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Abstract. Semi-invasive fault injection attacks are powerful techniques
well-known by attackers and secure embedded system designers. When
performing such attacks, the selection of the fault injection parameters
is of utmost importance and usually based on the experience of the
attacker. Surprisingly, there exists no formal and general approach to
characterize the target behavior under attack. In this work, we present a
novel methodology to perform a fast characterization of the fault injec-
tion impact on a target, depending on the possible attack parameters. We
experimentally show our methodology to be a successful one when tar-
geting different algorithms such as DES and AES encryption and then
extend to the full characterization with the help of deep learning. Fi-
nally, we show how the characterization results are transferable between
different targets.
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1 Introduction

A secure microcontroller or smartcard should be designed in such a way that
no (or, as little as possible) secret information is leaked to the attacker and
its integrity is protected. Still, there is an attack type that proved to be very
powerful in the last decades and where, despite all the efforts, the attacker can
obtain or modify the secret information. Such attacks are called implementation
attacks as they do not target the algorithm’s security but the weaknesses in
its implementation. Two well-known types of implementation attacks are side-
channel attacks (SCAs) and fault injection (FI) attacks. While those attacks are
powerful, they can be also difficult to deploy due to a large number of choices
one needs to make.

Semi-invasive attacks, a type of fault injection attacks, are widely used by
attackers as well as during security evaluations in the industry due to their
affordable and easy-to-repeat characteristics [1]. While semi-invasive attacks are
powerful, they are not without limitations. First, the tuning of the parameters
that play a role in the fault definition is a time-consuming and non-deterministic
process. Using optical fault injection as an example, the required parameters to
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perform evaluation are numerous: laser pulse amplitude, laser pulse width, spot
size, delays (attack time interval), and scan locations. As a complete analysis
considering all possible parameter combinations is not practical, the decisions
involved in the process of the parameter selection are usually based on intuition
and personal criteria of an attacker. Additionally, due to the differences between
FI setups, the measurement results obtained from one setup cannot be easily
reproduced by another. An attacker is consequently bound to repeatedly search
for the optimal parameters in every attack scenario, for every sample, and setup.
Finally, the existence of countermeasures on both hardware and software levels
can further increase the difficulties in defining parameters such as delays and
scan locations.

To solve these problems, a characterization of the target of evaluation (TOE)
for the optimal parameter searching is necessary as the preliminary step of evalu-
ation. Surprisingly, there is no formal approach for doing this. Manual testing on
parameter combinations based on the attacker’s experience is a common method
to get an impression of the target behavior. Still, this approach is not able to
provide good coverage of the impact analysis for all the parameter combinations
when the investigation is time-constrained. For example, the combinations of
a shorter laser pulse width and stronger laser pulse amplitude could be more
effective in manipulating some short execution of the command such as integrity
check; in contrast with the opposite parameter combinations, long execution,
such as Flash writing, would be more easily interfered. Unfortunately, these op-
timal parameters cannot be covered by manual tests. Exhaustive search, on the
other hand, can be a solution if a full characterization is needed but will re-
quire more time as a trade-off. Finally, techniques coming from the artificial
intelligence domain could work well but face issues like the uncertainty of pa-
rameter selection. In terms of the parameter optimization, researchers explored
techniques such as genetic [2, 3] and memetic algorithms [4] to improve the op-
timization approach. Although such approaches work well for voltage glitching
or electromagnetic fault injection (EMFI), they are less universal for other fault
injection approaches such as optical fault injection. More precisely, if the in-
volved fault injection parameters are too strong, there is a high chance that the
target will be damaged. Additionally, the obtained optimal parameters are lim-
ited to a certain fault injection setup as well as the sample under attack. Either
the change of the setup or the sample will result in the change of the optimal
parameters.

To speed-up the attack parameter identification while considering the cover-
age of the parameters, the development of strong and reproducible methodologies
is of significant interest. Such methodologies should ensure a proper selection of
the tested parameters and the effectiveness of an attack for various fault injec-
tion attack methods. Unfortunately, to the best of our knowledge, previous works
only focused on optimizing the parameter selection for FI attacks. The method-
ology for the TOE characterization is still missing. Therefore, in this paper, we
propose a methodology for the fast characterization of fault injection settings.
The methodology is based on the construction of a sensitivity curve, which is
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then used by the attacker for a proper selection of the fault injection parameters
and their assessment. To that end, we propose two metrics, one to be used in the
measurement phase and one in the evaluation phase. Next, we use deep learning
for the full estimation of the characterization space based on a limited number of
measurements. Finally, we show that the obtained characterization results can
be transferred to different samples with the same target. Throughout the paper,
we use optical fault injection to perform the attack because of its popularity and
difficulty in terms of characterization. Nevertheless, our characterization method
is compatible with other semi-invasive fault injection approaches.

In conclusion, the methodology we propose can boost the characterization
process while keeping track of useful information. This can eventually lead to
1) a better estimation of the target behavior, 2) a proper selection of the fault
injection settings, 3) a good reference when attacking different devices, and 4)
an informative archive for future attacks.

1.1 Related Work

Fault injection is a well-researched topic already spanning a range of more than
20 years [5, 6]. Specifically, an optical fault injection attack is one of the most
powerful attacks in this domain. Skorobogatov and Anderson introduced op-
tical fault injection and attacked secure microcontrollers and smartcards [1].
There, the authors presented a countermeasure against such attacks (self-timed
dual-rail circuit design technique) but concluded that such attacks are the most
successful smartcard perturbation attacks as it is not easy to implement counter-
measures. Although more advanced countermeasures have been developed in the
later stage, optical FI attacks are still practical. S. Skorobogatov introduced a
new type of optical fault attacks called fault masking attack [7]. Such attacks are
aimed at disrupting the normal memory operation through preventing changes of
the memory contents. Van Woudenberg et al. investigated optical fault injection
on secure microcontrollers and concluded that the presence of countermeasures
makes the attack more difficult but still possible [8, 9]. Note, while being very
powerful, optical fault injection attacks are usually considered very complex due
to the high costs of equipment and the preparation of the sample. More recently,
Guillen et al. presented a low-cost fault injection setup capable of producing
localized faults in modern 8-bit and 32-bit microcontrollers [10]. The authors
showed how even such a low-cost setup can be used to successfully attack the
Speck cipher.

When considering implementation attacks and artificial intelligence tech-
niques, most of the work concentrated on side-channel analysis. There, machine
learning and more recently deep learning techniques are playing an important
role in profiling attacks that can outperform template attacks but also break im-
plementations protected with countermeasures [11–13]. When considering fault
injection, there are several works investigating how to find fault injection pa-
rameters with evolutionary algorithms, but to the best of our knowledge, none
of these works consider machine learning nor optical fault injection. Carpi et al.
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considered the usage of evolutionary algorithms to find the fault injection pa-
rameters for supply voltage (VCC) glitching [2]. There, besides the evolutionary
algorithms approach, the authors used three more search techniques. Next, Picek
et al. extended this work by using a combination of an evolutionary algorithm
and a local search to characterize the search space for voltage glitching as efficient
as possible [4]. Maldini et al. used a genetic algorithm for finding fault injection
parameters when considering electromagnetic fault injection (EMFI) [14]. There,
the authors attacked the SHA-3 algorithm and reported 40 times more faulty
measurements and 20 times more distinct fault measurements than by using a
random search.

1.2 Our Contributions

In this paper, we consider semi-invasive fault injection attacks and fast character-
ization of the target behavior, which to the best of our knowledge, has not been
explored before. More precisely, we introduce a methodology for semi-invasive
fault injection that consists of:

1. New technique for searching for fault injection parameters consisting of a
fast generation of a sensitivity curve and its evaluation, which is compatible
with different FI techniques, attack scenarios, and TOEs.

2. Two metrics that enable us to properly guide the characterization and also
assess it.

3. A novel approach based on deep learning classification that enables us to
characterize the search space based on the limited number of actual mea-
surements.

Besides these, from an attacker perspective, the use of the fast characteri-
zation method will significantly reduce the time needed to identify the optimal
attack parameters. Additionally, because the characterization method increases
the attack parameters coverage, the quality of the results will be improved and
the chance of missing the optimal parameters will be reduced. To prove the
efficiency of the proposed method, we provide detailed experimental results tar-
geting the AES and DES ciphers implemented on a secured microcontroller.
Finally, we then show that the characterization results are transferable towards
different targets of the same type.

This paper is organized as follows. In Section 2, we discuss fault injection
attacks, supervised machine learning, and neural networks. Next, in Section 3,
we start by introducing our notation. Afterward, we present two new metrics
we designed to help us better assess the performance of the attack and how to
generate/evaluate the sensitivity curve. In Section 5, we discuss our experimen-
tal setup and results obtained after attacking samples with the AES and DES
ciphers. Finally, in Section 6, we conclude the paper and present possible future
research directions.
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2 Preliminaries

In this section, we first describe the fault injection attacks, where we divide
them into three types of attacks and discuss their major differences. We empha-
size semi-invasive attacks due to their high-efficiency and low-cost properties.
Subsequently, we briefly introduce the supervised learning paradigm, the gen-
eral architecture of a neural network, and then broaden such a structure to the
deep neural network. Finally, we discuss multilayer perceptron as the algorithm
of choice in our experiments.

2.1 Fault Injection Attacks

Fault injection attacks aim at retrieving information or injecting faults to the
target. Currently, many powerful techniques have been developed, all of which
can be divided into three main categories - non-invasive, semi-invasive, and in-
vasive attacks [15]. The main difference between the non-invasive and invasive
attacks is in the approach of attacking the TOEs. To perform an invasive at-
tack, it is required to remove at least part of the passivation layer to establish
the contact between the probes and silicon [16]. Non-invasive attacks, on the
other hand, mainly focus on investigating the settings that can be controlled
externally [17], or passively measuring the running time, the cache behavior, the
power consumption, and/or the electromagnetic radiation of the device through
the package [18].

Semi-invasive attacks, standing in the middle of the two types of attacks
discussed above, have their specific properties. Similar to the invasive attacks,
they require direct access to the chip surface by removing the package, but the
passivation layer is kept. A semi-invasive attack can be performed in a reasonably
short time with much less expensive equipment than the invasive attacks. Finally,
the skills and knowledge required to perform them also can be easily and quickly
acquired [19]. From the approach perspective, semi-invasive attacks could be
performed using a variety of tools such as IR light [20], X-rays [1] and other
sources of ionizing radiation, electromagnetic fields [21], and body biasing [22].

2.2 Supervised Machine Learning

In the supervised learning paradigm, the goal is to learn a mapping f , such that
f : X → Y, given a training set of N pairs (xi, yi). Here, for each example x,
there is a corresponding label y, where y ∈ Y. This phase is commonly known
as the training phase. The function f is an element of the space of all possible
functions F . Once the function f is obtained, the testing phase starts with the
goal to predict the labels for new, previously unseen examples. In the case that
Y takes values from a finite set (discrete labels), we conduct classification, while
if the labels are continuous, we conduct regression.
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2.3 Neural Networks and Deep Learning

A neural network is an interconnected assembly of simple processing elements,
units or nodes, whose functionality is based on the biological process occurring
in the brain [23]. In general, a neural network consists of three blocks: an input
layer, one or more hidden layers, and an output layer, whose processing ability
is represented by the strength (weight) of the inter-unit connections, learning
from a set of training patterns from the input layer.

To improve computation ability, a standard approach is to add hidden layers
to build a deep neural network. An example of the deep neural network is shown
in Figure 1. With the help of multiple layers, a deep neural network can map
complicated low-level details to high-level features progressively. Thus, deep neu-
ral networks can make a proper estimation of the output, where this adaption
process is referred to as deep learning.

In this paper, we applied a commonly-used deep learning structure, multilayer
perceptron (MLP) in our methodology. MLP is a feed-forward neural network
mapping sets of inputs onto sets of appropriate outputs. It consists of multiple
layers of nodes in a directed graph, with each layer fully connected to the next
one. Each node in one layer connects with a certain weight w to every node in
the following layer. The MLP architecture consists of at least three layers: one
input layer, one output layer, and one hidden layer. Those layers must consist
of non-linearly activating nodes [24].

Input Layer � �³ Hidden Layer � �� Hidden Layer � �� Output Layer � �¹

Fig. 1. An example of deep neural network with 2 hidden layers and 8 neurons
per hidden layer (created with NN-SVG [25]). Note that it is enough to have
more than one hidden layer to consider a certain architecture as deep learning.
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3 Fast Characterization Methodology

A reliable characterization methodology can be used to obtain a quick impres-
sion of the influence caused to the target for a different combination of attack
parameters. An attacker will use the outcome to better choose the settings to
perform the attack in a later stage. However, there are several obstacles to build
such a characterization methodology:
1. How to quantify the effect of the FI settings?
2. How to obtain a characterization of the impact that can be generated in a

short amount of time?
3. How to map the behavior of the target to the characterization?
4. How to make sure that the characterization result is transferable between

different targets?
The solutions to these problems are summarized with a work-flow presented

in Figure 2. In general, one can observe that the attacker can divide his actions
into two separate phases: 1) fast characterization of the target and 2) fault
injection procedure. Our methodology concentrates on the fast characterization
part as the fault injection procedure stems from it. To characterize the target
in a fast and correct way, we first generate the sensitivity curve (described in
Section 4). Next, we evaluate the measurements to further investigate the target
behavior with different FI settings.

Fig. 2. An attack work-flow with proposed fast characterization methodology.

It should be noted that the attack location and time delay to inject the fault
should be defined in advance, as they are initial conditions for the sensitivity
curve generation. The attack location, for instance, can be inferred by reverse en-
gineering techniques (i.e., IR-imaging) and a good understanding of the targeted
fault model, while the Simple Power Analysis (SPA) can be used to define the
attack time window. However, such analyses are out of the scope of this paper.
Additionally, there are many other relevant parameters, such as the thickness of
the silicon, that can influence the sensitivity of the target. However, it is a less in-
teresting parameter in practice as it is difficult to control it precisely. In contrast,
from an attacker perspective, the simplest and the most effective parameters to
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work with are the parameters that can directly influence the strength of the
injected fault, such as laser pulse width and laser pulse amplitude for optical
fault injection. In this paper, we focus on characterizing these two parameters.

In this section, we start by introducing the notation used in this paper when
discussing the behavior of targets. Next, we present two different metrics that
enable us to better evaluate the performance of a fault injection process. One
of the metrics (Level of Influence) measures the fault injection process and we
use it in the proposed search algorithm while the other one (Impact Score) is
used to evaluate the results of the fault injection. Note that throughout the
paper, we use interchangeably the notions target, the target of evaluation, and
its abbreviation TOE.

3.1 Notations

Fault injection attacks impact the behavior of the target, which can be no-
ticed when its response to a target command deviates from the expected one.
Those faulty responses can be used to categorize them into verdict classes that
correspond to the effectiveness of the measurement (i.e., attack attempt). The
possible classes for each measurement are listed in the ascending order based on
their relevance for the attacker.

1. NORMAL: TOE behaves as expected.
2. RESET: The attack is detected and TOE resets.
3. MUTE: TOE stops communication. This type of response can be caused

either by hard failures caused by the attack (i.e., the chip doesn’t work
anymore) or can be the response when the attack is detected.

4. CHANGING: TOE fails to detect the injected faults and returns unexpected
values.

5. SUCCESS: TOE fails to detect the injected faults and returns abnormal but
exploitable values.

Note that an exploitable fault is the fault that can be used to obtain more
critical information (e.g., retrieve encryption key with Differential Fault Anal-
ysis [26]) or perform additional malicious activities (e.g., install unauthorized
software). It also worth to mention that when attacking a device with fault in-
jection, different types of unexpected results can be outputted and are difficult
to classify. The situation becomes even worse when targeting different types of
devices as the implementations are also different. To better classify different out-
puts as well as generalize the usage of our methodology, we the classify the faults
on the algorithmic level instead of on the hardware level.

In this paper the optical FI technique is used for the experiments. The main
attack parameters - the laser voltage (energy) and laser pulse width are denoted
with upper-case letters X and Y, while their realizations are given in the lower-
case letters x and y. More precisely, the search boundaries for these two FI
settings are Xmin/Xmax and Ymin/Ymax. The search steps are represented by
Xstep and Ystep.
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3.2 Metrics Definition

Level of Influence The Level of Influence (LOI) represents the percentage
of responses that are different from the expected (NORMAL response) in the
total number of attempts, which can be used to quantify the impact of the
attack parameter set. For instance, by decreasing the laser pulse amplitude or
the duration, the fault injection is less effective and the target tends to behave
normally, thus having a low influence. In contrast, by increasing these settings,
there is a higher possibility that the target is influenced by the attack, which
will eventually increase its influence on the target behavior. The LOI metric can
be calculated as follows:

LOI = 1− Quantitynormal∑class
Quantityclass

. (1)

Here, Quantitynormal represents the number of NORMAL responses while Quantityclass
represents the number of the specific class occurrences during the whole mea-
surement process.

Impact Score The outputs of the TOE under fault injection are divided into
several classes (see Section 3.1). To further clarify the effect of each FI settings
and to optimize the parameter selection in the later attack phase, we assign
weights to each class based on its significance and eventually come up with a
score based on every measurement result. As this score directly reflects the effects
of the FI with respect to the target behavior, we denote this metric Impact Score
(IS).

The Impact Score metric aims to show the relevance of the measurements
that are acquired during the generation of the sensitivity curve (see Section 4).
By assigning different weights to the different classes obtained, an attacker can
identify if some of the parts of the curve are more relevant and could potentially
lead to a successful manipulation.

In practice, class SUCCESS has the highest priority of all the classes and is
assigned the largest weight. Differing, the class NORMAL (indicating the target
behaves normally) is linked to a small weight. The IS metric can be calculated
as:

IS =

∑class
Quantityclass ·Weightclass∑class

Quantityclass
, (2)

where Weightclass represents the assigned weight for a corresponding class. In
the experiments presented in this paper, the classes SUCCESS, CHANGING,
MUTE, RESET, and NORMAL have weights 20, 10, 2, 0.5, and 0, respectively.
The weights are adjusted based on the experience of the attacker and the ratio-
nale behind is defined after an assessment of the hypothetical fault model that
leads to such responses.



10 L. Wu et al.

4 Sensitivity Curve

In this section, we start by introducing the concept of the sensitivity curve. Af-
terward, we discuss how to generate such a curve by first finding the “golden”
point and then applying the sensitivity curve search algorithm. Finally, we dis-
cuss how to evaluate the sensitivity curve through Impact Score or deep learning
classification process.

4.1 Setting

To obtain a characterization algorithm that has a good parameter coverage,
is less time-consuming, and is universal for different scenarios, several meth-
ods from simple (e.g., exhaustive search with large scan step, binary search) to
complicated (e.g., genetic algorithm, deep learning) have been tested. The com-
parison of different architectures is not shown due to the lack of space and redun-
dancy in obtained results. We observed that simple algorithms are predictable
which is ideal for the TOE characterization but normally less time-efficient. In
contrast, complicated approaches tend to rely on the number and quality of the
obtained data. However, these algorithms work unstable as the number of data
sets we obtained is extremely limited. In the worst case, a non-converged model
can lead to the target being damaged by the undesired parameter selection.

Therefore, the ideal algorithm for the characterization should stand in the
middle of these two extremes. In other words, it should be deterministic, but
not highly data-dependent. Fortunately, the sensitivity curve, which consists of
a set of FI settings that cause a similar impact on the TOE, perfectly fulfills our
requirements.

Xmin
Ymin

Ymax

Xmax

Fig. 3. An example of the sensitivity curves with different LOIs. From here, the
normal and abnormal behaviour of the target can be estimated.
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Three sensitivity curve with different LOI is given in Figure 3; each point on
the curve have a similar impact on the TOE behavior. There, with sensitivity
curves, one can estimate that the injected fault (X and Y axes represent the
FI settings) can be ignored at the left side of the curve with 5% LOI; while the
target will behave almost always abnormally at the right side of the curve with
90% LOI. Moreover, the figure presents multiple possible selections of the fault
injection settings that can lead to the same LOI. For instance, to achieve 50% of
the LOI, besides choosing the parameters in the middle of the curve, an attacker
can achieve a similar result by selecting smaller x and larger y or vice versa.
Note it is possible that the sensitivity curve is not decreasing monotonically as
shown in Figure 3. Nevertheless, the sensitivity curves act as contour lines in
the parametric coordinate system, which can be used to estimate the quantity
of impact with different FI settings. Furthermore, the presence of the sensitivity
curves provides the attacker with a multiple choice in setting selection: although
the LOI is the same, appropriate selection of the FI settings based on the attack
scenarios may lead to a more powerful attack. Therefore, we use the sensitivity
curve for TOE characterization.

To conclude, if compared with other approaches, the advantages of the sen-
sitivity curve-based characterization are the followings:
1. The sensitivity curve defines the natural boundary between the “weak” and

“strong” FI settings, which present a rough overview of the target behavior.
2. The input of the sensitivity curve delimits the number of the parameter

combinations to be examined, thus it is more time-efficient.
3. Since the LOI of a sensitivity curve is defined by an attacker, it resolves the

problem of an FI setting selection through a genetic algorithm or random
search.

4. The proposed methodology can be applied to other semi-invasive FI methods
that follow the assumption that the strength of the setting is positively
correlated to the level of impact on the target, such as EMFI and Body
Biasing Injection (BBI).

4.2 Sensitivity Curve Generation

In general, the searching of the sensitivity curve relies on iterative performing
of measurements and calculating the statistics to decide the next setting to be
tested until the end condition is fulfilled. The statistics (LOI) that are calculated
are based on the types of output recorded in each setting combinations. To make
a clear description, the search algorithm is split into two phases: first, determine
the “golden point” and then search for the entire curve.

Finding the “Golden Point” The golden point (Xgolden, Ygolden) represents
the first obtained FI setting that targets the LOI (Ctarget) defined by an attacker
and acts as the reference for the curve searching in the later step. To find such
a point, we use the diagonal search algorithm. The diagonal search algorithm
is performed by increasing the values of the FI parameters simultaneously with



12 L. Wu et al.

a fixed step as shown in Figure 4. Note how the search progresses in a number
of steps (in our example, 6) before reaching a point on the sensitivity curve.
The diagonal search algorithm ensures to start testing with weak laser settings
and then gradually going stronger. Indeed, some approaches may lead to faster
converge. However, during the experiments, we noticed that the chip sensitivity
towards the laser can vary dramatically between targets (i.e., different types of
microcontrollers). In other words, a laser setting that does not have any influence
on one product may destroy another product immediately. Consequently, the
diagonal search algorithm is selected to ensure the tested product being alive
throughout the characterization process as well as to broaden the usage of our
methodology towards different products.

It is worth to note that the diagonal search cannot always guarantee to find
the FI settings with exact Ctarget value. In many cases, the LOI can exceed the
target when performing the search. Therefore, we introduce the Ctolerance to
broaden the range search of the golden point: if the LOI of the tested FI setting
is within the range of Ctarget±Ctolerance, the applied FI setting can be counted
as the golden point. In cases when the current LOI exceeds the maximum range
(Ctarget+Ctolerance) but no golden point is observed, a binary search is performed
to trace back to lower settings and search for the golden point within the range
of tolerance.

Ymin
Xmin

Ymax

Xmax

Fig. 4. A depiction of the diagonal search. The golden point represents the first
obtained FI setting with the target LOI.

Curve Searching Once the golden point is obtained from the diagonal search,
the search for the sensitivity curve can be executed. As discussed in Section 4.2,
the golden point is obtained in a diagonal route, but there are still areas on its
left and right-hand side to be characterized. Therefore, to localize the sensitivity
curve in the whole parameter plane, the curve search is performed in both direc-
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tions individually, while they start with the golden point. As the search strategies
for both directions are the same, the search algorithm to the left (Xmin) direc-
tion is given in Algorithm 1. Curve search on the right-hand side can be realized
by adjusting the while condition as well as the x increment step.

Algorithm 1 Sensitivity curve search.

1: function searching left(Xgolden, Ygolden, Ctarget, Ctolerance)
2: data← []
3: x← Xgolden

4: y ← Ygolden . Initialize (x, y)
5: while x−Xstep > Xmin do . Search from the left plane
6: x← Xprev −Xstep

7: LOI ← DoTest(x, y) . Test with setting (x, y)
8: if LOI < Ctarget + Ctolerance then
9: y ←BinarySearch(y, Ymax) . Search with stronger settings

10: else if LOI > Ctarget − Ctolerance then
11: y ←BinarySearch(y, Ymin) . Search with weaker settings

12: data← data+ [x, y, LOI]

13: return data . Return all of the tested data

The function DoTest(x, y) performs a measurement with a combination of
the FI setting x and y. BinarySearch(a, b) represents the binary search in the
range from a to b. The main idea of Algorithm 1 is to first iteratively obtain
the measurements and second, calculate the statistics to decide the next pairs
of settings. Specifically, by varying x while keeping the y obtained by the previ-
ous steps, the algorithm can keep track of the changing tendency of the target
sensitivity curve. Moreover, the usage of the parameters from the previous test
delimits the range for the binary search, thus accelerating the whole characteri-
zation procedure.

Instead of using a fixed value, Xstep should be adjustable for different condi-
tions. For instance, increasing Xstep to accelerate the characterization when the
slope of the sensitivity curve is close to zero while reducing its value to evaluate
more FI settings when the slope is getting higher. To realize this functionality,
a new variable Ydiff , which stands for the value difference between the current
y and the previous y (Yprev), is added to the algorithm. The pseudocode of the
step adjustment function is shown in Algorithm 2.

4.3 Sensitivity Curve Evaluation

The sensitivity curve provides the attacker with a quick impression of the target
behavior (through the LOI metric) with different FI settings. To further benefit
from the performed measurements, the attacker can use techniques to visualize
the data differently with the Impact Score metric and to obtain an overview
of the different setting relevance in FI. Additionally, he can even estimate the
non-measured parameter combinations with a deep learning algorithm.
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Algorithm 2 Step adjustment

1: function adjust xstep(Xstep, Ystep, Yprev, y)
2: Ydiff ← absolute(Yprev − y)
3: if Ydiff <= Ystep then
4: return Xstep * 2
5: else
6: return Xstep / 2

Impact Score Evaluation As described in Section 4.2, the generation of the
sensitivity curve is based on searching the FI settings with a similar LOI. Al-
though the target behavior can be estimated based on the curve, it is difficult to
define the optimal parameters which can lead to more significant responses. In-
deed, LOI only distinguishes between NORMAL and non-NORMAL responses.
To fully evaluate the performance of one setting, the non-NORMAL response
should be additionally classified based on its significance.

Taking advantage of its wide setting selection, the sensitivity curve is a good
candidate for evaluating the effectiveness of the FI. Therefore, the curve is re-
generated with the IS metric to obtain the optimal setting for fault injection.
Specifically, by calculating IS for each parameter combination, the relevance of
the measurement can be quantified: a larger Impact Score represents the exis-
tence of higher-priority responses, indicating that the corresponding setting is
more preferable for the later attacks.

Impact Estimation with MLP In practice, the assessment of attacking the
non-measured area is a part of the evaluation and comes from the attacker’s
decision. Various advanced techniques can be used to help the attacker to esti-
mate the impact in the non-measured areas. Here, function regression, realized
by MLP with gradient descent, is used to build the relationship between its in-
put (FI parameters) and output (LOI). A converged model can provide a proper
estimation of the impact that can be caused in the target with different param-
eters.

However, the prediction accuracy highly relies on the training data. Indeed,
the sensitivity curve provides several unique data sets, but the prediction of
the untested locations is still challenging, as the number of the training sets
is extremely limited while we aim at predicting huge amounts of parameter
combinations in a wide range. We have evaluated several algorithms to find an
optimal one that can provide sufficient prediction accuracy. Eventually, it turned
out that the multilayer perceptron is the best candidate. Compared with other
machine learning structures and statistic methods, MLP dramatically reduced
the prediction error especially in the excessive area from weak to the strong
parameter (the region an attacker cares about most) with the help of the deeper
layers. Although higher precision of the prediction can be obtained by using
more data (e.g., by generating another sensitivity curve with different LOI),
MLP is the best solution to provide an overall estimation of the target behavior
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without additional tests (costs). Moreover, in our case, MLP is less sensitive to
the distribution/number variation of the training sets and can always extract
features from a limited amount of data and thus can improve the robustness of
our methodology.

The cross-entropy is implemented as the loss function to classify the discrete
data from the sensitivity curve. By minimizing the loss function during iterations,
the MLP can estimate the LOI with different FI settings, whose accuracy is
further evaluated by calculating the offset between the predicted and measured
data. Note that we consider the prediction result as reasonable if the prediction
error is small when compared with the test data and the plots fit the shape of the
sensitivity curve. Although the sample’s behavior under attack can vary from
the prediction due to the prediction error and many other reasons, the presented
prediction methodology can provide an attacker with a proper estimation of the
overall sample behavior, which leads to a better selection of the parameters.

5 Results

In this section, we start by introducing our experimental setup. Then, we present
the results obtained for DES and AES settings using the presented fast char-
acterization methodology. Finally, we validate the transferability of the charac-
terization result by repeating the characterization for a different sample of the
same TOE.

5.1 Experimental Setup

In all our experiments, we use a TOE based on a high-performance 32-bit micro-
controller realized in Complementary Metal Oxide Semiconductor (CMOS) tech-
nology with 4MHz clock frequency. Due to confidentiality reasons, we are not
able to disclose the details of the targets. Still, we are confident to note that the
proposed method is compatible with various types of devices, as it was proved
to be efficient with multiple devices that are not listed in the paper due to the
page limit.

No FI specific countermeasures are implemented at the hardware level. For
the experimental purpose, we present two different attack scenarios on software
implementation of cryptographic algorithms, one targeting the the beginning of
last round of Data Encryption Standard (DES) cipher and another one target-
ing the the beginning of last round of Advanced Encryption Standard (AES)
cipher. Note that we used Single Power Analysis (SPA) to identify the encryp-
tion rounds. In both cases, we present a fast characterization that could be used
by an attacker to perform the attack in a later stage to obtain faulty ciphers
that can be used to run a DFA attack [27].

Experiments shown in this paper are performed on the Flash decoders as we
assumed they are the most vulnerable part for light manipulation. The attack
locations are uniformly distributed on the entire scan area. The FI setup used to
perform the measurements is an optical fault injection setup using an IR light
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(1 024 nm) long-pulse laser which is one of the most powerful solutions for an
optical fault injection attack. Since this light source is less effective when attack-
ing the front-side of the sample as it cannot penetrate through the metal layers,
we concentrated on attacking the backside (silicon side). To fully demonstrate as
well to characterize the chip behavior with different laser settings, we selected a
wide range of parameters that are used during the searching algorithm. The de-
tails are given in Table 1 while the MLP hyper-parameters for the LOI prediction
are in Table 2.

Table 1. Parameters for the search algorithm.
Parameter Value

Laser Pulse Width [1, 50] µs in a step of 1 µs
Laser Voltage (Pulse Amplitude) [0.05, 0.6]V in a step of 0.01 V
Target LOI 0.5
Searching Tolerance 0.05

Table 2. MLP hyper-parameters.
Parameter Value

Architecture [2, 8, 6, 6, 5, 1]
Activation 4 ReLU + 1 Sigmoid
Learning Rate (α) 0.2
Decay Rate α * 0.97 per 1 000 epochs
Regularization L2
Iterations 50 000

5.2 Characterization for the DES Encryption Attack

The DES encryption process is the target execution in this attack scenario. The
attack time interval is delimited with SPA (Simple Power Analysis). The fast
characterization is launched to assess the FI settings that might potentially lead
to a successful attack (i.e., faulty ciphertexts).

Three steps are performed during the characterization procedure: first, gen-
erating the sensitivity curve, followed by the impact estimation using a deep
learning algorithm, and finally evaluating the curve with the IS metric. During
the first step, all the measurements are acquired. The second and third steps
belong to the evaluation phase. The generation of the sensitivity curve and the
impact estimation using deep learning are based on the LOI metric while the
third step is based on the IS metric.



A Fast Characterization Method for Semi-invasive Fault Injection Attacks 17

Level of Influence for DES The characterization result based on the pro-
posed algorithm is depicted in Figure 5a. For comparison purposes, a full-
characterization was performed and the LOI graph of an exhaustive scan with
a full range of settings is shown in Figure 5b. The color of the dots represents
the value of the LOI metric. The test run of Algorithm 1 to perform the fast
characterization (59 measurement points) was obtained within 2 hours while
the full-characterization (3 080 measurement points) took more than a week of
measurement time.

As a remark, each training data consists of results from different attack loca-
tions. Attacking more locations can better represent the sample’s behavior with
certain laser parameters, but will spend more time as a trade-off. Here, we per-
formed an exhaustive scan with more than 3 000 tests for the validation purpose,
where due to the time constraints, we have to control the cost of the training
data in an acceptable range (around 4 minutes per test).

(a) LOI: characterization. (b) LOI: exhaustive scan.

Fig. 5. LOI distribution with different fault injection settings.

From the result, the outline of the sensitivity curve, which acts as the bound-
ary between “week” and “strong” parameters, can be estimated with the mea-
sured data. Based on this curve, the impact of the target on different FI settings
can be estimated. Besides that, additional information can be extracted from
the graph:
1. FI becomes effective when the laser voltage is larger than 0.2 V.
2. Similar LOI can be achieved with completely different setting combinations.
3. Laser voltage is more influential in FI than the laser pulse width.

The usage of this information depends on the attack scenario. For example,
if the attack scenario is to skip an instruction execution, short pulses might be
preferred; whereas to corrupt a memory write (long operation), longer pulses
could be more appropriate. Nevertheless, an attacker can benefit from these
inputs in the next phase of the attack.

The MLP (as described in Table 2) is used to predict the LOI with all FI
setting combinations, trained by the data obtained during the characterization
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process. In this attack scenario, 59 training set pairs, with two FI settings as
features and Level of Interest values as labels, are collected from the sensitivity
curve. The plot of the loss with respect to the epoch numbers during the training
is shown in Figure 6.
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Fig. 6. LOI prediction for DES: loss versus epoch numbers.

As shown in Figure 7a, the prediction result matches the measured data
with the majority of the setting combinations. The prediction error plotted in
Figure 7b is also close to the sensitivity curve: the maximum error is 0.14 and
the average error is 0.009. The prediction results indicate the capability of deep
learning in predicting LOI with a limited number of training sets, which offers
a proper estimation of the target behavior in significantly less time than a full
characterization.

(a) Prediction result using a five-layer neu-
ral network.

(b) Error plot when comparing with the
full-characterization measured data.

Fig. 7. Prediction result with a deep neural network.
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Impact Score for DES To further investigate target behavior, Impact Scores
are calculated (Figure 8a) based on the measurements performed during the
generation of the sensitivity curve. The IS results from the exhaustive scan are
shown as the reference (Figure 8b).

(a) IS: characterization. (b) IS: exhaustive scan.

Fig. 8. IS distribution with different fault injection settings.

From Figure 8a, a higher IS can be obtained with shorter laser pulse width
but stronger laser voltage, indicating the high probability in obtaining more
significant output in this region. Indeed, this assumption can be proved by Fig-
ure 8b with IS for all setting combinations. Since the IS-based sensitivity curve
only covers a few of the setting combinations, other, untested optimal settings
could still exist. Still, this curve provides a general layout for the settings with
better relevance from the measurements performed, which can eventually lead
to a better parameter selection for a later attack stage.

Transferability of the DES Characterization Results In general, two fac-
tors are influencing the characterization result: sample’s behavior under attack
and the setup used for the attack. Any variation of these two factors will make
the characterization result less usable. In terms of transferability of the char-
acterized parameters, since we use the same type of TOE and attack different
samples with the same setup, the resulting parameters should be transferable
(indeed, the impact of process variations should be negligible for optical FI). To
prove this assumption, we generated the sensitivity curve with the LOI and IS
metrics on a different sample. The results are shown in Figure 9.

In terms of LOI, besides some small differences due to the variation of the
chip alignment and laser focus, the result is quite identical when compared with
Figure 5a. The IS, on the other hand, also shows its consistency when compar-
ing with Figure 8a, as it also indicates that the shorter laser pulse width with
stronger laser voltage can lead to higher impact scores at the same parameter
range. Therefore, since the shape of the curve, LOI, and the corresponding IS
tested on two different samples match with each other, we conclude that the
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(a) LOI: characterization with a different
sample.

(b) IS: characterization with a different
sample.

Fig. 9. Characterization results with a different sample targeting DES encryp-
tion.

characterization result from one sample is transferable to a different sample of
the same TOE.

5.3 Characterization for the AES Encryption Attack

To verify the proposed methodology in different conditions, we performed an
additional FI experiment with another laser setup of the same type. This ex-
periment aims to manipulate the encryption of AES software implementation.
Similar to the previous experiment, SPA techniques are used to delimit the at-
tack time interval. The building block to be targeted is kept the same (Flash
decoders).

Level of Influence for AES As for the DES cipher, a characterization was
performed to obtain a LOI graph. The sensitivity curve is shown in Figure 10a
(47 measurements) while its full-characterization counterpart is presented in
Figure 10b (3 800 measurements). When comparing this characterization result
with the one targeting the DES encryption (Figure 5a), we can observe the
differences in setting selections for comparable LOIs. This difference can be due
either to the use of a different laser setup or to the different attack scenarios.

Once the LOI graph was obtained, the same MLP architecture was used to
map the LOI with all the FI setting inputs from the data measured during the
sensitivity curve generation. Again, we plot the loss with respect to the epoch
numbers during the training. The result is shown in Figure 11. By comparing the
prediction results (Figure 12a) with the full-characterization (Figure 10b), we can
confirm that the LOI tendency is properly estimated. To evaluate the prediction
error, the difference between the two is plotted in Figure 12b. Although the
error can be further delimited by tuning the hyper-parameters of the network
architecture or increasing the number of measurements during the sensitivity
curve generation, the effectiveness of the MLP for LOI estimation is verified.
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(a) LOI: characterization. (b) LOI: exhaustive scan.

Fig. 10. LOI distribution with different fault injection settings.
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Fig. 11. LOI prediction for AES: loss versus epoch numbers.

Impact Score for AES The IS-based sensitivity curve is shown in Figure 13a
while the full characterization reference is presented in Figure 13b. Similar to
the IS distribution shown in Figure 8a, the fault injection is more effective with
short laser pulse widths for AES encryption (Figure 13a), as the points with
high IS are accumulated at the bottom-right of the graph. Taking Figure 13b as
the reference, the IS-based sensitivity curve can cover the overall target behavior
effectively with a limited amount of data, thus proving its capability in settings
optimization in a short amount of time.

Transferability of the AES Characterization Results Similar to the ex-
periment performed in Section 5.2, we generated the sensitivity curve with the
LOI and IS metrics on a new sample attacking the same locations and using the
same laser setup. The results are shown in Figure 14.
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(a) Prediction result.
(b) Error plot when comparing with the
full-characterization measured data.

Fig. 12. Prediction result with a deep neural network for AES encryption.

(a) IS: characterization. (b) IS: exhaustive scan.

Fig. 13. IS distribution with different fault injection settings for AES encryption.

From the figures, the LOI and IS distribution are identical to the previous
characterization results (Figure 10a and Figure 13a). Therefore, we again show
that the characterization result is transferable between different samples of the
same TOE. We also conclude from this test on the AES that the fast characteri-
zation methodology presented in this paper applies to different attack scenarios.

6 Conclusions and Future Work

In this paper, we present a novel methodology for semi-invasive fault injection
attacks that improves the identification (characterization) phase of an attack.
This methodology consists of a fast generation of the sensitivity curve and a
proper evaluation of the Level of Influence and Impact Score metrics. Instead
of testing FI setting conditions randomly, we start by generating the sensitiv-
ity curve, which happens in two phases. First, we find the golden point, which
is close to the target LOI and then, we depict the rest of the curve using this
point as the reference. Finally, we show how deep learning can be used in fault
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(a) LOI: characterization with a different
sample.

(b) IS: characterization with a different
sample.

Fig. 14. Characterization results with a different sample targeting AES encryp-
tion.

injection attacks characterization phase where we estimate the full search space
by using only a limited number of measurements. In the experimental part, we
demonstrated the proposed methodology on running software implementation of
DES and AES ciphers. Besides that, we repeat the characterization procedure
on a different sample to verify its transferability. Not shown in this paper, the
proposed method had been validated for a variety of attack scenarios such as
program flow attack and data manipulations. It also showed its effectiveness on
other semi-invasive FI techniques such as EMFI and BBI. In the realistic cir-
cumstances, attackers can launch our methodology on multiple setups in parallel,
which can dramatically boost their attack procedure and performance.

In future work, we plan to further investigate the advantages and limitations
of the fast characterization with different fault injection methods, setups, targets,
and initial conditions such as temperature and supply voltage. Additionally, we
aim to further explore the usage of the neural network in estimating the FI
impact on non-measured areas.
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