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Abstract. Semi-invasive fault injection attacks, such as optical fault in-
jection, are powerful techniques well-known by attackers and secure em-
bedded system designers. When performing such attacks, the selection of
the fault injection parameters is of utmost importance and usually based
on the experience of the attacker. Surprisingly, there exists no formal and
general approach on how to find such fault injection parameters. In this
work, we present a novel methodology to perform a fast characteriza-
tion of the fault injection impact on a target, depending on the possible
attack parameters. We experimentally show our methodology to be a
successful one when considering targets running DES and AES encryp-
tion. Finally, we show how deep learning can help in estimating the full
characterization on the basis of a limited number of measurements.
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learning, Metrics

1 Introduction

A secure microcontroller or smartcard should be designed in such a way that
no (or, as little as possible) secret information is leaked to the attacker and its
integrity is protected. Still, there is a type of attacks that proved to be very
powerful in the last decades and where, despite all the efforts, the attacker is
still able to obtain or modify the secret information. Such attacks are called
implementation attacks as they do not target the algorithm’s security but the
weaknesses in its implementation. Two well-known types of implementation at-
tacks are side-channel attacks (SCAs) and fault injection (FI) attacks. While
those attacks are powerful, they can be also difficult to deploy due to a large
number of choices one needs to make.

Semi-invasive attacks, a type of fault injection attacks, are widely used by
attackers as well as during security evaluations in the industry due to their
affordable and easy-to-repeat characteristics [1]. In order to make the attack
more efficient and transferable, a characterization of the target of evaluation
(TOE) is necessary as the preliminary step of evaluation. Surprisingly, there is
no formal approach to this. Manual testing on random parameter combinations is
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a common approach to get an impression of the TOE behavior but this approach
is not able to provide good coverage of the impact analysis for all the parameter
combinations when the investigation is time constrained. Exhaustive search, on
the other hand, can be a solution if a full characterization is needed but will
consume more time as a trade-off. Finally, techniques coming from the artificial
intelligence domain, like genetic algorithms, can work well but face issues like
the uncertainty of parameter selection or the high risk of damaging targets when
strong FI settings are used.

While semi-invasive attacks are powerful, they are not without limitations.
First, the tuning of the parameters that play a role in the fault definition is a
time-consuming and non-deterministic process. Using optical fault injection as
an example, the required parameters to perform evaluation are numerous: laser
pulse amplitude and width, delays (attack time interval), and scan locations.
As a complete analysis considering all possible parameters combinations is not
practical, the decisions involved in the process of the parameter selection are
usually based on intuition and personal criteria of an attacker. Additionally, due
to the differences between FI setups, the measurement results obtained from
one setup cannot be easily reproduced by another. An attacker is consequently
bound to repeatedly investigate the optimal parameters in every attack scenario,
which is not efficient or reliable. For instance, let us assume a small example
with 10 000 combinations of the fault injection parameters (100*100) out of
which 100 attack locations are selected. If each attack takes one second, 11 days
will be spent to finalize an exhaustive search, which is highly time-consuming
and could be reduced dramatically by the use of automatic tools. Finally, the
existence of countermeasures on hardware and software level can further increase
the difficulties in defining other parameters such as delays and scan locations.

In terms of parameter optimization, researchers explored for example ge-
netic [2,3] and memetic algorithms [4]. While such approaches work well for
voltage glitching or electromagnetic fault injection, laser fault injection is much
more difficult. Indeed, if the involved fault injection parameters are too strong,
there is a high chance that the target will be damaged. Additionally, the ob-
tained optimal parameters are limited to a certain fault injection setup as well
as the target under attack. Either the change of the setup or the target will
result in the change of the optimal parameters.

To standardize the characterization procedure as well as to improve the re-
producibility of the fault injection, the development of methodologies that can
ensure a proper selection of the tested parameters and the efficiency of an at-
tack is of significant interest. To speed-up the attack parameter identification
while considering the setting coverage, we propose a methodology for the fast
characterization of the fault injection settings. Our methodology consists of con-
structing the sensitivity curve, which is then used by the attacker for a proper
selection of the fault injection parameters and their assessment. To that end, we
propose two metrics, one to be used in the measurement phase and one in the
evaluation phase. Finally, we use a deep learning algorithm for the full estimation
of the characterization space on the basis of a limited number of measurements.
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Our methodology can boost the characterization process while keeping track of
useful information, which can eventually lead to 1) a better estimation of the
target behavior, 2) a proper selection of the fault injection settings, and 3) a
good reference point for future attacks.

1.1 Related Work

Fault injection is a well-researched topic already spanning the range of more
than 20 years [5,6]. Skorobogatov and Anderson introduced optical fault injec-
tion and attacked secure microcontrollers and smartcards [1]. There, the authors
presented a countermeasure against such attacks (self-timed dual-rail circuit de-
sign technique) but concluded that such attacks are the most successful smart
card perturbation attack as it is not easy to implement countermeasures. Al-
though more advanced countermeasures have been developed in the later stage,
optical FI attacks are still practical. S. Skorobogatov introduced a new type of
optical fault attacks called fault masking attacks [7]. Such attacks are aimed
at disrupting the normal memory operation through preventing changes of the
memory contents. Van Woudenberg et al. investigated optical fault injection
on secure microcontrollers and concluded that the presence of countermeasures
makes the attack more difficult but still possible [8,9]. While being very power-
ful, optical fault injection attacks are usually considered very complex due to the
high costs of equipment and the preparation of the target. More recently, Guillen
et al. presented a low-cost fault injection setup capable of producing localized
faults in modern 8-bit and 32-bit microcontrollers [10]. The authors show how
even such a low-cost setup can be used to successfully attack the Speck cipher.

When considering implementation attacks and artificial intelligence tech-
niques, most of the work concentrated on side-channel analysis. There, machine
learning and more recently deep learning techniques are playing an important
role in profiling attacks that can outperform template attacks but also break
implementations protected with countermeasures [11,12,13]. When considering
fault injection, there are several works investigating how to find fault injection
parameters with evolutionary algorithms, but to the best of our knowledge, none
of these works consider machine learning nor optical fault injection. Carpi et al.
considered the usage of evolutionary algorithms in order to find the fault injec-
tion parameters for supply voltage (VCC) glitching [2]. There, besides the evo-
lutionary algorithms approach, the authors used three more search techniques.
Next, Picek et al. extended this work by using a combination of an evolutionary
algorithm and a local search in order to characterize the search space for voltage
glitching as fast as possible [4]. Maldini et al. used a genetic algorithm for find-
ing fault injection parameters when considering electromagnetic fault injection
(EMFI) [14]. The authors attacked the SHA-3 algorithm and reported 40 times
more faulty measurements and 20 times more distinct fault measurements than
by using a random search.
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1.2 Our Contributions

In this paper, we consider optical fault injection and fast characterization of
the target behavior, which to the best of our knowledge, has not been explored
before. More precisely, we introduce a methodology for optical fault injection
that consists of:
1. New technique for searching for fault injection parameters consisting of a

fast generation of a sensitivity curve and its evaluation.
2. Two metrics that enable us to properly guide the characterization and also

assess it.
3. A novel approach based on deep learning classification that enables us to

characterize the search space on the basis of the limited number of actual
measurements.

Besides these, we also give detailed experimental results where we investigate
our methodology on the AES and DES ciphers.

This paper is organized as follows. In Section 2, we discuss fault injection
attacks, supervised machine learning, and neural networks. Next, in Section 3,
we start by introducing our notation. Afterward, we present two new metrics
we designed in order to help us better assess the performance of our attack
and how to generate/evaluate the sensitivity curve. In Section 5, we discuss our
experimental setup and results obtained after attacking a target with the AES
and DES ciphers. Finally, in Section 6, we conclude the paper and present some
future research directions.

2 Preliminaries

In this section, we first describe the fault injection attacks, where we divide
them into three types of attacks and discuss their major differences. We empha-
size semi-invasive attacks due to their high-efficiency and low-cost properties.
Subsequently, we briefly introduce the supervised learning paradigm, the gen-
eral architecture of a neural network, and then broaden such a structure to the
deep neural network. Finally, we discuss multilayer perceptron as the algorithm
of choice in our experiments.

2.1 Fault Injection Attacks

Fault injection attacks aim at retrieving information or injecting faults to the
target. Currently, many powerful techniques have been developed, all of which
can be divided into three main categories - non-invasive, semi-invasive, and in-
vasive attacks [15]. The main difference between the non-invasive and invasive
attacks is in the approach of attacking the samples. To perform an invasive at-
tack, it is required to remove at least part of the passivation layer to establish
the contact between the probes and silicon [16]. Non-invasive attacks, on the
other hand, mainly focus on investigating the settings that can be controlled
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externally [17], or passively measuring the running time, the cache behavior, the
power consumption, and/or the electromagnetic radiation of the device through
the package [18].

Semi-invasive attacks, standing in the middle of the two types of attacks dis-
cussed above, have their own properties. Similar to the invasive attacks, they
require direct access to the chip surface by removing the package, but the passi-
vation layer is kept. Still, a semi-invasive attack can be performed in a reasonably
short period of time with much less expensive equipment than the invasive at-
tacks. Finally, the skills and knowledge required to perform them also can be
easily and quickly acquired [19]. From the approach perspective, semi-invasive
attacks could be performed using a variety of tools such as IR light [20], X-
rays [1] and other sources of ionizing radiation, electromagnetic fields [21], and
body biasing [22].

2.2 Supervised Machine Learning

In the supervised learning paradigm, the goal is to learn a mapping f , such that
f : X → Y, given a training set of N pairs (xi, yi). Here, for each example x,
there is a corresponding label y, where y ∈ Y. This phase is commonly known
as the training phase. The function f is an element of the space of all possible
functions F . Once the function f is obtained, the testing phase starts where the
goal is to predict the labels for new, previously unseen examples. In the case
that Y takes values from a finite set (discrete labels), we conduct classification,
while if the labels are continuous, we conduct regression.

2.3 Neural Networks and Deep Learning

A neural network is an interconnected assembly of simple processing elements,
units or nodes, whose functionality is based on the biological process occurring
in the brain [23]. In general, a neural network consists of three blocks: an input
layer, one or more hidden layers, and output layer, whose processing ability is
represented by the strength (weight) of the inter-unit connections, learning from
a set of training patterns from the input layer.

In order to improve computation ability, a standard approach is to add hidden
layers to build a deep neural network. An example of the deep neural network
is shown in Figure 1. Besides the input and output layers, two hidden layers are
present in the network. With the help of multiple layers, a deep neural network
is able to map complicated low-level details to high-level features progressively.
Thus, deep neural networks are able to make a proper estimation of the output,
where this adaption process is referred to as deep learning.

In this paper, we use a multilayer perceptron (MLP) algorithm. MLP is a
feed-forward neural network that maps sets of inputs onto sets of appropriate
outputs. It consists of multiple layers of nodes in a directed graph, where each
layer is fully connected to the next one. Each node in one layer connects with a
certain weight w to every node in the following layer. The multilayer perceptron
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algorithm consists of at least three layers: one input layer, one output layer, and
one hidden layer. Those layers must consist of non-linearly activating nodes [24].

Input Layer � �³ Hidden Layer � �� Hidden Layer � �� Output Layer � �¹

Fig. 1: An example of deep neural network with 2 hidden layers and 8 neurons
per hidden layer (created with NN-SVG [25]).

3 Fast Characterization Methodology

A reliable characterization methodology can be used to obtain a quick impres-
sion of the influence caused in the target for a different combination of attack
parameters. An attacker will use the outcome to better choose the settings to
perform the attack in a later stage. However, there are several obstacles to build
such a characterization methodology:
1. How to quantify the effect of the FI settings?
2. How to obtain a characterization of the impact that can be generated in a

short amount of time?
3. How to map the behavior of the target to the characterization?

The solutions to these problems are summarized with a work-flow shown in
Figure 2. In general, one can observe that the attacker can divide his actions
into two separate phases: 1) fast characterization of the target and 2) fault
injection procedure. Our methodology concentrates on the fast characterization
part as the fault injection procedure stems from it. In order to characterize the
target in a fast and correct way, we first generate the sensitivity curve (described
in Section 4). Next, we perform an evaluation of the measurements to further
investigate the target behavior with different FI settings.

It should be noted that the attack location and time delay to inject the fault
should be defined in advance, as they are initial conditions for the sensitivity
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Fig. 2: An attack work-flow with proposed fast characterization methodology.

curve generation. The attack location, for instance, can be delimited by reverse
engineering techniques (i.e., IR-imaging) and a good understanding of the tar-
geted fault model, while the Simple Power Analysis (SPA) can be used to define
the attack time window. However, such analyses are out of the scope of this
paper.

In this section, we start by introducing the notation we use when discussing
the behavior of targets. Next, we present two different metrics that enable us to
better evaluate the performance of a fault injection process. One of the metrics
(Level of influence) measures the fault injection process and we use it in the
proposed search algorithm while the other one (Impact Score) is used to eval-
uate the results of the fault injection. Note that throughout the paper, we use
interchangeably the notions target, a target of evaluation, and its abbreviation
TOE.

3.1 Notations

Fault injection attacks impact the behavior of the target, which can be no-
ticed when its response to a target command deviates from the expected one.
Those faulty responses can be used to categorize them into verdict classes that
correspond to the effectiveness of the measurement (i.e., attack attempt). The
possible classes for each measurement are listed in the ascending order based on
their relevance for the attacker.
1. NORMAL: TOE behaves as expected.
2. RESET: TOE resets.
3. MUTE: TOE stops communication.
4. CHANGING: TOE returns unexpected values.
5. SUCCESS: TOE returns abnormal but exploitable values.

Note that the proposed methodology can be applied to other fault injection
methods that follow the assumption that the strength of the setting is positively
correlated to the level of impact on the target. In this paper, we use only optical
FI techniques for the experiments. The main attack parameters - the laser input
voltage and laser pulse width are denoted with upper-case letters X and Y, while
their realizations are given in the lower-case letters x and y. More precisely, the
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search boundaries for these two FI settings are Xmin/Xmax and Ymin/Ymax.
The search steps are represented by Xstep and Ystep.

3.2 Metrics Definition

Level of Influence The Level of Influence (LOI) represents the percentage of
responses that are different from the expected (NORMAL response) in the total
number of attempts, which can be used to quantify the impact of the attack
parameter set. With lower laser settings, for example, the fault injection is less
effective and the TOE tends to behave normally, thus having a low influence. In
contrast, by increasing the laser settings, there is a higher possibility the TOE
is influenced by the injected faults, which will eventually increase its influence
in the target behavior. The LOI metric can be calculated as follows:

LOI = 1− Quantitynormal∑class
Quantityclass

. (1)

Here, Quantitynormal represents the number of NORMAL responses while Quantityclass
represents the number of the specific class occurrences during the whole mea-
surement process.

Impact Score The outputs of the target under fault injection are divided into
several classes (see Section 3.1). To further clarify the effect of each FI settings
and to optimize the parameter selection in the later attack phase, we assign
the weights to each class based on its significance and eventually come up with
a score based on each measurement results. As this score directly reflects the
effects of the FI with respect to the target behavior, we name this metric Impact
Score (IS).

The aim of the Impact Score metric is to show the relevance of the mea-
surements that were acquired during the generation of the sensitivity curve. By
assigning different weights to the different classes obtained, an attacker can iden-
tify if some of the parts of the curve are more relevant and could potentially lead
to a successful manipulation.

In practice, class SUCCESS has the highest priority of all the classes and is
assigned the largest weight. In contrast, the class NORMAL (indicating the TOE
behaves normally) is linked to a small weight. The IS metric can be calculated
as:

IS =

∑class
Quantityclass ·Weightclass∑class

Quantityclass
, (2)

where Weightclass represents the assigned weight for a corresponding class. In
the experiments presented in this paper, the classes SUCCESS, CHANGING,
MUTE, RESET, and NORMAL have weights 20, 10, 2, 0.5, and 0, respectively.
The weights are adjusted based on the experience of the attacker and the ratio-
nale behind is defined after an assessment of the hypothetical fault model that
leads to such responses.
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4 Sensitivity Curve

In this section, we start by introducing the concept of the sensitivity curve. Af-
terward, we discuss how to generate such a curve by first finding the “golden”
point and then applying the sensitivity curve search algorithm. Finally, we dis-
cuss how to evaluate the sensitivity curve through Impact Score or deep learning
classification process.

4.1 Setting

The sensitivity curve consists of a set of fault injection settings that cause a
similar impact on the target. While it is possible that the sensitivity curve is
not decreasing monotonically as shown in Figure 3, still, regardless of its charac-
teristics, the sensitivity curves act as contour lines in the parametric coordinate
system, which can be used to estimate the quantity of impact with different FI
settings.

Xmin
Ymin

Ymax

Xmax

Fig. 3: An example of the sensitivity curves with different LOIs. From here, the
normal and abnormal behaviour of the TOE can be estimated.

As shown in Figure 3, with sensitivity curves one can estimate that the in-
jected fault (X and Y axes represents the FI settings) can be ignored at the left
side of the curve with 5% LOI; while the target will behave abnormally at the
right side of the curve with 90% LOI. Moreover, the figure clearly presents mul-
tiple possible selections of the fault injection settings that can lead to the same
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LOI. For instance, to achieve 50% of the LOI, besides choosing the parameters
in the middle of the curve, an attacker can achieve a similar result by selecting
smaller x and larger y or vice versa. Indeed, the additional information from
the sensitivity curves provides the attacker multiple choices in setting selection:
although the LOI is the same, appropriate selection of the FI settings based on
the attack scenarios may lead to a more powerful attack. To conclude, the input
of the sensitivity curve delimits the number of the parameter combinations to
be examined, thus increasing the characterization efficiency. At the same time,
with the help of the sensitivity curve, an attacker is able to get a rough overview
of the target behavior and make a proper selection of the FI parameters.

4.2 Sensitivity Curve Generation

We use the sensitivity curve for target characterization. Compared with other
approaches, the advantages of the sensitivity curve-based characterization are
the following:
1. The sensitivity curve defines the natural boundary between the “weak” and

“strong” FI settings and thus can be a clear reference for the parameter
selection.

2. Since the LOI of a sensitivity curve is defined by an attacker, this resolves
the problem of an FI setting selection through a genetic algorithm or ran-
dom search. While those methodologies perform well for voltage glitching
and EMFI, we observed that in optical fault injection, due to a higher risk
of damaging the target, one needs to be more conservative in selecting FI
settings as, for instance, a too strong pulse will damage the target.

3. The searching of the sensitivity curve can be more time-efficient, as it is
achieved with fewer measurements compared to the other methodologies.
In general, the searching of the sensitivity curve relies on iterative performing

of measurements and calculating the statistics to decide the next setting to be
tested until the end condition is fulfilled. The statistics (LOI) that are calculated
are based on the types of output recorded in each setting combinations. To make
a clear description, the search algorithm is split into two phases: first, determine
the “golden point” and then search for the entire curve.

Finding the “Golden Point” The golden point (Xgolden, Ygolden) represents
the first obtained FI setting that targets the LOI (Ctarget) defined by an attacker
and acts as the reference for the curve searching in the later step. To find such
a point, we use the diagonal search algorithm. The diagonal search algorithm
is performed by increasing the values of the FI parameters simultaneously with
a fixed step as shown in Figure 4. Note how the search progresses in a number
of steps (in our example, 6) before reaching a point on the sensitivity curve.
It is worth to note that the diagonal search cannot always guarantee to find
the FI settings with exact Ctarget value; in many cases, the LOI can exceed the
target when performing the search. Therefore, we introduce the Ctolerance to
broaden the range search of the golden point: if the LOI of the tested FI setting
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is within the range of Ctarget±Ctolerance, the applied FI setting can be counted
as the golden point. In cases when the current LOI exceeds the maximum range
(Ctarget+Ctolerance) but no golden point is observed, a binary search is performed
to trace back to lower settings and search for the golden point within the range
of tolerance.

Ymin
Xmin

Ymax

Xmax

Fig. 4: A demonstration of the diagonal search. The golden point represents the
first obtained FI setting with the target LOI.

Curve Searching Once the golden point is obtained from the diagonal search,
the search for the sensitivity curve can be executed. As discussed in Section 4.2,
the golden point is found in a diagonal route, but there are still areas on its
left and right-hand side to be characterized. Therefore, to localize the sensitivity
curve in the whole parameter plane, the curve search is performed in both direc-
tions individually, while they start with the golden point. As the search strategies
for both directions are the same, the search algorithm to the left (Xmin) direc-
tion is given in Algorithm 1. Curve search on the right-hand side can be realized
by adjusting the while condition as well as the x increment step.

The function DoTest(x, y) performs a measurement with a combination of
the FI setting x and y. BinarySearch(a, b) represents the binary search in the
range from a to b. The main idea of Algorithm 1 is 1) to run in an iterative
manner the measurements and 2) calculating the statistics to decide the next
couple of settings. Specifically, by varying x while keeping the y obtained by
the previous steps, the algorithm is able to keep track of the changing tendency
of the target sensitivity curve. Moreover, the usage of the parameters from the
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Algorithm 1 Sensitivity curve search.

1: function searching left(Xgolden, Ygolden, Ctarget, Ctolerance)
2: data← []
3: x← Xgolden

4: y ← Ygolden . Initialize (x, y)
5: while x−Xstep > Xmin do . Search from the left plane
6: x← Xprev −Xstep

7: impactRate← DoTest(x, y) . Test with setting (x, y)
8: if impactRate < Ctarget + Ctolerance then
9: y ←BinarySearch(y, Ymax) . Search with stronger settings

10: else if impactRate > Ctarget − Ctolerance then
11: y ←BinarySearch(y, Ymin) . Search with weaker settings

12: data← data+ [x, y, impactRate]

13: return data . Return all of the tested data

previous test delimits the range for the binary search, thus accelerating the whole
characterization procedure.

Instead of using a fixed value, Xstep should be adjustable for different condi-
tions. For instance, increasing Xstep to accelerate the characterization when the
slope of the sensitivity curve is close to zero while reducing its value to evaluate
more FI settings when the slope is getting higher. To realize this functionality,
a new variable Ydiff , which stands for the value difference between the current
y and the previous y (Yprev), is added to the algorithm. The pseudocode of the
step adjustment function is shown in Algorithm 2.

Algorithm 2 Step adjustment

function adjust xstep(Xstep, Ystep, Yprev, y)
2: Ydiff ← absolute(Yprev − y)

if Ydiff <= Ystep then
4: return Xstep * 2

else
6: return Xstep / 2

4.3 Sensitivity Curve Evaluation

The sensitivity curve provides the attacker with a quick impression of the target
behavior (through the LOI metric) with different FI settings. In order to further
benefit from the performed measurements, the attacker can use techniques to
visualize the data differently with the Impact Score metric in order to obtain
an overview of the different setting relevance in FI. Additionally, he can even
estimate the non-measured areas with a machine learning algorithm.
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Impact Score Evaluation As described in Section 4.2, the generation of the
sensitivity curve is based on searching the FI settings with a similar LOI. Al-
though the target behavior can be estimated based on the curve, it is difficult
to define the optimal parameters which can lead to more significant responses.
Indeed, LOI only distinguishes between NORMAL and non-NORMAL response.
To fully evaluate the performance of one setting, the non-NORMAL response
should be additionally classified based on its significance.

Taking advantage of its wide setting selection, the sensitivity curve is a good
candidate for evaluating the effectiveness of the FI. Therefore, the curve is re-
generated with the IS metric to obtain the optimal setting for fault injection.
Specifically, by calculating IS for each parameter combination, the relevance of
the measurement can be quantified: a larger Impact Score represents the exis-
tence of higher-priority responses, indicating that the corresponding setting is
more preferable for the later fault injection attack.

Deep Learning-based Impact Estimation Various advanced techniques can
be used to help the attacker to estimate the impact in the non-measured areas.
Here, a deep learning-based algorithm is proposed for this task. In many cases,
the existence of countermeasures in hardware and software level increases the
difficulties in predicting the impact of the FI with different settings. To map the
complex relationship between input (FI settings) and output (LOI), machine
learning algorithms could be used to perform a rough estimation of the impact
that can be caused in the target by using the measurements performed during the
sensitivity curve search. Specifically, the cross-entropy is implemented as the loss
function to classify the discrete data from the sensitivity curve. By minimizing
the loss function during iterations, the neural network is able to estimate the
LOI with different FI setting, whose accuracy is further evaluated by calculating
the offset between the predicted and measured data. In practice, the assessment
of attacking the non-measured area is a part of the evaluation and comes from
the attacker’s decision.

As a remark, the accuracy of the impact estimation highly depends on the
quantity as well as the quality of the training data. A sensitivity curve, there-
fore, should contain sufficient meaningful data in describing the impact of the
TOE with different FI settings for an accurate impact estimation. For exam-
ple, by generating an additional sensitivity curve with different LOI, larger data
collection and better setting coverage can be achieved at the same time. In our
experiments, we experienced that a deeper and smaller neural network consis-
tently outperformed a shallower but bigger one in terms of impact estimation:
by better tuning the network architecture, it is possible to obtain better results
with a lower prediction error.
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5 Results

In this section, we start by introducing our experimental setup. Then, we present
the results obtained for DES and AES settings using the presented fast charac-
terization methodology.

5.1 Experimental Setup

In all our experiments, we use a target based on high-performance 32-bit mi-
crocontroller realized in Complementary Metal Oxide Semiconductor (CMOS)
technology. No fault injection specific countermeasures are implemented at the
hardware level. For the experimental purpose, we present two different attack
scenarios on software implementation of cryptographic algorithms, one target-
ing the Data Encryption Standard (DES) cipher and another one targeting the
Advanced Encryption Standard (AES) cipher. In both cases, we present a fast
characterization that could be used by an attacker to perform the attack in a
later stage with the aim to obtain faulty ciphers that can be used to run a DFA
attack [26].

The FI setup used to perform the measurements is an optical fault injection
setup [27] using an IR light long-pulse laser. The parameters used during the
search algorithm are given in Table 1 while the MLP hyper-parameters for the
LOI prediction are in Table 2.

Parameter Value

Laser Pulse Width [1, 50] µs in a step of 1 µs
Laser Input Voltage (Pulse Amplitude) [0.05, 0.6]V in a step of 0.01 V

Target LOI 0.5
Searching Tolerance 0.05

Table 1: Parameters for the search algorithm.

Parameter Value

Architecture [2, 8, 6, 6, 5, 1]
Activation 4 ReLU + 1 Sigmoid

Learning Rate (α) 0.2
Decay Rate α * 0.97 per 1 000 epochs

Regularization L2
Iterations 50 000

Table 2: MLP hyper-parameters.
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5.2 Characterization for DES Encryption Attack

The DES encryption process is the target execution in this attack scenario. The
attack time interval is delimited with SPA (Simple Power Analysis) and the
target locations of the chip are selected by the attacker with a proper under-
standing of the targeted fault model (e.g., the building blocks with the code
stored). These steps remain out of the scope for the proposed methodology. The
fast characterization is launched to assess the FI settings that might potentially
lead to a successful attack (i.e., faulty ciphertexts).

Three steps are performed during the characterization procedure: first, gener-
ate the sensitivity curve, followed by the impact estimation using a deep learning
algorithm, and the curve regeneration with the Impact Score metric. During the
first step, all the measurements are acquired. The second and third steps belong
to the evaluation phase. The generation of the sensitivity curve and the impact
estimation using deep learning are based on the LOI metric while the third step
is based on the IS metric.

Level of Influence for DES The characterization result based on the proposed
algorithm is depicted in Figure 5a. For comparison purpose, a full-characterization
was performed and the LOI graph of an exhaustive scan with a full range of set-
tings is shown in Figure 5b. The color of the dots represents the value of the
LOI metric. The test run of Algorithm 1 to perform the fast characterization (59
measurement points) was obtained within 2 hours while the full-characterization
(3 080 measurement points) took more than 5 days of measurement time. As a
remark, since the time consumption for each measurement depends on the type
of impact that is caused, the duration for the exhaustive measurement is longer
than expected.
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(b) LOI: exhaustive scan.

Fig. 5: LOI distribution with different fault injection settings.

From the result, the outline of the sensitivity curve, which acts as the bound-
ary between “week” and “strong” settings, can be estimated with the measured
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data. Based on this curve, the impact of the target on different FI settings can
be estimated. Besides that, additional information can be extracted from the
graph:

1. FI becomes effective when the laser input voltage is larger than 0.2 V.
2. Similar LOI can be achieved with completely different setting combinations.
3. Laser input voltage is more influential in FI than the laser pulse width.

The usage of this information depends on the attack scenario. For example,
if the attack scenario is to skip an instruction execution, short pulses might be
preferred; whereas to corrupt a memory write (long operation), longer pulses
could be more appropriated. Nevertheless, an attacker can benefit from these
inputs in the next phase of the attack.

The proposed MLP with 6 hidden layers structure (as described in Table 2)
is used to predict the LOI with all FI setting combinations, trained by the data
obtained during the characterization process. In this attack scenario, 59 training
set pairs, with two FI settings as features and Level of Interest values as labels,
are collected from the sensitivity curve. As shown in Figure 6a, the prediction
result matches the measured data with the majority of the setting combinations.
The prediction error plotted in Figure 6b is also close to the sensitivity curve:
the maximum error is 0.14 and the average error is 0.009. The prediction results
indicate the capability of deep learning in predicting LOI with a limited number
of training sets, which offers a proper estimation of the target behavior in less
time than a full-characterization.
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(a) Prediction result using a five-layer neu-
ral network.
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(b) Error plot when comparing with the
full-characterization measured data.

Fig. 6: Prediction result with a deep neural network.

Impact Score for DES In order to further investigate target behavior, Im-
pact Scores are calculated (Figure 7a) based on the measurements performed
during the generation of the sensitivity curve. Note that the IS results from the
exhaustive scan is shown as the reference (Figure 7b).
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(a) IS: characterization.
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(b) IS: exhaustive scan.

Fig. 7: IS distribution with different fault injection settings.

From Figure 7a, a higher IS can be obtained with shorter laser pulse width
but stronger input voltage, indicating the high probability in obtaining more
significant output in this region. Indeed, this assumption can be proved by Fig-
ure 7b with Impact Scores for all setting combinations. Although the IS-based
sensitivity curve only covers a few of the setting combinations and the untested
optimal settings could still exist, it provides a general layout for the settings
with better relevance from the measurements performed, which can eventually
lead to a better parameter selection for a later attack stage.

5.3 Characterization for AES Encryption Attack

In order to verify the proposed methodology in different conditions, we perform
an additional FI experiment with another laser setup of the same type. This
experiment aims to manipulate the encryption of AES software implementation.
Similar to the previous experiment, SPA techniques are used to delimit the
attack time interval and the building block to be targeted is selected with a
good understanding of the fault model.

Level of Influence for AES The sensitivity curve is shown in Figure 8a
(47 measurements) while its full-characterization counterpart is presented in
Figure 8b (3 800 measurements). When comparing this characterization result
with the one targeting the DES encryption (Figure 5a), it can be observed that
different settings need to be used to obtain comparable LOIs.

The same MLP architecture is used to map the LOI with all the FI setting
inputs (Figure 9a) from the data measured during the sensitivity curve genera-
tion. When comparing the results with the full-characterization (Figure 8b), we
can observe that the LOI tendency is properly estimated. To evaluate the predic-
tion error, the difference between the two is plotted in Figure 9b. Although the
error can be further delimited by tuning the hyper-parameters of the network
architecture or increasing the number of measurements during the sensitivity
curve generation, the potential of the MLP in the LOI estimation is verified.
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(a) LOI: characterization.
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(b) LOI: exhaustive scan.

Fig. 8: LOI distribution with different fault injection settings.
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(a) Prediction result.
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(b) Error plot when comparing with the
full-characterization measured data.

Fig. 9: Prediction result with a deep neural network for AES encryption.

Impact Score for AES The IS-based sensitivity curve is shown in Figure 10a
while the full characterization reference is presented in Figure 10b. Similar to
the IS distribution shown in Figure 7a, the fault injection can be more effective
with short laser pulse widths for AES encryption (Figure 10a), as the points with
high IS are accumulated at the bottom-right of the graph. Taking Figure 10b as
the reference, the IS-based sensitivity curve is able to cover the overall target
behavior effectively with a limited amount of data, thus proving its capability
in settings optimization in a short amount of time.

6 Conclusions and Future Work

In this paper, we present a novel methodology for optical fault injection at-
tacks that improves the identification (characterization) phase of an attack. This
methodology consists of a fast generation of the sensitivity curve and a proper
evaluation of the Level of Influence and Impact Score metrics. Instead of test-
ing FI setting conditions randomly, we start by generating the sensitivity curve,



19

0.1 0.2 0.3 0.4 0.5 0.6
Laser input voltage (V)

0

10

20

30

40

50

La
se

r p
ul
se

 w
id
th
 (u

s)

0

1

2

3

4

5

6

7

8

(a) IS: characterization.
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(b) IS: exhaustive scan.

Fig. 10: IS distribution with different fault injection settings for AES encryption.

which happens in two phases. First, we find the golden point, which is close to
the target LOI and then, we depict the rest of the curve using this point as the
reference. Finally, we show how deep learning techniques can be used in fault
injection attacks characterization phase where we estimate the full search space
by using only a limited number of measurements. Our methodology can be used
not only for the fast characterization for a single target/setup but also as a
reference to transfer laser settings causing successful attacks to different setups.

In future work, we plan to investigate the advantages and limitations of the
fast characterization with different fault injection methods, setups, targets, and
initial conditions such as temperature and supply voltage. Additionally, we aim
to further explore the influence of the neural network hyper-parameter tuning
in order to improve the estimation of a full target characterization.

References

1. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In Kaliski,
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