
Efficient Information-Theoretic Secure
Multiparty Computation over Z/pkZ via Galois

Rings

Mark Abspoel1,2, Ronald Cramer1,3, Ivan Damg̊ard4, Daniel Escudero4, and
Chen Yuan1

1 Centrum Wiskunde & Informatica (CWI), Amsterdam, the Netherlands
2 Philips Research, Eindhoven, the Netherlands

3 Mathematisch Instituut, Leiden University, the Netherlands
4 Aarhus University, Denmark

Abstract. At CRYPTO 2018, Cramer et al. introduced a secret-sharing
based protocol called SPDZ2k that allows for secure multiparty compu-
tation (MPC) in the dishonest majority setting over the ring of integers
modulo 2k, thus solving a long-standing open question in MPC about
secure computation over rings in this setting. In this paper we study this
problem in the information-theoretic scenario. More specifically, we ask
the following question: Can we obtain information-theoretic MPC pro-
tocols that work over rings with comparable efficiency to corresponding
protocols over fields? We answer this question in the affirmative by pre-
senting an efficient protocol for robust Secure Multiparty Computation
over Z/pkZ (for any prime p and positive integer k) that is perfectly
secure against active adversaries corrupting a fraction of at most 1/3
players, and a robust protocol that is statistically secure against an ac-
tive adversary corrupting a fraction of at most 1/2 players.

1 Introduction

Secure Multiparty Computation (MPC) is a technique that allows several parties
to compute any functionality in secret inputs, while revealing nothing more than
the output, even if an adversary corrupts t of the n parties.

Several flavors of MPC exist, depending on the desired security level and
threat model considered. A protocol is perfectly secure if an adversary’s view
of the protocol can be simulated given only his inputs and outputs, and where
the simulated view follows exactly the same distribution as the real view. It is
statistically secure if the statistical distance between the views is negligible in
a security parameter. We will say that a protocol is information-theoretically
secure if it is either perfectly or statistically secure.

It is well-known that if the adversary only passively corrupts of t < n/2
players (i.e. the corrupt parties follow the protocol honestly but try to gain ad-
ditional secret information from the received messages) then any computation
over a finite field can be carried out in a perfectly secure fashion. Perfect security

2

against active corruptions (in which the corrupt parties can deviate arbitrarily
from the protocol) can be achieved if t < n/3. Finally, if we only require statisti-
cal security and assume a broadcast channel, then any function can be computed
securely if t < n/2. Interestingly, these bounds are sharp, in the sense that if
one of the conditions does not hold, then there are functions that cannot be
computed with the stated security guarantees.

MPC has been a very active area of research since the 1980s, beginning with
the seminal work of Yao on garbled circuits. Since then, many theoretical and
practical results have been found by the community, extending the knowledge
about what is possible, and increasing efficiency. However, almost all the progress
has focused on arithmetic circuits over finite fields (even Boolean circuits are a
special case of this). On the other hand, it is clearly also interesting to securely
compute functions that are defined over other rings, such as Z/pkZ, the ring
of integers modulo pk, where p is a prime and k is a positive integer. From
a practical point of view, for instance, computing modulo 232 or 264 is close
to what standard CPUs do. Closely matching the data format used by CPUs
is an advantage since one expects that when programming secure computation
one can reuse some of the techniques that CPUs use to run efficiently. Addi-
tionally, bitwise operations like comparison or bit decomposition are expressed
more naturally modulo powers of 2, and are very fast when computed over these
rings [ABF+18].

This observation has been confirmed in practice [DEF+19]. For example, for
replicated secret sharing, protocols over rings like Z/264Z can provide up to 8×
savings in runtime and memory usage with respect to the field counterpart for
some specific applications like neural network evaluation, which are heavy in
terms of comparisons [BDEK19].

Even if previous work did not focus specifically on doing secure computation
over Z/pkZ, it turns out that secure arithmetic modulo prime powers can be
emulated using other techniques. However, they all have significant drawbacks.
We provide a brief overview:

– One can rewrite an arithmetic circuit over Z/pkZ to a Boolean circuit and use
known techniques. However, this introduces a large overhead compared to
the size of the original circuit, namely a factor corresponding to the Boolean
circuit complexity of the ring operations.

– One can choose a prime q > pk and emulate operations modulo pk using op-
erations modulo q. The idea is that we can do secure integer multiplications
or additions on numbers from Z/pkZ using known techniques as long as we
choose q large enough that we will not get overflow modulo q. But we then
still need to reduce modulo pk securely. While techniques for this exist, they
are very cumbersome because this operation is not naturally expressed as
operations modulo q.

– For the case of honest majority, known techniques for fields typically rely
on Shamir’s secret sharing scheme. This does not work for Z/pkZ because it
relies on the existence of multiplicative inverses of any non-zero element. We
do know a secret sharing scheme that can play the role of Shamir’s for Z/pkZ,

3

but unfortunately it is very inefficient: replicated secret sharing works over
any ring. For 3 players, for instance, one writes the secret s as a random sum
s = s1 + s2 + s3, and then we give s2, s3 to player 1, s1, s3 to player 2, and
s1, s2 to player 3. This will be secure against a single corruption and can be
used for secure computation. This idea was used in the Sharemind protocols
[BLW08] to do computation modulo powers of 2, but only for 3 players. While
replicated secret sharing generalizes naturally to more players, it scales very
badly: each player will have an exponential number of ring elements as shares.
Using results from [CDI+13], we can instead take a protocol for a constant
number of players and compile to a multiparty protocol. With this approach,
the communication overhead is polynomial in the number of players, but of
course still much larger than for the field case where each players get only
one value.

– Using black-box secret sharing techniques MPC protocols can be obtained
that work over any ring [CFIK03]. However, the computational overhead is
rather large. The cost of secret sharing a ring element is Ω(n3polylog(n))
ring operations whereas in contrast Shamir’s scheme can be quasilinear when
using FFT techniques.

Thus, the natural open question is: can we design protocols that work directly
over Z/pkZ and have efficiency close to what we can obtain for fields?

This question was solved recently in the setting of dishonest majority (i.e.
t ≤ n − 1), where cryptography is required to provide security, with the in-
troduction of the SPDZ2k protocol [CDE+18]. This protocol computes with
computational security circuits defined over the ring Z2k (in fact, 2 can be re-
placed by any prime). This is achieved mainly by the introduction of information-
theoretic MACs that work over rings with zero divisors and non-invertible ele-
ments, like Z/pkZ. The efficiency is similar to the SPDZ and MASCOT protocols
[DKL+12,KOS16] which are state-of-the-art for dishonest majority MPC over fi-
nite fields.

However, the question has remained open for the case of honest majority
where we can hope to get better (information-theoretic) security. It is also ex-
pected that in this setting the computational efficiency improves due to the fact
that the computation needed for information-theoretically secure protocols tends
to be simpler, as it is independent of a computational security parameter.

1.1 Our contributions

In this work we resolve the above open question. Our solution relies on several
key ingredients, which may be interesting in their own right. We give an overview
below.

The first ingredient is a new secret sharing scheme that allows us to do
“Shamir-style” sharing of elements in Z/pkZ, which, as mentioned above, is not
possible directly. It is elementary that Lagrange interpolation works over com-
mutative rings as long as the pairwise differences of the evaluation points are

4

multiplicative units (i.e. invertible elements) in the ring. Therefore, in a straight-
forward adapation of Shamir’s secret-sharing scheme, we can accommodate any
number of players that is strictly less5 than the largest number of ring elements
that can be chosen such that the pairwise differences are units. Thus, for over a
finite field of order q it the number of players is thus bounded by q − 1.

Note that the ring Z/pkZ will accommodate at most p players: any set of
more than p ring elements will contain a pair whose difference is divisible by p,
and therefore not a unit. For our main case of interest p = 2, this is prohibitively
small.

To accommodate an arbitrary number of players, our key solution is to move
to a Galois ring R = (Z/pkZ[x])/(f(x)), where f(x) ∈ (Z/pkZ)[x] is a monic
polynomial of degree d such that f(x) ∈ Fp[x], its reduction modulo p, is irre-
ducible. This is a local ring, meaning it has a unique maximal ideal, and it follows
that this ideal is equal to the set of non-units of R. In this case the maximal
ideal is (p). The residue field is R/(p) = Fpd , the finite field of pd elements. For
any two elements a, b ∈ R in different residue classes modulo p, their difference
is outside of (p), and hence a unit. Therefore we can pick pd evaluation points in
R. Using the fact that R is a free module over Z/pkZ of rank d, we can embed
Z/pkZ into the first coordinate of R and get an arithmetic secret-sharing scheme
for Z/pkZ.

Since we need that pd is at least the number of players n, this incurs an
overhead of logp(n). To secret-share an element in Z/pkZ in this manner, each
player gets an element in R as his share, which can be represented as log(n)
elements in Z/pkZ.

In terms of computational complexity, sharing an element requiresO(n2polylog(n))
ring operations which is an improvement over the black-box approach from
[CFIK03]. It is known that the FFT-algorithms for operations over degree-d
finite field extensions, as well as operations on polynomials over such fields,
carry over to degree-d Galois rings, preserving quasi-linear (in d) computational
complexity when working over our ring R [CK91].

For the remaining key ingredients, we distinguish between two models of
MPC: perfectly secure MPC with t < n/3 assuming secure channels, and statis-
tically secure MPC with t < n/2 in a setting where broadcast is given.

In the setting of perfectly secure MPC with t < n/3, the following key con-
tributions are needed to adapt existing protocols.

1. We show that we can efficiently perform robust reconstruction in the presence
of errors, and give an algorithm for our secret-sharing scheme that uses
k black-box calls to a reconstruction algorithm over the residue field, e.g.
Berlekamp-Welch.

2. We show that the hyperinvertible matrices needed in the protocol can be
obtained over R can be obtained by lifting them from the residue field.

3. We show how to get MPC over Z/pkZ by efficient verification of the inputs,
using techniques from [CCXY18]. We give the modifications needed to the

5 By adding a point at infinity we may get an additional evaluation point.

5

protocol of [BH08], to obtain MPC over Z/pkZ with the communication
complexity for a circuit C of size |C| of O(n log(n)|C|) elements in Z/pkZ.

With the above ingredients we can adapt the protocol by Beerliova and Hirt
[BH08], which is state-of-the-art in this model.

For the setting where t < n/2 and broadcast is given, we need the following
key ingredients.

1. We develop a way to reduce the soundness error when checking whether
values are secret-shared correctly. A problem that arises here is that the
error probability of the protocol is not automatically negligible even if pk is
large. This is in contrast to the case of finite fields where the error probability
usually is 1/|F|, where |F| is the order of the field. As we shall explain, by
taking an extension of Galois rings R ⊂ R̂ (where R is a subring), we can
reduce the error.

2. By packing multiple elements of R into R̂, show how to reduce the overhead
to obtain a total communication complexity O(|C|n2 log n) ring elements,
plus some term that does not depend on the size of the circuit.

3. To get MPC over Z/pkZ rather than R, we show how to efficiently sample
R-sharings of random elements of Z/pkZ with statistical security.

Using these ideas, we show how to adapt the protocol of (also) Beerliova and
Hirt [BH06]. We chose to adapt this protocol rather than the state-of-the-art of
[BFO12], because it allows for a simpler exposition of our novel techniques.

The protocols we get for the two settings are both a log(n) factor away
from their original results due to the extension of Z/pkZ to R. Follow-up work
by some of the authors provides a way to amortize away this factor, by using
so-called “reverse multiplication-friendly embeddings” from algebraic geometric
codes over rings with asymptotically good parameters.

In this work we focus on developing the theoretical machinery in order to
build information-theoretic protocols for computation over Z/pkZ for t < n/3
and t < n/2, and an implementation of such protocols is outside the scope
of this work. However, our protocols are essentially as efficient as previous
works over fields. Efficiency may be further improved by using packed secret-
sharing [DIK10]. For sake of simplicity, we shall not explore this in this work,
but we remark that packed secret-sharing follows from our interpolation results
over Galois rings.

Finally, we remark that our results extend to MPC over Z/NZ for any integer
N via the Chinese Remainder Theorem. Namely, to compute mod N = pk11 p

k2
2 ,

for instance, each party decomposes its input x as (x1, x2) and then they run
two independent and parallel execution of our protocol, one with mod pk11 and
another with pk22 .

1.2 Outline of the Document

In Section 2 we introduce the preliminaries for the rest of the work. This includes
basic notation, Shamir secret-sharing over commutative rings, and the notion of

6

Galois rings. Then, in Section 3 we present our protocol for perfectly secure
MPC over Z/pkZ with a corruption threshold of t < n/3. Section 4 discusses our
protocol for statistically secure MPC over Z/pkZ in the honest majority setting.
Finally, in Section 5 we present some conclusions and future work.

2 Preliminaries

2.1 Notation

Z denotes the ring of integers. For m ∈ Z, mZ denotes the ideal {m ·n | n ∈ Z},
and Z/mZ denotes the quotient ring, which we regard as the ring of integers
modulo m. For a ring R, let R[X] denote the ring of polynomials in the variable
X with coefficients in R. For an integer m ≥ 0, let R[X]≤m ⊂ R[X] denote the
set of polynomials in R[X] of degree at most m; it is an R-module. We denote
by R∗ the multiplicative subgroup of invertible elements in R.

2.2 Polynomial interpolation over commutative rings

In this section, we will construct secret-sharing schemes over an arbitrary com-
mutative ring. It will be the building block for the MPC protocols presented
in this article. We begin by recalling some notions on polynomial interpolation,
and on how it follows from the Chinese Remainder Theorem for rings; we follow
the approach of Part II of [CDN15].

Throughout this section, R will denote a commutative ring with multiplica-
tive identity 1. Recall that an ideal of R is an additive subgroup I ⊆ R such
that r · x ∈ I for any r ∈ R, x ∈ I, i.e., an R-submodule. For x ∈ R, (x) denotes
the ideal generated by x, i.e., (x) := {r · x | r ∈ R}. Given two ideals I, I ′,
their product is defined as the ideal II ′ given by finite sums of products xy with
x ∈ I, y ∈ I ′, and their sum I + I ′ is defined as the ideal given by all elements
of the from x+ y, where x ∈ I, y ∈ I ′.

Now we state the Chinese Reminder Theorem over rings.

Theorem 1. Let I1, . . . , Im be m ideals of R that are pairwise co-maximal, i.e.,
for each pair I, I ′ we have I + I ′ = R. Then, the map

R/(I1 · · · Im) → R/I1 × · · · ×R/Im
r mod I1 · · · Im 7→

(
r mod I1, . . . , r mod Im

)
is a ring isomorphism.

We now recall some notions and results on polynomials over rings.

Theorem 2. Let g(X), h(X) ∈ R[X] be two polynomials, with h(X) monic (i.e.,
its leading coefficient is equal to 1). Then, there are two unique polynomials
q(X), r(X) ∈ R[X] such that

– g(X) = h(X)q(X) + r(X), and

7

– deg r(X) < deg h(X).

Corollary 1. We have the following:

1. For any monic h(X) ∈ R[X] where deg h(X) = d, we have an R-module
isomorphism

R[X]≤d−1
∼−→ R[X]/(h(X))

g(X) 7→ g(X) mod (h(X)).

2. If h(X) = X − α for some α ∈ R, then

R[X]/(X − α)
∼−→ R

g(X) mod (X − α) 7→ g(α)

is an isomorphism of R-modules.

The above properties lead to the following result:

Theorem 3. Let α1, . . . , αm ∈ R be such that αi − αj is invertible for every
pair of indices i 6= j. We then have that the map

R[X]≤m−1 → R× · · · ×R
f(X) 7→

(
f(α1), . . . , f(αm)

)
is an R-module isomorphism. Hence, for any x1, . . . , xm ∈ R, there exists a
unique interpolating polynomial of degree at most m−1 such that f(αi) = xi for
each i.

Proof. Let h(X) := (X − α1) · . . . · (X − αm). By Corollary 1, we have that
the map R[X]≤m−1 → R[X]/(h(X)) given by f(X) 7→ f(X) mod (h(X)) is an
R-module isomorphism.

Notice that since αi−αj is invertible for every i 6= j, we have that the ideals
(X − αi) and (X − αj) are co-maximal for every i 6= j; thus by Theorem 1 we
have that the map

R[X]/(h(X))→ R[X]/(X − α1)× · · · ×R[X]/(X − αm)
f(X) mod h(X) 7→

(
f(X) mod X − α1, . . . , f(X) mod X − αm

)
is an R-module isomorphism.

Finally, again by Corollary 1, we have that the map R[X]/(X − αi) → R
given by f(X) mod X − αi 7→ f(αi) is an isomorphism for every i = 1, . . . ,m.

ut

The above theorem thus shows that polynomial interpolation extends from
the field to the ring case, provided that the evaluation points are not only pair-
wise distinct, but that their pairwise differences are invertible.

Definition 1. Let α1, . . . , αn ∈ R. We say that these points form an exceptional
sequence if for each pair of integers 1 ≤ i, j ≤ n with i 6= j it holds that
αi − αj ∈ R∗. We define the Lenstra constant of R to be the maximum length
of an exceptional sequence in R.

8

We the theory seen this far we can already define Shamir-secret sharing over
an arbitrary ring R.

Construction 1 (Shamir-secret sharing over R). Let R be a finite ring,
and let α0, . . . , αn ∈ R be an exceptional sequence. Let t be any positive integer
such that t ≤ n. We define theR-module of share vectors C = {(f(α0), . . . , f(αn)) |
f ∈ R[X]≤t}. To secret-share an element x ∈ R, pick a uniformly random share
vector x ← {(x0, . . . , xn) ∈ C | x0 = x}, and set the i-th share to be f(αi)
for i = 1, . . . , n. If x is secret-shared with each player Pi having a share xi, we
denote the share vector x by [x].

Note that the number of players the secret-sharing scheme admits is bounded
by the Lenstra constant minus 1. Combining Construction 1 with Theorem 3 we
have the following.

Proposition 1. Construction 1 provides t-privacy and (t+ 1)-reconstruction.

2.3 Galois rings

We now restrict our attention to Galois rings, which are very well suited to
our setting, since they contain Z/pkZ as a subring and have a relatively high
Lenstra constant. For proofs of the assertions in this subsection, we refer the
reader to [Wan03].

Definition 2. A Galois ring is a ring of the form

R := (Z/pkZ)[Y]/ (h(Y)) ,

where p is a prime number, k is a positive integer, and h(Y) ∈ (Z/pkZ)[Y] is a
non-constant, monic polynomial such that its reduction modulo p is an irreducible
polynomial in Fp[Y].

Proposition 2. Let R as in the above definition. It has the following properties:

1. R is a local ring, i.e. it has a unique maximal ideal (p) (R. We have that
R/(p) ∼= Fpd , where d denotes the degree of h. In particular, we have a
homomorphism π : R→ Fpd that is “reduction modulo p”.

2. The Lenstra constant of R is pd.
3. For any prime p, positive integer k, and positive integer d there exists a

Galois ring as defined above, and any two of them with identical parameters
p, k, d are isomorphic. We may therefore write R = GR(pk, d).

4. If e is any positive integer, then R is a subring of R̂ = GR(pk, d · e). There

is a non-constant monic polynomial ĥ ∈ R[X] that is irreducible modulo p,

such that R̂ = R[X]/(ĥ(X)).

Remark 1. Let R = GR(pk, d) be a Galois ring. Then there exists an Z/pkZ-

module isomorphism
(
Z/pkZ

)d → R, that sends each element ej = (0, . . . , 1, . . . , 0)

9

of the canonical basis of
(
Z/pkZ

)d
to Y j mod (h(Y)). Also, we have a natural

ring embedding Z/pkZ ↪→ R, given by x 7→ x mod h(Y).
Moreover, there is another way to uniquely represent the elements of R. We

have R/(p) ∼= Fpd and there exists a non-zero element ξ ∈ R∗ of multiplicative

order pd − 1. By defining the subset I = {0, 1, ξ, . . . , ξpd−2} ⊂ R, it turns out
that any element a ∈ R can be uniquely written as

a = a0 + a1p+ a2p
2 + · · ·+ ak−1p

k−1

where a0, . . . , ak−1 ∈ I. Note that the homomorphism π : R → Fpd that is
reduction modulo p from Item 1 in Proposition 2 is defined by π(a) = a0.

This decomposition also allows us to define “division by powers of p”. Indeed,
notice that given an element a = a0 + a1p + a2p

2 + · · · + ak−1p
k−1 ∈ R and a

positive integer u, we have that pu divides a if and only if ai = 0 for all i < u.
If this is the case, we then define a/pu := au + au+1p+ · · ·+ ak−1p

k−u−1; notice
that a/pu ≡ au (mod p). If u is maximal and a is non-zero in R, then a/pu ∈ R∗.

3 Perfectly Secure MPC for t < n/3 over Galois Rings

We assume that the computation is performed by n players, connected by a com-
plete network of secure and authenticated channels. Let p be a prime number
and k a positive integer; t players are under the control of a malicious, compu-
tationally unbounded adversary, where t < n/3. The adversary can be adaptive
and rushing.

We adapt the protocol of [BH08], which uses three algebraic tools: the inter-
polation of a polynomial, hyper-invertible matrices and efficient error correction
in Reed-Solomon codes. In the original protocol, these tools are defined over finite
fields. In this section, we provide analogues of these tools over Galois rings. Note
that the first tool, polynomial interpolation, is already given in Construction 1.

With these new tools, we obtain secure computation over any Galois ring R
that has a Lenstra constant of at least n + 1. By taking the Galois ring to be
large enough, we can accommodate any number of players. In Section 3.4, we
show how to we obtain secure computation over Z/pkZ from computation over
R. For passive security this is automatic, but for active security this requires
verification of the inputs.

3.1 Hyper-Invertible Matrices

Hyper-invertible matrices are introduced in [BH08] to efficiently obtain secret-
shared randomness in MPC protocols with active security. Here we summarize
their definition and fundamental properties, generalized to hold over rings.

Definition 3. A matrix M ∈ Rr×c is hyper-invertible if for any row index set
R ⊆ {1, . . . , r} and column index set C ⊆ {1, . . . , c} with |R| = |C| > 0, the
matrix MC

R is invertible, where MR denotes the submatrix of M with rows in R,

MC denotes the submatrix of M with columns in C, and MC
R := (MR)

C
.

10

Construction 2. Let n and k be positive integers, and let p be a prime number.
Further, let R = GR(pk, d) with pd ≥ 2n, and let α1, . . . , α2n be an exceptional
sequence in R. Applying Theorem 3 twice, we get an R-module isomorphism
from Rn to Rn, sending (f(α1), . . . , f(αn)) 7→ (f(αn+1), f(αn+2), . . . , f(α2n)).
It is represented by an n×n matrix over R which is hyper-invertible. The proof
of this fact follows the lines of its analogous proof over fields, and we refer the
reader to [BH08] for details.

Hyper-invertible matrices have the following key property.

Lemma 1. Let M ∈ Rn×n be an n-by-n hyper-invertible matrix, and let R,C ⊆
{1, . . . , n} be index sets such that |R| + |C| = n. Then, there exists a linear
isomorphism ϕ = ϕR,C : Rn → Rn such that for any x,y ∈ Rn it holds that
ϕ(xC ,yR) = (xC̄ ,yR̄), where R̄ and C̄ denote the complements {1, . . . , n} \ R
and {1, . . . , n} \ C, respectively.

Proof. First notice that (n − |R|) + (n − |C|) = 2n − (|R| + |C|) = n, so that
domain and codomain ranks of ϕ are correct. Now y = Mx so that yR =
MRx = MC

RxC + MC̄
RxC̄ . Since M is hyper-invertible and |C̄| = n− |C| = |R|,

we have that MC̄
R is invertible, so that xC̄ =

(
MC̄

R

)−1 (
yR −MC

RxC
)
. Similarly,

yR̄ = MC
R̄

xC + MC̄
R̄

xC̄ , which can also be computed as a linear function of xC
and yR. ut

3.2 Robust Reconstruction

Recall from Construction 1 we have an R-module C = {(f(α1), . . . , f(αn)) |
f ∈ R[X]≤t} of share vectors. We wish to have robust reconstruction: a party P
that receives shares xi for i = 1, . . . , n, where xi = f(αi) for “most” values of
i, should be able to reconstruct the correct secret f(α0) even some shares are
corrupted, e.g., they contain arbitrary elements of R.

This is also known as the decoding problem of linear codes. When R is a
finite field, R-vector spaces of the form C as above are known as (generalized)
Reed-Solomon codes. We want an algorithm that does the following. As input we
give a vector (x1, . . . , xn) ∈ (R ∪ {⊥})n such that there exists some f ∈ R[X]≤t
with xi = f(αi) for all i = 1, . . . , n except for at most bn−t−1

2 c positions. As
output, the algorithm has to produce f .

We assume black-box access to a decoding algorithm for Reed-Solomon codes
(i.e. for vector spaces of the form C as above when R is a finite field), such as
the Berlekamp-Massey algorithm [Mas69]. We show how to obtain a decoding
algorithm for C over a Galois ring R = GR(pk, d) that makes k calls to the
algorithm over fields.

We fix an exceptional sequence α1, . . . , αn ∈ R. Recall from Remark 1 that
any element a ∈ R can be uniquely written as

a = a0 + a1p+ a2p
2 + · · ·+ ak−1p

k−1

11

where a0, . . . , ak−1 ∈ I = {0, 1, ξ, . . . , ξpd−2}. It follows that for f(X) ∈ R[X]≤t,
we can uniquely write f(X) as f(X) = f0(X) + pf1(X) + · · · + pk−1fk−1(X),
where f0(X), . . . , fk−1(X) ∈ I[X]≤t. Moreover, we have

f(αi) ≡
j−1∑
i=0

pifi(αi) (mod pj).

Since α1, . . . , αn have their pairwise differences invertible, this means they
map to distinct elements modulo p. For each i = 1, . . . , n let βi = π(αi) ∈ Fpd
where π : R→ Fpd is the reduction modulo p from Item 1 of Proposition 2. Notice
that π gives this one-to-one correspondence between I and Fpd . In particular,
the inverse π−1 is a well-defined function onto I.

Decoding Reed-Solomon Codes over a Galois Ring R

– Input: x = (x1, . . . , xn) ∈ (R ∪ {⊥})n.
– Let y← x. For i = 0, . . . , k − 1 perform the following operations:

1. y← π(y/pi), applied element-wise.
2. Run the decoding algorithm the input y and let the f̄i(X) be the output

polynomial. Let fi(X) = π−1(f̄i(X)) ∈ I[X]≤t.
3. Let tj =

∑i
`=0 p

`f`(αj) for j = 1, . . . , n and y← (x1 − t1, . . . , xn − tn).
4. If there exists j such that xj − tj is not divisible by pi+1, we claim an error

in index j and set ⊥ on the j-th component of y.
– Output: f(X) = f0(X) + pf1(X) + · · ·+ pk−1fk−1(X).

Fig. 1. Decoding Reed-Solomon Codes over a Galois Ring R

Theorem 4. The protocol of Figure 1 can correct up to bn−t−1
2 c errors with k

calls to the decoding algorithm over Fpd .

Proof. Let us justify this decoding algorithm. We start with i = 0. Note that
f̄0(X) = π(f0(X)) ∈ Fpd [X]≤t. Thus,

cf = (f̄0(β1), . . . , f̄0(βn))

is a vector in the corresponding Reed-Solomon code over Fpd . Since y = π(x) is
a corrupted vector in Fnpd differing in at most bn−t−1

2 c positions from cf , the de-

coding algorithm over Fpd will recover f̄0(X) and then f0(X). Now, assume that
we have already recovered f0(X), . . . , fi(X). Let us fix xj , the j-th component
of x. Assume that xj is not corrupted, i.e., xj = f(αj). Then, we have

xj − tj = f(αj)−
i∑

`=0

p`f`(αj) = pi+1
k−i−2∑
`=0

p`f`+i+1(αj).

This implies xj−tj is divisible by pi+1. Moreover, π((xj−tj)/pi+1) = π((fi+1(αj)) =
f̄i+1(βj). Thus π(y/pi) agrees with (f̄i+1(β1), . . . , f̄i+1(βN)) in the position that
is not corrupted. It follows that π(y/pi) differs in at most bn−t−1

2 c positions from
(f̄i+1(β1), . . . , f̄i+1(βN)). Running the decoding algorithm over Fpdon π(y/pi)
will output the polynomial fi+1(X). The desired result follows as we only invoke
the decoding algorithm over the finite field k times. ut

12

3.3 MPC over R

Let d be the smallest positive integer with pd ≥ 2n, and write R = GR(pk, d).
Let (α0, α1, . . . , αn) and (β1, . . . , β2n) be exceptional sequences of R of respective
lengths n+ 1 and 2n.

We introduce the following algebraic tools overR to replace the corresponding
ones over finite fields from [BH08]:

1. The n-player Shamir-like secret-sharing scheme obtained in Construction 1,
where αi is assigned to each player Pi. Thus both the share and secret lie in
R.

2. A hyper-invertible matrix over R given as in Construction 2, with evaluation
points β1, . . . , β2n.

3. This secret sharing scheme is robust: the secret can be recovered from n′ ≤ n
shares with t′ corruptions, provided that t < n′ − 2t′. This property is due
to Theorem 4.

With these tools in place, the remainder of the protocol from [BH08] can be
used to obtain MPC over R, as encapsulated in the following theorem.

Theorem 5. There exists an efficient MPC protocol over the Galois Ring R =
GR(pk, d) with pd ≥ 2n, for n parties, that is secure against the maximal number
of active corruptions b(n − 1)/3c, and that has an amortized communication
complexity of O(n) ring elements per gate.

3.4 MPC over Z/pkZ

From Theorem 5, we get MPC over R = GR(pk, d) with pd ≥ 2n, but this does
not give us MPC over Z/pkZ for an arbitrary number of players. We can embed
inputs in Z/pkZ into R, but we do need to verify that the original inputs are
actually in Z/pkZ. Otherwise, a malicious adversary could break security and
correctness, as we illustrate in the following example.

Example 1. Assume that two players P1 and P2 want to jointly compute the
function f(x1, x2) = x1x2 where f : (Z/pkZ)2 → Z/pkZ. Player P1 is supposed
to provide the sharing of input x1 ∈ Z/pkZ and P2 is supposed to provide the
sharing of input x2 ∈ Z/pkZ. P1 has the output gate.

Let {1, ξ, . . . , ξd−1} be a basis of R over Z/pkZ, i.e., R = Z/pkZ+Z/pkZξ+
· · ·+ Z/pkZξd−1 . Instead of providing input x1 ∈ Z/pkZ, P1 gives ξ + x1 ∈ R.
The output now becomes y = x1x2 + ξx2. Player P1 can identify both x1x2 and
ξx2 from output y. Therefore, besides the desired result x1x2, P1 also learns
input x2. Note that if x1 is not invertible in Z/pkZ, P1 cannot uniquely identify
x2 from x1x2.

Proving that a secret-shared value [a] is in Z/pkZ reduces to sampling a
secret-shared random element [r]← Z/pkZ, as follows: to check that a ∈ Z/pkZ
we simply locally compute [a+ r] and open the result. We have that a ∈ Z/pkZ

13

if and only if a + r ∈ Z/pkZ. Also, since r is a uniformly random element in
Z/pkZ, a+ r does not reveal any information about a (if a is in fact in Z/pkZ).

We use an idea from [CCXY18] to generate these sharings of random elements
in Z/pkZ. Since R is a free module over Z/pkZ of rank d, we can write down a
basis of R. In fact, a power basis 1, ξ, . . . , ξd−1 exists. After fixing ξ, an element
b ∈ R can thus be uniquely written b = b0 + b1ξ + · · · + bd−1ξ

d−1, and we can
identify b with its coefficient vector (b0, . . . , bd−1). The map φ : R → (Z/pkZ)d

such that φ(b) = (b0, . . . , bd−1) is a Z/pkZ-module isomorphism.
Let λ ∈ R. Multiplication by λ in R defines an R-module endomorphism

R → R, which is in particular an Z/pkZ-module homomorphism (Z/pkZ)d →
(Z/pkZ)d. Thus, this operation can be seen be represented as a d×d matrix Mλ

with entries in Z/pkZ such that for any b ∈ R

φ(λb) = Mλφ(b).

This is similar to how elements in a field extension can be seen as matrices over
the base field.

Now, let A be an n × n matrix with entries in R, for arbitrary n ≥ 1, and
let (x1, . . . , xn) ∈ Rn be a vector. Each entry xi can in turn be represented as
a vector (xi,1, . . . , xi,d) with entries in Z/pkZ such that xi = φ ((xi,1, . . . , xi,d)).
The action of A on Rn is R-linear so in particular Z/pkZ-linear. If we let
(y1, . . . , yn)T = A(x1, . . . , xn)T then each entry yi is the R-linear combination

yi = ai,1x1 + · · ·+ ai,nxn,

where (ai,1, . . . , ai,n) ∈ Rn is the i-th row of A. Applying φ−1 to this equation
we see that the Z/pkZ-linear action of A on the elements xi,j is as follows

(yi,1, . . . , yi,d)
T = Mai,1(x1,1, . . . , x1,d)

T + · · ·+Mai,n(xn,1, . . . , xn,d)
T .

In Figure 2, we present a protocol for constructing sharings over R of random
elements in Z/pkZ. The function of RandEl(Z/pkZ) is to amortize away the cost
of generating sharings of random elements in Z/pkZ and meanwhile to verify if
the shares correspond to a random element in Z/pkZ instead ofR. Our protocol is
similar to RandElSub(V) in [CCXY18]. Using player elimination, we assume that
there are currently n′ parties taking part in the computation (labeled P1, . . . , Pn′

without loss of generality) and at most t′ of them are corrupted. Note that
t < n′ − 2t′. If a party is unhappy, player elimination ensures that we can find
a pair of players that contains at least one corrupted player. Like Proposition 4
in [CCXY18], we only need to communicate O(n) elements in R per sharing of
a random element in Z/pkZ.

Proposition 3. If all honest players are happy after the execution of RandEl(Z/pkZ),
then the output is correct, i.e. the d · T sharings [r1,1], . . . , [r1,d], [r2,1], . . . , [rT,d]
are correct sharings of uniformly random elements in Z/pkZ, and the adversary
has no information about these values, other than the fact that they belong to
Z/pkZ.

14

RandEl(Z/pkZ)

Fixed public parameters: 1 ≤ T ≤ n′−2t′, M an n′×n′ hyper-invertible matrix
over R given in Construction 2.

Processing: 1. For i = 1, . . . , n′, Pi selects d uniformly random elements
si,1, . . . , si,d ∈ Z/pkZ and secret-shares each of them in parallel using the
secret-sharing scheme in Construction 1 over R with n′ players and t′-
privacy. This can be interpreted as each party secret-sharing a vector of d
elements, and we write JsiK := ([si,1], . . . , [si,d]). This constitutes a secret-
sharing where the correct secrets are elements of (Z/pkZ)d and the shares
are elements of Rd.

2. Players locally compute (Jr1K, . . . , Jrn′K) = M(Js1K, . . . , Jsn′K). Note that
the matrix M is defined over R; the action on the individual R-sharings is
defined via the matrices Mmi,j where M = (mi,j).

3. For i = T + 1, . . . , n′, every party Pj sends its share of JriK to Pi. Pi then
verifies the values received if the secret is indeed a vector in (Z/pkZ)d, and
if not, gets unhappy.

Output: If all honest players are happy, the d · T sharings
[r1,1], . . . , [r1,d], [r2,1], . . . , [rT,d] are sharings over R with each secret an
independent uniformly random element from Z/pkZ.

Fig. 2. Protocol for Generating Sharings of Random Elements in Subring

With the help of Proposition 3 and our above analysis, we obtain the following
theorem.

Theorem 6. There exists an efficient n-party MPC protocol for circuits defined
over Z/pkZ, that is secure against the maximal number of active corruptions
b(n− 1)/3c, and that has an amortized communication complexity of O(n log n)
ring elements per gate.

4 Statistically Secure MPC for Honest Majority over
Galois Rings

In this section we present a protocol for secure computation over the Galois
ring R = GR(pk, d) that is statistically secure against active adversaries. The
protocol tolerates a number of corrupted parties t < n/2, which is optimal in
this setting.

Our protocol is largely based on the dispute control protocol from [BH06].
However, some of their techniques explicitly use properties about fields, which
do not apply to our setting directly. To give a specific example, a standard trick
to check “correctness” (in some precise sense) of values x1, . . . , x` is to take a
random linear combination of these values and only check correctness of this
result. This approach works over a finite field F since the inner product of any
non-zero vector (an “error vector”) with a uniformly random vector is zero with
probability at most 1/|F|. Therefore any non-zero error in some value xi is very
likely to give an error in the linear combination. Unfortunately this does not hold
over R: in particular, the product of a non-zero value with a uniformly random

15

value is not uniformly random. This is a consequence of the more general issue
of R having non-trivial zero-divisors.

In this section we show that, due to some special properties of the Galois
ring R (mostly the fact that R is local), most of these techniques actually apply
to this setting as well, at the expense of having a higher failure probability than
in the field case. More explicitly, when working over a field F it can be shown
that the failure probability is roughly 1/|F|, but in our setting this probability
is close to 1/pd, which is potentially far from 1/|R| = 1/pk·d. In particular, this
implies that d must be as large as the security parameter κ.

However, if we have our computation over R = GR(pk, d) with pd ≥ n +
1, so that we have enough interpolation points for each player, we can avoid
much of the overhead. We do this by moving to an extension Galois ring R̂ =
GR(pk, d · d̂) ⊃ R (see Proposition 2). For many subprotocols where the error

depends on pd, we can pack d̂ values of R into R̂ (since R̂ ∼= Rd̂ as R-modules),
and keep the same amortized complexity. In particular, we do not get a total
complexity that is linear in both the size of the circuit and the security parameter
κ, which is what one would get if d were as large as κ.

To get computation over Z/pkZ where p ≤ n, we embed Z/pkZ ↪→ R, but we
do need to verify that the inputs are actually in Z/pkZ, like we saw in Section 3.3.
We will develop the machinery needed for this in Section 4.7.

4.1 Overview of our Techniques

We begin by presenting a summary of the main novel techniques used to achieve
the results in this section. The details of these, and their specific usage in the
context of our protocol, are explained thoroughly in subsequent sections.

Error checking. To guarantee correctness of the computation, we need a pro-
cess that checks whether values are secret-shared correctly, with negligible error.
Suppose we have secret-shared values [x1], . . . , [x`] and we want to check whether
the players have consistent shares, i.e. each reconstructing set of honest players
jointly have shares that reconstruct to the same secret value. A trick commonly
used over fields is to fix a random linear combination y = r1x1 + · · · + r`x`,
for publicly known uniformly random values r1, . . . , r`, and to have the players
broadcast the shares of y. They can then check whether their shares are consis-
tent, e.g. for Shamir’s secret-sharing scheme they check whether the shares are
on a polynomial of degree of at most t.

This approach works over a finite field F since the inner product of any non-
zero vector (an “error vector”) with a uniformly random vector is zero with
probability 1/|F|. Therefore any inconsistency in some value xi is very likely to
give an inconsistency in y. In other rings, this does not necessarily apply, and
the product of a non-zero value times a random value is not necessarily random:
for example, in Z/2kZ we have Pr[r · 2k−1 = 0] = 1/2 for uniformly random r.

For the Galois ring R, it turns out the above procedure does work, but only
with error probability p−d, i.e. it only scales in the degree of the Galois ring, not
in its order pk·d. We illustrate this with the following protocol.

16

Consider the setting where we have a single dealer that secret-shares a single
secret value [x] ∈ R and a single verifier that wants to check whether [x] is
secret-shared correctly. To ensure privacy towards the verifier, the dealer also
secret-shares a random value [u] ∈ R. The protocol runs as follows:

1. The dealer samples u ∈ R and secret-shares [x], [u] among the players.

2. The verifier samples r ∈ R and broadcasts it to all players.

3. All players reconstruct y = rx+ u towards the verifier.

4. The verifier accepts if all received shares of y are consistent, and rejects
otherwise.

This protocol is private because u is chosen uniformly random by the dealer.
We shall now analyze the soundness error. It is useful to take a more general
view, and let C ⊆ Rn denote the set of vectors of consistent shares; recall C
from Construction 1. More generally, let C be any free R-module, i.e. it has a
basis. Note that the verifier accepts if y ∈ C, and the dealer cheats successfully
if the verifier accepts and x /∈ C.

We analyze the soundness error using a fact about roots of polynomials over
R:

Lemma 2. Let f ∈ R[X] be a polynomial of arbitrary degree ` > 0. Then
Prx←R[f(x) = 0] ≤ `/pd, where x is drawn uniformly from R.

Proof. Write f(X) = a0 + a1X + · · · + a`X
`. Let u be the highest power of

p such that pu divides each coefficient a0, . . . , a` of f . Then, f(X)/pu has at
least one coefficient invertible, hence its reduction g := f(X)/pu modulo p is
a nonzero polynomial of degree ≤ ` over the field R/(p) of order pd. Clearly, if
f(x) = 0 then x := x mod (p) is a root of g. Since g has at most ` roots, g(x) = 0
with probability ≤ `/pd for uniformly random x. Since reduction modulo (p) is
a homomorphism, in particular it has pre-images of equal size, hence given that
x is uniformly random in R, x is uniformly random in R/(p). ut

Lemma 3. Let C ⊆ Rn be a free R-module. For all x /∈ C and u ∈ Rn, we have
that

Pr
r←R

[rx+ u ∈ C] ≤ 1/pd,

where r is chosen uniformly at random from R.

Proof. Let g : Rn → R be an R-module homomorphism such that g(c) = 0 for
all c ∈ C, and such that g(x) 6= 0. Such a homomorphism in particular exists
because C is free, and it is therefore a direct summand of Rn.

If rx+ u ∈ C, then 0 = g(rx+ u) = rg(x) + g(u), so r is a root of the linear
polynomial g(x)X + u, which by the previous lemma occurs with probability
≤ 1/pd. ut

17

Packing. To get a negligible correctness error for MPC over R, our solution is
to move from R to an extension R ⊂ R̂, where R̂ = GR(pk, d · d̂) for an integer

d̂ > 1 with pd·d̂ ≥ 2κ. However, the efficiency is unfavorable since communication
and computation is Ω(κn2) per multiplication gate.

To improve efficiency, we observe that R̂ is a free R-module of rank d̂, i.e.

R̂ ∼= Rd̂. Therefore, we can interpret an element of R̂ as a vector of elements of
R of length d̂. This allows us to check d̂ elements of R in parallel, by checking

one element of R̂. In R̂ our correctness check has error probability p−d·d̂ ≤ 2−κ,
and thus by moving to the extension we can both achieve the desired soundness
error while getting no amortized overhead.

Let g(Y) be a monic polynomial over R of degree d̂ which is irreducible when
taken modulo p, and let R̂ = R[Y]/(g(Y)). Let w1, . . . , wd̂ be a basis of R̂ over

R as a module and consider the natural isomorphism of modules ψ : Rd̂ → R̂

given by ψ(x1, . . . , xd̂) =
∑d̂
i=1 xi · wi.

Finally, consider y ∈ R̂ with ψ(y1, . . . , yd̂) = y and assume that y is secret-

shared via a polynomial F ∈ R̂[X] and that the exceptional sequence α1, . . . , αn
of evaluation points is in R. This polynomial can be written uniquely as F (X) =∑m
i=1 fi(X) ·wi where fi are polynomials in R[X]. Moreover, we notice that for

all r ∈ R it holds that F (r) = ψ(f1(r), . . . , fd̂(r)), so in particular the polynomial

fi defines shares of yi, for i = 1, . . . , d̂. Conversely, if we have shares of y1, . . . , yd̂
using polynomials f1, . . . , fd̂ over R, then we can define a share of ψ(y1, . . . , yd̂)

over R̂ which is given by the polynomial F =
∑d̂
i=1 fi · wi. We abuse notation

and write ψ([y]R̂) = ([y1]R, . . . , [ym]R) to denote the situation above.
We then have the following:

Lemma 4. Let y ∈ R̂ and (y1, . . . , ym) = ψ−1(y), and suppose that ψ([y]R̂) =
([y1]R, . . . , [ym]R). Then [y]R̂ is correctly shared if and only if each [yi]R is cor-
rectly shared.

Proof. Let F be the polynomial over R̂ interpolating y and let fi be the polyno-
mial over R interpolating yi, for i = 1, . . . ,m. We know that F =

∑m
i=1 fi ·

wi, and since w1, . . . , wi is a basis for R̂ over R it follows that deg(F) =
max{deg(f1), . . . ,deg(fm)}. Therefore, in particular deg(F) ≤ t if and only if
deg(fi) ≤ t for all i. The desired result follows. ut

MPC over Z/pkZ. Like in Section 3.4, checking the membership of a secret-
shared value in a Galois subring S ⊂ R can be reduced to sampling a random
secret-shared [s], where s← S and the secret-sharing is over R. To check whether
an input [x] is in S, we can simply mask and open x + s, and check whether it
is in S. This holds for any x ∈ S, since S is additively closed.

To get a random sharing [s], a straightforward solution is to let each player
Pi sample a random element si and secret-share it (over R). The players then
compute [s] =

∑n
i=1[si]. We can check the correctness of [s] by using the method

of Section 4.1, where we check a batch of many different values at once. However,

18

in this situation, we are only allowed to take S-linear combinations. In particular,
for S = Z/pkZ, Lemma 3 only gives an error probability of 1/p.

To reduce the error probability, we do the following. Let C be the set of share
vectors [s] = (s1, . . . , sn) of secrets s ∈ S, with shares s1, . . . , sn ∈ R. Note that
C is an S-module but not an R-module in general. Since R is a free module over
S, we have R ∼= Se where e = rankR. We may now take the extension of scalars
of C to R via the following tensor product of S-modules:

Ĉ := C ⊗S R ∼= C ⊗S Se

In contrast to C, we have that Ĉ is an R-module, and in fact an R-submodule
of Rn ⊗S R ∼= Rn·e. A dealer will secret-share a vector of e random elements
of S in parallel over R. Each player thus obtains a vector of shares (with each
entry in R), which can be interpreted as one element of R ⊗S R ∼= Re. All of
the players’ shares together form a vector in Rn·e, which is in Ĉ if indeed the e
secret-shared elements are in S. We can now apply the methods from Section 4.1
to batch check these values with error probability 1/pd.

4.2 Computation over Fields

As a base for our protocol for statistically secure MPC in the honest majority
setting, we choose the protocol from [BH06]. It maintains the invariant that
every wire of the circuit is secret-shared using Shamir’s secret-sharing scheme.
Linear gates are given for free by the secret-sharing scheme, and multiplication
gates are handled by means of some preprocessed data known as multiplication
triples, which are generated themselves using a technique known as resharing.
The protocol follows the traditional offline/online paradigm where the multipli-
cation triples are generated during the so-called offline phase that is independent
from the inputs, and these triples are subsequently used in the online phase to
perform the actual secure computation.

This approach existed already in [BGW88] for information-theoretic MPC
in the honest majority setting. However, the resulting protocol is not robust by
default, since even though parties are able to detect inconsistent shares at the
time of revealing some shared values, it is not possible for them to know what
the underlying shared value is, so the adversary can cause the protocol to stall.
This restriction is removed and a fully robust protocol is obtained in [BH06] by
introducing a technique known as dispute control, which allows the parties to
partially identify cheaters whenever an inconsistency is found and avoid them
from disrupting the computation at subsequent steps.

With the secret-sharing scheme over rings from Section 2.2, adapting the
basic resharing based protocol to the ring setting is straight-forward. Therefore,
an efficient protocol for statistically secure computation with honest majority
with abort and over rings can be easily developed at this point. However, in this
work we aim for full security, and in order to provide robustness we need to adapt
the tools introduced by the dispute control technique, and this becomes much
more involved since these highly exploit the fact that the underlying structure
is a field.

19

While we do not have the nice structural properties of fields, we are able
to exploit properties of Galois rings to obtain sub-protocols with comparable
efficiency to those over fields. In the rest of the section we will focus only on
the algebraic aspects of dispute control that must be modified in order to adapt
them to work over Galois rings. A second part of dispute control uses more
“combinatorial” arguments which are independent of the underlying algebraic
structure and therefore they apply directly to our setting. In these cases we refer
the reader to the appropriate references.

4.3 Dispute Control

In dispute control the parties keep track of a publicly known dispute set ∆
of unordered pairs {Pi, Pj} of parties that are in dispute. We write Pi 6↔ Pj
if {Pi, Pj} ∈ ∆, and Pi ↔ Pj otherwise. At a very high level, a new dispute
Pi 6↔ Pj is generated whenever Pi thinks that Pj has cheated, or vice versa, and
the protocol will guarantee that whenever a new dispute is generated then at
least one of the two parties involved is corrupt (i.e. an honest party will never
go in dispute with another honest party).

We let ∆i denote the set of parties Pj such that Pi 6↔ Pj . Let X ⊆ P denote
the set of parties Pi that have |∆i| > t, i.e. parties that have a dispute with
more than t other parties. They are universally known as corrupt, because no
honest party can have a dispute with more than t other parties.

At a very high level, the way in which dispute control is used in the protocol
is the following. The computation is divided into segments such that at the end
of each segment there is a consistency check. If the check fails, the parties run a
dispute control protocol that results in a new pair of players that are not yet in
dispute, such that one of them is guaranteed to be corrupt.

Once the dispute has been identified, the segment is re-run. There can be
at most t(t + 1) disputes. By dividing the computation into n2 segments of
approximately equal length, the overhead of repeating failed segments is at most
a factor of 2. In this work we will not focus on the details of dispute control and
we only introduce it as we will need the notation. For the details of dispute
control see [BH06].

4.4 1D, 2D and 2D∗ sharings

As before, let h(Y) ∈ (Z/pkZ)[Y] be a monic polynomial of degree d such that its
reduction mod p is irreducible, and let R be the Galois ring (Z/pkZ)[Y]/(h(Y)).
We assume that d ≥ logp(1 + n), so that there is an exceptional sequence
0, α1, . . . , αn ∈ R.

Given r ∈ R, we write [r]R to denote the situation in which r is secret-shared
using our secret-sharing scheme from Construction 1 over the ring R (if R is
obvious we omit it, as we have done until now). Recall from Section 2.2 that this
means that there is a polynomial f over R of degree at most t such that party
Pi has the share ri = f(αi) for i = 1, . . . , n, and r = f(0). We shall call this a
1D-sharing of r, and refer to the shares r1, . . . , rn as level-one shares.

20

If each level-one share ri is itself 1D-shared as [ri]R we say we have a 2D-
sharing of r, and we denote this by [[r]]. We refer to the entries of the share
vector [ri] as level-two shares.

Finally, we denote by 〈r〉 the situation in which r is 2D-shared and addition-
ally the parties hold authentication tags on r. We will call this a 2D*-sharing of
r, and it will be explained in detail in Section 4.5.

Intuition on the Different Sharing Levels. The types of sharings defined
above differ mostly in how robust they are at the time of reconstruction, i.e.
whether or not the parties can detect which are the wrong shares so that the
given segment can be repeated, avoiding the same shares to be incorrect twice.

1D-sharings are standard shares under our secret-sharing scheme. When re-
constructing the secret, if the reconstructing party receives n shares consistent
with a polynomial of degree at most t, then it is guaranteed that the recon-
structed value is correct. However, if the shares are not consistent, the value
cannot be reconstructed. Furthermore, it is not possible to know which shares
are wrong, unless the dealer is willing to reveal the secret value. This makes it
unsuitable for secret values when the circuit is being computed, however this
type of sharing can be used in the preprocessing phase.

2D-sharings help in identifying which ones are the wrong shares. This is
done by letting the parties reconstruct the shares using their level-two shares,
and comparing them with the ones that were opened before. This reconstruction
itself may fail, but this is fixed by asking the owner of each level-one share
to broadcast the polynomial they used to generate the level-two sharings of
its share, so the parties can determine which level-two shares do not fit the
polynomial.

The method above allows parties to determine the wrong shares in most of
the cases, but there is an scenario in which it is not possible to to do so. This
happens when there is a level-two share that is not consistent with the given
polynomial, but both parties (the owner of the level-two share and the party
who sampled the polynomial) claim to be saying the truth. In this case parties
cannot tell who is right. 2D∗-shares solve this issue since now the owner of the
level-two share can prove to the other parties that he is telling the truth, since
he has authentication tags on the level-two shares. Using this mechanism, the
parties can determine a dispute whenever an opening fails, and thus the segment
can be repeated whilst avoiding the same dispute, which allows the protocol to
continue.

4.5 Sub-Protocols for Secure Computation over Galois Rings

The overall protocol for secure computation follows the offline/online phase
paradigm, which is typical from other secret-sharing based protocols, like these
from [CDE+18,DKL+12,BH08,BH06,KOS16,BFO12]. Essentially, the parties pre-
process some material in the offline phase which is used in the online phase to
perform the computation, after sharing the inputs. The building blocks to achieve

21

this include procedures for sharing values, generating signatures, checking cor-
rectness of triples, and some others. In this section we describe the pieces required
to build our protocol, and also the protocol itself. We prove their security and
analyze their communication complexity.

For the rest of the section we let κ denote the statistical security parameter.

Dispute Control Broadcast. This protocol allows a set of senders to broad-
cast a set of values among all the parties such that, with overwhelming proba-
bility, all the parties receive the same value which is the one sent initially if the
sender is honest. Also, this broadcast is “compatible” with the dispute control
mechanism, in the sense that it detects cheaters and generates new disputes.
We remark that our model assumes a network with broadcast which may not
provide dispute control by default.6

Even though the protocol for dispute control broadcast of [BH06] uses fields,
no arithmetic properties of the input values are used. We may therefore just
serialize elements of R as bit strings, map them to a finite field of suitable size,
and use their protocol verbatim.

Complexity Analysis. The protocol communicates O(`nd+ κn2) = O(`n log n+
κn2) bits and broadcasts O(nκ) bits. Here ` is the number of values in R being
broadcasted, n is the number of players, and κ the security parameter. 7

Verifiable 1D-Sharings. This protocol allows one party PD to 1D-share some
value x ∈ R with the guarantee that the shares of the honest parties are con-
sistent with a degree-t polynomial over R.8 Note that we make no guarantees
beyond this; in particular, we do not guarantee robustness of shares. With the
protocol, we can verify many different sharings at once, by opening a masked
linear combination of the shares and checking correctness on the combination.

For this protocol we will make use of the packing technique as detailed in
Section 4.1. Recall we move to an extension ring R̂ ⊃ R with R̂ = GR(pk, d · d̂).
We denote a 1D-sharing over R̂ as [x]R̂, which corresponds to sharing a vector

of d̂ elements of R via Lemma 4.
The protocol can be found in Fig. 3.

Proposition 4. If the protocol VSS1D from Fig. 3 succeeds then, with proba-
bility at least 1 − p−κ, each [a(m)]R is correctly 1D-shared for m = 1, . . . , `. If
the protocol aborts then a new dispute is generated. Input-privacy is guaranteed
during the whole protocol (even if it fails).
6 Assuming broadcast is necessary for t ≥ n/2 since it is known that unconditional

broadcast is not possible in this settting
7 Throughout this work we consider p and k as constants for the asymptotic com-

plexity analysis. We also ignore the dispute control layer, as our complexity closely
matches the one from [BH06] for the fault localization.

8 Notice that if there are exactly t+ 1 honest parties then this is trivial since any set
of t + 1 values is consistent with a degree-t polynomial. However, VSS1D is needed
for the general case.

22

VSS1D

A party PD will distribute ` values a(1), . . . , a(`) ∈ R among all parties.

– PD partitions a(1), . . . , a(`) ∈ R into L = `/d̂ vectors of length d̂: s(j) =

(a(1,j), . . . , a(d̂,j)) ∈ Rd̂, for j = 1, . . . , L.
– Let s(j) = ψ(s(j)) ∈ R̂ for j = 1, . . . , L.

Private Computation: PD samples at random s(L+1), . . . , s(L+n) ∈ R̂ and deals
[s(1)]R̂, . . . , [s

(L+n)]R̂ to all parties.
Fault Detection: Every verifier PV ∈ P \ X executes the following steps (in

parallel).
1. PV samples a challenge vector (r1, . . . , rL) ∈ R̂L and broadcasts this value

using protocol DCBroadcast.
2. All the parties reconstruct

∑L
i=1 ri[s

(i)]R̂+[s(L+V)]R̂ towards PV , who then
checks correctness of the shares, i.e., PV checks that these shares lie on a
polynomial of degree at most t.

3. PV broadcasts a bit indicating whether or not the check succeeded.
Fault Localization: See Section 3.2 of [BH06].

If no verifier PV complained in the previous step, the output is defined to be
[a(1)]R, . . . , [a

(`)]R = ψ−1([s(1)]R̂), . . . , ψ−1([s(L)]R̂).

Fig. 3. Protocol for Verifiable Secret-Sharing

Proof. It is clear that the shared values remain secret since the random masks
s(L+V) prevent them from being revealed.

Now, for soundness we consider the setting of an honest verifier PV checking
the shares of the dealer. Let C denote the R̂-module of correct share vectors
(see Construction 1). The adversary successfully cheats if for some i we have

[s(i)] /∈ C and the check passes, i.e.
∑L
i=1 ri[s

(i)]R̂ + [s(L+V)]R̂ ∈ C. Since the
adversary knows which values they cheat on, we may take i = 1 without loss of
generality. We can apply Lemma 3 and see that the probability of successfully

cheating is at most 1/pdd̂ ≤ 1/pκ.
Finally, since each [s(1)]R̂, . . . , [s

(L)]R̂ is correctly shared, it follows from

Lemma 4 that the shares [a(1),]R . . . , [a
(`)]R output by the protocol are cor-

rect. For the case in which a dispute is generated see Lemma 2 in [BH06]. ut

Complexity Analysis. The protocol communicates O
(
n2κ+ `n logn

κ

)
bits and

broadcasts O(n) bits.

Reconstruct 1D. Here we consider the setting in which a set of dealers PD ⊆
P \ X have 1D-shared some values [s(1,D)], . . . , [s(`,D)], PD ∈ PD. The goal
is to reconstruct the values s(m) =

∑
PD∈PD

s(m,D) for m = 1, . . . , ` to a set of
recipients PR ⊆ P\X . This is achieved by letting each player Pi ∈ P compute its

share of the sum s
(m)
i =

∑
PD∈PD

s
(m,D)
i and send it to each player in PR. Then

a dispute control layer makes sure that all parties agree that the reconstruction
was done successfully.

23

Proposition 5. There is a protocol Reconstruct1D such that, on input some
values [s(1,D)], . . . , [s(`,D)] correctly shared by each PD ∈ P\X , the protocol either
fails or each party in P \ X receives s(m) =

∑
PD∈PD

s(m,D) for m = 1, . . . , `.
Moreover, if the protocol aborts a new pair of players in dispute is identified.

For the description of the protocol and its proof of security see Lemma 3
in Section 3.2 of [BH06]. The main observation is that their argument applies
directly to our setting since it only relies on polynomial interpolation, which
works for R in essentially the same way as it does for a field as long as the base
points are chosen to form an exceptional sequence.

Complexity Analysis. The protocol communicates O(`n2d) bits and broadcasts
O(nd) bits, where d is the degree of the Galois ring R over Z/pkZ.

Generating Random Challenges. An essential tool needed for statistically
secure MPC is the generation of publicly known random elements. This is achieved
by a protocol GenerateChallenges which operates as follows.

1. Each party Pi ∈ P \X samples some random values s(1,i), . . . , s(`,i) ∈ R and
uses VSS1D to distribute correct shares of it.

2. The parties compute [s(m)] =
∑
Pi∈P\X [s(m,i)] and open s(m) to all parties

in P \ X using Reconstruct1D, for m = 1, . . . , `.

Since the additive group of R is abelian, if each s(m,i) is independent and
there is at least one that is uniformly random, then s(m) is random. Now, the
s(m,i) are independent from each other since they are secret-shared, so one player
cannot choose its share conditioned on the other players’ shares.

Complexity Analysis. The protocol communicates O(n3κ+`n2d) bits and broad-
casts O(nd) bits where d is the degree of the Galois ring R over Z/pkZ.

Upgrading 1D-sharings to 2D-sharings. The goal of this protocol is to
upgrade a 1D-sharing [a] of a ∈ R to a 2D-sharing [[a]]. In fact, several values
a(1), . . . , a(`) ∈ R will be upgraded in one go, and moreover, sums of 1D-shares
instead of individual 1D-shares will be upgraded due to our use-case.

More precisely, let PD ⊆ P \ X be some subset of dealers. Each PD ∈ PD
has a list of values a(1,D), . . . , a(`,D) ∈ R it has secret-shared. The goal of the
Upgrade1Dto2D sub-protocol is to let each party Pi distribute shares of its share

a
(m)
i of a(m) =

∑
PD∈PD

a(m,D) for m = 1, . . . , `. At the end of the protocol it is

guaranteed that all shares (both, the shares of each a(m) and the shares of their
shares) are correct.

Proposition 6. If Upgrade1Dto2D aborts, then a new conflicting pair of parties
is detected. Otherwise, it is guaranteed with probability at least 1− p−d that the
values s(m) ∈ R for m = 1, . . . , ` are correctly 2D-shared, meaning that for each

m there are polynomials f (m), f
(m)
1 , . . . , f

(m)
n ∈ R[X] of degree at most t such that

24

Upgrade1Dto2D

Let a(1,D), . . . , a(`,D) ∈ R such that each a(m,D) has been 1D-shared by PD ∈ PD.

– The parties partition [a(1,D)]R, . . . , [a
(`,D)]R into L = `/d̂ vectors of length d̂:

s(j,D) = ([a(1,j,D)]R, . . . , [a
(d̂,j,D)]R) ∈ Rd̂, for j = 1, . . . , L.

– Let [s(j)]R̂ =
∑
PD∈PD

ψ(s(j,D)) ∈ R̂ for j = 1, . . . , L.

Private Computation: 1. Each PD ∈ PD shares a random value s(L+1,D) ∈ R̂.
2. Each player Pi 1D-shares each of its shares s

(m)
i ∈ R̂ for m = 1, . . . , L+ 1.

We denote by s
(m)
ij ∈ R̂ the share of s

(m)
i received by Pj .

Fault Detection: Using the protocol GenerateChallenges, the parties jointly gen-
erate random values (r1, . . . , rL) ∈ R̂L. Then the following is executed for every
verifier PV ∈ P \ X .

1. Every Pj with Pj ↔ PV computes the share sij =
∑L
m=1 rm · s

(m)
ij + s

(L+1)
ij

for every Pi with Pi ↔ Pj , and sends these to PV (notice that these are

shares of si =
∑L
m=1 rm · s

(m)
i + s

(L+1)
i).

2. For every Pi with Pi ↔ PV , PV checks that (si1, . . . , sin) lie in a polynomial
over R̂ of degree at most t. Then broadcasts accept or reject depending on
the case.

3. If PV accepted in the previous step, then interpolate s1, . . . , sn and check
whether or not these lie in a polynomial of degree at most t.

Fault Localization: See protocol Upgrade1Dto2D in Section 3.4 of [BH06].

If no verifier PV complained in the previous step, the output is defined to be
[[a(1)]]R, . . . , [[a

(`)]]R = ψ−1([[s(1)]]R̂), . . . , ψ−1([[s(L)]]R̂).

Fig. 4. Protocol for upgrading 1D-shares to 2D-shares

each party Pj has shares s
(m)
j , s

(m)
ij ∈ R with s

(m)
j = f (m)(j), s

(m)
ij = f

(m)
i (j),

s
(m)
i ≡k f (m)

i (0) and s(m) = f (m)(0).

Proof. The proof of this proposition follows the lines of the proof of Proposition
4. ut

Complexity Analysis. The protocol communicates O(n3κ+ `n2) bits and broad-
casts O(nκ) bits.

Information-Checking Signatures with Dispute Control. The goal of
information-checking signatures, or IC signatures for short, is to provide a way
for one party PR to prove to another party PV that it received some specific
shares from some other party PS . This will be used in the online phase to de-
tect cheaters when revealed shares happen to be inconsistent. The idea is that
whenever a player sends his share, he is “committed” to it by means of the
authentication tags and therefore, if he sends an incorrect share, this can be
detected by checking the tags.

For the IC signatures in this work we follow a similar approach to [BH06],
which at a very high level consists of finding a polynomial f that interpolates
a set of messages as well as the point (0, y) for a randomly chosen y. The value

25

y will be referred to as the authentication tag. The authentication key will be a
random poiont (u, f(u)) on this polynomial where u is not an evaluation point
corresponding to any of the messages. To check correctness, the key is used to
interpolate the polynomial and then it is checked that its evaluation at zero
matches the presented tag. Intuitively, if any message is modified then the poly-
nomial will be different, and the only way in which an attacker can make the
check pass is by presenting the right tag, which is equivalent to guessing point
used as authentication key. If there are enough points to choose from, this hap-
pens only with low probability.

In more detail, the protocol IC-Distr allows a sender PS to send ` values
m1, . . . ,m` ∈ R to a receiver PR along with authentication tags, and to send an
authentication key to a verifier PV . At a later point the protocol IC-Reveal can
be called to verify correctness of these tags. In this protocol, party PR sends the
messages and their tags to PV , who can then verify their correctness using its
authentication key.

IC-Distr

A sender PS has ` messages m(1), . . . ,m(`) ∈ R.

– Let d̂ be such that d · d̂ ≥ κ. let L = `/d̂, and assume that d̂ is large enough so
pκ ≥ L+ κ+ 1, i.e. d̂ ≥ `/(pκ − κ− 1).

– PS partitions m(1), . . . ,m(`) ∈ R into `/d̂ vectors of length d̂: s(j) =

(m(1,j), . . . ,m(d̂,j)) ∈ Rd̂, for j = 1, . . . , L.
– Let s(j) = ψ(s(j)) ∈ R̂ for j = 1, . . . , L.

Private Computation: 1. Let B = {β1, . . . , βL} ⊆ R̂ be an exceptional se-
quence. PS selects κ random authentication tags y1, . . . , yκ ∈ R̂ and ran-
dom points u1, . . . , uκ ∈ R̂ \ (B ∪ {0}) such that B ∪ {0, u1, . . . , uκ} ⊆ R̂
forms an exceptional sequence.

2. For i = 1, . . . , κ, PS computes the polynomial fi over R̂ of degree at most
L interpolating (0, yi), (β1, s

(1)), . . . , (βL, s
(L)), and computes vi = fi(ui).

3. PS sends the messages m(1), . . . ,m(`) to PR, along with the authentication
tags y1, . . . , yk. It also sends the authentication keys (u1, v1), . . . , (uκ, vκ)
to PV .

Fault Detection: PV reveals a random half of the keys to PR. Then PR checks
the validity of these keys, who then broadcast accept or reject depending on
the case. If the check passes then the remaining, unrevealed half of the keys is
kept as the actual keys.

Fault Localization: See Section 3.5 of [BH06].

Fig. 5. Protocol for Distributing IC Signatures

Theorem 7 (Lemma 6 from [BH06]). If IC-Distr succeeds and PV , PR are
honest, then with overwhelming probability PV accepts the message m in IC-
Reveal (completeness). If IC-Distr fails, then the localized pair in dispute contains

26

IC-Reveal

A receiver PR has ` messages m(1), . . . ,m(`) ∈ R and κ′ = κ/2 authentication
tags y1, . . . , yκ′ ∈ R̂. A verifier PV has κ′ authentication keys (u1, v1), . . . , (uκ′ , vκ′)
corresponding to these messages.

– PR partitions m(1), . . . ,m(`) ∈ R into L = `/d̂ vectors of length d̂: s(j) =

(m(1,j), . . . ,m(d̂,j)) ∈ Rd̂, for j = 1, . . . , L.
– Let s(j) = ψ(s(j)) ∈ R̂ for j = 1, . . . , L.

1. PR sends the messages and the authentication tags to PV
2. PV checks the validity of the tags using its authentication keys by checking

that, for at least one i, the points (0, yi), (β1, s
(1)), . . . , (βL, s

(L)), (ui, vi) lie on
a polynomial of degree at most L over R̂.

Fig. 6. Protocol for Revealing and Checking IC Signatures

at least one corrupted player. If PS and PV are honest, then with overwhelming
probability, PV rejects any fake message m′ 6= m in IC-Reveal (correctness). If
PS and PR are honest, then PV obtains no information about m in IC-Distr (even
if it fails) (privacy).

Proof. Regarding completeness, notice that if the randomly chosen κ/2 tags are
correct, then it holds that at least one of the remaining authentication tags is
valid with probability at least 1− κ/2κ.

For correctness, consider the scenario of an honest PV and a corrupt PR.
Suppose that PR manages to make the check pass whilst presenting a different
set of messages. Let fi be the polynomial of degree at most L over R̂ interpolating
(β1, s

′(1)), . . . , (βL, s
′(L)), (ui, vi), then PR must have sent a tag y′i that is equal to

one of the elements in {f1(0), . . . , fκ(0)}. This can be done only if PR guesses at
least one of the authentication keys (ui, vi). Recall that R̂ has a Lenstra constant
of at least pκ, so there are at least pκ−L−1 possibilities for each ui. This means
that the probability of guessing at least one ui is at most κ/(pκ − L− 1).

For the proof of the other properties see the proof of Lemma 6 in [BH06]. ut

Upgrading 2D-sharings to 2D∗-sharings. Recall that in Section 4.4 we
mentioned the concept of 2D*-shares, but we did not explicitly define it since we
did not have the concept of IC signatures. We begin by defining what a 2D*-share
is. Given a ∈ R, we say that a is 2D*-shared, written as 〈a〉, if it holds that [[a]]
and also, for every set of three players PR, PS , PV such that PR ↔ PS , PS ↔ PV
and PR ↔ PV it holds that PR has authentication tags of the level-two share of
PS ’s share, and PV has the corresponding authentication keys.

Protocol Upgrade2Dto2D* takes as input some 2D-shared values s(1), . . . , s(`) ∈
R, and upgrades them to 2D*-shares. The protocol works by calling IC-Distr
for every set of three players PR, PS , PV such that PR ↔ PS , PS ↔ PV and

PR ↔ PV , where the message m are the shares s
(1)
SR, . . . , s

(`)
SR.

27

For the dispute control layer of the protocol and its security proof see Section
3.6 of [BH06].

Complexity Analysis. The protocol communicates O(κ2n3) bits and broadcasts
O(nκ) bits.

Triple-Checking Protocol. The protocol SacrificeTriple, described in Fig. 7,
allows the parties to check that some given shares [a], [b], [c] satisfy c = a ·b. This
is achieved by generating some shares [a′], [c′] where c′ = a′ · b, and “sacrificing”
([a′], [b], [c′]) to check correctness of ([a], [b], [c]).

SacrificeTriple

The inputs are 1D-shared values [a
(m)
k]R, [b

(m)
k]R, [c

(m,k)]R for m = 1, . . . , `, where

a
(m)
k , b

(m)
k , c(m,k) were dealt by party Pk ∈ P \ X .

1. Every player Pk ∈ P \ X verifiably 1D-shares random values ā
(m)
k ∈ R̂ and

c̄(m,k) ∈ R̂ with c̄(m,k) = ā
(m)
k · b(m)

k for m = 1, . . . , ` as follows:

(a) For m = 1, . . . , `, player Pk ∈ P \ X samples ā
(m)
k and c̄(m,k) as speci-

fied above. Let ψ−1(a
(m)
k) = (ā

(m)
k,1 , . . . , āk,d̂)

(m) ∈ Rd̂ and ψ−1(c̄(m,k)) =

(c̄
(m,k)
1 , . . . , c̄

(m,k)

d̂
) ∈ Rd̂.

(b) Pk 1D-shares the 2`d̂ values ā
(m)
k,1 , . . . , ā

(m)

k,d̂
∈ R and c̄

(m,k)
1 , . . . , c̄

(m,k)

d̂
∈ R

using the VSS1D protocol, for m = 1, . . . , `. This implies that ā
(m)
k ∈ R̂

and c̄(m,k)R̂ are verifiably 1D-shared over R̂.
2. Parties jointly sample a random value r ∈ R̂ using protocol GenerateChallenges.
3. Each player Pk ∈ P \ X sends ã

(m)
k = r · a(m)

k + ā
(m)
k ∈ R̂ to all parties Pi with

Pi ↔ Pk, for m = 1, . . . , `.
4. Parties jointly sample a random value s ∈ R̂ using protocol GenerateChallenges.a

5. Parties invoke Reconstruct1D to reconstruct [z(k)]R̂ =
∑`
m=1 s

m−1[z
(m)
k]R̂,

where [z
(m)
k]R̂ = ã

(m)
k [b

(m)
k]R − r[c(m,k)]R − [c̄(m,k)]R, for k = 1, . . . , n.b

6. The parties check that z(k) = 0 for all k. If this fails for some k0 then new
disputes Pi 6↔ Pk0 are generated for all Pi ∈ P \ X .

a We could choose ` independent challenges instead, but we use this optimization
to save in communication. Notice that a similar optimization can be applied to
the protocol from [BH06]

b Some extra step is needed to ensure players are committed to their ã. See [BH06]
for the details.

Fig. 7. Protocol for Verifying Multiplications

For the security of the SacrificeTriple protocol we need to argue about the
number of roots of a polynomial over a ring. In general, not much can be said
since over a ring with zero divisors a polynomial can have many more roots than
its degree. However, we have the following lemma, which bounds the number of
roots that constitute an exceptional sequence.

28

Lemma 5. Let f(X) ∈ R[X] be a non-zero polynomial of degree at most `. If
{α1, . . . , αm} ⊆ R are different roots of f that form an exceptional sequence,
then m ≤ `.

Proof. This follows from Theorem 3. Suppose that ` < m, so ` ≤ m − 1. We
know that there is a unique polynomial of degree at most m−1 that interpolates
the points (α1, 0), . . . , (αm, 0), but both the zero polynomial and f satisfy this
condition, so f is the zero polynomial, which is a contradiction. Therefore, we
conclude that m ≤ `. ut

We proceed to the proof of security of the protocol SacrificeTriple.

Proposition 7. Assume all shares [amk], [bmk], [c(m,k)] are correctly 1D-shared. If
the protocol SacrificeTriple succeeds, then with probability at least 1−`/pκ it holds
that c(m.k) = amk · bmk for all Pk ∈ P \ X and m = 1, . . . , `. If the protocol aborts
then it generates a new dispute.

Proof. Consider a corrupt player Pk for which c̄(m,k) = ā
(m)
k b

(m)
k + γ

(m)
k and

c(m,k) = a
(m)
k b

(m)
k + δ

(m)
k with δ

(m)
k 6= 0 for some m, say m = 1. Now, suppose

the protocol succeeds, then z(k) = 0. However, we see that this value is equal
to9

z(k) =
∑̀
m=1

sm−1(ã
(m)
k b

(m)
k − rc(m,k) − c̄(m,k))

=
∑̀
m=1

sm−1((ra
(m)
k + ā

(m)
k)b

(m)
k − r(a(m)

k b
(m)
k + δ

(m)
k)− (ā

(m)
k b

(m)
k + γ

(m)
k))

= −
∑̀
m=1

sm−1(rδ
(m)
k + γ

(m)
k) = 0.

Now, since δ
(1)
k 6= 0, it follows from Lemma 2 that rδ

(1)
k + γ

(1)
k is non-zero

with probability at least 1− p−κ (over the choice of r).

Applying Lemma 5 we see that conditioned on rδ
(1)
k + γ

(1)
k 6= 0 the event

rδ
(1)
k + γ

(1)
k +

∑`
m=2 s

m−1(rδ
(m)
k + γ

(m)
k) = 0 holds with probability at most

(`− 1)/pκ. Furthermore, using the same lemma we see that the probability that

rδ
(1)
k + γ

(1)
k = 0 is at most 1/pκ. Therefore, putting these together we obtain

that the adversary can only successfully cheat with probability at most `/pκ.

Regarding privacy, we observe that the value r · a(m)
k ∈ R̂, which contains

information about a
(m)
k , is masked by the element ā

(m)
k ∈ R̂. Since this element

is uniformly random for an honest Pk, and given that R̂ is an additive group,

we conclude that the private value a
(m)
k of Pk remains hidden.

For the arguments related to dispute control see Lemma 8 in [BH06]. ut
9 We use the equality ã

(m)
k = ra

(m)
k + ā

(m)
k , which follows from the extra step we

omitted in the protocol.

29

Complexity Analysis. Assuming that n log(n) ≤ κ2, the protocol transmits
O(n3κ+ n2κ`) bits, and broadcasts O(nκ) bits.

4.6 Final Protocol

Offline Phase. In the offline phase the parties generate a number M of multi-
plication triples (〈a〉 , 〈b〉 , 〈c〉), where c = a · b and a, b are random. This phase is
totally independent of the circuit to be computed (parties only need to make sure
to generate as many triples as multiplication gates in the circuit), and therefore
it can be executed at a totally different time than the evaluation of the circuit
itself, thus the name “offline”.

To compute these sharings, a technique known as re-sharing is used to obtain
[a · b] from [a] and [b]. This works by letting the parties locally compute degree
2t−sharings of a · b by taking the local product of their shares on a and b. Then
these shares are distributed and an appropriate linear combination is taken to
obtain [a · b].

Assume for simplicity that n2 divides M . To produce the M triples, the
parties produce n2 batches of L = M/n2 triples each. To generate the L triples
of each batch (or segment), the parties run the protocol from Fig. 8. Notice that
each segment may fail due to the dispute control, in which case a new dispute is
identified and the segment must be repeated. Since there are most n2 different
disputes that can occur, there may be up to n2 repetitions of segments overall,
and since there are at most n2 segments we see that there are at most 2n2

segment executions.

Preprocessing Protocol

Since this is the first protocol to be executed, initially the dispute set and the set of
identified corrupt parties are ∆,X = {}. The following is executed for each segment,
and each time a new dispute pair Pi 6↔ Pj is identified, it is added to ∆ and the
segment is repeated.

1. Each player Pk 1D-shares 2L random values a(m,k), b(m,k) ∈ R for m = 1, . . . , L.
2. Upgrade1Dto2D is called on a(m,i) for m = 1, . . . , L and Pi ∈ P\X to obtain cor-

rect 2D-shares [[a(m)]] and [[bm]] for m = 1, . . . , L, where a(m) =
∑
Pi∈P\X a

(m,i)

and similarly b(m) =
∑
Pi∈P\X b

(m,i).

3. The players invoke VSS1D to let each Pk ∈ P \X 1D-share the values c(m,k) =

a
(m)
k · b(m)

k for m = 1, . . . , L.
4. Invoke the protocol SacrificeTriple to prove that the value [c(m,k)] shared on the

previous step is the product of [a
(m)
k] and [b

(m)
k] (recall that a(m) and b(m) are

2D-shared), for m = 1, . . . , L.
5. Let λ1, . . . , λn ∈ R be such that f(0) =

∑n
i=1 λi · f(i) for any polynomial

f over R of degree at most 2t. The parties use Upgrade1Dto2D to compute
[[c(m)]]←

∑n
k=1 λk · [c

(m,k)] for m = 1, . . . , L.
6. Parties use Upgrade2Dto2D* to upgrade all shares to 2D*-shares.

Fig. 8. Protocol for Preparing Multiplication Triples

30

Proposition 8. The preprocessing protocol generates correctly 2D*-shared mul-
tiplication triples with overwhelming probability.

Proof. The proof follows from the properties of Upgrade1Dto2D, VSS1D and
Upgrade2Dto2D*. See Lemma 10 in [BH06] for the details. ut

Complexity Analysis. Suppose that there are M triples to be processed. The
preprocessing phase communicates O(Mn2 log n + κ2n5) bits and broadcasts
O(n3κ) bits.

Online Phase. In the online phase is where the parties actually compute the
circuit securely, using the triples that were preprocessed in the offline phase. We
present here the online phase without the dispute control layer, which takes care
of executing only certain amount of steps within a segment and checking correct-
ness within that segment, repeating it if something was found to be inconsistent.
We refer the reader to [BH06] for the details of how this is done.

This phase starts by the parties sharing their inputs. This is done by letting
Pi, for each i, share its input s(i) ∈ R to the other parties. For this Pi begins
by 1D-sharing s(i) and then the parties invoke the procedures Upgrade1Dto2D
and Upgrade2Dto2D* to obtain 2D*-sharings of s(i). Then the parties process
the gates in topological order. For the addition gates, all the 2D-shares of the
inputs are simply added locally, thus requiring no interaction. However, when
two shared values [[x]] and [[y]] need to be multiplied, the parties must make
use of a preprocessed triple ([[a]], [[b]], [[c]]) with c = a · b. The multiplication
is then achieved by computing [[x − a]] = [[x]] − [[a]] and opening it as ε, and
similarly [[y − b]] = [[y]] − [[b]] and opening it as δ, and then computing [[x · y]] =
[[c]] + δ[[x]] + ε[[y]] + εδ.

As we mentioned at the beginning of the section, the details about how to
handle consistency are exactly the same as discussed in [BH06], so we omit some
of the details of such procedure. See Section 6 in the aforementioned reference
to see how this is done precisely. Something to point out is that consistency is
eventually checked by means of the IC signatures from Section 4.5. This tool is
used in dispute control so that some party PS can prove to some verifier PV that
certain values were indeed sent by some other party PR.

Complexity Analysis. The input phase communicates O(cIn
2 log n + κn5) bits

where cI is the number of input gates, and broadcasts O(κn3) bits. The com-
putation phase communicates O(|C|n2 log n+n4κ2) bits where |C| is the size of
the circuit, and broadcasts O(n3κ) bits.

Remark 2. Some remarks about the complexity of our protocol are as follows.

– In several parts of our protocol we have used two Galois ring, R and R̂,
where the former is an extension of degree log n of Z/pkZ and the latter has
degree κ. We could have develpoed a much simpler protocol by considering
only one Galois ring R̂, and the protocol would have been correct and secure.

31

However, the complexity would have a factor of O(|C|κ), so we introduced
the extra Galois ring in order to “pack” several elements from R into R̂ in
order to improve the complexity.

– Notice that the complexity of the protocol dependent on the size of the cir-
cuit is O(|C|n2 log n), which is a factor of log n than the respective protocol
over fields from [BH06]. This overhead is expected, since we are embedding
a single element from Z/pkZ into an element of a Galois ring extension of
degree dlog ne, which can be thought of as (Z/pkZ)dlogne. Therefore, rep-
resenting each element takes dlog ne times more space than the field coun-
terpart. This seems unavoidable since in order to use a secret-sharing-based
approach enough interpolation points are needed, and Z/pkZ only counts
with p of them. In particular, if p ≥ n+1 then the factor of log n disappears,
but at the expense of limiting the choice of p and also having ring elements
of non-constant size. We opted to consider the general case in which p and
k can be arbitrary.

– Observe that for the terms in the complexity independent of the circuit size
we have an additional factor of κ than the solution over fields from [BH06].
This complexity comes from the assumption that in our setting p and k can
be arbitrary, since the authors in [BH06] assume a field of size at least 2κ,
so they implicitly have this factor as well.

4.7 Computation over Z/pkZ

Summing up, we have seen so far how to perform unconditional secure compu-
tation over the Galois ring R = (Z/pkZ[Y])/(h(Y)). However, we wish to obtain
unconditional secure computation over Z/pkZ itself. We can embed Z/pkZ into
R in the natural way, and as seen in Section 3.4 this works for passive adver-
saries, but if an active adversary manages to share values that are in R \Z/pkZ,
correctness and security could be broken. As discussed in Section 3.4 and Sec-
tion 4.1 this reduces to securely sampling an R-sharing of a random element [s]
where s← Z/pkZ.

Here we present a protocol RandElStat(S) in Fig. 9 for sampling this element
[s] ∈ S efficiently. Here S ⊆ R denotes an arbitrary subring; for our use case
S = Z/pkZ. We have made the protocol to be explicit and removed any mention
of tensor products, but the intuition for this was given already in Section 4.1.
The protocol succeeds with overwhelming probability.

With this protocol in hand, the input phase from the previous section is
modified slightly in order to make sure that underlying inputs lie in Z/pkZ. This
is done as follows:

1. Party Pi ∈ P \ X shares its input x ∈ Z/pkZ as [x]R.
2. The parties use RandElStat(Z/pkZ) to obtain shares [s]R of a random element
s ∈ Z/pkZ. Then use Reconstruct1D to open [s+ x]R.

3. If s+ x /∈ Z/pkZ then add Pi ∈ X , i.e. mark Pi as corrupt.

It is clear that if the check is sound since x /∈ Z/pkZ iff s + x /∈ Z/pkZ.
Regarding the security of RandElStat, we have the following proposition.

32

RandElStat(S)

Output: sharings [x
(i)
j] for j = 0, . . . , d − 1 and i = 1, . . . , L for a total of dL

random elements, where the shares are in R and the secrets x
(i)
j are in S.

Public information: fix ξ ∈ R such that {1, ξ, ξ2, . . . , ξd−1} is an S-basis for R
as an S-module. With respect to this basis, multiplication by an element r ∈ R can
be represented by a d× d matrix Mr with entries in S.

Private Computation: Each player Pk ∈ P \ X samples d(L + 1) uniformly

random values x
(i,k)
j ← S for j = 0, . . . , d − 1 and i = 1, . . . , L + 1, and 1D-

shares each of them over R. The players compute [x
(i)
j] =

∑n
Pk∈P\X

[x
(i,k)
j]

Fault Detection: The players run GenerateChallenges to sample uniformly ran-
dom r1, . . . , rL in R̂, with associated matrices as mentioned above. Then the
following is executed for every verifier PV ∈ P \ X .

1. The players interpret the random elements [x
(i)
j] as L+1 column vectors of

length d, i.e. for each i = 1, . . . , L+ 1 we have [x(i)] = ([x
(i)
0], . . . , [x

(i)
d−1])T .

Then, they compute the sum [y] = Mr1 [x(1)] + · · ·+MrL [x(L)] + [x(L+1)]
and send the shares of y to PV .

2. PV checks if it holds that all the entries of y are in S, and broadcast a bit
indicating which is the case.

If all verifiers PV ∈ P \X accepted in the previous step then output the shares

[x
(i)
j].

Fault Localization: Run the following for the smallest PV ∈ P \ X that com-
plained in the fault detection phase.
1. Every player Pk with Pk ↔ PV sends their shares of each x

(i,`)
j to PV , for

j = 0, . . . , d− 1, i = 1, . . . , L and P` ↔ Pk.
2. PV checks that all the shares for P` ↔ PV interpolate correctly.
3. If they do interpolate correctly then PV gets x

(i,`)
j for j = 0, . . . , d − 1,

i = 1, . . . , L and P` ∈ P \ X . PV broadcasts the smallest index ` of the

party for which x
(i,`)
j /∈ S and the protocol fails with PV 6↔ Pk.a

4. If they do not interpolate correctly then PV broadcasts the smallest indexes
`, i, j for which interpolation of x

(i,`)
j failed.

5. Each party Pk ∈ P \ X with Pk ↔ P` broadcasts its share of x
(i,`)
j .

6. If the broadcasted shares interpolate correctly then PV broadcasts the in-
dex k of a party Pk with Pk ↔ PV that broadcasted a share different than
the one it sent to PV before and the protocol fails with PV 6↔ Pk.

7. Otherwise, the accused party P` broadcasts the index of the party Pk who
broadcasted a wrong share and the protocol fails with P` 6↔ Pk.

a Such party exists with overwhelming probability, as we argue in Proposition 9

Fig. 9. Statistically secure protocol for generating sharings of random elements in a
Galois subring S ⊂ R
Proposition 9. If RandElStat succeeds, then, with probability at least 1− p−κ,

each value s
(i)
j is uniformly random in S. If it fails then a new dispute pair is

generated.

Proof. Suppose the check succeeds for an honest verifier PV and the adver-

sary cheats successfully, i.e. there is an element x
(i∗)
j which is not in S. Recall

33

{1, ξ, . . . , ξd−1} is an S-basis for R, so we may without loss of generality assume
that the ξm-coefficient of xj(i∗) is non-zero. We have

[y] = Mr1 [x(1)] + · · ·+MrL [x(L)] + [x(L+1)] (1)

where each element of y is in S, but note that the shares are actually vectors
in Rd. On both sides of Equation (1), we first take the coefficients of ξm for
each R-element, and then interpret the resulting S-vectors and matrices Mr as
elements of R. Both of these operations are S-linear. The result is the equation

0 = r1u1+· · ·+rLuL+uL+1, where ui = φ
(
x

(i)
0

)
+φ
(
x

(i)
1

)
ξ+· · ·+φ

(
x

(i)
d−1

)
ξd−1

for each i, and φ : R→ S maps an element in R to its coefficient of ξm. Similarly
to the proof of Proposition 4, we apply Lemma 2 to conclude that this equation
holds with probability at most p−d, since each ri is uniformly random. ut

5 Conclusions

In this work, we have answered the open question “Can we design protocols
that work directly over Z/pkZ?” in the affirmative. We have developed novel
machinery that allows us to adapt existing protocols for information-theoretic
MPC to work over the ring Z/pkZ, for any prime p and any positive integer k. In
fact, by using CRT, this implies information-theoretic MPC over the ring Z/NZ
for any integer N . The communication complexity of our techniques introduce
an overhead of only log n compared to the corresponding protocols over fields,
where n is the number of parties. This overhead comes from the fact that we
need to work over a larger structure (a Galois ring) in order to obtain algebraic
properties that resemble those on fields, and that can be used for multiparty
computation. A similar approach is taken in the SPDZ2k protocol [CDE+18] for
computation over Z/2kZ by using the larger ring Z/2k+sZ. In that work it is
conjectured that this is an inherent price to pay for working over an algebraic
structure with less nice properties than a field, and our current approach to
information-theoretic MPC over Z/pkZ seems to support this claim, at least in
the setting of a single circuit execution.

We consider as future work improving the complexity of the protocols pre-
sented here (specially the one from Section 4 for honest majority) by adapting
more efficient protocols over fields like [BFO12], whose complexity is almost-
linear in the number of parties.

References

ABF+18. Toshinori Araki, Assi Barak, Jun Furukawa, Marcel Keller, Yehuda Lindell,
Kazuma Ohara, and Hikaru Tsuchida. Generalizing the spdz compiler for
other protocols. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 880–895. ACM, 2018.

BDEK19. Assi Barak, Anders Dalskov, Daniel Escudero, and Marcel Keller. Secure
evaluation of quantized neural networks. Personal communication, 2019.

34

BFO12. Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. Near-linear
unconditionally-secure multiparty computation with a dishonest minority.
In CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages
663–680. Springer, 2012.

BGW88. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theo-
rems for non-cryptographic fault-tolerant distributed computation. In Pro-
ceedings of the Twentieth Annual ACM Symposium on Theory of Computing,
STOC ’88, pages 1–10, New York, NY, USA, 1988. ACM.

BH06. Zuzana Beerliová-Trub́ıniová and Martin Hirt. Efficient multi-party compu-
tation with dispute control. In Theory of Cryptography Conference, pages
305–328. Springer, 2006.

BH08. Zuzana Beerliová-Trub́ıniová and Martin Hirt. Perfectly-secure MPC with
linear communication complexity. In TCC 2008, pages 213–230. Springer,
2008.

BLW08. Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for
fast privacy-preserving computations. In ESORICS, volume 5283 of Lecture
Notes in Computer Science, pages 192–206. Springer, 2008.

CCXY18. Ignacio Cascudo, Ronald Cramer, Chaoping Xing, and Chen Yuan. Amor-
tized complexity of information-theoretically secure MPC revisited. In
CRYPTO 2018, pages 395–426. Springer, 2018.

CDE+18. Ronald Cramer, Ivan Damg̊ard, Daniel Escudero, Peter Scholl, and Chaop-
ing Xing. Spdz2k : Efficient mpc mod 2k for dishonest majority. In CRYPTO
2018, pages 769–798, Cham, 2018. Springer International Publishing.

CDI+13. Gil Cohen, Ivan Bjerre Damg̊ard, Yuval Ishai, Jonas Kölker, Peter Bro Mil-
tersen, Ran Raz, and Ron D. Rothblum. Efficient multiparty protocols via
log-depth threshold formulae - (extended abstract). In CRYPTO 2013, pages
185–202. Springer, 2013.

CDN15. Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Secure Multiparty
Computation and Secret Sharing. Cambridge University Press, 2015.

CFIK03. Ronald Cramer, Serge Fehr, Yuval Ishai, and Eyal Kushilevitz. Efficient
multi-party computation over rings. In EUROCRYPT, volume 2656 of Lec-
ture Notes in Computer Science, pages 596–613. Springer, 2003.

CK91. David G. Cantor and Erich Kaltofen. On fast multiplication of polynomials
over arbitrary algebras. Acta Inf., 28(7):693–701, 1991.

DEF+19. Ivan Damg̊ard, Daniel Escudero, Tore Frederiksen, Peter Scholl, Nikolaj Vol-
gushev, and Marcel Keller. New primitives for actively-secure mpc mod 2k

with applications to private machine learning. Personal communication,
2019.

DIK10. Ivan Damg̊ard, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure mul-
tiparty computation and the computational overhead of cryptography. In
EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages
445–465. Springer, 2010.

DKL+12. Ivan Damgard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl,
and Nigel P. Smart. Practical covertly secure MPC for dishonest majority –
or: Breaking the SPDZ limits. Cryptology ePrint Archive, Report 2012/642,
2012.

KOS16. Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster ma-
licious arithmetic secure computation with oblivious transfer. Cryptology
ePrint Archive, Report 2016/505, 2016. http://eprint.iacr.org/2016/

505.

http://eprint.iacr.org/2016/505
http://eprint.iacr.org/2016/505

35

Mas69. J. Massey. Shift-register synthesis and bch decoding. IEEE Transactions on
Information Theory, 15(1):122–127, January 1969.

Wan03. Zhe-Xian Wan. Lectures on Finite Fields and Galois Rings. World Scientific
Publishing Company, 2003.

	Efficient Information-Theoretic Secure Multiparty Computation over Z/p^k Z via Galois Rings

