtained from the side-channel attack allows
to determine what kind of method should be carried out to recover the secret key.
Attacks on ECDSA are inspired by attacks on a similar cryptosystem, DSA. In
2001, Howgrave-Graham and Smart [16] showed how knowing partial informa-
tion of the nonce k in DSA can lead to a full secret key recovery. Later, Nguyen
and Shparlinski [24] gave a polynomial time algorithm that recovers the secret
key in ECDSA as soon as consecutive bits of the ephemeral key are known. To
do so, they showed that using the information leaked by the side-channel attack,
one can recover the secret key by constructing an instance of the Hidden Number
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Problem (HNP) [5]. HNP allows to recover a secret integer when the attacker
is given many samples of consecutive bits of modular multiples of this integer.
Moreover, they reduced the instance of HNP to well-known lattice problems: the
Closest Vector Problem (CVP) and the Shortest Vector Problem (SVP). Thus,
the basic structure of the attack algorithm is to construct a lattice which con-
tains the knowledge of consecutive bits of the epheremal keys, and by solving
CVP or SVP, to recover the secret key. This type of attack has been done in [4,
25, 35]. These results consider perfect traces, but obtaining traces without any
misreadings is very rare. Instead of assuming that perfect traces are required
for the attack to succeed, Dall et al [10] included an error-resilience analysis to
their attack: they showed that key recovery with HNP is still possible even in
the presence of erroneous traces.

More recently, in 2016, Fan, Wang and Cheng [11] used another lattice-based
method to attack ECDSA: the Extended Hidden Number Problem (EHNP) [15].
EHNP mostly differs from HNP by the nature of the information given as in-
put. Indeed, the information required to construct an instance of EHNP is not
sequences of consecutive bits, but the positions of the non-zero coefficients in
any representation of integers. In particular, this results in a different lattice
construction. In [11], the authors are able to extract 105.8 bits of information
per signature on average, and thus require in theory only 3 signatures to recover
a 256-bit secret key. In practice, they were able to recover the secret key using
4 error-free traces.

In order to optimize an attack on ECDSA various aspects should be con-
sidered. By minimizing the number of signatures required in the lattice con-
struction, one minimizes the number of traces needed to be collected during the
side-channel attack. Moreover, reducing the time of the lattice part of the at-
tack, and improving the probability of success of key recovery allows to reduce
the overall time of the attack. Finally, to match a realistic scenario, one should
analyze the resilience to errors of the attack. In this paper, we improve on all
four of these aspects.

Contributions: We focus on the lattice part of the attack, i.e., the exploitation
of the information gathered by the side-channel attack. We first assume we obtain
a set of error-free traces from a side-channel analysis. We preselect some of
these traces to optimize the attack. The main idea of the lattice part is then
to use the ECDSA equation and the knowledge gained from the selected traces
to construct a set of modular equations which include the secret key as an
unknown. These modular equations are then incorporated into a lattice basis
similar to the one given in [11], and a short vector in this lattice will contain the
necessary information to reconstruct the secret key. We call “experiment” one
run of this algorithm which succeeds if we are able to reconstruct the secret key,
and otherwise fails.

It is important to note that we use error-free traces to analyze the attack.
However, in a real world scenario, obtaining such traces is very hard. Thus we
also show that key recovery is still possible with erroneous traces.
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A new preprocessing method. The idea of selecting good traces beforehand has
already been explored in [35]. The authors suggest three rules to select traces
that improve the attack on the lattice part. Given a certain (large) amount of
traces available, the lattice is usually built with a much smaller subset of these
traces. Trying to identify beforehand the traces that would result in a better
attack is a clever option. The aim of our new preprocessing - which completely
differs from [35] - is to regulate the size of the coefficients in the lattice, and
this results in a better lattice reduction time. For instance, with 3 signatures,
we were able to reduce the overall time of the attack by a factor of 7.

Analyzing the attack. Several parameters occur while building and reducing
the lattice. We analyze the performance of the attack with respect to these
parameters and present the best parameters that optimize either the overall
time or the probability of success.

Let us first focus on the attack time. Note that in this paper, when talking
about the overall time of the attack, we consider the average time of a single
experiment multiplied by the expected number of trials necessary to recover
the secret key. We compare our times with the numbers reported in [11, Table
3] with method C.3 Indeed, methods A and B in [11] use extra information
that comes from choices in the implementation which we choose to ignore as we
want our analysis to remain as general as possible. When using 4 signatures,
our attack is slightly slower4 than the attack in [11]. However, when considering
more than 4 signatures, our attack is faster than the times reported in [11].
We experiment with up to 8 signatures to further improve our overall time.
In this case, our attack runs at best in 2 minutes and 25 seconds. Note that
timings for 8 signatures are not reported in [11], and the case of 3 signatures
was never reached before our work. In Table 1, we compare our times with the
fastest times reported by [11]. We choose their fastest times but concerning our
results we choose to report experiments which are faster (not the fastest) with,
if possible, better probability than theirs.

The overall time of the attack is also dependent on the success probability
of key recovery. From Table 2, one can see that our success probability is higher
than [11] except for 7 signatures. We gain a factor up to 5 for 5 signatures for
example.

Finding the key with only three signatures. Overall, combining a new preprocess-
ing method, a modified lattice construction and a careful choice of parameters
allows us to mount an attack which works in practice with only 3 signatures.

3 In order to have a fair comparison with our methodology and timings, we believe
that the times reported in [11] would have to be multiplied by the expected number
of trials necessary for their attack to work. This would increase their overall time
a lot. For example, using 5 signatures, their best overall time would be around 15
hours instead of 18 minutes.

4 For 4 signatures, no times are reported without method A. Thus, we have no other
choice than to compare our times with theirs, using A. Yet their time for 4 signatures
without A should at least be the time they report with it.
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Table 1: Comparing attack times with [11].
Number of Our attack [11]
signatures Time Success (%) Time Success (%)

3 39 hours 0.2% – –
4 1 hour 17 minutes 0.5% 41 minutes 1.5%
5 8 minutes 20 seconds 6.5% 18 minutes 1%
6 ≈ 5 minutes 25% 18 minutes 22%
7 ≈ 3 minutes 17.5% 34 minutes 24%
8 ≈ 2 minutes 29% – –

Table 2: Comparing best attack success probability with [11].
Number of Our attack [11]
signatures Success (%) Time Success (%) Time

3 0.2% 39 hours – –
4 4% 25 hours 28 minutes 1.5% 41 minutes
5 20% 2 hours 42 minutes 4% 36 minutes
6 40% 1 hour 4 minutes 35% 1 hour 43 minutes
7 45% 2 hours 36 minutes 68% 3 hours 58 minutes
8 45% 5 hours 2 minutes – –

However, the probability of success in this case is very low. Without using our
preprocessing method, we were able to recover the secret key only once with
BKZ-35 over 5000 experiments. If we assume the probability is around 0.02%,
as each trial costs 200 seconds in average, this means we can expect to find the
secret key after 12 days using a single core. Note that this time can be greatly
reduced when parallelizing the process, i.e., each trial can be run on a separate
core. On the other hand, if we use our preprocessing method, with 3 signatures
we obtain a probability of success of 0.2% and an overall time of key recovery
of 39 hours, thus the factor 7 of improvement mentioned above. Despite the low
probability of success, this result remains interesting nonetheless. Indeed, when
using the flush+reload attack, the authors in [11] reported that in practice,
the key couldn’t be recovered using less than 4 signatures and we improve on
their result.

Resilience to errors. In addition to the attack analysis, we also investigate the
resilience to errors of our attack. Such an analysis has not yet been done in the
setup of EHNP. It is important to underline that collecting traces without any
errors using any side-channel attack is very hard. Previous works used perfect
traces to mount the lattice attack. Thus, it required collecting more traces. As
pointed out in [11], more or less twice as many signatures are needed if errors are
considered. In practice, this led [11] to gather in average 8 signatures to be able
to find the key with 4 perfect traces. We experimentally show that we are still
able to recover the secret key even in the presence of faulty traces. In particular,
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we find the key using only 4 faulty traces, but with a very low probability of
success. As the percentage of incorrect digits in the trace grows, the probability
of success decreases and thus more signatures are required to successfully recover
the secret key. For instance, if 2% of the digits are wrong among all the digits
of a given set of traces, it is still possible to recover the key with 6 signatures.
This result is valid if errors are uniformly distributed over the digits. However,
we have a better probability to recover the key if errors consist in 0-digit faulty
readings, i.e., 0 digits read as 1. In other words, the attack could work with a
higher percentage of errors, around 4%, if we could ensure from the side-channel
attack and preprocessing methods that none of the 1 digits have been flipped
to 0.

Looking at Coppersmith. Finally, as the EHNP setup consists of a system of
modular equations for which we look for integer roots, we investigate the use
of Coppersmith’s method for finding small roots of integer polynomials. This
would be an alternative to EHNP. Albeit our attempts to apply Coppersmith’s
method were not successful as a bound on the unknowns is not satisfied, we
briefly sketch our ideas hoping it could lead to further improvements.

Organization: In Section 2, we introduce some background on ECDSA and
the wNAF representation. Moreover, we give details on lattices and well known
reduction algorithms. In Section 3, we explain how the Extended Hidden Number
Problem can be transformed into a lattice problem. We explicit the lattice basis
and give an analysis on the length of the short vectors found in the reduced
basis. In Section 4, we introduce our preprocessing method which allows us
to reduce the overall time of our attack. In Section 5, we give experimental
results which shows the performance of our attack as a function of the various
parameters that are being considered. In Section 6, we analyze the resilience of
our attack to erroneous traces. Finally in Section 7, we describe our attempt to
use Coppersmith’s method instead of EHNP.

2 Preliminaries

2.1 Elliptic Curve Digital Signature Algorithm

The Elliptic Curve Digital Signature Algorithm is a variant of the Digital Signa-
ture Algorithm, DSA, [22] which uses elliptic curves instead of finite fields. The
parameters used in the ECDSA algorithm are an elliptic curve E over a prime
field, a generator G of prime order q and a hash function H to Zq. The private
key is an integer α such that 1 < α < q− 1 and the public key is pk = [α]G, the
scalar multiplication of G by α.

To sign a message m using the private key α, one executes the following
steps. Randomly select an ephemeral key k ←R Zq and compute [k]G. Let r be
the x-coordinate of [k]G mapped to Zq. If r = 0, select a new nonce k. Then,
compute s = k−1(H(m) + αr) mod q and again if s = 0, select a new nonce k.
Finally, the signature is given by the pair (r, s).



A Tale of Three Signatures 7

In order to verify a signature, first check if r, s ∈ Zq, otherwise the signature
is not valid. Then, compute v1 = H(m) · s−1 mod q, v2 = r · s−1 mod q and
(x, y) = [v1]G+ [v2]pk. Finally, the signature is valid if x ≡ r (mod q).

Remark 1. In this paper, we consider a 128-bit level of security and thus α, q
and k are all 256-bit integers.

2.2 wNAF representation

The ECDSA algorithm presented above requires the computation of [k]G which
corresponds to a scalar multiplication. In [14], various methods to compute fast
exponentiation are presented. One of those introduces the NAF representation
of an integer. For any k ∈ Z, a representation

k =

∞∑
j=0

kj2
j

is called a NAF if kj ∈ {0,±1} and kjkj+1 = 0 for all j ≥ 0. Moreover, ev-
ery k has a unique NAF representation. The NAF representation minimizes the
number of non-zero digits kj . Indeed, the NAF representation does not allow
two non-zero digits to be consecutive, thus reducing the Hamming weight of the
representation of the scalar. It is presented in Algorithm 1.

Input : k ∈ Z+

Output: NAF representation of k
i = 0;
while k > 0 do

if k (mod 2) = 1 then
ki = 2− (k (mod 4));
k = k − ki;

else
ki = 0;

end
k = k/2;
i = i+ 1;

end
return ki−1, ki−2, . . . , k1, k0

Algorithm 1: NAF algorithm

The NAF representation can be combined with a sliding window method to
further improve the execution time. The basic idea of a window method is to
consider chunks of w bits in the representation of the scalar k, compute powers
in the window bit by bit, square w times and then multiply by the power in
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the next window. For instance, in OpenSSL (up to the latest versions using
wNAF, 1.1.1b for example), the window size usually chosen was w = 3. Apple’s
CommonCrypto library uses w = 1. The scalar k is converted into wNAF form
using Algorithm 2. Note that in Algorithm 2, the sequence of digits mi belongs

Input: k ∈ Z+, w ∈ N
Output: (m0,m1, . . . ,mn), i.e., k in its wNAF representation
i = 0;
while k > 0 do

if k (mod 2) = 1 then
mi = k (mod 2w+1);
if mi ≥ 2w then

mi = mi − 2w+1;
end
k = k −mi;

else
mi = 0;

end
k = k/2;
i = i+ 1;

end
Algorithm 2: wNAF representation

to the set {0,±1,±3, . . . ,±(2w − 1)}. We can rewrite k as a sum of its non-zero
digits, which we rename ki. More precisely, we get

k =
∑̀
j=1

kj2
λj ,

where ` is the number of non-zero digits, and λj represents the position of the
digit kj in the wNAF representation.

Example 1. In binary, we can write

23 = 24 + 22 + 21 + 20 = (1, 0, 1, 1, 1)

whereas in NAF-representation, we have

23 = 25 − 23 − 20 = (1, 0,−1, 0, 0,−1).

Using a window size w = 3, the wNAF representation gives

23 = 24 + 7× 20 = (1, 0, 0, 0, 7).

There exists a modified wNAF representation, used in OpenSSL for example.
In the non-modified wNAF representation, at most one of any w+ 1 consecutive
digits is non-zero and in the modified version, this also stands with the exception
that the most significant digit may be only w−1 zeros away from that next non-
zero digit.
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2.3 Lattice reduction algorithms

A lattice is a discrete additive subgroup of Rn. It is usually specified by giving
a basis matrix B ∈ Zn×n. The lattice L(B) generated by B consists of all in-
teger combinations of the row vectors in B. The determinant of a lattice is the
absolute value of the determinant of a basis matrix: detL(B) = |detB|. The
discreteness property ensures that there is a λ1 > 0 such that the length of one
of the shortest non-zero vectors v1 in the lattice satisfies ||v1|| = λ1. The LLL al-
gorithm [20] takes as input a lattice basis, and returns in polynomial time in the
lattice dimension n a reduced lattice basis whose vectors bi satisfy the worst-case
approximation bound ||bi||2 ≤ 2(n−1)/2λi, where λi is the ith successive mini-
mum of the lattice. In practice, for random lattices, LLL obtains approximation
factors such that b1 ≤ 1.02nλ1 as noted by Nguyen and Stehlé [23]. Moreover,
for random lattices, we note that the Gaussian heuristic implies that

λ1 ≈
√
n/(2πe) det(L)1/n. (1)

The BKZ algorithm [28, 30] is exponential in a given block-size β and polyno-
mial in the lattice dimension n. It outputs a reduced lattice basis whose vectors bi
satisfy the approximation ||bi||2 ≤ iγ

(n−i)/(k−1)
β λi [29], where γβ is the Hermite

constant. In practice, Chen and Nguyen [9] observed that BKZ returns vectors
such that b1 ≤ (1 + εβ)nλ1 where εβ depends on the block-size β. For random
lattices, they get 1 + εβ = 1.01 for a block-size β = 85.

3 Attacking ECDSA using lattices

Using a side-channel attack, one can recover information about the wNAF rep-
resentation of the nonce k. In particular, it allows us to know the positions of
the non-zero digits in the representation of k. However, the value of these digits
are unknown. This information can be used in the setup of the Extended Hidden
Number Problem (EHNP) to recover the secret key. For many messages m, we
use ECDSA to produce signatures (r, s) and each run of the signing algorithm
produces a different nonce k. We assume we have the corresponding trace of
the nonce, that is, the equivalent of the double-and-add chain of [kG]. The goal
of the attack is to recover the secret α while optimizing either the number of
signatures required or the overall time of the attack.

3.1 The Extended Hidden Number Problem

The Extended Hidden Number Problem is defined as follows. Given u congru-
ences of the form

aiα+

`i∑
j=1

bi,jki,j ≡ ci (mod q), (2)

where the secret α and 0 6 ki,j 6 2ηij are unknown, and the values q, ηij , ai,
bi,j , ci, `i are all known for 1 6 i 6 u (see [15], Definition 3), one has to recover
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α in polynomial time. Similarly to the HNP, the EHNP can be transformed into
a lattice problem and one can recover the secret α by solving a short vector
problem in a given lattice.

3.2 Using EHNP to attack ECDSA

From the ECDSA algorithm, we know that given a message m, the algorithm
outputs a signature (r, s) such that

αr = sk −H(m) (mod q). (3)

The value H(m) is just the hash of the message m. We consider a set of u
signature pairs (ri, si) with corresponding messagemi that satisfies Equation (3).
For each signature pair, we have a nonce k. Using the wNAF representation of k,
we write k =

∑`
j=1 kj2

λj , with kj ∈ {±1,±3, . . . ,±(2w−1)} and the choice of w
depends on the implementation. Note that the digits kj are unknown, however,
the positions λj are supposed to be known via side-channel leakage. It is then
possible to represent the ephemeral key k as the sum of a known part, and an
unknown part. As the value of kj is odd, one can write kj = 2k′j + 1, where

−2w−1 6 k′j 6 2w−1−1. Using the same notations as in [11], set dj = k′j +2w−1,
where 0 ≤ dj ≤ 2w − 1. In the rest of the paper, we will denote by µj the
window-size of dj . Note that here, µj = w but this window-size will be modified
later. This allows to rewrite the value of k as

k =
∑̀
j=1

kj2
λj = k̄ +

∑̀
j=1

dj2
λj+1, (4)

with k̄ =
∑`
j=1 2λj −

∑`
j=1 2λj+w. The expression of k̄ represents the known

part of k.
By substituting the expansion of k in Equation (3), we obtain a system of

modular equations of the form

αri −
`i∑
j=1

2λi,j+1sidi,j − (sik̄i −H(mi)) ≡ 0 (mod q), (5)

for 1 6 i 6 u, where the unknowns are α and the di,j . The known values are the
`i which is the number of non-zero digits in k for the ith equation, λi,j , which
is the position of the jth non-zero digit in k for the ith equation and k̄i defined
above. We can then use Equation (5) as input to the Extended Hidden Number
Problem, following the method explained in [15]. The problem of finding the
secret key is then reduced to solving the short vector problem in a given lattice
which we give in the following section.

3.3 Constructing the lattice

Before giving the lattice basis construction, we redefine Equation (5) to reduce
the number of unknown variables in the system. This will allow us to construct
a lattice of smaller dimension. Again, we use the same notations as in [11].
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Eliminating one variable. One straightforward way to reduce the lattice dimen-
sion is to eliminate a variable from the system. In this case, one can eliminate
α from Equation (5). Let Ei denote the ith equation of the system. Then, by
computing r1Ei − riE1, we get the following new modular equations∑`1

j=1 (2λ1,j+1s1ri)︸ ︷︷ ︸
:=τj,i

d1,j +
∑`i
j=1 (−2λi,j+1sir1)︸ ︷︷ ︸

:=σi,j

di,j

− r1(sik̄i −H(mi)) + ri(s1k̄1 −H(m1))︸ ︷︷ ︸
:=γi

≡ 0 (mod q).

(6)
Again, using the same notations as in [11], we define τj,i = 2λ1,j+1s1ri,

σi,j = −2λi,j+1sir1 and γi = r1(sik̄i−H(mi)) + ri(s1k̄1−H(m1)) for 1 6 j 6 `i
and 2 6 i 6 u. Even if α is eliminated from the equations, if we are able to
recover some di,j values from a short vector in the lattice, we can recover α
using any equation in the modular system (5). We will now use Equation (6) to
construct the lattice basis.

From a modular system to a lattice basis. Recall that µj denotes the window-
size of the coefficient dj . For now, this value is equal to w, the window-size
considered in the wNAF algorithm. However, since this value will be modified
later, we use the notation µj . Let m = maxi,j µij for 1 6 j 6 `i and 2 6 i 6 u.
We now explicit the construction of the lattice basis B used in our attack. We
use a scaling factor ∆ ∈ N to be defined later. The lattice basis is given by

B =

Eq (6), i = 2 . . . Eq (6), i = u



∆2mq 0 0 0

0
. . .

...
0 · · · ∆2mq 0

∆2mτ1,2 . . . ∆2mτ1,u 2m−µ1,1

...
... 0

. . .

∆2mτ`1,2 . . . ∆2mτ`1,u 2m−µ1,`1

∆2mσ2,1 0 0 2m−µ2,1

...
...

. . .

∆2mσ2,`2
... 2m−µ2,`2

0
. . . 0

...
. . .

... ∆2mσu,1 2m−µu,1

...
...

. . .

0 0 ∆2mσu,`u 0 2m−µu,`u

∆2mγ2 . . . ∆2mγu 2m−1 . . . 2m−1 2m−1

Let n = (u − 1) + T + 1 = T + u, with T =
∑u
i=1 `i, be the dimension of

the lattice. The u − 1 first columns correspond to Equation (6) for 2 ≤ i ≤ u.
Each of the remaining columns, except the last one, corresponds to a dij . The
determinant of the lattice L = L(B) is given by

detL = qu−1 (∆2m)
u−1

2
∑
i,j(m−µi,j)2m−1.
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The lattice is built such that there exists z ∈ L which contains the un-
knowns di,j . To find it, we know there exists values t2, t3, . . . , tu such that if
v = (t2, . . . , tu, d1,1, . . . , du,`u ,−1), we get

z = vB, (7)

and

z = (0, . . . , 0, d1,12m−µ1,1 − 2m−1, . . . , du,`u2m−µu,`u − 2m−1,−2m−1).

If we are able to find z in the lattice, then we can reconstruct the secret key α.
In order to find z, we estimate its norm and make sure z appears in the reduced
basis. After reducing the basis, we look for vectors of the correct shape, i.e.,
with sufficiently enough zeros at the beginning and the correct last coefficient,
and attempt to recover α for each of these.

How the size of ∆ affects the norms of the short vectors. In order to find the
vector z in the lattice, we reduce B using BKZ. For z to appear in the reduced
basis, one should at least set ∆ such that

||z||2 6 (1.02)n(detL)1/n. (8)

The vector z we expect to find has norm ||z||2 6 2m−1
√
T + 1. From Inequal-

ity (8), one can deduce the value of ∆ required to find z in the reduced lattice,
which is given by the expression

∆ >
(T + 1)(T+u)/(2(u−1))2

1+
∑
µi,j−(u+T )

u−1

q(1.02)
(T+u)2

u−1

:= ∆th

In our experiments, the average value of `i for 1 6 i 6 u is ˜̀= 26, and thus
T = 26×u on average. Moreover, the average value of µij is 7 and so on average∑
µij = 7×26×u. Hence, if we compute ∆th for u = 3, . . . , 8, with these values,

we obtain ∆th � 1.
In practice, we verify that setting ∆ = 1 allows us to recover the secret key.

In our experiments, we vary the bitsize of ∆ to see whether a slightly larger value
affects the probability of success. This comment will be adressed in Section 5.

Too many small vectors. While running BKZ on B, we note that for specific sets
of parameters the reduced basis contains undesired short vectors, i.e., vectors
that are shorter than z. This can be explained by looking at two consecutive
rows in the lattice basis given above, say the jth row and the (j + 1)th row. For
example, one can look at rows which correspond to the σi,j values but the same
argument is valid for the rows concerning the τj,i. From the definitions of the σ
values we have

σi,j+1 = −2λi,j+1+1 · sir1
= −2λi,j+1+1 · ( σi,j

−2λi,j+1+1 )

= 2λi,j+1−λi,j · σi,j .
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Thus the linear combination given by the (j + 1)th row minus 2λi,j+1−λi,j times
the jth row gives a vector

(0 , · · · , 0 ,−2λi,j+1−λi,j+m−µi,j , 2m−µi,j+1 , 0 , · · · , 0). (9)

Yet, this vector is expected to have smaller norm than z. Experimental observa-
tions on the position of z in the basis are detailed in Section 5.

Remark 2. It would be of interest to understand how one can modify the lattice
construction to always find z as the shortest vector of the reduced basis. Indeed,
by reducing the number of vectors shorter than z we expect to increase the
probability of success of our attack. This would lower the chances of z being a
linear combination of short vectors and thus not appearing in the reduced basis.

Differences with the lattice construction given in [11]. Let B′ be the lattice basis
constructed in [11]. Our basis B is a rescaled version of B′ such that B = 2m∆B′.
This rescaling allows us to ensure that all the coefficients in our lattice basis
are integer values. Note that [11] have a value δ in their construction which
corresponds to 1/∆. In this work, we give a precise analysis of the value of
∆, both theoretically and experimentally in Section 5, which is missing in [11].
Moreover, [11] does not mention the systematic short vectors that should appear
in the reduced basis.

4 Improving the lattice attack

4.1 Reducing the lattice dimension: the merging technique

In [11], the authors present another way to further reduce the lattice dimension,
which they call the merging technique. It aims at reducing the lattice dimension
by reducing the number of non-zero digits of k. Indeed, the dimension depends
on the value T =

∑u
i=1 `i, and thus reducing T reduces the dimension. For the

understanding of the attack, it suffices to know that after merging, we obtain
new values `′ corresponding to the new number of non-zero digits and λ′j the
position of these digits for 1 6 j 6 `′. After merging, one can rewrite k =

k̄ +
∑`′

j=1 d
′
j2
λ′j+1, where the new d′j have a new window size which we denote

µj , i.e., 0 6 d′j 6 2µj − 1.
We present here our merging algorithm based on [11, Algorithm 3]. Our

algorithm modifies directly the sequence {λj}`j=1, whereas [11] works on the
double-and-add chains. This helped us avoid implementation issues such as an
index outrun present in [11, Algorithm 3], line 7. To facilitate the ease of reading
of (our) Algorithm 3, we work with dynamic tables. To do so, we first recall var-
ious known methods we use in the algorithm: push back(e) inserts an element e
at the end of the table, at(i) outputs the element at index i, and last() returns
the last element of the table. We consider tables of integers indexed in [0;S−1],
where S is the size of the table.
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Input : vλ, a table of size n with the positions of non-zero digits in the trace
sorted in increasing order and n > 1, a window size w.

Output: vλ′ , a table of size n′ 6 n containing the merged λ values and table vµ
of same size n′, with the values of the window size µi.

Initialisation
i← 1;
vλ′ ← empty array;
vµ ← empty array;
Processing
vλ′ .push back(vλ.at(0));
while i < n do

dist← vλ.at(i)− vλ.at(i− 1);
if dist > w + 1 then

vµ.push back(vλ.at(i− 1)− vλ′ .last() + w);
vλ′ .push back(vλ.at(i));

end
i← i+ 1;

end
vµ.push back(vλ.at(n)− vλ′ .last() + w);
return (vλ′ , vµ)

Algorithm 3: Merging algorithm

A useful example of the merging technique is given in [11]. We give in Table 3
the approximate dimension of the lattices we obtain using the elimination and
merging techniques. For the traces we consider, after merging the mean of the
`i is 26, the minimum being 17 and the maximum 37 with a standard deviation
of 3.

Table 3: Average dimensions of the lattices after merging.
Number of signatures Average dimension

3 80
4 110
5 135
6 160
7 190
8 215

Remark 3. One could further reduce the lattice dimension by preprocessing
traces with small `i. However, the standard deviation being small, the differ-
ence in the reduction times should not be too important.
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4.2 Preprocessing the traces

The two main information we can extract and use in our attack are first the
number of non-zero digits in the wNAF representation of the nonce k, denoted `
and the weight of each non-zero digit after merging, denoted µj for 1 6 j 6 `. Let
T be the set of traces we obtained from the side-channel leakage representing the
wNAF representation of the nonce k used while producing an ECDSA signature.
We consider the subset Sa = {t ∈ T |max16j6` µj 6 a}. We choose to preselect
traces in a subset Sa for small values of a. The idea behind this preprocessing
is to regulate the size of the coefficients in the lattice. Indeed, when selecting u
traces for the attack, by upper-bounding m = maxi,j µi,j for 2 6 i 6 u, we force
the coefficients to remain smaller than when taking traces at random.

In practice, we work with a set T of 2000 traces such that mint∈T maxj µj =
11 and maxt∈T maxj µj = 67. We consider the sets S11, S15 and S19 in our
experiments. In Table 4, we give the proportion of signatures corresponding to
the different preprocessing subsets.

Table 4: Proportion of preprocessing subsets.
Preprocessing Proportion (%)

S11 2
S15 18
S19 44

The effect of preprocessing on the overall time of the attack is explained in
Section 5.

5 Performance analysis

We work with the elliptic curve secp256k1 but none of the techniques introduced
in this paper are limited to this specific elliptic curve. Recall that a trace corre-
sponds to the double-and-add chain of the scalar multiplication kG. To the best
of our knowledge, the only information we can recover are the positions of the
non-zero digits. We are not able to determine the sign or the value of the digits
in the wNAF representation. In [11], the authors exploit the fact that the length
of the binary string of k is fixed in some implementations such as OpenSSL, and
thus more information can be recovered by comparing this length to the length
of the double-and-add chain. In particular, they were able to recover the most
significant bit (MSB) of k, and in some cases the sign of the second MSB. This
extra information leads to the methods A and B presented in [11]. We do not
consider this extra information as we want our analysis to remain as general as
possible.

We report calculations ran on error-free traces where we evaluate the overall
time necessary to recover the secret key and the probability of success of the
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attack. Our experiments have two possible outputs: either we are able to recon-
struct the secret key α and thus consider the experiment to be a success, or we
are not able to recover the secret key, and hence the experiment fails. In order
to compute the success probability of our attack and the average time of one
reduction, we run 5000 experiments for specific sets of parameters using Sage’s
default BKZ implementation [32]. The experiments were ran using the cluster
Grid’5000 on a single core of an Intel Xeon Gold 6130 with 192 GB of RAM. We
recall that the overall time of our attack is the average time of a single reduction
multiplied by the expected number of trials necessary to recover the secret key.
For a fixed number of signatures, we can either optimize the overall time of the
attack or its probability of success. We report numbers in Tables 5 and 6.

Table 5: Fastest key recovery with respect to the number of signatures.
Number of Total Parameters Probability of
signatures time BKZ Preprocessing ∆ success (%)

3 39 hours 35 S11 ≈ 23 0.2
4 1 hour 17 25 S15 ≈ 23 0.5
5 8 min 20 25 S19 ≈ 23 6.5
6 3 min 55 20 Sall ≈ 23 7
7 2 min 43 20 Sall ≈ 23 17.5
8 2 min 25 20 Sall ≈ 23 29

Table 6: Highest probability of success with respect to the number of signatures.
Number of Probability of Parameters Total
signatures success (%) BKZ Preprocessing ∆ time

3 0.2 35 S11 ≈ 23 39 hours
4 4 35 Sall ≈ 23 25 hours 28
5 20 35 Sall ≈ 23 2 hours 42
6 40 35 Sall ≈ 23 1 hour 04
7 45 35 Sall ≈ 23 2 hours 36
8 45 35 Sall ≈ 23 5 hours 02

Experimentally, we vary the parameters that are considered in the attack:
the bitsize of ∆, the preprocessing subset and the block-size used in BKZ. In the
following, we give a detailed analysis for each parameter.

Only 3 signatures. Using ∆ ≈ 23 and no preprocessing, we were able to recover
the secret key using 3 signatures with BKZ-35 only once and three times with
BKZ-40. When using pre-processing S11, BKZ-35 and ∆ ≈ 23, the probability
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of success went up to 0.2%. Since all the probabilities remain much less than 1%
an extensive analysis would have been too much time consuming to do. For this
reason, in the rest of this section, the number of signatures only vary between 4
and 8. However, we want to emphasize that it is precisely this detailed analysis on
a slightly higher number of signatures that allowed us to understand the impact
of the parameters on the performance of the attack and resulted in finding the
right ones allowing to mount the attack with 3 signatures.

Varying the bitsize of ∆. In Figure 1, we analyze the overall time to recover the
secret key as a function of the bitsize of ∆. We fix the block-size of BKZ to 25
and take traces without any preprocessing. We are able to recover the secret key
by setting ∆ = 1, which is the lowest theoretical value one can choose. However,
we observed a slight increase in the probability of success by taking a larger ∆.
Without any surprise, we note that the overall time to recover the secret key
increases with the bitsize of ∆ as the coefficients in the lattice basis become
larger. Details of the experiments are given in Appendix A.

Fig. 1: Analyzing the overall time to recover the secret key as a function of the
bitsize of ∆. We report numbers for BKZ-25 and no preprocessing. The optimal
value for ∆ is around 23 except for u = 8 where it is 25.
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Analyzing the effect of preprocessing. We also analyze the influence of our pre-
processing method on the attack time. We fix BKZ block-size to 25. The effect
of preprocessing is influenced by the bitsize of ∆ and we give here an analyze
for ∆ ≈ 225 since the effect is more noticeable. We report results for ∆ ≈ 23

in Appendix B. In this case, we still gain time using the preprocessing but less
than with ∆ ≈ 225.

The effect of preprocessing is difficult to predict since its behavior varies
a lot depending on the parameters, having both positive and negative effects.
On the one hand, we reduce the size of all the coefficients in the lattice, thus
reducing the reduction time. On the other hand, we generate more potential
small vectors5 with norms smaller than the norm of z. For this reason, the
probability of success of the attack decreases, the vector z more likely to be a
linear combination of vectors already in the reduced basis. For example, with 7
signatures we find in average z to be the third or fourth vector in the reduced
basis without preprocessing, whereas with S11 it is more likely to appear in
position 40 on average.

The positive effect of preprocessing is most noticeable for u = 4 and u = 5,
as shown in Figure 2. For instance, in the case of 4 signatures, using S15 lowers
the overall time by a factor up to 5.7 compare to Sall. For 5 signatures, we gain
a factor close to 3 by using either S15 or S19 instead of Sall.

For u > 5, using preprocessed traces is less impactful. For large ∆ such as
∆ ≈ 225, we still note lower overall times when using S15 and S19, up to a factor
2. When the bitsize gets smaller, reducing the size of the coefficients in the lattice
is less impacful. Details are given in Appendix B.

Fig. 2: Analyzing the overall time to recover the secret key as a function of the
preprocessing subset for 4 and 5 traces. The other parameters are fixed: ∆ ≈ 225

and BKZ-25.

5 In the sense of vectors exhibited in (9).
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Balancing the block-size of BKZ. Finally, we vary the block-size in the BKZ
algorithm. We fix ∆ ≈ 23 and use no preprocessing. We plot the results in
Figure 3 for 6 and 7 signatures. For other values of u, the plot is very similar
and we omit them in Figure 3 for ease of reading. Without any surprise, we see
that as we increase the block-size, the probability of success increases, however
the reduction time increases significantly as well. This explains the results shown
in Table 5 and Table 6: to reach the best probability of success one needs to
increase the block-size in BKZ (we did not try any block-size greater than 40),
but to get the fastest key recovery attack, the block-size is chosen between 20
and 25, except for 3 signatures where the probability of success is too low with
these parameters. Details are given in Appendix C.

Fig. 3: Analyzing the number of trials to recover the secret key and the reduction
time of the lattice as a function of the block-size of BKZ. We consider the cases
where u = 6 and u = 7. The dotted lines correspond to the number of trials,
and the continued lines to the reduction time in seconds.

6 Error resilience analysis

It is not unexpected to have errors in the traces collected during the side-channel
attack. Obtaining a set of error-free traces requires some amount of work on the
signal processing side. Prior to [10], the presence of errors in traces was either
ignored or preprocessing was done on the traces until an error-free sample was
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found, see [13, 3]. In [10], it is shown that the lattice attack still successfully
recovers the secret key even when some traces contain errors. An error in the
setup given in [10] corresponds to an incorrect bound on the size of the values
being collected. In our setup, a trace without errors corresponds to a trace where
every single coefficient in the wNAF representation of k has been identified
correctly as either non-zero or not. The probability of having an error in our
setup is thus much higher. Side-channel attacks without any errors are very
rare. Both [25] and [10] give an analysis of the attacks FLUSH + RELOAD and
Prime + Probe in real life scenarios.

In [11], the results presented in the paper assume the FLUSH + RELOAD is
implemented perfectly, without any error. In particular, to obtain 4 perfect traces
and be able to run their experiment and find the key, one would need to have
in average 8 traces from FLUSH + RELOAD – the probability to conduct a perfect
reading of the traces being 56 % as pointed out in [25]. In our work, we show
that it is possible to recover the secret key using only 4, even erroneous, traces.
However, the probability of success is very low.

Recall that an error in our case corresponds to a flipped digit in the trace
of k. The following Table 7 shows the probability of success of the attack in the
presence of errors. We ran experiments for BKZ-25 using ∆ ≈ 23 and traces
taken from Sall. We average over 5000 experiments.

Table 7: Error analysis using BKZ-25, ∆ ≈ 23 and Sall.
Number of Probability of success (%)
signatures 0 errors 5 errors 10 errors 20 errors 30 errors

4 0.28 � 1 0 0 0
5 4.58 0.86 0.18 � 1 0
6 19.52 5.26 1.26 0.14 � 1
7 33.54 10.82 3.42 0.32 � 1
8 35.14 13.26 4.70 0.58 � 1

We write � 1 when the attack succeeded less than five times over 5000
experiments, thus making it difficult to evaluate the probability of success.

The attack works up to a resilience to 2% of errors, i.e., of flipped digits.
Indeed, for u = 6, we were able to recover the secret key with 30 errors, meaning
30 flipped digits over 6× 257 digits.

Different types of errors. There exists two possible types of errors. In the first
case, a coefficient which is zero is evaluated as a non-zero coefficient. In theory,
this only adds a new variable to the system, i.e., the number ` of non-zero digits
is overestimated. This does not affect the probability of success much. Indeed,
we just have an overly-constrained system. We can see in Figure 4 that the
probability of success of the attack indeed decreases slowly as we add errors of
this form. With errors only of this form, we were able to recover the secret key
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up to nearly 4% of errors, for instance with u = 6, using BKZ-35, see Table 10
in Appendix D.

The other type of error consists of a non-zero digit which is misread as a zero
coefficient. In this case, we lose information necessary for the key recovery and
thus this type of error affects the probability of success far more importantly as
can also be seen in Figure 4. In this setup, we were not able to recover the secret
key when more than 3 errors of this type appear in the set of traces considered.
More details on the probabilities of success of these two types of errors can be
seen in Appendix D.

Fig. 4: Probability of success for key recovery with various types of errors when
using u = 8, BKZ-25, ∆ ≈ 23, and no preprocessing.

If the signal processing method is hesitant between a 1 or 0 digit, we would
recommend to favor putting 1 instead of 0 to increase the chance of having an
error of type 0→ 1, for which the attack is a lot more tolerant.

7 An attempt at using Coppersmith’s methods

Given that the setup of the Extended Hidden Number Problem gives a system
of modular equations with the unknowns (α, d1,1, · · · , du,lu), it is natural to ask
whether this system can be solved using Coppersmith’s method for finding small
modular roots of integer polynomials. Admittedly, α is of the order of magnitude
of q so not so small, but small root means that it is sufficient to know a bound
on each variable.
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Coppersmith’s methods in the case of bivariate polynomials can be expressed
as the following theorem [12, Theorem 19.2.1]. It states that a small modular root
of a bivariate polynomial can be found as an integer root of other polynomials.

Theorem 1. Let F (x1, x2) ∈ Z[x1, x2] be a polynomial of total degree t. Let
X1, X2, q ∈ N be such that X1 ·X2 < q1/t−ε for some 0 < ε < 1/t. Then one can
compute in time polynomial in log(q) and 1/ε > t two polynomials F1(x1, x2) and

F2(x1, x2) ∈ Z[x1, x2] such that for all (x
(0)
1 , x

(0)
2 ) ∈ Z2 with |x(0)1 | < X1, |x(0)2 | <

X2 and F (x
(0)
1 , x

(0)
2 ) ≡ 0 (mod q), one has F1(x

(0)
1 , x

(0)
2 ) = F2(x

(0)
1 , x

(0)
2 ) = 0

over Z.

Theorem 1 is generalized to m variables in [18]. Let |x(0)i | < Xi for i =
1, · · · ,m. In this setting, the condition X1 ·X2 < q1/t−ε for some 0 < ε < 1/t is
replaced by X1 ·X2 · · ·Xm < q1/t−ε.

In our setup. We consider the system of u−1 modular equations after elimination
of α, with T =

∑u
i=2 `i variables. This allows us to have one less unknown and

to avoid having to recover α which would be our largest variable.
We have the following equations

Fi(d1,1, . . . , d1,`1,, . . . du,1, . . . , du,`u) =

`1∑
j=1

τj,id1,j+

`i∑
j=1

σi,jdi,j−γi ≡ 0 (mod q)

for 2 6 i 6 u, and where τji, σij and γi are defined as in Section 3.3. This system
has u − 1 equations and T unknowns. Note that Fi is a linear polynomial and
its total degree is t = 1.

Let D be a bound on the unknowns dij , i.e., |dij | < D. The condition in the
theorem requires that

DT < q1−ε

which means D < q(1−ε)/T . When ε→ 1, we get that D < 1, and when ε→ 0, we
have D < q1/T . If we consider the attack scenario where the number of signatures
u belongs to [3, 8], the value of T grows with u and for u = 3, the value T is
around 150 on average. This results in the condition D 6 3. But restricting the
bound on the dij to 3 at best seems too restrictive for the key recovery to be
successful. Indeed, it means that the algorithm will miss all the solutions with
at least one 3 < di,j < 2µi,j .

Remark 4. We also considered the equations without elimination, i.e., keeping
the variable α. However, this resulted in an even stronger condition on D (we
always have D < 1) due to the size of α.

Remark 5. The theorem mentioned above is one of the many variations of Cop-
persmith’s method. The proof of the theorem relies on the construction of a
lattice whose coefficients correspond to the coefficients of the polynomials for
which we want to find a modular root. The idea is to use LLL on this lattice
to construct new polynomials with small coefficients, small enough so that the
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expected modular root is in truth a root of these new polynomials over the
integers.

We have tested various constructions for the lattice basis. In particular, we
give one of our lattice constructions in the elimination case in Appendix E.
However, none of our constructions have allowed us to successfully recover the
secret key.
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1. Acıiçmez, O., Schindler, W.: A vulnerability in RSA implementations due to in-
struction cache analysis and its demonstration on OpenSSL. In: Malkin, T. (ed.)
Topics in Cryptology – CT-RSA 2008. pp. 256–273. Springer Berlin Heidelberg,
Berlin, Heidelberg (2008)
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A Bitsize of ∆ effect over the key recovery overall time

We analyze the effect of the bitsize of ∆. We fix BKZ-25 and use no prepro-
cessing. We average over 5000 experiments. The overall shortest time and the
corresponding parameters are written in bold.

Parameters Results

u BKZ-β Preprocessing ∆ bitsize Probability Time of one Overall time to key
of success (%) experiment (sec) recovery (min)

4 25 Sall 0 0.14 31 375
4 25 Sall 1 0.16 31 330
4 25 Sall 3 0.28 32 191
4 25 Sall 5 0.22 30 234
4 25 Sall 10 0.24 33 228
4 25 Sall 15 0.16 39 411
4 25 Sall 20 0.20 45 379
4 25 Sall 25 0.20 54 454
4 25 Sall 30 0.10 31 515

5 25 Sall 0 3.74 37 16
5 25 Sall 1 4.60 36 13
5 25 Sall 3 4.58 34 12
5 25 Sall 5 4.38 34 13
5 25 Sall 10 3.92 36 15
5 25 Sall 15 4.62 41 15
5 25 Sall 20 4.60 52 19
5 25 Sall 25 4.52 64 23
5 25 Sall 30 4.18 88 35
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Parameters Results

u BKZ-β Preprocessing ∆ bitsize Probability Time of one Overall time to key
of success (%) experiment (sec) recovery (min)

6 25 Sall 0 15.94 77 8
6 25 Sall 1 19.96 61 5
6 25 Sall 3 19.52 57 5
6 25 Sall 5 20.10 59 5
6 25 Sall 10 19.04 63 5
6 25 Sall 15 20.34 72 6
6 25 Sall 20 20.58 92 7
6 25 Sall 25 20.02 91 7
6 25 Sall 30 19.26 164 14

7 25 Sall 0 28.86 185 10
7 25 Sall 1 33.00 134 7
7 25 Sall 3 33.54 136 6
7 25 Sall 5 33.69 142 7
7 25 Sall 10 33.99 149 7
7 25 Sall 15 33.81 186 9
7 25 Sall 20 34.94 229 11
7 25 Sall 25 31.68 300 15
7 25 Sall 30 32.08 351 18

8 25 Sall 0 32.12 322 16
8 25 Sall 1 36.40 237 101
8 25 Sall 3 35.14 227 10
8 25 Sall 5 36.00 211 9
8 25 Sall 10 34.86 245 11
8 25 Sall 15 36.18 296 13
8 25 Sall 20 35.48 376 17
8 25 Sall 25 36.12 460 21
8 25 Sall 30 34.54 573 27

B Preprocessing effect over the key recovery overall time

We analyze the effect of the preprocessing. We fix BKZ-25 and ∆ ≈ 23, 225. We
average over 5000 experiments. The overall shortest time and the corresponding
parameters are written in bold. For ∆ = 225:

Parameters Results

u BKZ-β Preprocessing ∆ bitsize Probability Time of one Overall time to key
of success (%) experiment (sec) recovery (min)

4 25 S11 25 0.20 9 79
4 25 S15 25 0.52 24 79
4 25 S19 25 0.50 29 97
4 25 Sall 25 0.20 54 454

5 25 S11 25 1.70 17 17
5 25 S15 25 5.74 29 8
5 25 S19 25 6.28 32 8
5 25 Sall 25 4.52 64 23

6 25 S11 25 3.64 38 17
6 25 S15 25 22.12 77 5
6 25 S19 25 25.12 77 5
6 25 Sall 25 20.02 91 7
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Parameters Results

u BKZ-β Preprocessing ∆ bitsize Probability Time of one Overall time to key
of success (%) experiment (sec) recovery (min)

7 25 S11 25 3.40 55 27
7 25 S15 25 26.20 151 9
7 25 S19 25 43.90 162 7
7 25 Sall 25 31.68 300 15

8 25 S11 25 4.50 85 31
8 25 S15 25 32.50 237 12
8 25 S19 25 43.90 267 10
8 25 Sall 25 36.12 460 21

For ∆ = 23:

Parameters Results

u BKZ-β Preprocessing ∆ bitsize Probability Time of one Overall time to key
of success (%) experiment (sec) recovery (min)

4 25 S11 3 0.18 9 89
4 25 S15 3 0.52 24 77
4 25 S19 3 0.38 29 130
4 25 Sall 3 0.28 32 191

5 25 S11 3 1.18 19 27
5 25 S15 3 5.90 30 8
5 25 S19 3 6.50 32 8
5 25 Sall 3 4.58 34 12

6 25 S11 3 4.04 40 16
6 25 S15 3 20.36 78 6
6 25 S19 3 24.76 72 4
6 25 Sall 3 19.52 57 5

7 25 S11 3 4.15 60 24
7 25 S15 3 27.00 158 9
7 25 S19 3 35.25 173 8
7 25 Sall 3 33.54 135 6

8 25 S11 3 4.40 88 33
8 25 S15 3 35.20 249 11
8 25 S19 3 40.70 268 11
8 25 Sall 3 35.14 227 10

C BKZ block-size effect over the key recovery overall
time

We analyze the effect of the BKZ block-size. We set ∆ ≈ 23 and use no prepro-
cessing. We average over 5000 experiments. The overall shortest time and the
corresponding parameters are written in bold.
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Parameters Results

u BKZ-β Preprocessing ∆ bitsize Probability Time of one Overall time to key
of success (%) experiment (sec) recovery (min)

4 20 Sall 3 0 5 0
4 25 Sall 3 0.28 32 191
4 30 Sall 3 1.30 302 387
4 35 Sall 3 4.10 3763 1529

5 20 Sall 3 0.82 9 19
5 25 Sall 3 4.58 34 12
5 30 Sall 3 11.60 225 32
5 35 Sall 3 20.18 1964 162

6 20 Sall 3 6.96 16 4
6 25 Sall 3 19.52 57 5
6 30 Sall 3 32.96 290 14
6 35 Sall 3 39.52 1525 64

7 20 Sall 3 17.35 28 2
7 25 Sall 3 33.54 136 6
7 30 Sall 3 44.20 950 35
7 35 Sall 3 44.80 4245 158

8 20 Sall 3 29.40 43 2
8 25 Sall 3 35.14 227 10
8 30 Sall 3 46.66 1894 68
8 35 Sall 3 44.70 8119 302

D Analysis of errors

We analyze the effect of two possible kind of errors on the probability of success
of our attack, using BKZ-25, ∆ ≈ 23 and no preprocessing. We average over
5000 experiments. We write � 1 when the attack succeeded less than five times
over 5000 experiments.

Table 8: Error 0→ 1 analysis using BKZ-25, ∆ ≈ 23 and Sall.

Number of Probability of success (%)
signatures 0 errors 1 error 5 errors 10 errors 20 errors 30 errors 40 errors 50 errors 60 errors

4 0.28 0.18 0.10 � 1 0 0 0 0 0
5 4.58 3.82 2.70 1.06 0.32 � 1 0 0 0
6 19.52 10.79 13.88 7.90 2.94 0.86 0.36 0.10 � 1
7 33.54 31.06 26.04 18.36 9.24 4.54 1.80 1.02 0.50
8 35.14 34.92 31.94 25.50 16.70 7.96 4.94 2.48 1.22
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Table 9: Error 1→ 0 analysis using BKZ-25, ∆ ≈ 23 and Sall.

Number of Probability of success (%)
signatures 0 errors 1 error 2 errors 3 errors

4 0.28 0 0 0
5 4.58 0.36 � 1 0
6 19.52 2.70 0.36 � 1
7 33.54 5.54 1.00 0.12
8 35.14 8.20 1.36 0.30

When considering many errors, the probability of success can be increased
by augmenting the block-size in the BKZ algorithm, as can be seen in Table 10.

Table 10: Errors 0→ 1 analysis with ∆ ≈ 23, Sall and increasing block-size.

Number of Probability of success (%)
signatures 30 errors 40 errors 50 errors 60 errors

25 30 35 40 25 30 35 40 25 30 35 40 25 30 35 40

5 � 1 0.24 0.35 0.75 0 � 1 � 1 0.42 0 0 0 0 0 0 0 0
6 0.86 2.48 3.58 3.97 0.36 0.90 1.18 2.28 0.10 0.36 0.58 0.94 � 1 � 1 0.12 0.12
7 4.54 6.44 7.32 8.73 1.80 3.54 3.48 4.58 1.02 1.26 1.84 3.26 0.50 0.62 1.20 1.43
8 7.96 10.46 11.78 10.98 4.94 6.12 6.73 7.12 2.48 3.26 3.78 4.64 1.22 1.84 1.89 2.18

E Lattice construction for Coppersmith’s methods

We consider u− 1 equations given after elimination. We construct the following
lattice basis B
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d2,1 d2,2 . . . d2,`2 . . . du,1 . . . du,`u d1,1 d1,2 . . . d1,`1 1
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The dimension of this lattice is dimL = T + 1 and the determinant is given by

detL = DT qT−u+2.

Coppersmith’s method uses LLL to produce polynomials with integer roots
equal to those from the inital modular equations. To do so, it is required for the
norms of the vectors in the reduced basis to be smaller than the modulo q, and
thus the lattice basis must satisfy (1.02)n(detL)1/n < q, where n = dimL. This
implies we need the condition

D <

(
qu−1

1.02(T+1)2

)1/T

.

Numerically, we get D < 1 for u ∈ [3, 8].


