
Cryptanalysis of Reduced-Round SipHash

Le He and Hongbo Yu

Tsinghua University, Beijing, China
he-l17@mails.tsinghua.edu.cn, yuhongbo@mail.tsinghua.edu.cn

Abstract. SipHash is a family of ARX-based MAC algorithms opti-
mized for short inputs. Already, a lot of implementations and appli-
cations for SipHash have been proposed, whereas the cryptanalysis of
SipHash still lacks behind. In this paper, we study the property of trun-
cated differential in SipHash and find out the output bits with the most
imbalanced differential biases. Based on these results, we construct dis-
tinguishers with practical complexity 210 for SipHash-2-1 and 236 for
SipHash-2-2. We further reveal the relations between the value of out-
put bias and the difference after first modular addition step, which is
directly determined by corresponding key bits. Making use of these re-
lations, we propose a key recovery method for SipHash-2-1 with success
rate increased from 2−128 to 2−41.

Keywords: SipHash · Distinguish attack · Key recovery · Truncated
differential cryptanalysis.

1 Introduction

In cryptography, a message authentication code (MAC) is a secret-key primitive
that ensures the integrity of data. A MAC algorithm accepts a secret-key K and
an arbitrary-length message M as input, and outputs a MAC value (a fixed size
tag T). The secret-key K must be confidentially shared between two parties prior
to the communication. The MAC value protects both message’s integrity and
authenticity, by allowing verifiers to detect any changes of the message content:
the sender produces a tag T for a message M through the secret-key K, and
sends the pair (M,T) to the receiver. The receiver who possesses the secret-key
K can verify the authenticity of the message M by recalculating the tag T and
comparing it with the sent one. If two tags are the same, the origin and the
integrity of message are ensured. Otherwise, the message, or the tag, or both of
them must have been modified or forged during the transmission.

SipHash [1] is an Add-Rotate-XOR (ARX) based family of MAC algorithms
which was proposed by Jean Philippe Aumasson and Daniel J. Bernstein in
2012. SipHash computes a 64-bit MAC from a variable-length message M and
a 128-bit secret key K. It is specifically suitable for short inputs, with perfor-
mance comparable to non-cryptographic hash functions, such as CityHash [20]
and SpookyHash [10]. Thus it can be used in hash tables to prevent DoS col-
lision attack (hash flooding) or to authenticate network packets. Algorithms in

SipHash family are denoted as SipHash-c-d, where c is the number of compres-
sion rounds per message block and d is the number of finalization rounds after
compression steps. The recommended parameters are SipHash-2-4 for the best
performance, and SipHash-4-8 for conservative security.

Most existing results on SipHash concentrate on implementations and ap-
plications [3, 18, 19, 21], whereas there has been little progress in mounting an
attack so far even in simplified versions of SipHash. In [1], the designers pro-
vide the differential cryptanalysis of SipHash and in [9], Christoph Dobraunig
and Florian Mendel et al provide the first external security analysis regarding
differential cryptanalysis. All the differential cryptanalysis results can reach a
limited number of rounds because standard differential trails diverge quickly in
SipHash and it is hard to keep the number of active bits at a low level.

However, truncated differential cryptanalysis is a powerful technique to help
solve the problem. Truncated differential cryptanalysis [11] is a generalization
of differential cryptanalysis against block ciphers, which was developed by Lars
Knudsen in 1994. Unlike ordinary differential cryptanalysis [6] that analyzes full
differences between two texts, the truncated variant only considers differences
partially determined. That means the attack merely makes prediction of some
specific bits instead of the full output.

This technique has been applied in Salsa [2], E2 [16], Skipjack [13], Chaskey
[15], SAFER [12], Twofish [17] and even the stream cipher Salsa20 [8]. In [2]
and [15] the authors set the input difference as 1-bit to detect output biases,
which gives us great inspiration. As a result, they get differential trails with
more rounds than ordinary differential cryptanalysis. In [7], it is shown that
the data complexity of truncated differential cryptanalysis is Ω(ε−2) (ε denotes
the imbalance of truncated differential). In Section 3, the relation between data
complexity and truncated differential bias is further discussed.

Table 1. Best cryptanalytic results of SipHash

Variant Type of Attack Probability Reference
SipHash-2-1 Distinguisher 2−56 [1]
SipHash-2-2 Distinguisher 2−159 [1]
SipHash-2-x Internal collision 2−236.3 [9]
SipHash-1-x Internal collision 2−167 [9]

4-Round Finalization Distinguisher 2−35 [9]
SipHash-2-1 Distinguisher 2−10 This Paper
SipHash-2-2 Distinguisher 2−36 This Paper
SipHash-2-1 Key Recovery 2−41 This Paper

Relative Work. In [1], the designers provide their differential trail up to
SipHash-2-4, with success rates 2−56 for 3 rounds and 2−159 for 4 rounds. This di-
rectly constructs a kind of distinguishers for SipHash-2-1 and SipHash-2-2. In [9],
the authors propose a method to construct internal collisions. Using the results,
they further present a distinguisher for 4-round finalization (the finalization part

2

of Siphash2-4). Although the complexity is very close to our distinguisher for
SipHash-2-2, the techniques involved are quite different.

Our Contributions. This paper studies the output biases under specific
input differences in reduced-round SipHash. Inspired by truncated differential
cryptanalysis above, we introduce 1-bit difference to the input and detect if bi-
ased bits exist in the output of reduced-round SipHash. We exhaustively search
a variety of 1-bit input differences (from bit 0 to 63) and obtain corresponding
biased output bits with great imbalances. Using these results, we construct dis-
tinguishers for SipHash-2-1 and SipHash-2-2 with practical complexity (see in
Table 1). We further reveal the relations between the value of differential bias
and corresponding key bits. As a main application, we propose a key recovery
method that can recover the 128-bit key with success rate over 2−41.

Organization of the Paper. The paper starts with a description of SipHash
in Section 2. In Section 3, some basic knowledge about probability theory and
analysis techniques related to this work are given. The following Section 4 in-
troduces the results of differential cryptanalysis and Section 5 constructs distin-
guishers for reduced-round SipHash. Key recovery is discussed in Section 6 and
the conclusion is presented in Section 7.

2 Description of SipHash
SipHash is an ARX primitive operated on 64-bit words. Different SipHash ver-
sions are denoted as SipHash-c-d, where c is the number of compression rounds
processing each message block and d is the number of finalization rounds. SipHash
possesses a 256-bit internal state, uses a 128-bit key and outputs a 64-bit tag.

The 64-bit tag is computed as follows.
Initialization. The internal state of SipHash consists of four 64-bit words
v0, v1, v2 and v3. The 128-bit key can be expressed as k = k1 ∥ k0. Four
64-bit words of internal state are initialized as:

v0 = k0 ⊕ h0 = k0 ⊕ 736f6d6570736575
v1 = k1 ⊕ h1 = k1 ⊕ 646f72616e646f6d
v2 = k0 ⊕ h2 = k0 ⊕ 6c7967656e657261
v3 = k1 ⊕ h3 = k1 ⊕ 7465646279746573

Parsing. The ω-byte input m is parsed into w 64-bit little-endian words
m0 . . .mw−1 before compression where w = 1+int(ω/8). The word mw−1

includes the last ω mod 8 bytes, filled with bytes 00 if needed and followed
by a byte encoding the positive integer ω mod 256 in the end. For example,
1-byte input m = ab will be parsed as m0 = 0x01000000000000ab.
Compression. For each message block mi in sequence, SipHash-c-d will
compress it and update four internal state words through three steps. The
first step is v3 = v3 ⊕mi, and then c rounds of SipRound are iteratively
executed, followed by the final step v0 = v0 ⊕mi.
Finalization. After all message blocks have been processed, the constant
0xff (255) is xored to v2. Then d iterations of SipRound are performed
and SipHash-c-d returns the 64-bit MAC v0 ⊕ v1 ⊕ v2 ⊕ v3 at last.

3

The function SipRound updates the internal state by (also see in Fig.1):

v0+ = v1 v2+ = v3
v1 ≪= 13 v3 ≪= 16
v1⊕ = v0 v3⊕ = v2
v0 ≪= 32
v2+ = v1 v0+ = v3
v1 ≪= 17 v3 ≪= 21
v1⊕ = v2 v3⊕ = v0
v2 ≪= 32

Symbols +, ≪ and ⊕ separately represent modular addition, left rotation
and xor. Each operation is operated on 64-bit words.

Fig.1 shows the structure of the major function SipRound.

v0 ✲ ≪ 32✲
 ✒

❇
❇
❇❇

✲ ≪ 32✲
 ✒

❇
❇
❇❇

✲ v0

v1 ✲
❅
❅❅❘

≪ 13 ✲ ✐ ✲
❅
❅❅❘

≪ 17 ✲ ✐ ✲ v1

v2 ✲
❅
❅❅❘

✂
✂
✂✂

✲
❅
❅❅❘

✂
✂
✂✂

✲ v2

v3 ✲
 ✒

≪ 16 ✲ ✐ ✲
 ✒

≪ 21 ✲ ✐ ✲ v3

Fig. 1. ARX network of SipRound [1]

Fig.2 shows the procedure of hashing a 15-byte message by SipHash-2-4.

736f6d6570736575

646f72616e646f6d

6c7967656e657261

7465646279746573

❣

❣

❣

❣

k0 k1

k0 k1

❣

m0

S
ip
R
o
u
n
d

S
ip
R
o
u
n
d

❣

m0

❣

m1

S
ip
R
o
u
n
d

S
ip
R
o
u
n
d

❣

m1

❣

ff

S
ip
R
o
u
n
d

S
ip
R
o
u
n
d

S
ip
R
o
u
n
d

S
ip
R
o
u
n
d

✐

✡
✡✡
✟✟

❏
❏❏❍❍ ✲

Fig. 2. SipHash-2-4 processing a 15-byte message [1]

4

In this paper, distinguisher and key recovery are restricted to one-block at-
tacks, which means the most significant byte of m0 must be 07. So input dif-
ferences on such byte are actually impractical. However, it is still assumed that
attackers have the ability to alter the most significant byte. In other words, the
parsing restriction of SipHash is neglected in this paper. When considering the
parsing restriction, the complexities of distinguisher and key recovery will be a
bit higher.

3 Knowledge about Probability Theory
In this section, we discuss some knowledge about probability theory which is
related to our work. The first part reveals the relationship between the value of
output bias and the needed amount of input data according to Central Limit
Theorem (CLT). The second part introduces the method to convert prior prob-
abilities into posterior probabilities through Bayes’ Formula.

3.1 Application of CLT in Bias Test
Suppose {x1, x2, . . . , xn} is a group of independent samples of random variable
X, which has EX = µ and DX = σ2. Central Limit Theorem tells us that X∗ =∑n

i=1(Xi − µ)/
√
nσ can be well approximated by standard normal distribution

N(0, 1) as long as n is large enough. This theorem holds even if X is not normal.
In our bias tests of reduced-round SipHash, X can be regarded as a Bernoulli

random variable. Under a pair of random message blocks (m,m′) holding m ⊕
m′ = 1 ≪ k (1-bit difference), set X = 1 if the difference of a certain output bit
outputj ⊕ output

′

j = 1 and X = 0 if not, where (k, j) is a pair of fix numbers
chosen from 0 to 63 before the tests.

Let b denote the output bias (b can be negative), which means P (X = 1) =
0.5 + b and P (X = 0) = 0.5− b. We can estimate b by sampling a huge number
of Xi and calculating X =

∑n
i=1 Xi/n − 0.5. Compare X and X∗: since |b| is

much smaller than 0.5, we approximately have σ2 = 0.25− b2 ≈ 0.25. Then we
get X ∼ N(b, 1/4n) or b ∼ N(X, 1/4n). It is seen that the standard deviation
σ =

√
1/4n should be in the same order of magnitude as |b|. Otherwise, higher

standard deviation may lead to great disturbance when counting result X. Thus
the amount of input data n must be Ω(b−2).

Next, we concretely discuss the constant coefficient, which also plays a role in
data complexity. This refers to Pauta criterion or 3σ-principle is the same, which
tells us that a random sample of N(µ, σ2) will locate in (µ − 3σ, µ + 3σ) with
probability over 99.73%. In this paper, we use 4σ-principle to further promise
the correctness with probability over 99.99%. According to 4σ-principle, if we
find |X| = 2−t, 2−t > 4σ =

√
4/n is required to ensure the output bias, which

infers n = 22t+2. That is the relationship between the bias value and the data
amount. Take n = 220 with 4σ = 2−9 as examples. If |X| > 2−9 is found, the
corresponding output bias |b| > 0 almost definitely exists with probability over
99.99%. If |X| is found to be 2−10 or 2−11, the probability will drop to 95.45%
or 68.27%.

5

3.2 Prior Probability and Posterior Probability

Sometimes we can easily get the prior probability P (B|A), but cannot directly
test the posterior probability P (A|B). For example, if the 128-bit key of SipHash
is fixed, we can easily test any property of the output P (output|key) by giving
random inputs and calculating corresponding outputs. However, we cannot test
P (key|output) because it is impossible to recover the 128-bit key from a 64-
bit output. In this situation, we can convert prior probabilities into posterior
probabilities through Bayes’ Formula:

P (Ak|B) =
P (Ak)P (B|Ak)∑
P (Ai)P (B|Ai)

Among the formula above, A1, A2, . . . , Am are m incompatible events which
means Ai ∩ Aj = ∅ and

∑
Ai = Ω. In this paper, the number of incompatible

events m is always 2 where A1 represents a certain keybit is 0 and A2 represents
a certain keybit is 1. B may be a property or a combination of output biases.
Take Table 2 as an example.

Table 2. Determination with two events

Event B1 : |Xj | ≤ fixbound B2 : |Xj | > fixbound

A1 : keybit = 0 p1 1− p1
A2 : keybit = 1 p2 1− p2

Suppose we need to determine some keybit by testing the output bias Xj

under a certain 1-bit input difference k. First, randomly generate different keys
that fit keybit = 0 or keybit = 1. Second, calculate output bias Xj under those
keys separately. Finally, count the number of keys that meet |Xj | ≤ fixbound
and get the table, in which P (B1|A1) = p1 and P (B1|A2) = p2.

As for the keybit to be determined, we also calculate corresponding bias Xj

and judge whether |Xj | ≤ fixbound holds. According to Bayes’ Formula and
P (A1) = P (A2) = 0.5, we have:

P (A1|B1) =
p1

p1 + p2

P (A2|B1) =
p2

p1 + p2

P (A1|B2) =
1− p1

2− p1 − p2

P (A2|B2) =
1− p2

2− p1 − p2

Then we can determine it by choosing the larger of P (A1|B1) and P (A2|B1)
or the larger of the other two if B1 or B2 happens. The expected success rate is

6

P (B1) ∗max(P (A1|B1), P (A2|B1)) + P (B2) ∗max(P (A1|B2), P (A2|B2), where
P (B1) = p1P (A1) + p2P (A2) and P (B2) = (1− p1)P (A1) + (1− p2)P (A2).

Finally, the expected success rate can be simplified into:

max(p1, p2) + max(1− p1, 1− p2)

2
=

1 + |p1 − p2|
2

4 Differential Cryptanalysis of Reduced-Round SipHash

In this section, we start with the standard differential trail of SipHash-2-4 based
on previous work [4, 5, 14, 22]. It is found that all the differential cryptanalysis
results can reach a limited number of rounds where standard differential trails
diverge quickly. Next, we investigate if biased differential bits exist in the output
of reduced-round SipHash instead of analyzing full differences. As a result, we
find out some interesting phenomena about the output bias.

4.1 Standard Differential Cryptanalysis Results

In [1], the designers provide the differential cryptanalysis of SipHash-2-4. The
differential trail is listed in Table 3.

Table 3. Differential characteristics reported by the designers [1]

Round Difference Prob.

1 0000000000000000 0000000000000000 0000000000000000 8000000000000000 1
0000000000000000 0000000000000000 8000000000000000 8000000000008000 (1)

2 8000000000008000 8000000000000000 0000000080000000 8000001000108000 13
0000800000000000 0000000000009000 8000001080108000 8010000000100000 (14)

3 0010800000100000 80000011a0101000 8010100080000010 8010820000000200 42
a000100080108011 8012b413a2000000 0000920080000210 8200920082008200 (56)

4 2200820002100211 e835621322010235 2200021080122613 6210c21042004203 103
20110024ca35e013 667784530057bd22 4010c000c2126410 8200820080110600 (159)

5 a21182244a24e613 2ec144fcb80115dd c245d93226674453 e20180048a34a603 152
f225f3ce8cd0c6d8 a44f51d8d09e5616 20445936ac53e250 a040d3020a500051 (311)

6 526520cc8680c689 27baa9d2d0e0fcd8 7ccdb446840b08ee 32246acc8cb4ce93 187
56603a5175df891e 20e5d30249fb3ea6 4ee9de8a08bfc67d 2425523ec62cf459 (498)

As we can see from the table, the probability of differential characteristic is
less than 2−128 for more than 3 rounds. Notice that the upper bound of distin-
guishing complexity is 2128, because the complexity of exhaustively searching all
possible keys is only 2128. Therefore, the differential cryptanalysis provided in
[1] cannot help in distinguishing for SipHash-2-2.

7

The best differential trail given in [9] is used in internal collision of SipHash-
2-4 with a probability of 2−236.3. Compared with the trail in [1], it is better for
constructing internal collisions. Using these results, a distinguisher for 4-round
finalization is further presented. However, this trail is unsuitable for constructing
distinguishers for SipHash-2-x because all the active bits of the trail occur in the
first two rounds.

In summary, we cannot construct distinguishers for SipHash-2-2 based on
present standard differential cryptanalysis. However, truncated differential crypt-
analysis can help improve the results.

4.2 Truncated Differential Cryptanalysis Results

In this part, we give some results of our truncated differential cryptanalysis of
SipHash-2-1 and SipHash-2-2. As mentioned above, we set 1-bit input difference
on the k-th (0 to 63 starting from the least significant) input bit and calculate
differential biases of all 64 output bits. For each test, we randomly choose 4096
keys with data complexity n = 220 in SipHash-2-1 and 256 keys with n = 240 in
SipHash-2-2, which can detect output biases over 2−9 and 2−19.

We finally find out some thought-provoking phenomena as below:
Observation 1. In SipHash-2-1, we can always find some biased bits with
obvious biases, among which the greatest one varies from 2−3 to 2−7.
Observation 2. In SipHash-2-2, for a proportion of keys we can find some
bits with biases varying from 2−14 to 2−19, while for the other proportion
we can find nothing.
Observation 3. In both SipHash-2-1 and SipHash-2-2, the relations be-
tween the input differential bits and the biased output bits show a kind of
rotation property, which means if output bit j has differential bias with
input differential bit k, then output bit j + i is much likely to have the
same differential bias with input differential bit k + i.

Table 4 shows output bits with the greatest imbalance for each 1-bit input
difference in SipHash-2-1, which also reveals the rotation property in a way. In
each entry, we give at most 2 bits that may have the greatest imbalance with
the highest probability. If an entry gives only 1 bit, it means those bits with the
greatest imbalance are almost centralized into that position.

Table 4. Bits with the greatest imbalance in SipHash-2-1

k δ λ l k δ λ l

0 0000000000000001 10,26 -7 32 0000000100000000 42,58 -7
1 0000000000000002 11,27 -7 33 0000000200000000 43,59 -7
2 0000000000000004 12,28 -7 34 0000000400000000 44,60 -7
3 0000000000000008 13,29 -7 35 0000000800000000 45,61 -7
4 0000000000000010 14,30 -7 36 0000001000000000 46,62 -7
5 0000000000000020 15,31 -7 37 0000002000000000 47,63 -7
6 0000000000000040 32 -6 38 0000004000000000 0 -5

8

7 0000000000000080 17,33 -6 39 0000008000000000 1 -5
8 0000000000000100 18,34 -6 40 0000010000000000 2 -5
9 0000000000000200 19,35 -6 41 0000020000000000 3 -6
10 0000000000000400 20,36 -7 42 0000040000000000 4,52 -7
11 0000000000000800 21,37 -7 43 0000080000000000 5,53 -7
12 0000000000001000 22,38 -7 44 0000100000000000 6,54 -7
13 0000000000002000 23,39 -7 45 0000200000000000 55 -6
14 0000000000004000 24,40 -7 46 0000400000000000 56 -6
15 0000000000008000 25,41 -7 47 0000800000000000 13 -6
16 0000000000010000 26,42 -7 48 0001000000000000 10,58 -7
17 0000000000020000 27,43 -7 49 0002000000000000 11,59 -7
18 0000000000040000 28,44 -7 50 0004000000000000 12,60 -7
19 0000000000080000 29,45 -7 51 0008000000000000 13,61 -7
20 0000000000100000 46 -7 52 0010000000000000 14,62 -7
21 0000000000200000 31,47 -7 53 0020000000000000 15,63 -7
22 0000000000400000 32 -5 54 0040000000000000 16,0 -7
23 0000000000800000 33 -5 55 0080000000000000 17,1 -7
24 0000000001000000 34 -6 56 0100000000000000 18,2 -7
25 0000000002000000 35 -6 57 0200000000000000 19,3 -7
26 0000000004000000 36 -6 58 0400000000000000 20,4 -7
27 0000000008000000 37 -7 59 0800000000000000 21 -6
28 0000000010000000 38 -7 60 1000000000000000 22 -5
29 0000000020000000 39,55 -7 61 2000000000000000 23 -5
30 0000000040000000 40,56 -7 62 4000000000000000 24 -5
31 0000000080000000 41,57 -7 63 8000000000000000 25 -4

Explanations for Table 4. Symbol k denotes the input differential bit and δ
is the corresponding 1-bit input difference. Symbol λ shows output bits with the
greatest imbalance under input difference δ. Let bλ denote the bias of output bit
λ. Negative integer l reflects the level of bias bλ, which means |bλ| > 2l holds for
all tested keys. This bias level is related to the complexity of distinguishing.

Source codes are provided at https://github.com/hele27/SipHash, including
both bias test of this section and key classification discussed in Section 6.

In this paper, we are not concerned about why it shows a rotation property
or why it reaches such a bias level. However, a great number of experiments can
support those observations. Based on these results, we construct a distinguisher
and propose a key recovery method for reduced-round SipHash. The details are
presented in the following sections.

5 Distinguishing for SipHash-2-1 and SipHash-2-2

We have revealed the relationship between the output bias and the data complex-
ity in Section 3. To detect an output bias |b| > 2−t, n = 22t+2 data complexity
is required. With the same complexity, a distinguisher can be constructed for
SipHash-2-1 according to 4σ-principle.

The algorithm is given below.

9

Algorithm 1 Distinguisher for SipHash-2-1
Input: a 64-bit-output function f(m) to be distinguished.
Output: 0 for f(m) is pseudorandom and 1 for f(m) is SipHash-2-1.
1: k = 63; λ = 25; l = −4; //k is the input differential bit, λ is the output biased bit

and l is the bias level.
2: n = 2−2l+2;
3: for i = 1 : n do
4: Randomly generate 64-bit message pair (m,m′) holding m⊕m′ = 1 ≪ k;
5: Query output = f(m) and output′ = f(m′);
6: Compute the difference of the λ-th output bit outputλ ⊕ output

′

λ;
7: Set Bernoulli variable Xi = outputλ ⊕ output

′

λ;
8: end for
9: Compute X =

∑n
i=1 Xi/n− 0.5;

10: Return (|X| > 2l)

Parameters k, λ, l can be determined according to Table 4.
For the best performance, we choose k = 63, λ = 25 and l = −4. Experi-

ments have shown that under k = 63 in SipHash-2-1, the output bias b25 meets
|b25| > 2−4 for all keys. Therefore, complexity n = 210 is enough for the algo-
rithm. If f(m) is SipHash-2-1, |X| > 2−4 holds with 100% probability. If f(m)
is a pseudorandom function without output biases, |X| < 2−4 holds with proba-
bility over 99.99% according to 4σ-principle. Thus Algorithm 1 can distinguish
SipHash-2-1 from a pseudorandom function with success rate over 99.99%.

Similar algorithm can be applied to SipHash-2-2.

Algorithm 2 Distinguisher for SipHash-2-2
Input: a 64-bit-output function f(m) to be distinguished.
Output: 0 for f(m) is pseudorandom and 1 for f(m) is SipHash-2-2.
1: k = 63; λ = 57; l = −17; //k is the input differential bit, λ is the output biased

bit and l is the bias level.
2: n = 2−2l+2;
3: for i = 1 : n do
4: Randomly generate 64-bit message pair (m,m′) holding m⊕m′ = 1 ≪ k;
5: Query output = f(m) and output′ = f(m′);
6: Compute the difference of the λ-th output bit outputλ ⊕ output

′

λ;
7: Set Bernoulli variable Xi = outputλ ⊕ output

′

λ;
8: end for
9: Compute X =

∑n
i=1 Xi/n− 0.5;

10: Return (|X| > 2l)

For the reason of computing power, we cannot test all k in SipHash-2-2 like
Table 4. Inspired by the good performance of Algorithm 1 (and the differential
trail in Table 3 as well), we remain k = 63 in distinguishing for SipHash-2-2.
It is found that |b57| > 2−17 holds for all 256 tested keys. Similar analysis can

10

be given as the above. Thus Algorithm 2 can distinguish SipHash-2-2 from a
pseudorandom function with success rate over 99.99% and the complexity is 236.

6 Key Recovery Attack for SipHash-2-1

In this section, we discuss key recovery attack for SipHash-2-1. First, we discuss
the key classification by carry existences in the first modular addition v2+ = v3.
Next, we present the results of our key classification experiments. Finally, we
propose a method to recover the 128-bit key according to those results and give
a success rate analysis.

6.1 Key Classification

Experiments in Section 4 have shown that values of the greatest output biases
vary from 2−3 to 2−7 under different keys. This inspires us to design a classi-
fication so that keys in different classes will lead to output biases of different
levels. With the classification, some information about the key can be obtained
through the output bias.

For 1-bit input difference on m[k], step v3 = v3 ⊕m leads to 1-bit difference
on v3[k] firstly. The differential trail continues with step v2+ = v3, while step
v0+ = v1 is independent of m.

Notice the fact that for an ARX-based algorithm, the differential trial di-
verges and the number of active bits increases when carry appears in modular
additions. For example, the difference after v2+ = v3 remains 1 ≪ k without
carry while it becomes 11 ≪ k or even more consecutive 1 if carries exist.

Based on this fact, we propose an assumption that with difference 1 ≪ k
after first modular addition v2+ = v3, output biases may be greater and easier
to detect than those with difference 11 ≪ k or more consecutive 1. This assump-
tion provides a classification method by carry existences and the results of key
classification experiments can support our assumption.

Details of key classification are given below. Suppose 1-bit difference is set
on the k-th bit, which means m[k]⊕m′[k] = 1.

– Situation k = 0. The difference is introduced to v3[0] first.
• In this situation, it can be divided into 2 classes v2[0] = 0 and v2[0] = 1.
• If v2[0] = 0 holds, the difference must be 0x0000000000000001 without
carry for both of m[0] and m′[0].

• If v2[0] = 1 holds, the difference becomes 0x0000000000000011 at least
with carry existing for either of m[0] and m′[0].

– Situation k > 0. The difference is introduced to v3[k] first.
• In this situation, v2[k − 1], v3[k − 1] and even less significant bits also
work besides v2[k]. For simplicity, we divide them into 8 classes by the
values of v2[k], v2[k − 1] and v3[k − 1].

• If v2[k − 1] = v3[k − 1] = 0 holds, carry existences for m[k] and m′[k]
are irrelevant to less significant bits, only depending on v2[k]. Difference
1 ≪ k can be ensured with v2[k] = 0 or avoided with v2[k] = 1.

11

• If v2[k − 1] = v3[k − 1] = 1 holds, carry existences for m[k] and m′[k]
are irrelevant to less significant bits, only depending on v2[k]. Difference
1 ≪ k can be ensured with v2[k] = 1 or avoided with v2[k] = 0.

• In other cases of v2[k− 1]⊕ v3[k− 1] = 1, carry existences are indefinite
because of unknown less significant bits. The difference after v2+ = v3
is still uncontrollable no matter what v2[k] is.

According to the classification, we randomly generate a great number of keys
that meet the conditions separately and perform the key classification experi-
ments (4096 keys in each group). We use a boundary-line ej ≤ bound to filter
those keys with difference 1 ≪ k after v2+ = v3, where ej equal to log2 |bj | is
the exponent part of tested output bias. It is expected that output biases under
keys in different classes will locate on different sides of the boundary-line.

The results of our key classification experiments are given in Table 5, which
is a simplified table for SipHash-2-1. The full table is given in Appendix.

Table 5. Results of key classification experiments (partial)

k conditions ej ≤ bound proportion success rate

0 v2[k] = 0
e26 ≤ −5.255

0% 100%
v2[k] = 1 100%

1

v2[k] = 0&v2[k − 1] = 0&v3[k − 1] = 0

e27 ≤ −5.285

0%

100%v2[k] = 0&v2[k − 1] = 0&v3[k − 1] = 1 0%
v2[k] = 1&v2[k − 1] = 0&v3[k − 1] = 0 100%
v2[k] = 1&v2[k − 1] = 0&v3[k − 1] = 1 100%
v2[k] = 0&v2[k − 1] = 1&v3[k − 1] = 0

e30 ≤ −7.635

19.5%

51.2%v2[k] = 0&v2[k − 1] = 1&v3[k − 1] = 1 51.0%
v2[k] = 1&v2[k − 1] = 1&v3[k − 1] = 0 49.7%
v2[k] = 1&v2[k − 1] = 1&v3[k − 1] = 1 16.7%

· · · · · · · · · · · · · · ·

31

v2[k] = 0&v2[k − 1] = 0&v3[k − 1] = 0

e9 ≤ −6.505

0%

90.5%v2[k] = 0&v2[k − 1] = 0&v3[k − 1] = 1 16.8%
v2[k] = 1&v2[k − 1] = 0&v3[k − 1] = 0 97.3%
v2[k] = 1&v2[k − 1] = 0&v3[k − 1] = 1 17.1%
v2[k] = 0&v2[k − 1] = 1&v3[k − 1] = 0

e9 ≤ −6.525

15.8%

90.3%v2[k] = 0&v2[k − 1] = 1&v3[k − 1] = 1 96.3%
v2[k] = 1&v2[k − 1] = 1&v3[k − 1] = 0 16.3%
v2[k] = 1&v2[k − 1] = 1&v3[k − 1] = 1 0%

· · · · · · · · · · · · · · ·

63

v2[k] = 0&v2[k − 1] = 0&v3[k − 1] = 0

e41 ≤ −3.935

88.8%

50.9%v2[k] = 0&v2[k − 1] = 0&v3[k − 1] = 1 88.8%
v2[k] = 1&v2[k − 1] = 0&v3[k − 1] = 0 90.3%
v2[k] = 1&v2[k − 1] = 0&v3[k − 1] = 1 89.3%
v2[k] = 0&v2[k − 1] = 1&v3[k − 1] = 0

e44 ≤ −5.095

28.3%

51.2%v2[k] = 0&v2[k − 1] = 1&v3[k − 1] = 1 29.1%
v2[k] = 1&v2[k − 1] = 1&v3[k − 1] = 0 29.9%
v2[k] = 1&v2[k − 1] = 1&v3[k − 1] = 1 30.9%

12

Explanations for Table 5. Symbol k denotes the input differential bit. The
conditions have been discussed above that there are 2 classes for k = 0 and 8
classes for k > 0. The percentage of a group shows the proportion of keys that
meet the boundary-line inequation. For example, among all 4096 keys in class
v2[k] = 1&v2[k − 1] = 1&v3[k − 1] = 1, only 16.7% of them show e30 ≤ −7.635
under k = 1.

The boundary-line is chosen to make great disparities among the propor-
tions. Notice that the boundary-line must be the same in different groups when
determining a certain v2[k]. As for how to define the boundary-line or how to
calculate the expected success rate, more details are given in the next part.

6.2 Key Recovery Method

Making use of the results in Appendix, we can propose a bit-by-bit key recovery
method. Firstly, we set the input difference on k = 0 and test e26, determining
v2[0] by whether e26 ≤ −5.255 holds. We can continue recovering v2[1] by choos-
ing boundary-line e27 ≤ −5.285 for v2[0] = 0 or e30 ≤ −7.635 for v2[0] = 1 after
v2[0] is determined. Similar procedures cna be executed until v2[63].

Now we discuss the specific method and the calculation of expected success
rate in a single step. Table 6 shows the prior probabilities in different situations.

Table 6. Situations of k = 0 and k > 0

k conditions P (ej ≤ bound) P (ej > bound)

k = 0
v2[k] = 0 p1 1− p1
v2[k] = 1 p2 1− p2

k > 0

v2[k] = 0&v3[k − 1] = 0 p1 1− p1
v2[k] = 0&v3[k − 1] = 1 q1 1− q1
v2[k] = 1&v3[k − 1] = 0 p2 1− p2
v2[k] = 1&v3[k − 1] = 1 q2 1− q2

Step k = 0. A similar determination has been discussed in Section 3.
Using Bayes’ Formula, we get:

P (v2[k] = 0|ej ≤ bound) =
p1

p1 + p2

P (v2[k] = 1|ej ≤ bound) =
p2

p1 + p2

P (v2[k] = 0|ej > bound) =
1− p1

2− p1 − p2

P (v2[k] = 1|ej > bound) =
1− p2

2− p1 − p2

And the expected success rate is (1 + |p1 − p2|)/2.

13

Step k > 0 with v2[k − 1] determined. A problem is we cannot get the value
of v3[k − 1]: if we are able to get v3[k − 1], the calculation is the same as step
k = 0.

However, without knowing v3[k− 1], we can still control m[k− 1] to support
the determination. We first fix m[k − 1] = 0, set input difference on m[k], and
test corresponding ej . Then we flip m[k − 1] and perform the same experiment
once again. According to the combination of two results, we are able to reach
a determination. There are three kinds of combinations: both ej ≤ bound hold
(denoted as ll), neither ej ≤ bound hold (denoted as rr), and either of them
holds (denoted as lr). Since we have controlled m[k− 1] in two experiments, we
know one meets v3[k − 1] = 0 and the other meets v3[k − 1] = 1.

According to Table 6, probabilities of those three events can be calculated
as shown in Table 7. Notice that the results of m[k − 1] = 0 and m[k − 1] = 1
are actually relevant, but we still regard them as independent of each other to
give an approximate analysis that can be calculated.

Table 7. Determination with three events

Event B1 : ll B2 : lr B3 : rr

A1 : v2[k] = 0 p1q1 p1 + q1 − 2p1q1 (1− p1)(1− q1)

A2 : v2[k] = 1 p2q2 p2 + q2 − 2p2q2 (1− p2)(1− q2)

Similarly, we have:

P (v2[k] = 0|ll) = p1q1
p1q1 + p2q2

P (v2[k] = 1|ll) = p2q2
p1q1 + p2q2

P (v2[k] = 0|lr) = p1 + q1 − 2p1q1
p1 + q1 + p2 + q2 − 2p1q1 − 2p2q2

P (v2[k] = 1|lr) = p2 + q2 − 2p2q2
p1 + q1 + p2 + q2 − 2p1q1 − 2p2q2

P (v2[k] = 0|rr) = (1− p1)(1− q1)

2− p1 − q1 − p2 − q2 + p1q1 + p2q2

P (v2[k] = 1|rr) = (1− p2)(1− q2)

2− p1 − q1 − p2 − q2 + p1q1 + p2q2

And the expected success rate is (max(p1q1, p2q2)+max(p1+q1−2p1q1, p2+
q2 − 2p2q2) + max((1− p1)(1− q1), (1− p2)(1− q2))/2.

As for how to define the boundary-line, since the formula of expected success
rate calculation has been known, we can scan all 4*64*4096 possible (ej , bound)
(bound > −9 must hold first) for each determination and choose one with the
highest expected success rate, which is a kind of optimization. A question is how

14

well an optimized boundary-line will work in another data group. This problem
is discussed in the final part of this section.

6.3 Success Rate Analysis

According to Table 5 above or Appendix, we can recover v2[0] and k0[0] with
100% success rate. Behind v2[0], we can continue recovering v2[1] and k0[1]: if
v2[0] = 0 holds, the success rate is 100% and if v2[0] = 1 holds, the success
rate becomes 51.2%. So the average success rate of recovering k0[1] is (100% +
51.2%)/2 = 75.6%. Bits k0[2] to k0[63] can be similarly recovered step by step.

The probability of correctly recovering all k0 is:

100% + 51.2%

2
∗ 99.6% + 75.1%

2
∗ · · · ∗ 85.5% + 86.3%

2
∗ 50.9% + 51.2%

2
> 2−10

As for the 64-bit k1, after v2[k] is determined, we can further recover k1[k−1]
by the results of experiments m[k−1] = 0 and m[k−1] = 1. Denoting m[k−1] =
0 == l as S and m[k − 1] = 1 == r as T , we have (the same as Table 2):

P (k1[k − 1] = h3[k − 1]|S) = P (v3[k − 1] = 0|S) = p1
p1 + p2

P (k1[k − 1] = h3[k − 1]|S) = P (v3[k − 1] = 0|S) = 1− p1
2− p1 − p2

P (k1[k − 1] = h3[k − 1]|T) = P (v3[k − 1] = 1|T) = 1− p2
2− p1 − p2

P (k1[k − 1] = h3[k − 1]|T) = P (v3[k − 1] = 1|T) = p2
p1 + p2

Suppose p1 > p2. It is seen that we should choose k1[k− 1] = h3[k− 1] when
S or T happens and k1[k − 1] = h3[k − 1] when S or T happens. If two results
are contradictory, we cannot get any information about k1[k − 1] because the
probabilities are exactly symmetrical, which means P (k1[k − 1] = h3[k − 1]) =
50% if ST or ST happens, with probability of p1p2 + (1− p1)(1− p2).

The main question is how to deal with P (k1[k−1] = h3[k−1]|ST). Actually,
it can hardly be calculated because the relevance of events S and T is hard to
analyze. In this situation, we use the larger of (P (k1[k − 1] = h3[k − 1]|S) and
P (k1[k − 1] = h3[k − 1]|T) to give an approximate analysis since S and T both
support k1[k − 1] = h3[k − 1].

So the expected success rate of recovering k1[k − 1] is:

(1− p1− p2+2p1p2) ∗
1

2
+ (p1+ p2− 2p1p2) ∗max(

max(p1, p2)

p1 + p2
,
1−min(p1, p2)

2− p1 − p2
)

Take k = 31 and v2[k − 1] = 0 in Table 5 as an example. If we determine
v2[k] = 0, we have p1 = 0% and p2 = 16.8%, with calculated success rate 58.4%.

15

In the other situation with p1 = 97.3% and p2 = 17.1%, the result is 88.0%. So
the success rate in average is 73.2%. All the probabilities are given in Appendix.

The probability of correctly recovering all k1 is:

50% + 61.8%

2
∗ 62.2% + 86.6%

2
∗· · ·∗ 70.1% + 71.2%

2
∗ 50.2% + 50.3%

2
∗ 1
2
> 2−31

In summary, the probability of recovering the 128-bit key can be increased
from 2−128 to 2−41.

6.4 Stability of Group Results

In previous sections, we optimize the result by scanning all possible boundary-
lines. An apparent question is how well an optimized boundary-line will work in
another data group, or whether the probability of a random key satisfying the
inequation does meet the proportion. The problem is discussed in this part.

We have mentioned that the number of tested keys per group is 4096. Suppose
the probability of a random key satisfying ej ≤ bound is p in theory (which is
hard to calculate). Then the counted proportion is actually a sample of N(p, σ2)
with σ =

√
(p− p2)/n < 1%. Therefore, each entry of proportion in the tables

may have a disturbance of about 2%, which may lead to 3% decrease of success
rate in the worst case. In addition, we optimize the success rate by choosing the
best boundary-line, while the theoretical probability is more likely to be lower
than the optimization.

To examine the stability of our group results, we randomly generate other
4096 keys for each group, divide them into 8 parts (σ ≈ 2%) and test the chosen
boundary-line separately. It is found that disturbances of proportions vary from
1% to 4%, according with the analysis above. Besides, the variation of success
rate is no more than 2%, which can be regarded as acceptable.

Statistics of situation k = 63 (see in Table 5) also indicate the variation of
success rate. Notice that the difference after first v2+ = v3 must be 1 ≪ k under
1-bit input difference on k = 63 no matter what the key is (carries do not work
on k = 63). So the success rate should be 50%. However, the optimization still
reaches an increasement of about 1%, which indicates that the stability of group
results restricts the disturbance of success rate to 1%.

7 Conclusion

This paper deals with truncated differential of reduced-round SipHash. In order
to find out biased output bits, we study the propagation properties of output
differences. As a result, we obtain some output bits with great imbalances under
all possible 1-bit input differences, which can be used to distinguish SipHash-2-1
and SipHash-2-2 from a pseudorandom function with practical complexity.

Furthermore, we find a fact that the output imbalance under a certain in-
put difference has a great relation with corresponding key bits. Based on this
observation, some key bits can be recovered with high probabilities. We finally

16

propose a new key recovery method for SipHash-2-1, with success rate increased
from 2−128 to 2−41.

Our results do not endanger the recommended version SipHash-2-4, which is
still remained indistinguishable from a pseudorandom function. But this work
reveals that for the version of SipHash-2-2, some information of the key can
be obtained especially when attackers have the ability to deal with higher data
complexity.

References

1. Jean Philippe Aumasson and Daniel J. Bernstein. Siphash: A fast short-input prf.
Lecture Notes in Computer Science, 7668:489–508, 2012.

2. Jean Philippe Aumasson, Simon Fischer, Shahram Khazaei, Willi Meier, and Chris-
tian Rechberger. New features of latin dances: Analysis of salsa, chacha, and rumba.
In Fast Software Encryption, pages 470–488, 2008.

3. Amir Azodi, Marian Gawron, Andrey Sapegin, Feng Cheng, and Christoph Meinel.
Leveraging event structure for adaptive machine learning on big data landscapes.
In Mobile, Secure, and Programmable Networking, pages 28–40. Springer, 2015.

4. Thomas A. Berson. Differential cryptanalysis mod 2 32 with applications to md5.
Lecture Notes in Computer Science, pages 71–80, 1995.

5. Eli Biham, Rafi Chen, and Antoine Joux. Cryptanalysis of sha-0 and reduced
sha-1. Journal of Cryptology, 28(1):110–160, 2014.

6. Eli Biham and Adi Shamir. Differential cryptanalysis of des-like cryptosystems.
Journal of Cryptology, 4(1):3–72, 1991.

7. Céline Blondeau and Benoît Gérard. On the data complexity of statistical attacks
against block ciphers. Cryptology Eprint, 2009.

8. Paul Crowley. Truncated differential cryptanalysis of five rounds of salsa20.
In SASC 2006 Stream Ciphers Revisited, 2006. 10. ECRYPT. eSTREAM, the
ECRYPT Stream Cipher Project. http://www.ecrypt.eu.org/stream, 2005.

9. Christoph Dobraunig, Florian Mendel, and Martin Schläffer. Differential Crypt-
analysis of SipHash. Springer International Publishing, 2014.

10. Bob Jenkins. Spookyhash: a 128-bit noncryptographic hash, 2012.
11. Lars R. Knudsen. Truncated and higher order differentials. Fse, 1008:196–211,

1994.
12. Lars R. Knudsen and Thomas A. Berson. Truncated differentials of SAFER.

Springer Berlin Heidelberg, 1996.
13. Lars R. Knudsen, M. J. B. Robshaw, and David Wagner. Truncated Differentials

and Skipjack. Springer Berlin Heidelberg, 1999.
14. Gaëtan Leurent. Analysis of differential attacks in arx constructions. Lecture Notes

in Computer Science, 7658:226–243, 2012.
15. Gaëtan Leurent. Improved differential-linear cryptanalysis of 7-round chaskey with

partitioning. In International Conference on Advances in Cryptology-eurocrypt,
2016.

16. Mitsuru Matsui and Toshio Tokita. Cryptanalysis of a reduced version of the block
cipher e2. In International Workshop on Fast Software Encryption, pages 71–80,
1999.

17. Shiho Moriai and Lisa Yin Yiqun. 2000-csec-10-16 cryptanalysis of twofish(ii). Ipsj
Sig Notes, 2000(68):107–114, 2000.

17

18. Marc Mosko. A content-centric networking forwarding design for a network pro-
cessor. In Communications (ICC), 2015 IEEE International Conference on, pages
5658–5664. IEEE, 2015.

19. Alfandi Omar, Bochem Arne, Kellner Ansgar, GöGe Christian, and Hogrefe Dieter.
Secure and authenticated data communication in wireless sensor networks. Sensors,
15(8):19560–19582, 2015.

20. Geoff Pike and Jyrki Alakuijala. Introducing cityhash, 2011.
21. Won So, Ashok Narayanan, David Oran, and Mark Stapp. Named data networking

on a router: forwarding at 20gbps and beyond. Acm Sigcomm Computer Commu-
nication Review, 43(4):495–496, 2013.

22. Xiaoyun Wang and Hongbo Yu. How to break md5 and other hash functions. In
Proceedings of the 24th annual international conference on Theory and Applications
of Cryptographic Techniques, pages 19–35, 2005.

18

Appendix

The full table of our key classification experiments is shown below.
For simplicity, we use the common condition v2[k − 1] to represent the de-

termination with four groups v2[k] = 0&v3[k − 1] = 0, v2[k] = 0&v3[k − 1] = 1,
v2[k] = 1&v3[k − 1] = 0 and v2[k] = 1&v3[k − 1] = 1.

Symbols p1, q1, p2, q2 denote the proportions of corresponding groups like
Table 6. Analysis of the expected success rate (for both of k0 and k1) has been
presented in Section 6.

Table 8. Results of key classification experiments (full table)

k conditions boundline p1 q1 p2 q2 k0 k1
0 / e26 ≤ −5.255 0% / 100% / 100% /
1 v2[k − 1] = 0 e27 ≤ −5.285 0% 0% 100% 100% 100% 50%
1 v2[k − 1] = 1 e30 ≤ −7.635 19.5% 51.0% 49.7% 16.7% 51.2% 61.8%
2 v2[k − 1] = 0 e44 ≤ −6.465 0% 0.6% 99.6% 51.1% 99.6% 62.2%
2 v2[k − 1] = 1 e44 ≤ −6.535 0.3% 98.7% 48.5% 0% 75.1% 86.6%
3 v2[k − 1] = 0 e29 ≤ −5.485 0% 3.8% 96.4% 27.5% 96.8% 67.0%
3 v2[k − 1] = 1 e29 ≤ −5.475 4.1% 97.1% 28.4% 0% 84.4% 79.0%
4 v2[k − 1] = 0 e46 ≤ −6.515 0% 10.5% 97.2% 23.1% 93.7% 70.1%
4 v2[k − 1] = 1 e46 ≤ −6.525 11.4% 96.6% 22.0% 0% 87.5% 75.4%
5 v2[k − 1] = 0 e47 ≤ −6.505 0% 13.3% 97.6% 19.9% 92.4% 71.9%
5 v2[k − 1] = 1 e31 ≤ −5.685 13.1% 96.3% 17.4% 0% 89.7% 73.7%
6 v2[k − 1] = 0 e32 ≤ −4.825 0% 13.2% 96.4% 15.9% 91.9% 72.0%
6 v2[k − 1] = 1 e32 ≤ −4.825 14.1% 96.4% 16.0% 0% 90.4% 73.2%
7 v2[k − 1] = 0 e33 ≤ −4.745 0% 15.4% 96.5% 15.6% 90.8% 72.7%
7 v2[k − 1] = 1 e33 ≤ −4.725 16.5% 98.0% 16.6% 0% 90.9% 73.8%
8 v2[k − 1] = 0 e34 ≤ −4.835 0% 15.3% 96.4% 16.4% 90.9% 72.5%
8 v2[k − 1] = 1 e34 ≤ −4.845 15.3% 96.2% 15.5% 0% 90.6% 72.6%
9 v2[k − 1] = 0 e51 ≤ −6.515 0% 16.7% 97.3% 15.7% 90.5% 73.5%
9 v2[k − 1] = 1 e51 ≤ −6.545 15.8% 95.7% 15.3% 0% 90.6% 72.2%
10 v2[k − 1] = 0 e52 ≤ −6.515 0% 15.9% 97.1% 15.8% 90.8% 73.2%
10 v2[k − 1] = 1 e52 ≤ −6.505 16.5% 97.2% 16.3% 0% 90.7% 73.2%
11 v2[k − 1] = 0 e53 ≤ −6.515 0% 16.2% 97.2% 17.9% 90.8% 72.8%
11 v2[k − 1] = 1 e53 ≤ −6.535 16.4% 96.3% 15.6% 0% 90.7% 72.5%
12 v2[k − 1] = 0 e54 ≤ −6.525 0% 14.8% 96.4% 16.5% 91.1% 72.3%
12 v2[k − 1] = 1 e54 ≤ −6.565 14.8% 94.9% 15.0% 0% 90.3% 71.9%
13 v2[k − 1] = 0 e55 ≤ −6.515 0% 18.0% 97.0% 16.3% 89.8% 73.5%
13 v2[k − 1] = 1 e55 ≤ −6.485 17.9% 97.7% 17.5% 0% 90.3% 73.4%
14 v2[k − 1] = 0 e56 ≤ −6.565 0% 14.5% 94.4% 13.8% 90.3% 71.6%
14 v2[k − 1] = 1 e56 ≤ −6.515 16.2% 96.8% 17.3% 0% 90.0% 73.2%
15 v2[k − 1] = 0 e57 ≤ −6.525 0% 15.9% 96.5% 15.5% 90.6% 72.9%
15 v2[k − 1] = 1 e57 ≤ −6.505 17.4% 97.2% 17.0% 0% 90.3% 73.1%
16 v2[k − 1] = 0 e42 ≤ −5.585 0% 14.4% 96.3% 14.9% 91.2% 72.5%
16 v2[k − 1] = 1 e42 ≤ −5.565 16.2% 97.1% 15.5% 0% 91.0% 73.0%

19

17 v2[k − 1] = 0 e43 ≤ −5.575 0% 13.8% 95.6% 16.0% 91.2% 71.7%
17 v2[k − 1] = 1 e59 ≤ −6.545 15.3% 96.3% 15.0% 0% 90.9% 72.6%
18 v2[k − 1] = 0 e60 ≤ −6.515 0% 16.8% 96.5% 16.8% 90.2% 72.8%
18 v2[k − 1] = 1 e60 ≤ −6.535 15.7% 96.6% 15.9% 0% 90.6% 72.9%
19 v2[k − 1] = 0 e61 ≤ −6.515 0% 16.5% 96.9% 17.5% 90.5% 72.8%
19 v2[k − 1] = 1 e61 ≤ −6.535 16.5% 96.3% 15.7% 0% 90.6% 72.5%
20 v2[k − 1] = 0 e62 ≤ −6.535 0% 16.2% 96.5% 15.6% 90.4% 72.9%
20 v2[k − 1] = 1 e46 ≤ −5.485 15.1% 96.5% 16.0% 0% 90.5% 73.0%
21 v2[k − 1] = 0 e63 ≤ −6.515 0% 16.4% 97.2% 16.5% 90.6% 73.2%
21 v2[k − 1] = 1 e47 ≤ −5.455 16.0% 97.3% 15.7% 0% 91.0% 73.2%
22 v2[k − 1] = 0 e48 ≤ −5.465 0% 16.4% 96.6% 16.7% 90.4% 72.8%
22 v2[k − 1] = 1 e48 ≤ −5.445 17.7% 97.4% 18.1% 0% 89.9% 73.4%
23 v2[k − 1] = 0 e49 ≤ −5.455 0% 17.5% 96.8% 17.7% 89.9% 72.9%
23 v2[k − 1] = 1 e49 ≤ −5.475 16.0% 96.0% 16.4% 0% 90.1% 72.6%
24 v2[k − 1] = 0 e50 ≤ −5.485 0% 14.1% 96.1% 15.7% 91.3% 72.1%
24 v2[k − 1] = 1 e50 ≤ −5.465 15.5% 96.9% 16.3% 0% 90.5% 73.2%
25 v2[k − 1] = 0 e51 ≤ −5.455 0% 16.0% 97.2% 16.7% 90.8% 73.0%
25 v2[k − 1] = 1 e51 ≤ −5.465 16.4% 96.9% 16.2% 0% 90.6% 73.0%
26 v2[k − 1] = 0 e3 ≤ −8.635 0% 8.3% 98.2% 8.8% 95.0% 73.6%
26 v2[k − 1] = 1 e3 ≤ −8.605 9.2% 98.6% 8.7% 0% 95.0% 73.9%
27 v2[k − 1] = 0 e5 ≤ −6.515 0% 15.7% 96.1% 16.9% 90.5% 72.3%
27 v2[k − 1] = 1 e5 ≤ −6.525 15.8% 96.5% 14.8% 0% 91.1% 72.6%
28 v2[k − 1] = 0 e17 ≤ −8.995 0% 15.9% 100% 15.9% 92.0% 75.0%
28 v2[k − 1] = 1 e17 ≤ −8.995 16.5% 100% 17.5% 0% 91.2% 75.3%
29 v2[k − 1] = 0 e7 ≤ −6.525 0% 16.2% 96.8% 15.6% 90.6% 73.1%
29 v2[k − 1] = 1 e7 ≤ −6.535 16.3% 96.1% 15.8% 0% 90.5% 72.4%
30 v2[k − 1] = 0 e8 ≤ −6.515 0% 15.7% 97.3% 15.7% 91.0% 73.3%
30 v2[k − 1] = 1 e8 ≤ −6.535 16.9% 96.3% 15.6% 0% 90.7% 72.3%
31 v2[k − 1] = 0 e9 ≤ −6.505 0% 16.8% 97.3% 17.1% 90.5% 73.2%
31 v2[k − 1] = 1 e9 ≤ −6.525 15.8% 96.3% 16.3% 0% 90.3% 72.8%
32 v2[k − 1] = 0 e58 ≤ −5.485 0% 15.6% 96.6% 16.5% 90.8% 72.6%
32 v2[k − 1] = 1 e10 ≤ −6.515 16.6% 97.4% 16.4% 0% 90.7% 73.3%
33 v2[k − 1] = 0 e59 ≤ −5.495 0% 14.7% 96.3% 16.0% 91.1% 72.3%
33 v2[k − 1] = 1 e11 ≤ −6.525 16.7% 96.7% 16.3% 0% 90.5% 72.8%
34 v2[k − 1] = 0 e12 ≤ −6.535 0% 15.6% 96.8% 16.0% 90.8% 72.8%
34 v2[k − 1] = 1 e60 ≤ −5.485 17.0% 96.6% 15.9% 0% 90.7% 72.6%
35 v2[k − 1] = 0 e61 ≤ −5.495 0% 15.0% 96.2% 15.4% 90.9% 72.5%
35 v2[k − 1] = 1 e61 ≤ −5.495 14.8% 96.0% 16.0% 0% 90.3% 72.8%
36 v2[k − 1] = 0 e14 ≤ −6.555 0% 15.3% 95.6% 15.7% 90.5% 72.1%
36 v2[k − 1] = 1 e14 ≤ −6.525 17.6% 96.9% 17.8% 0% 89.8% 73.1%
37 v2[k − 1] = 0 e15 ≤ −6.565 0% 14.9% 95.3% 15.1% 90.6% 72.0%
37 v2[k − 1] = 1 e63 ≤ −5.485 16.3% 96.4% 15.9% 0% 90.5% 72.6%
38 v2[k − 1] = 0 e16 ≤ −6.535 0% 16.3% 97.0% 16.0% 90.6% 73.1%
38 v2[k − 1] = 1 e16 ≤ −6.565 14.6% 96.3% 15.1% 0% 90.9% 72.8%
39 v2[k − 1] = 0 e16 ≤ −8.995 0% 19.4% 93.0% 20.3% 87.5% 70.7%
39 v2[k − 1] = 1 e16 ≤ −8.985 18.7% 94.0% 19.1% 0% 88.0% 71.5%
40 v2[k − 1] = 0 e2 ≤ −3.925 0% 23.9% 90.8% 24.1% 84.5% 69.9%

20

40 v2[k − 1] = 1 e17 ≤ −6.155 23.4% 90.4% 22.4% 0% 85.1% 69.4%
41 v2[k − 1] = 0 e3 ≤ −4.195 0% 21.3% 93.3% 20.7% 86.7% 71.3%
41 v2[k − 1] = 1 e3 ≤ −4.185 21.1% 93.3% 21.9% 0% 86.4% 71.3%
42 v2[k − 1] = 0 e19 ≤ −8.995 0% 5.1% 99.4% 4.9% 97.2% 74.6%
42 v2[k − 1] = 1 e19 ≤ −8.965 5.2% 99.6% 5.4% 0% 97.1% 74.8%
43 v2[k − 1] = 0 e21 ≤ −5.995 0% 12.8% 96.6% 13.1% 92.2% 72.7%
43 v2[k − 1] = 1 e21 ≤ −5.955 13.8% 97.7% 13.7% 0% 92.1% 73.4%
44 v2[k − 1] = 0 e22 ≤ −5.815 0% 12.4% 98.6% 12.2% 93.2% 74.1%
44 v2[k − 1] = 1 e22 ≤ −5.855 11.1% 96.5% 11.4% 0% 92.7% 72.8%
45 v2[k − 1] = 0 e23 ≤ −5.765 0% 12.3% 98.1% 14.0% 93.0% 73.3%
45 v2[k − 1] = 1 e23 ≤ −5.775 12.3% 97.9% 13.3% 0% 92.4% 73.9%
46 v2[k − 1] = 0 e8 ≤ −5.415 0% 14.0% 97.0% 15.2% 91.7% 72.8%
46 v2[k − 1] = 1 e8 ≤ −5.415 14.4% 97.5% 14.5% 0% 91.7% 73.4%
47 v2[k − 1] = 0 e25 ≤ −6.165 0% 9.4% 98.7% 9.5% 94.7% 74.1%
47 v2[k − 1] = 1 e25 ≤ −6.135 10.7% 99.4% 10.5% 0% 94.5% 74.5%
48 v2[k − 1] = 0 e10 ≤ −5.435 0% 20.2% 96.2% 20.5% 88.4% 72.6%
48 v2[k − 1] = 1 e10 ≤ −5.445 19.6% 95.2% 18.7% 0% 88.7% 71.8%
49 v2[k − 1] = 0 e11 ≤ −5.495 0% 15.9% 94.8% 16.1% 89.9% 71.7%
49 v2[k − 1] = 1 e11 ≤ −5.475 16.6% 96.0% 16.2% 0% 90.2% 72.4%
50 v2[k − 1] = 0 e12 ≤ −5.495 0% 16.3% 96.2% 15.1% 90.3% 72.9%
50 v2[k − 1] = 1 e12 ≤ −5.505 15.1% 95.6% 15.6% 0% 90.3% 72.3%
51 v2[k − 1] = 0 e29 ≤ −6.535 0% 15.8% 96.4% 15.7% 90.6% 72.7%
51 v2[k − 1] = 1 e13 ≤ −5.495 15.2% 95.7% 15.7% 0% 90.3% 72.4%
52 v2[k − 1] = 0 e30 ≤ −6.535 0% 16.3% 95.9% 16.1% 90.1% 72.5%
52 v2[k − 1] = 1 e14 ≤ −5.495 15.1% 96.1% 15.6% 0% 90.6% 72.7%
53 v2[k − 1] = 0 e31 ≤ −6.555 0% 14.9% 95.1% 15.8% 90.5% 71.7%
53 v2[k − 1] = 1 e31 ≤ −6.495 17.4% 97.9% 18.3% 0% 90.0% 73.8%
54 v2[k − 1] = 0 e32 ≤ −6.375 0% 16.3% 97.2% 17.2% 90.7% 73.0%
54 v2[k − 1] = 1 e16 ≤ −5.515 13.9% 94.6% 14.1% 0% 90.6% 71.6%
55 v2[k − 1] = 0 e17 ≤ −5.285 0% 16.6% 97.9% 16.1% 90.8% 73.8%
55 v2[k − 1] = 1 e17 ≤ −5.315 14.2% 96.6% 15.4% 0% 90.8% 73.1%
56 v2[k − 1] = 0 e18 ≤ −5.255 0% 18.1% 98.2% 14.7% 90.2% 74.6%
56 v2[k − 1] = 1 e18 ≤ −5.275 15.6% 96.7% 15.1% 0% 91.1% 72.8%
57 v2[k − 1] = 0 e19 ≤ −5.255 0% 15.1% 97.5% 13.8% 91.4% 73.7%
57 v2[k − 1] = 1 e19 ≤ −5.265 15.6% 96.5% 14.3% 0% 91.4% 72.4%
58 v2[k − 1] = 0 e20 ≤ −5.275 0% 13.8% 94.6% 13.2% 90.8% 71.8%
58 v2[k − 1] = 1 e20 ≤ −5.235 15.2% 97.7% 15.9% 0% 91.1% 73.7%
59 v2[k − 1] = 0 e37 ≤ −5.815 0% 14.9% 97.4% 14.3% 91.4% 73.4%
59 v2[k − 1] = 1 e37 ≤ −5.835 13.5% 96.4% 14.7% 0% 91.1% 73.0%
60 v2[k − 1] = 0 e37 ≤ −7.985 0% 11.0% 95.6% 10.8% 92.5% 72.1%
60 v2[k − 1] = 1 e37 ≤ −7.925 13.3% 97.4% 13.6% 0% 92.1% 73.4%
61 v2[k − 1] = 0 e39 ≤ −5.545 0% 14.1% 98.4% 12.8% 92.2% 74.2%
61 v2[k − 1] = 1 e39 ≤ −5.535 14.7% 98.2% 13.0% 0% 92.7% 73.4%
62 v2[k − 1] = 0 e39 ≤ −7.085 0% 21.7% 90.8% 20.6% 85.5% 70.1%
62 v2[k − 1] = 1 e39 ≤ −7.065 21.1% 93.1% 21.9% 0% 86.3% 71.2%
63 v2[k − 1] = 0 e41 ≤ −3.935 88.8% 88.8% 90.3% 89.3% 50.9% 50.2%
63 v2[k − 1] = 1 e44 ≤ −5.095 28.3% 29.1% 29.9% 30.9% 51.2% 50.3%

21

