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Abstract

We review several solutions for the Byzantine Fault Tolerance (BFT) problem
and discuss some aspects that are frequently overlooked by existing literatures.
For example, PBFT and HotStuff BFT protocols (HotStuff has been adopted by
Facebook Libra) require a reliable broadcast primitive. We show that if the broad-
cast primitive is not reliable then the PBFT and HotStuff BFT protocols could
not achieve the liveness property (that is, the system will never reach an agree-
ment on a proposal). Though these BFT protocols have been developed for partial
synchronous networks, we show that they cannot achieve consensus in partial syn-
chronous networks since the participants do not know what is the Global Stabiliza-
tion Time (GST) and broadcast channels before GST are defined to be unreliable
(e.g., DoS attacks on certain participants). Thus it is important for developers to
be aware of these issues when developing applications (such as blockchains) using
these BFT protocols.

1 Introduction
Lamport, Shostak, and Pease [12] and Pease, Shostak, and Lamport [14] initiated the
study of reaching consensus in face of Byzantine failures and designed the first syn-
chronous solution for Byzantine agreement. Dolev and Strong [7] proposed an im-
proved protocol in a synchronous network with O(n3) communication complexity.
By assuming the existence of digital signature schemes and a public-key infrastruc-
ture, Katz and Koo [11] proposed an expected constant-round BFT protocol in a syn-
chronous network setting againt bn−12 c Byzantine faults.

For an asynchronous network, Fischer, Lynch, and Paterson [9] showed that there
is no deterministic protocol for the BFT problem in face of a single failure. Their proof
is based on a diagonalization construction and have two assumptions: (1) when a pro-
cess writes a bit on the output register, it is finalized and can not change anymore; and
(2) a nonfaulty process runs infinitely many steps in a run. If either of these assump-
tions is removed, then the construction will not work and the result may not hold any
more. As noted in Andreina et al [1] “While it is impossible to provably achieve safety
and liveness in fully asynchronous networks [9], blockchain protocols target eventual
consistency, resp liveness, meaning that the chain of some honest party may be incon-
sistent, resp. stuck, during asynchronous periods but then it will catch up as soon as
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the network obeys a synchronous regime.” With this relaxed requirement, the first as-
sumption in Fischer et al’s result could be removed in blockchain consensus protocol
design. By removing the first required assumption, we will be able to construct con-
sensus protocols to tolerate bn−13 c Byzantine faults in fully asynchronous networks. In
certain sense, our construction is similar to the finite injury priority method (Muchnick
[13] and Friedberg [10]) that was used to construct the intermediate degrees between 0
(the minimum Turing-degree) and 0′ (the maximum recursively enumerate degree) in
computability theory.

Several researchers have tried to design BFT consensus protocols to circumvent the
impossibility. For example, Ben-Or [3] initiated the probabilistic approach to BFT con-
sensus protocols in completely asynchronous networks and Dwork, Lynch, and Stock-
meyer [8] designed BFT consensus protocols in partial synchronous networks. Castro
and Liskov [6] developed a practical BFT consensus protocol PBFT in partial syn-
chronous networks. PBFT has been deployed in several practical systems. Recently,
Yin et al [19] improved the PBFT protocol by changing the mesh communication net-
work in PBFT to star communication networks in HotStuff and by using threshold
cryptography. Facebook blockchain has adopted HotStuff in their LibraBFT protocol.

Both PBFT and HotStuff BFT protocols have used reliable “multicast” or “broad-
cast” protocols for certain message transmission. This assumption is very strong and
may be infeasible in practice. Katz and Koo [11] mentioned that “Byzantine agreement
readily implies protocols for broadcast”. On the other hand, it may be much easier to
design BFT consensus protocols based on the existence of reliable broadcast channels
(see, e.g., Wang and Desmedt [16], Lamport et al [12] and Buterin [5]). We show
that if there does not exist a reliable broadcast channel, we can launch an attack on
PBFT and an attack on HotStuff so that participants would never reach an agreement
on a proposal. Furthermore, PBFT and HotStuff BFT are designed for partial syn-
chronous networks. By the definition of partial synchronous networks in [6, 19], the
network is not reliable before the time GST and the participants do not know what is
the value of GST. Before the time GST, the package could get lost and DoS attacks
may be launched. Thus the broadcast channels are not reliable before GST. Thus our
attack also shows that PBFT and HotStuff BFT cannot achieve consensus in partial
synchronous networks. This contradicts the claims in [6, 19].

2 Synchronous, asynchronous, and partial synchronous
networks

Assume that the time is divided into discrete units called slots T0, T1, T2, · · · where
the length of the time slots are equal. Furthermore, we assume that: (1) the current
time slot is determined by a publicly-known and monotonically increasing function of
current time; and (2) each participant has access to the current time. In a synchronous
network, if an honest participant P1 sends a message m to a participant P2 at the start
of time slot Ti, the message m is guaranteed to arrive at P2 at the end of time slot Ti.
In the complete asynchronous network, the adversary can selectively delay, drop, or
re-order any messages sent by honest parties. In other words, if an honest participant
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P1 sends a message m to a participant P2 at the start of time slot Ti1 , P2 may never
receive the message m or will receive the message m eventually at time Ti2 where
i2 = i1 + ∆. Dwork, Lynch, and Stockmeyer [8] considered the following two kinds
of partial synchronous networks:

• ∆ < ∞ is unknown. That is, there exisits a ∆ but the participants do not know
the exact value of ∆.

• ∆ <∞ holds eventually. That is, the participant knows the value of ∆. But this
∆ only holds after an unknown time slot T = Ti. Such a time T is called the
Global Stabilization Time (GST).

For the first type of partial synchronous networks, the protocol designer supplies the
consensus protocol first, then the adversary chooses her ∆. For the second type of
partial synchronous networks, the adversary picks the ∆ and the protocol designer
(knowning ∆) supplies the consensus protocol, then the adversary chooses the GST
T . The definition of partial synchronous networks in [6, 19] is the second type of
partial synchronous networks. That is, the value of ∆ is known but the value of GST
is unknown. In such kind of networks, the adversary can selectively delay, drop, or
re-order any messages sent by honest participants before an unknown time GST. But
the network will become synchronous after GST.

3 PBFT and HotStuff BFT

3.1 PBFT
We first briefly review the practical BFT protocol PBFT. In PBFT, there are n = 3t+ 1
participants P0, · · · , Pn−1 and at most t of them are malicious. The PBFT protocol
proceeds through a succession of configurations called views. In each view period,
one participant is called the leader (or the primary) and others are called backups. It is
assumed that the numbering of participants are known to all. For the view number v
(v = 0, 1, 2, · · ·), the leader participant is Pi where i ≡ v mod n. The view period
changes when it appears that the leader participant has failed.

Each time when a client sends an operation request to the leader participant, the
n participants carry out the three phases of the PBFT protocol: pre-prepare, prepare,
and commit. The pre-prepare and prepare phases are used to order requests in the same
view and the prepare and commit phases are used to ensure that committed requests
are totally ordered across views. For an operation request m during view period v, let
Pi be the leader (that is, i ≡ v mod n). The protocol proceeds as follows:

1. pre-prepare: The leaderPi multicasts the signed message

sigi(〈PRE-PREPARE, v, seq,H(m)〉) (1)

to all participants, where seq is a unique sequence number. A participant Pj

accepts the pre-prepare message (1) if

• the signarure is valid and the current view number is v;
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• it has not accepted another pre-prepare message with identical (v, seq) but
different hash value H(m).

• the sequence number seq is within the requied interval.

2. prepare: If the participant Pj accepts the pre-prepare message (1), it enters the
prepare phase by multicasting a digitally signed message

sigj(〈PREPARE, v, seq,H(m), Pj〉) (2)

to all participants and inserting both messages (1) and (2) to its log.

3. commit: The tuple 〈m, v, seq, Pj〉 is called prepared for the participant Pj if and
only if Pj has inserted the message (1) into its log and has collected 2t valid
signatures on 〈PREPARE, v, seq,H(m), Pj′〉 for j 6= j′. When 〈m, v, seq, Pj〉
is prepared for participant Pj , Pj multicasts the digitally signed message

signj(〈COMMIT, v, seq,H(m), Pj〉) (3)

to all participants. Participants accept commit messages and insert them in their
log provided they are properly signed and valid. A tuple 〈m, v, seq, Pj〉 is local-
committed if and only if the tuple 〈m, v, seq, Pj〉 is prepared for Pj and Pj has
accepted 2t + 1 commits (including its own) from different participants. Af-
ter each participant Pj local-commis a tuple 〈m, v, seq, Pj〉, it will execute the
operations contained in the message m.

In PBFT, a tuple 〈m, v, seq〉 is committed if and only if the tuple 〈m, v, seq, Pj〉
is prepared for t + 1 honest participants Pj . Castro and Liskov [6] showed that: If
a tuple 〈m, v, seq, Pi〉 is local-committed for some non-faulty participant Pi then the
tuple 〈m, v, seq〉 is committed.

It is mentioned in [6] that if some participant misses some messages that were
discarded by all honest participants, it will need to be brought up to date by transferring
all or a portion of the service state. For this kind of transfer service, the participant
needs some proof that the state is correct. To improve performance, it is recommended
in [6] to produce checkpoints for sequence numbers divisible by some constant (e.g.,
100). When a participant Pj produces a checkpoint, it multicasts a message

sigj(〈CHECKPOINT, seq,H(state), Pj〉) (4)

to all participants. In order to prove the correctness for one checkpoint, a participant
needs to collect at least 2t + 1 checkpoint signatures (4) from 2t + 1 participants.

3.2 HotStuff BFT
HotStuff BFT [19] includes basic HotStuff protocol and chained HotStuff protocol.
For simplicity, we only review the basic HotStuff BFT protocol. Our analysis works for
chained HotStuff also. Similar to PBFT, there are n = 3t+1 participants P0, · · · , Pn−1
and at most t of them are malicious. The view is defined and changes in the same way
as in PBFT. The major differences between PBFT and HotStuff BFT are:
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1. PBFT participants “multicast” signed messages to all participants though Hot-
Stuff participants send the signed messages to the leader participant in a point-
to-point channel. In other words, PBFT uses a mesh topology communication
network though HotStuff uses a star topology communication network.

2. PBFT uses standard digital signature schemes though HotStuff uses threshold
digital signature schemes.

With these two differences, HotStuff achieves authenticator complexity O(n) for both
the correct leader scenario and the faulty leader scenario. On the other hand, the cor-
responding authenticator complexity for PBFT is O(n2) for the correct leader scenario
and O(n3) for the faulty leader scenario respectively. For simplicity, we will describe
the HotStuff BFT protocol using a standard digital signatue scheme instead of threshold
digital signature schemes. Our analysis does not depend on the underlying signature
schemes.

In HotStuff BFT, each participant stores a tree of pending commands as its local
data structure. Each time when a new view starts, each participant should send its
highest prepareQC branch of its local tree to the leader participant. During the view
period v, Pi serves as the leader participant if i ≡ v mod n. When a client sends an
operation request m to the leader Pi, the n participants carry out the four phases of the
BFT protocol: prepare, pre-commit, commit and decide.

1. prepare: The leader Pi selects the branch highQC that has the highest preceding
view among all the new view messages (in which a prepareQC was formed) it
received from 2t+1 participants. Pi extends the tail of highQC node by creating
a new leaf node proposal. Pi then broadcasts the digitally signed new leaf node
proposal (together with highQC for safety justification) to all participants in a
prepare message. A participant accepts this new leaf node proposal message
if the signature is valid and if

• the branch of this new leaf node extends from the currently locked node
lockedQC.node or

• the new node has a higher view number than the current locked QC.

If a participant Pj accepts the new leaf node proposal message, it sends a prepare
vote message to Pi by signing it.

2. pre-commit: When Pi receives 2t+1 prepare votes for the current proposal, it
combines them into a prepareQC. Pi broadcasts prepareQC in a pre-commit
message. A participant responds to Pi with pre-commit vote by signing it.

3. commit: When Pi receives 2t + 1 pre-commit votes, it combines them into
a precommitQC and broadcasts it in a commit message; participants respond
with a commit vote and set its lockedQC to precommitQC.

4. decide: When Pi receives 2t + 1 commit votes, it combines them into a com-
mitQC. Pi broadcasts commitQC in a decide message. Upon receiving a
decide message, a participant considers the proposal embodied in the com-
mitQC a committed decision, and executes the commands in the committed
branch. The participant increments viewNumber and starts the next view.
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4 Multicast communication channels
The difference between point-to-point communication channels and multicast commu-
nication channels has been extensively studied in the literature. For a given integer k,
a network is called k-connected if there exist k-node disjoint paths between any two
nodes within the network. It is well known that (2t + 1)-connectivity is necessary for
reliable communication againt t Byzantine faults (see, e.g., Wang and Desmedt [17]).
On the other hand, for multicast communication channels, Wang and Desmedt [16]
showed that there exists an efficient protocol to achieve probabilistically reliable and
perfectly private communication against t Byzantine faults when the underlying com-
munication network is (t + 1)-connected. The crucial point to achieve these results is
that: in a point-to-point channel, a malicious participant P1 can send a message m1 to
participant P2 and send a different message m2 to participant P3 though, in a multicast
channel, the malicious participant P1 has to send the same message m to multiple par-
ticipants including P2 and P3. If a malicious P1 sends different messages to different
participants in a reliable multicast channel, it will be observed by all receivers.

Though multicast channels at physical layers are commonly used in local area net-
works, it is not trivial to design reliable multicast channels over the Internet infrastruc-
ture. The situation is more complicated due to the fact that the Internet connectivity
is not a complete graph and some direct communication paths between participants
are missing (see, e.g., [12, 17]). In the literature, there are mainly two approaches to
obtain multicast communication channels. In the first approach, multicast communi-
cation primitives are constructed using Byzantine agreement protocols (see, e.g., Katz
and Koo [11]). In other words, one first needs to design a BFT protocol to obtain a
secure multicast protocol. This is commonly used in cryptographic multi-party com-
putation protocols. The second approach is based on message relays (see, e.g., Srikanth
and Toueg [15], Dwork, Lynch, and Stockmeyer [8], and LibraBFT [2]). In the mes-
sage relay based multicast protocol, if an honest participant accepts a message signed
by another participant, it relays the signed message to other participants. The following
properties are required for the multicast channels in [15, 8]:

1. (Correctness) If an honst participant broadcasts a signed message m in round k,
then every honest participant accepts m in the same round.

2. (Unforgeability) If a participant is honest and does not broadcast a message m,
then no honest participant ever accepts m.

3. (Relay) If an honest participant accepts a signed message m in round k, then
every other honest participant accepts m in round k + 1.

The LibraBFT [2] claims the following property for its multicast channel:

1. (probabilistic-reliable-broadcast) After GST, if an honest node receives or pos-
sesses data that requires gossiping, then—with high probability—before an (un-
known) time delay, every other honest node will have received these data.

Though these properties may be true after GST, it is not true before GST since messages
before GST could get lost or re-ordered by the definition. On the other hand, it is
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even not clear whether it is realistic to assume these multicast properties after GST in
the Internet infrastructure since the t malicious participants may re-write the multicast
primitive in the client code or mount DoS attacks at any time. Of course, it seems
that the models in PBFT [6], HotStuff BFT [19], and LibraBFT [2] do not allow DoS
attacks after GST.

A multicast channel is said to be unreliable if a malicious participant could multi-
cast a message m1 to a proper subset of the participants but not to all participants. That
is, some participant will receive the message m1 while other participants will receive
a different message m2 or receive nothing. The BFT protocols in PBFT [6], HotStuff
BFT [19], and LibraBFT [2] assume the existence of a reliable multicast channel after
GST. We will show in Section 4.2 that, if the multicast channel is unreliable (either
before GST or after GST), then these BFT protocols are insecure. On the other hand,
our attacks Section 4.2 do not work against the DLS BFT protocol in Dwork, Lynch,
and Stockmeyer [8]. The reader is referred to Appendix for a brief discussion of the
DLS BFT protocol.

4.1 What happens if there exists reliable multicast channels?
As we have mentioned in the preceding paragraphs, in order for PBFT [6], HotStuff
BFT [19], and LibraBFT [2] to be secure, one needs to have a reliable multicast channel
before and after GST. By the definition of GST, multicast channels before GST are
obviously unreliable. But let us just assume that we have “reliable multicast channels”
before GST. We show that if a reliable multicast channel exists before and after GST,
then there exist more efficient and robust BFT protocols. For example, in the simple
BFT protocol, only one message flow is required instead of three (or four) messge
flows in PBFT/HotStuff and the simple BFT protocol is secure against n− 1 or bn−12 c
Byzantine faults instead of bn−13 c Byzantine faults in PBFT/HotStuff.

Indeed, Lamport et al [12] has already considered these simple BFT protocols in
reliable multicast channels. Assuming that “if one honest node has seen a particular
value (validly), then every other honest node has also seen that value”, the BFT solution
with signed messages by Lamport et al [12] achieves consensus with one message flow.
The reader is also referred to Buterin [5] for a more detailed explanation of the protocol
and its applications in blockchains.

Assume that the multicast channel is reliable and there is a strict total order on all
messages. That is, for any two different messages m1 6= m2, either m1 < m2 or
m2 < m1. Then the following protocol achieves consensus againt n − 1 Byzantine
faults. For a view period that Pi is the leader participant, the protocol proceeds as
follows

• The leader Pi multicasts the message m to all participants.

• We distinguish the following three cases:

– If a participant receives no valid message, it accepts a default value.

– If a participant receives only one valid message, it accepts the message and
executes the commands within it.
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– If a participant receives multiple valid messages m1, · · · ,mk, it accepts the
minimal valid message mi such that mi ≤ mj (j = 1, · · · , k) and executes
the commands within it.

Now we show that the above simple protocol is a secure BFT protocol. If Pi is honest,
then all honest participants receive the same message and excute the same command.
If Pi is dishonest, it may multicast several messages. However, Pi cannot multicast
different messages to different participants. That is, all honest participants receive the
same set of valid messages. Thus all honest participants accept the same valid message
and execute the same command. It is straightforward to show that, for State Machine
Replication (SMR) scenario, the above protocol can tolerate bn−12 c Byzantine faults.

4.2 What happens if multicast channel is unreliable before GST?
In the LibraBFT, it has the following statement “Asynchrony: Consistency is guaran-
teed even in cases of network asynchrony (i.e., during periods of unbounded commu-
nication delays or network disruptions). This reflects our belief that building internet-
scale consensus protocol whose safety relies on synchrony would be inherently both
complex and vulnerable to Denial-of-Service (DoS) attacks on the network”. In other
words, the multicast channel is unreliable before GST. In the following, we show that
if the multicast channel is unreliable (even before GST), neither PBFT nor HotStuff
BFT is secure. For both protocols, we consider one specific view period where the
leader participant is P0 and the participants in P1 = {P0, · · · , Pt−1} are malicious.
Furthermore, let P2 = {Pt, · · · , P2t}, and P3 = {P2t+1, · · · , P3t}.

An attack on PBFT: In the pre-prepare step, the malicious P0 multicasts the PRE-
PREPARE message (1) to participants in P1 and P2 (but not to participants in P3).
During the prepare step, participants in P1 multicast the PREPARE message (2) to
participants in P1 and P2 but not to participants in P3. However, participants in P2

multicast the PREPARE message (2) to all participants. Now the tuple 〈m, v, seq, Pj〉
is prepared for participants Pj in P1 and P2 (but not prepared for participants in P3).
During the commit step, participants in P1 multicast the COMMIT message (3) to
participants in P1 and P2. Participants in P2 multicast the COMMIT message (3) to
all participants. At the end of the view period v, the tuple 〈m, v, seq, Pi〉 is local-
committed for participants in P1 and P2 (but not for participants in P3). That is, all
participants in P1 and P2 execute the command contained in m though no participant
in P3 executes the command. If participants in P1 would not multicast checkpoint sig-
natues, participants in P3 could not prove the correctness of the checkpoints published
by participants in P2. Thus honest participants in P3 will have different states and
could not get updated to the states for participants in P2. Furthermore, if participants
in P1 would “behaves as honest participants” from now on (but not multicast check-
point signatures), then participants in P3 would “look like dishonest” participants. In
a summary, if the above attack is launched before GST, the protocol would not be able
to achieve consensus for honest participants even after GST.

The above attack on the PBFT protocol may be resolved by only requiring t + 1
signatures on the checkpoint messages instead of the currently required 2t + 1 signa-
tures and by requiring more frequent publications of checkpoint messages. But these
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changes will increase the number of message flows in the system significantly. It should
be noted that the adversary may mount DoS attacks on the checkpoint message also.
Furthermore, there may exist other potential attacks on the PBFT protocol. Alterna-
tive, one may fix PBFT in the following way: when an honest participant P commit
a proposal, it should immediately propagate it to other participants. Each participant
should accept this committed proposal as long as it contains t + 1 signatures. Eventu-
ally all honest participants will accept this committed proposal if the participant is not
disconnected from P . By disconnection from P , we mean that all message paths from
the participant to P contains a malicious participants. This raises another important
question that one should analyze when designing BFT protocols: the connectivity of
the participant networks (see, e.g., [12, 17]).

An attack on HotStuff BFT: This attack is similar to the attack on the PBFT. That
is, the adversary forces some honest participants (but not all honest participants) to
accept a message. During the prepare step, the leader participant P0 (who is malicious)
multicasts the prepare message to participants in P1 and P2 but not to participants in
P3. Durng the pre-commit step, P0 multicasts the pre-commit message to participants
in P1 and P2 but not to participants in P3. During the commit step, P0 multicasts the
commit message to 50% of participants inP2 (but neither to participants inP3 nor to the
other 50% of participants in P2). Now 50% of participants P2 (but neither participants
in P3 nor the other 50% of participants in P2) set its lockedQC to precommitQC during
this step. P0 will not post any message after this step. An asynchronous network
scheduling causes participants to move to view v+1 without receiving decide message.
The malicious participant P1 is the leader for the view period v+ 1. During view v+ 1,
P1 uses the same approach to force some other honest participants to set its lockedQC
to another precommitQC whose node is conflict with the precommitQC node in view
period v. Now a similar argument as in the infinite non-deciding scenario for a “two-
phase” HotStuff (see section Livelessness with two-phases of [19]) could be used to
show that the HotStuff BFT will never reach on any consensus in future.

In the above attack on HotStuff BFT, the adversary manipulated the broadcast chan-
nel so that some honest participants lock conflict branches of the trees. Using the same
approach, a malicious leader could force t + 1 (or less or more ) honest participants
to accept a decide message and executes the commands in the commited branch. But
other honest participants will do nothings and move to the next view without executing
any command.

Discussion. In this section, we showed that if reliable multicast communication
channel does not exist and if a malicious participant could select the subset of par-
ticipants as the receiver of the multicast channel, then PBFT and HotStuff BFT (and
several other BFT protocols in the literature) are insecure. On the other hand, if we
assume that there is a reliable multicast channel, then we showed in Section 4.1 that we
do not need complicated protocols such as PBFT/HotStuff to achieve BFT consensus.
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5 BFT in asynchronous networks with eventual consis-
tency

Fischer, Lynch, and Paterson [9]’s impossibility results for deterministic BFT proto-
cols in face of a single failure has the following assumptions. Each participant has an
output register with values in {0, 1, b}. The output register starts with value b. The
states in which the output register has value 0 or 1 are distinguished as being decision
states. Once it reaches a decision state, one can no long change the values of the output
register. That is, the output register is “write-once”.

If we revise the rules for output register to the following new rule, then we can
to circumvent the impossibility result and design BFT protocols for asynchronous net-
works. Each participant has an output register with values in {0, 1}. The output register
starts with value 0. One can revise the value in the output register with a new value 0
or 1 only once. As soon the value in the output register is revised, it moves to the final
decision state. In case that the value in the output register is never revised, we assume
that the value 0 is the final decision value. From a first look, this new rule seems to
be useless. But if we intepret the value 0 as an empty block and 1 as non-empty block
in blockchains, then this rule is compatible with the blockchain eventual consistency
principle. As we have already mentioned in the Introduction section, Andreina et al [1]
noted taht “blockchain protocols target eventual consistency, resp liveness, meaning
that the chain of some honest party may be inconsistent, resp. stuck, during asyn-
chronous periods but then it will catch up as soon as the network obeys a synchronous
regime.”. With this new rule, we can design the following BFT protocol that tolerate
bn−13 c Byzantine faults in fully asynchronous networks.

Our setting for the BFT protocol is similar to that in Wang [18]. Assume that
there are n0 clients L0, · · · , Ln0−1 and n = 3t + 1 BFT participants P0, · · · , Pn−1.
Each client Li submits a proposal to the BFT participants P0, · · · , Pn−1. Since we
do not assume a reliable multicast communication channel, Li may submit different
proposals to different BFT participants. Using a commonly agreed selection criteria,
each BFT participant Pi selects a proposal pi from the potentially n0 submitted pro-
posals. We call this proposal pi as Pi’s input proposal. The goal of the protocol is
for BFT participants P0, · · · , Pn−1 to reach a consensus on one proposal p from all of
the input proposals. Generally, we can use a robust threshold signature scheme such
as Boneh-Lynn-Shacham (BLS) signatures [4] to reduce the authenticator complexity.
For simplicity, the following protocol description is based on a standard digital sig-
nature scheme. It could be easily revised to used a threshold signature scheme. The
protocol proceeds as follows.

1. Each participant Pi sends his signed input proposal pi to all participants. Since
we do not assume a reliable multicast communication channel, Pi may send
different proposals to different participants.

2. If a participant Pi collects 2t + 1 digital signatures for some proposal p, it
writes 〈p, certi〉 to her output register, multicasts 〈p, certi〉 to all participants
and moves to the decision state where certi is a collection of 2t + 1 digital sig-
natures on p.
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3. In a synchronous network setting, if the participant Pi does neither receive 2t+1
digital signatures for some proposal p nor receive a valid message 〈p, certi〉, then
it writes EMPTY to her output register and moves to the decision state.

4. In a asynchronous network setting, before the participant Pi receives 2t + 1
digital signatures for some proposal p or receives a valid message 〈p, certi〉, it
temporarily writes EMPTY to her output register and moves to the wait state
(where the wait state could be considered as a final state also).

For the n0 clients L1, · · · , Ln0 , if Li is qualified to submit the final proposal, we call
Li the lead client. For safety analysis of the protocol, we can distinguish the following
two cases.

1. The lead client is honest. In this case, all the BFT participants P1, · · · , Pn re-
ceived the same proposal p and the 2t+ 1 honest participant will digitally sign p
and multicast it to all participants. Thus all honest participants will agree on this
proposal p at the end of the protocol run.

2. The lead client is malicious. In this case, if all BFT participants marked their
output register as EMPTY, then the safety property is satisfied. Assume that at
least one BFT participant Pi received 2t + 1 digital signatures on a proposal
p. In this case, at least t + 1 honest participant signed this proposal. Thus no
honest participant would receive another proposal p′ with 2t + 1 valid digital
signatures. Since Pi would then multicast 〈p, certi〉 to all participants, all honest
participants will write 〈p, certi〉 to the output register.

The liveness property of the protocol could be proved assuming that honest clients
will be qualified to submit a proposal at least 50% of the time.
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6 Appendix: DLS BFT protocol
In this section, we review the DLS BFT protocol by Dwork, Lynch, and Stockmeyer
[8]. DLS first proposed the basic round BFT model and the revised it to various semi-
asynchronous models. In the basic round BFT protocol, we assume that all messages
after the unknown step GST (Global Stabilization Time) will be delivered in the same
step that the message was sent and loss of a message before the GST does not neces-
sarily make the sender or the receiver gaulty. Furthermore, though all participants have
a common numbering for the round, they do not know when the step GST occurs.

During the protocol run, each participant Pi maintains a local variable PROPERi

which contains a set of values that the participant knows to be proper. At the start of
the protocol, PROPERi contains the inital value of the participant Pi. Each participant
attaches its PROPERi to every message it sends. If a participant Pi has ever received
2t+1 values from 2t+1 participants and there are no t+1 identical values, it will add
all potential values to its PROPERi. If a participant Pi receives t + 1 identical value v
from t + 1 participants, then it it adds v to its PROPERi. The protocol proceeds from
step to step. For step s, the participant Pi is called the leader if s ≡ i mod n. Each
step s ≥ 0 contains the following four sub-steps (where we assume that Pi is the leader
for step s):

1. Each participant Pj (including Pi) sends the digitally signed message sigj(Lj , s)
to the leader participant Pi where Lj is a list of all its acceptable values that are
in the set PROPERj .

2. If the leader Pi receives an acceptable value v in sub-step 1 from 2t + 1 partici-
pants, Pi broadcasts the signed message sigi(lock v, s, proof) to all participants
where proof is a list of signed messages showing that v is acceptable to at least
2t + 1 participants.

3. For each participant Pj , if it receives a valid message sigi(lock v, s, proof) from
sub-step 2, then it locks the value v by recording the valid lock sigi(lock v, s, proof).
Pj sends an acknowledgement to the leader Pi. If Pi receives at least 2t + 1 ac-
knowledgements, then Pi decides on the value v and continues to participate in
the protocol.

4. Every participant Pj broadcasts its locked value sigi′(lock v′, s′, proof) to all
participants if it has any locked value. A participant will release its lock on a
value sigi′′(lock v′′, s′′, proof) if it receives a lock sigi′(lock v′, s′, proof) with
s′ ≥ s′′ and v′ 6= v′′.

Dwork, Lynch, and Stockmeyer [8] extends the above basic round BFT protocol
to partially synchronous communication networks (with synchronous participants) as
follows.

• Upper bounds ∆ holds eventually. Let R = n + ∆. Each sub-step in the basic
round BFT protocol is simulated by R sub-sub-steps. Specifically, the participant
uses the first n sub-sub-steps to send its sub-step messages to the n participants
(sending to one participant at a time) and uses the last ∆ sub-sub-steps to perform

13



message receive operations. The state transition for the sub-step is simulated at
the last sub-sub-step.

• ∆ is unknown. Let Rs = n+ s for s > 0. Each sub-step in the basic round BFT
protocol step s is simulated by Rs sub-sub-steps as in the case where ∆ holds
eventually.
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