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Abstract. Fog computingan extension of cloud computing, enables end
users with limited resource to outsource computational and storage over-
head to fog nodes. In previous attribute-based encryption with keyword
search (ABKS) schemes, their keyword search function is limited and ci-
phertext is vulnerable to man-in-the-middle attacks by adversaries who
have sufficient authorities. In this paper, We provide a new system,
the ciphertext-policy attribute-based encryption with functional keyword
search (ABFKS) in fog computing. The ABFKS achieves functional key-
word search and peer-peeping resistance, which makes it more practical
and secure. Specifically, in ABFKS, the search process requires only one
keyword, instead of each keyword to be identical between the target key-
word set and the ciphertext keyword set, and outputs the correlation
of those two sets. Besides, the ABFKS resists peeping from peers or
superiors who have the same or more attributes.
For privacy and efficiency issues, we provide a construction of ABFKS
with privacy preserving, efficient attribute update and reverse outsourc-
ing (ABFKS-PER). To be specific, we propose a novel method to protect
the privacy of access structure by replacing each leaf node with an OR
gate. For user privacy, every user has all the attributes in the cloud’s
view by adding fake ones. We propose a new method for attribute up-
date, in which the key authority center only updates the user who needs
update, not everyone. At last, we initially propose the concept of reverse
outsourcing, i.e., the cloud is enabled to outsource computational tasks
to idle users.

Keywords: Attribute-based encryption · Keyword search · Fog com-
puting · Outsourcing · Privacy preserving.

1 Introduction

Cloud computing is an Internet-based computing method, through which
data can be stored, shared and processed. With the development of 5G, IoT, and
the emergence of countless intelligent devices, tremendous data needs storage and
procession in the cloud, which could gives rise to huge network congestion and

? Corresponding author



2 Fei Meng and Mingqiang Wang

latency. Cloud computing is increasingly unable to meet the requirements of the
contemporary era, and fog computing [3, 19, 20, 25] is proposed. Fog computing
refers to processing data at the edge of the network, which infiltrate into factories,
automobiles, electrical appliances, street lamps and various articles in people’s
daily life. Although the overall computing ability of fog computing is not as
powerful as cloud computing, it is closer to the end user, as shown in Fig. 1. So
it can reduce request response time, save energy, and reduce network bandwidth.
While enjoying the convenience brought by fog computing services, data security
is still a critical issue issue to be considered.

Fig. 1. The instruction of fog computing.

Before being uploaded to the cloud, sensitive data is usually encrypted to
prevent information leakage. When sharing data, the data owner needs to man-
age user privileges, namely an access control policy on who can decrypt the
ciphertext based on user’s attribute. Ciphertext-policy attribute-based encryp-
tion (CP-ABE) [1] can achieve fine-grained access control on encrypted data, in
which the user’s attributes usually represent his authority. Then, how to find a ci-
phertext containing specific keywords? Searchable encryption (SE) [2,18] allows
user to search among encrypted data, in which a ciphertext keyword set is em-
bedded, without revealing information of keywords. Moreover, ciphertext-policy
attribute-based encryption with keyword search (CP-ABKS) [21, 28] supports
both fine-grained access control and keyword search simultaneously, and has a
wide range of applications in industrial, academic and medical fields.

Although CP-ABKS can realize both access control and keyword search, with
the increase of the number of attributes and the complexity of access structure,
the user’s computational and storage burden will aggravate correspondingly.
On this condition, outsourcing technology [8] is considered as a promising so-
lution. Particularly, CP-ABKS schemes in fog computing environment [16, 24]
reduce local computing costs by outsourcing computational overhead to fog n-
odes. Users only need to perform few operations on resource-limited devices, such
as smartphone or ipad. While searching for a ciphertext, previous CP-ABKS
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schemes [12,16,21,24,28] return the search results only when the target keyword
set is completely identical to the ciphertext keyword set. If one element of the
two sets is different, the system will not output the search results. Meanwhile,
ciphertext in [16, 21, 28] is vulnerable to man-in-the-middle attacks by adver-
saries who have sufficient authorities, which we call peer-peeping attack. For
example, while downloading a ciphertext, an employee maybe eavesdropped and
peeped by his colleagues or bosses with same or even higher access authorities.
On this condition, user privacy will be revealed to peers or superiors. Motivated
by these issues, we focus on enriching the search functionality such as multi-
keyword search [11], fuzzy keyword search [29], result ranking and providing
better security guarantee.

Moreover, there are still several problems unsettled in previous schemes [12,
16, 21, 24, 28], such as how to protect the privacy of access structure and user
authority, how to update user’s attribute efficiently? In traditional ABE schemes
[1], the access structure, which defines an access policy, is sent along with the
ciphertext. This property is not suitable when the access policy contains some
sensitive information. In many ABKS schemes [12, 16, 21, 24, 28], the cloud is
required to check user’s authority so that the attributes of each user are exposed
to the cloud, which leaks the privacy of user. Zhang et al. [26] propose the first
CP-ABE scheme with attribute update for fog computing. When a user wants to
update an attribute, the key authority center has to update every user and every
ciphertext associated with this attribute, whether those users have applied for
attribute update or not. If there are millions of users in the system, this method
will no longer be applicable. It is generally known that the cloud service provider
can provide computing services for end users to reduce their local computational
burden. However, little attention has been paid to reduce computing pressure of
the cloud. Although, the cloud is supposed to have powerful computing power,
is there any way to reduce its computational burden?

1.1 Our Contributions

The main contributions of this work are shown as follows. At first, we present
a new system on fog computing, the ABFKS, which achieves functional keyword
search and peer-peeping resistance compared with [6, 11,15,16,24].
• Functional keyword search: Many previous CP-ABKS schemes [6,11,15,16]

support multi-keywords search or conjunctive search. One limitation of their
systems is that they return search result only when the target keyword set
is completely identical to the ciphertext keyword set. For more practical,
the ABFKS achieves functional keyword search which includes multi-keyword
search, incomplete matching of keywords and result ranking. Specifically, for
multi-keyword search, our system will return search result as long as one key-
word is identical between target keyword set and ciphertext keyword set and
compute a correlation coefficient between them for result ranking.

• Peer-peeping resistance: In ABFKS system, anyone is able to decrypt a
ciphertext, if and only if he has sufficient authority and knows at least one
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element in the ciphertext keyword set simultaneously. Therefore, even if a ma-
licious adversary eavesdrops a ciphertext and has the corresponding authority,
he still can not decrypt it.

For privacy and efficiency issues, we propose a improved system ABFKS-
PER, i.e., ABFKS with privacy preserving, efficient attribute update and reverse
outsourcing.

• Privacy-preserving: We provide a novel method to preserve the privacy of
access policy and user authority against the cloud. For an access structure, we
transform it into a new access structure by replacing each leaf node with an
OR gate. This OR gate has two child nodes, one of which is the same as the
replaced leaf node, and the other is randomly selected from nodes disjoint with
the original access structure. Therefore, if there are n leaf nodes in the original
access structure, the probability of the cloud to recover it from the new one is
2−n so that privacy of access structure is preserved. For each system user, only
partial secret key is stored locally, all attribute secret keys are randomized and
stored in the cloud. By filling up fake attribute secret keys, every system user
has all the attributes in the view of the cloud and the cloud has no ability
to identify the real keys. As a result, the privacy of user authority is also
preserved.

• Efficient attribute update: In ABFKS-PER, user secret key is divided into
two parts. Partial secret key is sent to the user, while all attribute secret keys
are randomized and stored in the cloud. To update an attribute for a user,
the key authority center only needs to regenerate a new secret key for him.
Since the user does’t have attribute secret key, it is not necessary to update the
corresponding attribute secret key of every user, nor the associated ciphertexts
as [16,26].

• Reverse outsourcing: There are countless intelligent devices connected to
the Internet all over the world. They have certain computing power and are
idle most of the time. These computing resources can be aggregated to provide
computing services to the cloud. Thus, we initially propose this interesting
concept of reverse outsourcing, namely the cloud outsourcing computational
tasks to idle users to reduce its overhead. In addition, we define the rational
idle user model, and analyze the best strategy for the user in this model by
the Nash equilibrium theory. We hope reverse outsourcing to be a new trend
in cloud computing.

1.2 Organization

This paper is organized as follows. Section 2 discusses several previous works.
Section 3 describes the necessary preliminaries. Section 4 presents the system
and security model. We give a concrete construction and explicit analysis of
ABFKS in section 5 and section 6 respectively. In section 7, we introduce the
construction of ABFKS-PER. In the end, section 8 summarizes the paper and
prospects for the future research.
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2 Related Works

Sahai et al. [17] initially introduced the concept of ABE. Generally, there are
two types of ABE schemes, i.e., key-policy ABE (KP-ABE) [7] and ciphertext-
policy ABE (CP-ABE) [1]. Bethencourt et al. [1] proposed the first CP-ABE
scheme which realizes fine-grained access control based on the tree-based struc-
ture. From then on, large numbers of CP-ABE schemes have been proposed to
achieve various functions. Cheung et al. [5] proposed a CP-ABE scheme based
on the AND gate access structure. Horvath et al. [10] proposed a multi-authority
CP-ABE scheme with identity-based revocation. Wang et al. [23] devised a CP-
ABE scheme with hierarchical data sharing. However, with the increase of the
number of attributes and the complexity of access structure, general CP-ABE
schemes are computationally expensive.

Through outsourcing technology [8], the computational and storage burden of
users can be outsourced to some third parties. Green et al. [9] provided a method
to outsource the decryption of ABE ciphertexts. Li et al. [13] outsources both
key-issuing and decryption. Zhang et al. [27] fully outsources key generation,
encryption and decryption. In the wake of 5G and IoT techniques, fog comput-
ing is considered as a new data resource, which can provide many high-quality
outsourcing services. Zuo et al. [30] proposed a practical CP-ABE scheme in fog
computing environment and Zhang et al. [26] initially supports fog computing
as well as attribute update.

Searching over encrypted data, the keyword can not be revealed because it
may reflect sensitive information of ciphertext. In 2000, Song et al. [18] initially
introduced a searchable encryption (SE) technique. Boneh et al. [2] proposed the
first public key encryption with keyword search. After that, various SE schemes
have been proposed one after another, which makes the search function more and
more abundant, such as single keyword search [22], multi-keyword search [4] and
fuzzy keyword search [14]. Besides, plenty of ciphertext-policy attribute-based
encryption (CP-ABKS) schemes [6, 11, 12, 15, 21, 28] support both fine-grained
access control and keyword search simultaneously. Furthermore, many of the
latest CP-ABKS schemes [16,24] are constructed in fog computing environment.

3 Preliminaries

In this section, we introduce some background knowledge, which includes
access structure, access tree, bilinear maps, Diffie-Hellman assumption and its
variants.

3.1 Access Structures

Definition 1 (Access structure [1]). Let {P1, P2, . . . , Pn} be a set of par-
ties. A collection A ⊆ 2{P1,P2,...,Pn} is monotone if ∀B,C: if B ∈ A and B ⊆
C then C ∈ A. An access structure (respectively, monotone access structure)
is a collection (respectively, monotone collection) A of non-empty subsets of
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{P1, P2, . . . , Pn}, i.e., A ⊆ 2{P1,P2,...,Pn} \ {∅}. The sets in A are called the
authorized sets, and the sets not in A are called the unauthorized sets.

In this paper, attributes take the role of the parties and we only focus on the
monotone access structure A, which consists of the authorized sets of attributes.
Obviously, attributes can directly reflect a user’s authority.

Definition 2 (Access tree [1]). Let T be a tree representing an access struc-
ture. Each non-leaf node of the tree represents a threshold gate, described by its
children and a threshold value. If numx is the number of children of a node x
and kx is its threshold value, then 0 ≤ kx ≤ numx. When kx = 1, the threshold
gate is an OR gate and when kx = numx, it is an AND gate. Each leaf node x
of the tree is describe by an attribute and a threshold value kx = 1.

To facilitate working with the access tree, we define a few functions. We
denote the parent of the node x in the tree by parent(x). The function att(x)
is defined only if x is a leaf node and denotes the attribute associated with the
leaf node x in the tree. The access tree T also defines an ordering between the
children of every node, that is, the children of a node are numbered from 1 to
num. The function index(x) returns such a number associated with the node x.
Where the index values are uniquely assigned to nodes in the access structure for
a given key in an arbitrary manner.

Definition 3 (Satisfying an access tree [1]). Let T be an access tree with
root r. Denote by Tx the subtree of T rooted at the node x. Hence T is the
same as Tr. If a set of attributes satisfies the access tree Tx, we denote it as
Tx(γ) = 1. We compute Tx(γ) recursively as follows. If x is a non-leaf node,
evaluate Tx′(γ) = 1 for all children x′ of node x. Tx(γ) returns 1 if and only if
at least kx children return 1. If x is a leaf node, then Tx(γ) returns 1 if and only
if att(x) ∈ γ.

3.2 Bilinear Maps and DDH Assumptions

As in [1]. We introduce some useful facts about bilinear maps. Let G0 and GT
be two multiplicative cyclic groups of prime order p. Let g be a generator of G0

and e be a efficient computable bilinear map, e : G0 ×G0 −→ GT . The bilinear
map e has a few properties: (1) Bilinearity: for all u, v ∈ G0 and a, b ∈ Zp, we
have e(ua, vb) = e(u, v)ab. (2) Non-degeneracy: e(g, g) 6= 1. We say that G0 is a
bilinear group if the group operation in G0 and the bilinear map e : G0×G0 −→
GT are both efficiently computable. Notice that the map e is symmetric since
e(ga, gb) = e(g, g)ab = e(gb, ga). We briefly recall the definitions of the decisional
Diffie-Hellman (DDH) assumption and its varieties as follows.

Definition 4 (DDH). Let G be a an algorithm that takes as input a security
parameter λ and outputs a tuple G = (p,G, g) where p is a prime, G is a cyclic
group of order p, and g is a generator of G. For any PPT algorithm A, there
exists a negligible function negl(·), such that∣∣∣Pr [A(G, q, g, gx, gy, gz) = 1]− Pr [A(G, q, g, gx, gy, gxy) = 1]

∣∣∣ ≤ negl(λ), (1)
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where G = (p,G, g)← G(λ), and x, y, z ← Zp are uniform and independent.

It’s easy to verify that the following lemma is correct by hybrid experiments.

Lemma 1 (t-DDH). For any positive integer t and any PPT algorithm A, we

have
∣∣∣Pr [A (G, q, g, gx, {gyi , gzi | ∀i ∈ [1, t]}) = 1] − Pr[A(G, q, g, gx, {gyi , gxyi |

∀i ∈ [1, t]}) = 1]
∣∣∣ ≤ negl(λ) for some negligible function negl(·), where x, yi, zi

are selected randomly from Zp for each i ∈ [1, t].

As in [26], the decisional bilinear Diffie-Hellman (DBDH) problem is defined
as follows.

Definition 5 (DBDH). Let G0,GT are multiplicative cyclic groups with prime
order p according to a security parameter λ and the generator of G0 is g. Let
e : G0 × G0 −→ GT be a bilinear map, x, y, z ∈ Zp and R ∈ GT are selected
randomly. For any PPT algorithm A, there exists a negligible function negl(·),
such that∣∣∣Pr[A(g, gx, gy, gz, Z=e(g, g)xyz)=1]−Pr[A(g, gx, gy, gz, Z=R)=1]

∣∣∣ ≤ negl(λ).

(2)

4 System and Security Model

4.1 System Description

The ABFKS mainly consists of five entities i.e., Key Authority Center (KAC),
Data Owner (DO), Cloud Server (CS), User (U), and Fog Nodes, which are
shown in Fig. 2.
• Key Authority Center (KAC): The KAC is a fully trusted third party which

is in charge of generating public parameters and replying secret key to each
authorized user as well as handling attribute update.

• Data Owner (DO): The DO defines an access structure, selects a set of key-
words to generate a ciphertext CT with the help of fog nodes, then uploads
CT to the CS.

• Cloud Server (CS): The CS has powerful computation and huge storage ca-
pacities, which provides computing and storage service.

• User (U): The U is constrained by limited resources. However, he can search
and decrypt according to his authority with the help of fog nodes.

• Fog Nodes: Fog nodes can help the DO or the U to reduce computational
overhead during encryption or trapdoor generation and decryption.

4.2 System Overview

The overview of ABFKS scheme is shown as follows:
• Setup(1λ,L): Given security parameter λ and a set of all possible attributes
L, the KAC generates public key PK and master key MSK.
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• KeyGen(MSK,S): The KAC uses MSK to generate a secret key SK ac-
cording to the user’s attribute set S.

• Enc(PK, T ,M,KW ): The DO defines a access structure T and selects a set
of keyword KW to encrypt M with the help of fog nodes, then uploads the
ciphertext to the CS.

• Trap(SK,KW ′): To issue a search query, the U generates a trapdoor (Tc, Tk)
by his own secret key SK and a set of target keyword KW ′ with the help of
fog nodes.

• Search(CT, Tc, Tk): Given a trapdoor (Tc, Tk), the CS can conduct access
test and keyword matching operations for each cithertext, and return accessible
ciphertexts.

• Dec(CT, SK,KW ′): The U can download and decrypt the accessible cipher-
text according to the relevance between KW and KW ′ with the help of fog
nodes.

Fig. 2. System descryption of fog computing.

4.3 Threat Model

in this paper, we assume that the KAC is a fully trusted third party, while
the CS and fog nodes are honest-but-curious entities, which exactly follow the
protocol specifications but also are curious about the sensitive information of ci-
phertexts and trapdoors. Users are not allowed to collude with CS or fog nodes.
Nevertheless, malicious users may collude with each other to access some unau-
thorized ciphertexts. While downloading a ciphertext, the user may be eaves-
dropped and peeped by some adversaries who have the same or more attributes,
such as his peers or superiors.
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4.4 Security Model

We define the chosen plaintext security of ABFKS scheme. The security game
is as follows
• Initialization: A PPT A chooses a challenge access tree T ∗ and dispatches it

to challenger C.
• Setup: C runs Setup algorithm and return public key PK to A.
• Phase 1: A adaptively chooses an attribute set S which doesn’t satisfy T ∗, and

submits it to C asking for a secret key SK corresponding with S. In response
to secret key query from A, C runs KeyGen algorithm and returns SK to A.

• Challenge: A chooses two challenge message m0,m1 with a set of keywords
KW ∗ and submits them to C to be challenged. C picks a random bit ϑ ∈ {0, 1}
and runs Enc algorithm to encrypt mϑ. Afterwards, C returns the challenge
ciphertext CT ∗ to A.

• Phase 2: This phase is similar to Phase 1.
• Guess: A picks a guess bit ϑ′ of ϑ. If and only if ϑ′ = ϑ, A wins out, otherwise,

it loses the game. Then, A′s advantage to win this security game is defined as

Adv(A) =
∣∣∣Pr[ϑ′ = ϑ]− 1

2

∣∣∣ ≤ ε.
Definition 6. ABFKS scheme can achieve CPA security if there exist no PPT
adversary which can break the above security game with a non-negligible advan-
tage ε under the DBDH assumption.

In addition, ABFKS scheme also achieves chosen keyword security as defined
in the following security game.
• Initialization:A selects two different challenge keyword setsKW 0∗ andKW 1∗,

each of which contains t keywords in total. A sends them to challenger C.
• Setup: C runs Setup algorithm and publishes public parameters.
• Phase 1: A adaptively queries C for a partial trapdoor Tk of KW which is

unequal to KW 0∗ or KW 1∗. In response, C runs Trap then responds A with
Tk.

• Challenge: Given challenge keyword sets KW 0∗ and KW 1∗, C picks a random
bit ϑ ∈ {0, 1} and runs Enc algorithm to generate partial ciphertext CT ∗2

• Phase 2: This phase is similar to Phase 1.
• Guess: A picks a guess bit ϑ′ of ϑ. If and only if ϑ′ = ϑ, A wins out, otherwise,

it loses the game. Then, A′s advantage to win this security game is defined as

Adv(A) =
∣∣∣Pr[ϑ′ = ϑ]− 1

2

∣∣∣ ≤ ε.
Definition 7. ABFKS scheme can achieve CKA security if there exist no PPT
adversary which can break the above security game with a non-negligible advan-
tage ε under the t-DDH assumption.

As a supplement, We initially define the peer-peeping resistance as a new
security requirement.

Definition 8 (Peer-peeping resistance). Assume that the U is authorized to
access some ciphertext CT stored in the CS. An adversary A may eavesdrop the
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CT while the U is downloading it. Usually, if A has the same or higher authority
as U , i.e., a peer or superior, the CT will be decrypted and peeped by A. However,
peer-peeping resistance is a new security requirement, which requires that even if
the ciphertext is eavesdropped by some authorized adversaries, it still cannot be
decrypted and peeped.

5 Construction of ABFKS Scheme

In this section, we present a concrete construction of ABFKS scheme. With-
out loss of generality, we suppose that there are n possible attributes in total and
L is a set of all possible attributes, where L = {a1, a2, ..., an}. Assume G0,GT
are multiplicative cyclic groups with prime order p and the generator of G0 is
g. λ is a security parameter which determines the size of groups. Moreover, let
e : G0×G0 −→ GT be a bilinear map. Let H : {0, 1}∗ −→ G0 be a hash function
which maps any string to a random element in Zp. We also define the Lagrange
coefficient ∆i,S(x) = Πj∈S,j 6=i

x−j
i−j , where i ∈ Zp and S is a set composed of

elements in Zp. The details of our scheme are as follows.
• Setup(1λ,L) → (PK,MSK): Given a security parameter λ and a set of all

possible attributes L, the Key Authority Center (KAC) chooses a bilinear
group G0 with prime order p and generator g. Next, it randomly picks out
α, β ∈ Zp and h ∈ G0. For each attribute aj ∈ L, it selects a random vj and
computes PKj = gvj . Finally, it generates the master key MSK and publishes
the public key PK.

PK =
{
G0, g, h, g

α, hβ , e(g, g)β , {PKj = gvj | ∀aj ∈ L}
}

; (3)

MSK = {α, β, {vj | ∀aj ∈ L}} . (4)

• KeyGen(MSK,S) → SK: While receiving an attribute set S from the U ,
the KAC selects r, r′ ∈ Zp at random and generates a secret key SK, then
sends it back to the U in secret channel.

SK =
{
β + αr, gαrhr

′
, gr
′
, {g

αr
vj , h

αr
vj | ∀aj ∈ S}

}
. (5)

• Enc(PK, T ,M,KW )→ CT : TheDO chooses a random ck as a symmetric en-
cryption key and encrypts message M with ck by using symmetric encryption
such as AES, namely Eck(M). In order to encrypt ck, the whole encryption
procession consists of the follow steps.
1. Attribute Ciphertext: The DO sends an access tree T to fog nodes,

which describes an access policy. Fog nodes randomly chooses a polynomial
qx for each node x of T from the root node R in a top-down manner. For
each node x of T , dx = kx − 1, where dx is the degree of qx and kx is
the threshold value of x. Beginning with root node R, fog nodes pick a
random s1 ∈ Zp and set qR(0) = s1. Next, they randomly choose dR other
points of qR to define the polynomial completely. For any other node x, fog
nodes set qx(0) = qparent(x)(index(x)) and choose dx other point to define
qx completely. Let X be a set of attributes corresponding with all leaf nodes
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in T . Fog nodes construct the attribute ciphertext CT ′1 and send it back to
the DO.

CT ′1 =
{
T , gs1 , hs1 , hβs1 , {Cj = gvjqx(0) | ∀aj = att(x) ∈ X}

}
. (6)

2. Keyword Ciphertext: Assume that the DO chooses t different keywords
associated with M in total and the keyword set KW = {kw1, kw2, . . . , kwt}.
Then, the DO randomly selects r1, r2 ∈ Zp, computes h

1
r1 , KW1 and KW2

and sends KW1 and KW2 to fog nodes, where

KW1 = {H(kw1)r1, H(kw2)r1, . . . ,H(kwt)r1}; (7)

KW2 = {H(kw1)r2, H(kw2)r2, . . . ,H(kwt)r2}. (8)

After receiving KW1 and KW2 from the DO, fog nodes compute the key-
word ciphertext CT ′2 and send it back to the DO.

CT ′2 = {Ci1 = g
1

H(kwi)r1 , Ci2 = g
1

H(kwi)r2 | ∀i ∈ [1, t]}. (9)

3. The DO picks a random s2 ∈ Zp and generates CT1 and CT2 with CT ′1 and
CT ′2 as

CT1 = {gs2 , gs1gs2 , hs1hs2 , CT ′1}; CT2 = {g
1
r1 , CT ′2}. (10)

Then, it computes e(g, g)βs2 and e(g, g)
1
r2 to get the final ciphertext CT ,

where

CT = {T , Eck(M), C = ck · e(g, g)βs2 · e(g, g)
1
r2 , CT1, CT2}. (11)

• Trap(SK,KW ′) → (Ta, Tk): When the U wants search for a set of target
keywords KW ′ in the CS, he can generate a trapdoor by the secret key SK
and KW ′ with the help of fog nodes. Supposed that there are t different
keywords in KW ′, i.e., KW ′ = {kw′1, kw′2, . . . , kw′t}.
1. Attribute Trapdoor: The U selects a random d1, r3 ∈ Zp, and computes

the attribute trapdoor Ta with SK as

Ta = (Ta0, Ta1, Ta2) = (g
1
d1 ,

β + αr

d1
, {Taj2 = h

αr
vjd1 | ∀aj ∈ S}). (12)

2. Keyword Trapdoor: The U computes gr3 , KW ′1, and sends KW ′1 to fog
nodes, where KW ′1 = {H(kw′1)r3, H(kw′2)r3, . . . ,H(kw′t)r3}. The fog nodes

compute KW ′2 and sent it back to the U , where KW ′2 = {g
1

H(kw′
j
)r3 | ∀j ∈

[1, t]}. Finally, the U can generate the keyword trapdoor Tk as

Tk = (Tk0, Tk1) = (gr3 , {Tkj1 = g
1

H(kw′
j
)r3 | ∀j ∈ [1, t]}). (13)
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• Search(CT, Ta, Tk)→ ⊥ or l ∈ [1, t]: The CS has to check whether the trap-
door from U is available or not. Only when U is authorized to access CT and
there is at least one keyword to be identical in KW and KW ′, the search
algorithm outputs l ∈ [1, t], i.e., there are l keywords in common between KW
and KW ′. Otherwise, the algorithm outputs ⊥. The entire algorithm consists
of two parts: access test and keyword matching.
1. Access Test: For each node x of T in CT , the CS runs a recursive algorithm

as follows.
(1) If x is a leaf node of T . Let aj = att(x). If aj 6∈ S, F ′x(Cj , Ta

j
2, x) = null.

If aj ∈ S, then the CS computes

F ′x(Cj , Ta
j
2, x) = e(gvjqx(0), h

αr
vjd1 ) = e(g, h)

αrqx(0)
d1 . (14)

(2) If x is a non-leaf node, for all child nodes z of x, the CS runs F ′z =
F ′z(Ci, Ta

i
2, z) recursively. Let Sx be an arbitrary kx − sized set of z, and

satisfying F ′z 6= null. If Sx doesn’t exist, F ′x = null. Otherwise, the CS
calculates

F ′x =
∏
z∈Sx

F
′∆i,S′x (0)
z (15)

=
∏
z∈Sx

(e(g, h)αrqz(0))∆i,S′x (0) (16)

=
∏
z∈Sx

(e(g, h)αrqparent(z)(index(z)))∆i,S′x (0) (17)

= e(g, h)
αrqx(0)
d1 , (18)

where i = index(z) and S′x = {index(z) : z ∈ Sx}.
By calling the above functions on the root node R of T , the CS can checks
the whether following equation holds or not.

F ′R · e(Ta0, hβs1) = e(gs1 , h)Ta1 . (19)

If S satisfies T , which means U is authorized to access CT , the CS computes

F ′R = e(g, h)
αrs1
d1 and the above equation holds, namely

F ′R · e(Ta0, hβs1) = e(g, h)
αrs1
d1 · e(g

1
d1 , hβs1) = e(gs1 , h)Ta1 . (20)

Then, the CS continues to match the keywords between KW and KW ′.
Otherwise, the CS no longer conducts the following keyword matching op-
erations for this ciphertext and turns to the next one.

2. Keyword Matching: The CS receives Tk = (Tk0, TK1) from U to con-

struct the keyword search vector
−−→
Tk1 and uses CT to construct the keyword

ciphertext vector
−→
Ci1, where

−−→
Tk1 = (Tk11, Tk

2
1, . . . , Tk

t
1), Tkj1 = gH(kw′j)r3 ; (21)

−→
Ci1 = (C1

1 , C
2
1 , . . . , C

t
1), Ci1 = g

1
H(kwi)r1 . (22)
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Next, the CS interacts with
−−→
Tk1 and

−→
Ci1 to perform the keyword matching.

For each j ∈ [1, t], the CS examine whether there is an i ∈ [1, t] that makes
the following equation valid.

e(Tkj1, C
i
1) = e(Tk0, g

1
r1 ) (23)

(1) If for a j, no i makes the above formula hold, the CS outputs a matching
result mrj = 0, which means that kw′j in KW ′ is not in KW .
(2) If the above formula is established, it means that for k′j there exists a
ki such that k′j = ki, i.e.,

e(Tkj1, C
i
1)=(e(g, g)

r3
r1 )

H(kw′j)
H(kwi) = e(Tk0, g

1
r1 ). (24)

Then, the CS sets mrj = i, which means the jth keyword of KW ′ is equal
to the ith keyword in KW .
After matching each keyword, the CS constructs a matching result vector
−→mr, where

−→mr = (mr1,mr2, . . . ,mrt), (25)

and computes the hamming weight of −→mr, i.e., l = Hm(−→mr) ∈ [0, t], which
reflects the correlation between KW ′ and KW . If and only if the U has
passed access test and l > 0, the Search algorithm outputs l ∈ [1, t] and
the U is allowed to access CT . Otherwise ⊥ and turns to the next ciphertext.

Ultimately, the cloud generates the following Table 1 for U and sorts it in
descending order according to the correlation, supposed that there are N ci-
phertexts in total for U to access.

Table 1. Access table for U generated by the search algorithm.

Accessible ciphertext Matching result vector Correlation

CT(1)
−→mr(1) l(1)

CT(2)
−→mr(2) l(2)

...
...

...

CT(N)
−→mr(N) l(N)

• Dec(CT, SK,KW ′) → ck: The U can access CT in Table 1 according to l,
and decrypt it with the help of fog nodes in the following steps.
1. The U selects a random d2 ∈ Zp, keeps it secret, and computes a random

secret key SK ′ as

SK ′ =
{
SK ′1, SK

′
2, SK

′
3, SK

′
4 = {SK ′j4 }

}
(26)

=
{
g
β+αr
d2 , g

αr
d2 h

r′
d2 , g

r′
d2 , {g

αr
vjd2 | ∀aj ∈ S}

}
, (27)

then sends SK ′ to fog nodes.
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2. The fog nodes interact SK ′ and CT to perform some precomputation, which
greatly reduces the computational cost of user decryption. The interaction
process is similar to the access test algorithm described above. For each node
x of T in CT , the fog nodes perform the following recursive algorithm.
(1) If x is a leaf node of T . Let aj = att(x). If aj 6∈ S, Fx(Cj , SK

′j
4 , x) = null.

If aj ∈ S, then fog nodes compute

Fx(Cj , SK
′j
4 , x) = e(gvjqx(0), g

αr
vjd2 ) = e(g, g)

αrqx(0)
d2 . (28)

(2) If x is a non-leaf node, for all child nodes z of x, the fog nodes calculate
Fz = Fz(Ci, SK

′i
4 , z) recursively. Let Sx be an arbitrary kx− sized set of z,

and satisfying Fz 6= null. If Sx doesn’t exist, Fx = null. Otherwise, the fog
nodes compute

Fx =
∏
z∈Sx

F
∆i,S′x

(0)
z = e(g, g)

αrqx(0)
d2 . (29)

By running the above algorithm recursively, the fog nodes obtain FR =

e(g, g)
αrs1
d2 for the root node R of T and continue to compute

A =
e(SK ′2, g

s1g
s2

)

e(SK ′3, h
s1hs2)

=
e(g

αr
d2 h

r′
d2 , gs1g

s2
)

e(g
r′
d2 , hs1hs2)

= e(g, g)
αr(s1+s2)

d2 (30)

and

B = e(SK ′1, g
s2) = e(g

β+αr
d2 , gs2) = e(g, g)

βs2
d2 · e(g, g)

αrs2
d2 , (31)

to calculate

D =
B · FR
A

= e(g, g)
βs2
d2 . (32)

Then, fog nodes return D to the U .
3. The U obtains −→mr in Table 1. There is at least one mrj in −→mr such that
mrj = i 6= 0, i.e., kw′j = kwi. Thus, the U can make use of the jth keyword

in KW ′ and ith keyword in KW to compute E as

E = e(gH(kw′j), Ci2) = e(gH(kw′j), g
1

H(kwi)r2 ) = e(g, g)
1
r2 . (33)

Finally, the U derives ck as

C

Dd2 · E
=
ck · e(g, g)βs2 · e(g, g)

1
r2

(e(g, g)
βs2
d2 )d2 · e(g, g)

1
r2

= ck. (34)

So far, the U can decrypt Eck(M) with ck by symmetric decryption.
• Attribute update: We can use the method of [26] to keep our ABFKS scheme

with attribute update, which is very important to protect data from eavesdrop-
ping and sniffing by revoked users. Next, we briefly describe the basic idea as
follows.
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1. To update aj → aw, the KAC selects a random v′j ∈ Zp and computes

ukj→w =
vj
vw

, ukj→j =
vj
v′j

, and cuj→j =
v′j
vj

. The KAC updates PKj→j =

PK
ukj→j
j = gv

′
j and respectively sends ukj→w, ukj→j , cuj→j to updated

users, non-updated users, and the CS.
2. The updated user updates their secret key as

SK=
{
β+αr, gαrhr

′
, gr
′
, {g

αr
vi , h

αr
vi | ∀ai∈S \ {aj}}, g

αr
vw , h

αr
vw

}
; (35)

Similarly, non-updated users update their secret keys as

SK=

{
β+αr, gαrhr

′
, gr
′
, {g

αr
vi , h

αr
vi | ∀ai∈S \ {aj}}, g

αr
v′
j , h

αr
v′
j

}
. (36)

3. In addition, the CS updates the ciphertext CT ′1 in CT as

CT ′1 =

{
T , gs1 , hs1 , hβs1 , Cj = gv

′
jqx(0),

{Ci = gviqx(0) | ∀ai = att(x) ∈ X \ {aj}}

}
. (37)

6 Analysis of ABFKS

In this section, we provide a security analysis of ABFKS scheme, and then
compare its function and efficiency with other schemes.

6.1 Security Analysis

Here, we prove the IND-CPA and IND-CKA security of our ABFKS scheme
formally and then discuss the peer-peeping resistance as a supplement.

Theorem 1. Supposed that a PPT adversary A can break the IND-CPA secu-
rity of our ABFKS scheme with a non-negligible advantage ε > 0, then a PPT
simulator B can be constructed to distinguish a DBDH tuple from a random tuple
with an advantage ε

2 .

Proof. Given a bilinear group G0 with prime order p and generator g, a bilinear
map e : G0 × G0 −→ GT and a random h ∈ G0. The DBDH challenger C
randomly selects a′, b′, c′ ∈ Zp, θ ∈ {0, 1}, and R ∈ GT . Let Z = e(g, g)a

′b′c′ , if

θ = 0, R else. Next, C sends B the tuple 〈g, ga′ , gb′ , gc′ , h, hb′ , hc′ ,Z〉. At last, B
acts as C in the security game as follows.
• Initialization: First of all, A chooses a challenge access tree T ∗ and dispatches

it to B.
• Setup: In order to generate a public key PK for A, B needs to select a′, β′ ∈
Zp at random. Next, B computes gα = ga

′
, i.e., α = a′; hβ = hβ

′
(hb
′
)a
′

and e(g, g)β = e(g, g)β
′ · e(ga′ , gb′), i.e., β = β′ + a′b′. B picks a random sj

for each attribute aj ∈ L. If aj ∈ T ∗, set PKj = gvj = g
a′
sj , i.e., vj =

a′

sj
; otherwise, PKj = gvj = gsj , i.e., vj = sj . Eventually, B creates PK =

{gα, hβ , e(g, g)β , {PKj | ∀aj ∈ L}} for A.
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• Phase 1: Here, A adaptively chooses an attribute set S ∈ L, and submits it to
B asking for a secret key SK corresponding with S. In response to secret key

query from A, B picks r̂, r̃ ∈ Zp at random, sets r′ = r̃ and computes gr = gr̂

gb′
,

i.e., r = r̂ − b′. Then, it continues to compute gβ+αr = gβ
′+a′b′ga

′(r̂−b′) =
aβ
′+a′r̂, i.e., β + αr = β′ + a′r̂; gαrhr

′
= ga

′r̂hr̃; gr
′

= gr̃. For each aj ∈ S,

if aj ∈ T ∗, B computes g
αr
vj = g

a′(r̂−b′)
a′s−1

j = gsj(r̂−b
′) and h

αr
vj = hsj(r̂−b

′);

otherwise, g
αr
vj = g

a′(r̂−b′)
s
−1
j and h

αr
vj = h

a′(r̂−b′)
s
−1
j . Afterwards, B answers A with

a secret key SK = {β + αr, gαrhr
′
, gr
′
, {g

αr
vj , h

αr
vj | ∀aj ∈ S}}.

• Challenge: A chooses two challenge message m0,m1 with a set of keywords
KW ∗ = {kw∗1 , kw∗2 , . . . , kw∗t } and submits them to B to be challenged. At

first, B randomly selects r′1, r
′
2 ∈ Zp to generate g

1
r′1 and

KW ∗1 = {H(kw∗1)r′1, H(kw∗2)r′1, . . . ,H(kw∗t )r′1};
KW ∗2 = {H(kw∗1)r′2, H(kw∗2)r′2, . . . ,H(kw∗t )r′2}.

(38)

Then, with the help of fog nodes, B can construct CT ∗2 as

CT ∗2 =

{
g

1
r′1 , {Ci∗1 = g

1
H(kw∗

i
)r′1 , Ci∗2 = g

1
H(kw∗

i
)r′2 | ∀i ∈ [1, t]}

}
. (39)

Secondly, B sends T ∗ to fog nodes which chooses a random s′1 and generate
CT ′∗1 as

CT ′∗1 =
{
T ∗, gs

′
1 , hs

′
1 , hβs

′
1 , {Cj = gvjqx∗ (0) | ∀aj ∈ T ∗}

}
. (40)

AT last, B randomly picks θ′ ∈ {0, 1}, sets gs
′
2 = gc

′
, hs

′
2 = hc

′
and computes

CT ∗1 = {gs
′
2 , gs

′
1gs
′
2 , hs

′
1hs

′
2 , CT ′∗1 } (41)

and

C∗ = mθ′ · e(g, g)βs
′
2 · e(g, g)

1
r′2

= mθ′ · Z · e(g, g)β
′c′ · e(g, g)

1
r′2 .

(42)

So far, B can returns A a complete challenge ciphertext CT ∗, where

CT ∗ = {T ∗, C∗ = mθ′ · Z · e(g, g)β
′c′ · e(g, g)

1
r′2 , CT ∗1 , CT

∗
2 }. (43)

• Phase 2: This phase is similar to Phase 1.
• Guess: A picks a guess bit θ′′ of θ′. If and only if, in the above game, θ′′ = θ′,
B guesses θ = 0 which indicates that Z = e(g, g)a

′b′c′ . Otherwise, B guesses
θ = 1 i.e., Z = R.
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If Z = e(g, g)a
′b′c′ , then CT ∗ is valid, and on this condition, A′s advantage of

guessing θ′ is ε. Therefore, B′s probability to guess θ correctly is

Pr
[
B(g, ga

′
, gb
′
, gc
′
, h, hb

′
, hc

′
,Z = e(g, g)a

′b′c′) = 0
]

=
1

2
+ ε. (44)

If Z = R, then CT ∗ seems completely random to A. Hence,

Pr
[
B(g, ga

′
, gb
′
, gc
′
, h, hb

′
, hc

′
,Z = R) = 1

]
=

1

2
. (45)

In conclusion, B′s advantage to win the above security game is

Adv(B) =
1

2

∣∣∣Pr[B(g, ga
′
, gb
′
, gc
′
, h, hb

′
, hc

′
,Z = e(g, g)a

′b′c′) = 0]

+ Pr[B(g, ga
′
, gb
′
, gc
′
, h, hb

′
, hc

′
,Z = R) = 1]

∣∣∣− 1

2
=

1

2
ε.

(46)

ut

Theorem 2. Supposed that a PPT adversary A can break the IND-CKA secu-
rity of our ABFKS scheme with a non-negligible advantage ε > 0, then a PPT
simulator B can be constructed to distinguish a t-DDH tuple from a random tuple
with an advantage ε

2 .

Proof. For the sake of simplicity, we don’t discuss attribute-related issues here,
but only the privacy of keywords. Given a bilinear group G0 with prime order p
and generator g. The t-DDH challenger C randomly selects x, y1, y2, . . . , yt ∈ Zp,
θ ∈ {0, 1}, and R1,R2, . . . ,Rt ∈ G0. Let Zi = g

1
xyi for each i ∈ [1, t], if θ = 0,

Ri else. Next, C sends B the tuple 〈g, g 1
x , {g

1
yi ,Zi | ∀i ∈ [1, t]}〉. Then, B takes

the role of C in the following security game.
• Initialization: At First, A selects two different challenge keyword sets KW 0∗

and KW 1∗, each of which contains t keywords in total.
• Setup: Since attribute-related issues are not discussed, the public key is not

required for A to generate a ciphertext of keyword.
• Phase 1:A adaptively queries B for a trapdoor Tk ofKW = {kw1, kw2, . . . , kwt}

at this phase, where KW 6= KW 0∗,KW 1∗. In response, B picks a random
r′3 ∈ Zp and computes

Tk = (Tk0, Tk1) = (gr
′
3 , {Tkj1 = g

1
H(kwi)r

′
3 | ∀i ∈ [1, t]}), (47)

then responds A with Tk.
• Challenge: For the challenge keyword sets KW 0∗ and KW 1∗, B randomly

selects r′1, r
′
2 ∈ Zp, θ′ ∈ {0, 1}, H ′ : {0, 1}∗ −→ G0, and computes the challenge

ciphertext of KW θ′∗ = {kwθ′∗1 , kwθ
′∗

2 , . . . , kwθ
′∗
t } as: g

1
r1 = (g

1
x )

1
r′1 , i.e., r1 =

xr′1; g
1

H(kwθ
′∗
i

)r1 = (g
1
xyi )

1

H′(kwθ′∗
i

)r′1 = Z
1

H′(kwθ′∗
i

)r′1 , and similarly, g
1

H(kwθ
′∗
i

)r2 =
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Z
1

H′(kwθ′∗
i

)r′2 , i.e., H(kwθ
′∗
i ) = yiH

′(kwθ
′∗
i ). Then, B can returns A a keyword-

related challenge ciphertext CT ∗2 , where

CT ∗2 =

{
(g

1
xr′1 , {Z

1

H′(kwθ′∗
i

)r′1 ,Z
1

H′(kwθ′∗
i

)r′2 | ∀i ∈ [1, t]}
}
. (48)

• Phase 2: This phase is similar to Phase 1.
• Guess: A picks a guess bit θ′′ of θ′. If and only if, in the above game, θ′′ = θ′,

B guesses θ = 0 which indicates that Zi = g
1
xyi for each i ∈ [1, t]. Otherwise,

B guesses θ = 1 i.e., Zi = Ri for ∀i ∈ [1, t].

If Zi = g
1
xyi for each i ∈ [1, t], then CT ∗2 is available, and under this circum-

stance, A′s advantage of guessing θ′ is ε. Therefore, B′s probability to guess θ
correctly is

Pr
[
B(g, g

1
x , {g

1
yi ,Zi = g

1
xyi | ∀i ∈ [1, t]}) = 0

]
=

1

2
+ ε. (49)

If Zi = Ri for ∀i ∈ [1, t], then CT ∗2 seems completely random to A. Hence,

Pr
[
B(g, g

1
x , {g

1
yi ,Zi = Ri | ∀i ∈ [1, t]}) = 1

]
=

1

2
. (50)

Therefore, B′s advantage to distinguish a t-DDH tuple from a random tuple is

Adv(B) =
1

2

∣∣∣Pr[B(g, g
1
x , {g

1
yi ,Zi = g

1
xyi | ∀i ∈ [1, t]}) = 0]

+ Pr[B(g, g
1
x , {g

1
yi ,Zi = Ri | ∀i ∈ [1, t]}) = 1]

∣∣∣− 1

2
=

1

2
ε.

(51)

ut

Theorem 3. The ABFKS scheme can achieve peer-peeping resistance.

Proof. The trapdoor (Ta, Tk) and a ciphertext CT = {T , Eck(M), C = ck ·
e(g, g)βs2 ·e(g, g)

1
r2 , CT1, CT2} maybe eavesdropped by a PPT adversary A who

has the sufficient authority, then A is able to partially decrypt CT , namely to
compute e(g, g)βs2 . But A has no idea about the keywords KW embedded in

CT nor KW ′ in Tk, A can not calculate e(g, g)
1
r2 . Consequently, even if A has

the same or higher authority as U , i.e., a peer or superior, the CT still cannot
be decrypted and peeped by A. ut

6.2 Function and Efficiency Comparison
We discuss the function and efficiency issues from a theoretical point of view.

Compared with a few up-to-the-minute CP-ABE schemes [16,24,26] in fog com-
puting environment, the ABFKS has richer functions i.e., functional keyword
search and peer-peep resistance, as shown in Table 2.

As far as the efficiency is concerned, we compare the computational overhead
and storage costs of our scheme with [16] in Table 3 and Table 4 respectively.
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Table 2. Functional comparison between previous ABKS schemes and ABFKS.

SchemesFine-grainedKeyword searchAttribute updateAccess testFunctional keyword searchPeer-peeping resistance

[26]
√ √

[24]
√ √

[16]
√ √ √

ABFKS
√ √ √ √ √ √

Table 3. Comparison of computational overhead between ABFKS and [16].

Algorithm
ABFKS [16]

Fog nodes User Fog nodes User

KeyGen SK′ : (S + 4)g (2S + 3)g (2S + 4)g (S + 1)g

Enc (C′
1, C

′
2) : (3 + n + 2t)g 3g + 2e (n + 2)g (n + 4)g + e

Trap Tk1 : tg (S + 2)g 2(S + 1)g (2S + 1)g

Search
Access test:(S + 2)e + g

(S + 1)e + 2g
Keyword matching: 1

2
(t2 + t + 2)e

Dec (n + 3)e e + g (n + 2)e e
1 e: Bilinear pairing; g: Exponentiation in group; S: Number of submitted attributes; n: Number

of attributes in T ; t: Number of keywords.
2 Search: this algorithm is operated by the CS.
3 Keyword matching: the possible maximum computational overhead in keyword matching al-

gorithm.

Compared with [16], in order to achieve functional keyword search and peer-
peeping resistance, the ABFKS have more computational costs of fog nodes
in the encryption and trapdoor generation phases. This is because we need to
generate a keyword ciphertext to hide all keywords, so that we can achieve multi-
keyword search without complete keyword matching and peer-peeping resistance.
For the same reason, the CS has to iterate more times during the search phase.
Overall, the computational and storage overhead on the user side has increased
very slightly, but the system is more practical and secure.

Table 4. Comparison of storage costs between ABFKS and [16].

Algorithm
ABFKS [16]

Fog nodes User Fog nodes User

KeyGen (S + 3)|G0| (2S + 2)|G0|+ |Zp| (2S + 3)|G0|+ |Zp| (S + 1)|G0|+ |Zp|

Enc
(3 + n + 2t)|G0| (7 + n + 2t)|G0| (n + 2)|G0| (n + 4)|G0|

+(n + 1)|Zp| +3|GT |+ (n + 4)|Zp| +n|Zp| +2|GT |+ (n + 1)|Zp|

Trap t|G0| (S + 2)|G0|+ |Zp| 2(S + 1)|G0|+ |GT |+ 2|Zp| (2S + 1)|G0|+ 2|Zp|

Search
Access test:(n + 2)|GT |

(S + 1)|GT |
Keyword matching: 1

2
(t2 + t + 2)|GT |

Dec (n + 3)|GT | |GT |+ |Zp| (n + 1)|GT | |GT |+ |Zp|
1 S: Number of submitted attributes; n: Number of attributes in T ; t: Number of keywords; |G0|: Element length in
G0; |GT |: Element length in GT ; |Zp|: Element length in Zp.
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7 ABFKS-PER

For some certain applications, the privacy of access structure and user au-
thority needs to be protected, because it may contain sensitive information.
Privacy and efficiency issues haven’t been fully considered in the above ABFKS
scheme. Therefore, in this section, we provide a construction of ABFKS with
privacy preserving, efficient attribute update and reverse outsourcing.

7.1 Construction of ABFKS-PER

Most of the necessary definitions have been given in Section 5. In addition,
we define the lagrange-route product. Actually in traditional CP-ABE schemes,
the calculation of the lagrange-route product is implied in the decryption process
of ciphertexts. It’s specifically defined here because it can be outsourced to the
cloud to reduce some user’s computational costs.

Definition 9 (Lagrange-Route Product). If T ′ is exposed to the CS, the
CS can compute the lagrange coefficient of each node in T ′. For each leaf node
z of T ′, there is only one route from it to the root node R. This route pass-
es through some non-leaf nodes, so we can define it by a route set Sz→R =
(xo, x1, x2, . . . , xR−1), where x0 = z and xR−1 is R’s child node. Then, the
lagrange-route product is defined as:

πz =
∏

x∈Sz→R

∆i,qx(0). (52)

The details of ABFKS-PER are shown as follows.
• Setup(1λ,L) → (PK,MSK): Given a security parameter λ and a set of all

possible attributes L, the KAC selects a bilinear group G0 with prime order
p and generator g. Next, it chooses α, β ∈ Zp and h ∈ G0. For each attribute
aj ∈ L, it picks out a random vj and computes PKj = gvj . Finally, it generates
the master key MSK and publishes the public key PK.

PK =
{
G0, g, h, g

α, e(g, g)β , {PKj = gvj | ∀aj ∈ L}
}

; (53)

MSK = {α, β, {vj | ∀aj ∈ L}} . (54)

• KeyGen(MSK,S, Uid)→ (SK,SK ′): While receiving an attribute set S and
Uid from the U , the KAC randomly selects r, r′ ∈ Zp and ri ∈ Zp for each
ai ∈ L \ S, and computes d = Hash(Uid ‖ r ‖ r′), then generates the user
secret key SK and the randomized attribute secret key with error SK ′ and
the auxiliary decryption secret key SK ′′ as follows.

SK = {d}; (55)

SK ′ =
{
{SK ′j = g

αr
vjd | ∀aj ∈ S}, {SK ′i = gri | ∀ai ∈ L \ S}

}
(56)

SK ′′ = {β + αr

d
, g

αr
d h

r′
d , g

r′
d }. (57)



Attribute-Based Functional Keyword Search 21

Specifically, the SK ′ is composed of real randomized attribute secret keys

{g
αr
vjd | ∀aj ∈ S} and fake keys {gri | ∀ai ∈ L \ S}. The KAC reorders

each SK ′ in accordance with attribute sequence number, i.e., the index of ai
where ai ∈ S, and sends SK and SK ′′ to the U , sends (Uid, SK

′) to the CS.
Afterwards, the CS can construct Table 5 to store Uid and SK ′.

Table 5. User’s attribute secret keys stored in the cloud.

User ID Attribute secret key

Uid SK′

...
...

In the view of the CS, each user has all attribute secret keys, and it can not
distinguish real randomized attribute secret keys with fake keys. Therefore,
the privacy of user authority is preserved against the CS.

• Enc(PK, T ,M,KW )→ CT : The DO encrypts the symmetric encryption key
ck as follows.

1. Attribute Ciphertext: The DO chooses an access tree T , which describes
an access policy. Let X be a set of attributes corresponding with all leaf
nodes in T . Assume there are totally n leaf nodes in T , where 2 | X |≤ L.
Each leaf node stands for an attribute i.e., ai = att(zi) ∈ X . On the basis of
T , the DO construct a new access tree T ′ as follows. For each zi ∈ T , the
DO replace zi by an OR gate node which is named zi−or node. The zi−or
node has two child nodes i.e., real leaf node zi and fake leaf node z′i, where
att(z′i) 6∈ X and att(z′i) 6= att(z′j) for i 6= j. The DO randomly chooses one
from zi and z′i as the left child of zi − or node. If the left child of zi − or
node is zi, then the DO sets a bit rni = 0, otherwise rni = 1. Eventually,
the DO can construct a new access tree T ′ as well as a real-leaf-node bit
string RN = rn1 ‖ rn2 ‖ . . . ‖ rnn.

The DO sends an access tree T ′ to fog nodes, which describes an access
policy. Fog nodes randomly chooses a polynomial qx for each node x of
T ′ from the root node R in a top-down manner. For each node x of T ′,
dx = kx − 1, where dx is the degree of qx and kx is the threshold value
of x. Beginning with root node R, fog nodes randomly pick s1, s

′
1 ∈ Zp

and set qckR (0) = s1, q
RN
R (0) = s′1. Next, they randomly choose dR other

points of qR to define the polynomial completely. For any other node x, fog
nodes set qx(0) = qparent(x)(index(x)) and choose dx other point to define
qx completely. Let X ′ be a set of attributes corresponding with all leaf nodes
in T ′. In this way, fog nodes construct CT ′ck and CT ′RN respectively, and
send them back to the DO.

CT ′ck =
{
T ′, gs1 , hs1 , {Cckj = gvjqx(0) | ∀aj = att(x) ∈ X ′}

}
; (58)

CT ′RN =
{
T ′, gs

′
1 , hs

′
1 , {CRNj = gvjqy(0) | ∀aj = att(y) ∈ X ′}

}
. (59)
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2. Keyword Ciphertext: The process of generating keyword ciphertext is
the same as ABFKS. So, fog nodes compute CT ′KW and send it back to the
DO.

CT ′KW = {CiKW1
= g

1
H(kwi)r1 , CiKW2

= g
1

H(kwi)r2 | ∀i ∈ [1, t]}. (60)

3. For each att(zj) ∈ X ′ \X , the DO randomly chooses ej ∈ Zp, and generates

a ciphertext with error C̃T ′ck by CT ′ck as

C̃T ′ck=

{
T ′, gs1 , hs1 , {Ccki =gviqx(0) |∀ai=att(x)∈X},
{Cckj =gej |∀aj=att(z)∈X ′\X}

}
. (61)

For i ∈ [1, 2n], the DO reorders each attribute ciphertext CT cki in C̃T ′ck
according to its attribute sequence number, i.e. the index of att(zi), where
att(zi) ∈ X ′. The DO picks s2, s

′
2 ∈ Zp at random and generates CTck,

CTRN , CTKW as CTck = {gs2 , gs1gs2 , hs1hs2}, CTRN = {gs′2 , gs′1gs′2 , hs′1hs′2},
CTKW = {g

1
r1 , CT ′KW }. Then, it computes e(g, g)βs2 , e(g, g)βs

′
2 and e(g, g)

1
r2

to generate a pair of final ciphertexts: CTU and CTNU as follows.

CTU =

{
T ′, Eck(M), Cck = ck · e(g, g)βs2 · e(g, g)

1
r2 ,

CRN = RN · e(g, g)βs
′
2 · e(g, g)

1
r2 , CTck, CTRN , CTKW

}
; (62)

CTNU = {C̃T ′ck, CT
′
RN}. (63)

Both CTU and CTNU are stored in the CS, and only CTU can be accessed by
users. CTNU consists of many attribute ciphertexts, which are not allowed
for user to access.

• Trap(KW ′) → Tk: From the CS point of view, every user has all the at-
tributes, so there is no access test process and the U doesn’t need to generate
the attribute trapdoor Ta by his secret key while searching for a ciphertext.
Moreover, the attribute secret keys of U , i.e., SK ′, are randomized and stored
in the cloud, so the U can not generate the Ta locally as in the ABFKS, so
that the U only needs to generate the keyword trapdoor Tk . The generation
process is the same as ABFKS, so

Tk = (Tk0, Tk1) = (gr3 , {Tkj1 = gH(kw′j)r3 | ∀j ∈ [1, t]}). (64)

• Search(CTU , Tk)→ ⊥ or l ∈ [1, t]: From the CS point of view, the U has all
the attributes, so the access test process can be skipped. If there is at least
one keywords to be identical in KW and KW ′, the Search algorithm outputs
l ∈ [1, t], which means there are l keywords in common between KW and
KW ′. Otherwise, the algorithm outputs ⊥.
Keyword Matching: This process is the same as ABFKS, so the CS ulti-
mately generates the following Table 6 and sorts it in descending order accord-
ing to the correlation, supposed that there are N ciphertexts such that l 6= 0
in total.
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Table 6. The result generated by the search algorithm.

Ciphertext Matching result vector Correlation

CTU (1)
−→mr(1) l(1)

CTU (2)
−→mr(2) l(2)

...
...

...

CTU (N)
−→mr(N) l(N)

• PreDec(CTNU , SK
′)→ (

−−→
F ck,

−−−→
FRN ): Before downloading ciphertexts, the CS

can do some pre-calculation in order to reduce the computation overhead for
user’s decryption. This algorithm consists of two sub-algorithms: PreDecck
and PreDecRN .

1. PreDecck(T ′, SK ′, C̃T ′ck) →
−−→
F ckz : For each leaf node x of T ′, supposed

ai = att(x). The CS computes F ckx = F ckx (Ccki , SK
′
i, x) as:

F ckx (Ccki , SK
′
i, x) = e(gviqx(0), g

αr
vid ) = e(g, g)

αrqx(0)
d . (65)

If and only if Ccki is a real attribute ciphertext and SK ′i is a real randomized
attribute secret key, the above equation holds. Otherwise, F ckx is random in

GT . Then the CS can construct a precomputation vector
−→
Fck, where

−−→
F ck = {(F ckx1

)πx1 , (F ckx2
)πx2 , . . . , (F ckx2n

)πx2n }. (66)

2. PreDecRN (T ′, SK ′, CT ′RN )→
−−−→
FRNy : For each leaf node y of T ′, supposed

aj = att(y). The CS computes FRNy = FRNy (CRNj , SK ′j , y) as:

FRNy (CRNj , SK ′j , y) = e(gvjqy(0), g
αr
vjd ) = e(g, g)

αrqy(0)

d . (67)

Since every CRNj is real, the above equation holds only when SK ′j is a real

randomized attribute secret key. Otherwise, FRNy is random in GT . Then

the CS can construct a precomputation vector
−−→
FRN , where

−−−→
FRN = {(FRNy1 )πy1 , (FRNy2 )πy2 , . . . , (FRNy2n )πy2n }. (68)

Finally the CS constructs Table 7 for U to access as follows.

• Dec(CTU , SK, SK
′′,KW ′,

−−→
F ck,

−−−→
FRN ) → ck: The U is allowed to download

the ciphertext CT in Table 7 according to l, and he can decrypt it with the

help of
−−→
F ck and

−−−→
FRN , if and only if his attribute set S |= T . The U checks

whether his attribute set S |= T ′ or not. If S 6|= T ′, the U cannot decrypt CT .
Otherwise, the U conducts the following operations.
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Table 7. Access table for the user generated by the cloud.

Ciphertext Matching result vector Correlation Precomputation 1 Precomputation 2

CTU (1)
−→mr(1) l(1)

−−→
F ch

(1)

−−−→
FRN

(1)

CTU (2)
−→mr(2) l(2)

−−→
F ck

(2)

−−−→
FRN

(2)

...
...

...
...

...

CTU (N)
−→mr(N) l(N)

−−→
F ck

(N)

−−−→
FRN

(N)

1. Since S |= T ′, for each leaf node in T ′, the U is enabled to pick out FRNyi

from
−−−→
FRN , where att(yi) ∈ S

⋂
X ′. Then the U computes PRN as

PRN =
∏

att(y)∈S
⋂
X ′

(FRNy )πy = e(g, g)
αrs′1
d . (69)

Then the U sends the auxiliary decryption secret key SK ′′ to fog nodes.
The fog nodes interact SK ′′ and CTRN to compute QRN as

QRN = e(g, g)
βs′2
d −

αrs′1
d =

e(g
β+αr
d , gs

′
2) · e(g r

′
d , hs

′
1hs

′
2)

e(g
αr
d h

r′
d , gs

′
1gs
′
2)

, (70)

and send QRN back to the U . Then, the U computes PQRN as PQRN =
(PRN ·QRN )d = e(g, g)βs

′
2 and obtains −→mr in Table 7 related to CT . There

is at least one mrj in −→mr such that mrj = i 6= 0, i.e., kw′j = kwi. Thus,

the U can make use of the jth keyword in KW ′ and ith keyword in KW to

compute E = e(g, g)
1
r2 . Finally, the U calculates RN as

RN =
CRN

PQRN · E
. (71)

2. So far, the U can reveal T from T ′, and check whether his attribute set
S |= T . If S 6|= T , the U cannot decrypt CT . Otherwise, the U continues
to decrypt the ciphertext. Obtaining RN , the U is enable to pick out F ckxi

from
−−→
F ck, where att(xi) ∈ S

⋂
X . Then the U computes Pck as

Pck =
∏

att(x)∈S
⋂
X

(F ckx )πx = e(g, g)
αrs1
d . (72)

The fog nodes interact SK ′′ and CTck to compute Qck as

Qck = e(g, g)
βs2
d −

αrs1
d =

e(g
β+αr
d , gs2) · e(g r

′
d , hs1hs2)

e(g
αr
d h

r′
d , gs1gs2)

(73)
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and send Qck back to the U . Then, the U computes PQck = (Pck ·Qck)d =
e(g, g)βs2 and finally calculates ck as

ck =
Cck

PQck · E
. (74)

So far, the U can decrypt Eck(M) with ck by symmetric decryption.
• Attribute update: When the attribute set of U changes from S to Snew, the
KAC only needs to run KeyGen(Msk, Snew, Uid) to generate a new secret
key SKnew, SK ′new and SK ′′new to replace the original ones.

7.2 Reverse Outsourcing

It is worth noting that the above two sub-algorithms PreDecck and Pre-
DecRN can be reversely outsourced to idle users with intelligent devices, thus
reducing the computational burden of cloud servers. Hence, we define the concept
of reverse outsourcing.

Definition 10 (Reverse Outsourcing). As is known to all, the cloud service
provider can provide outsourcing services for end users to reduce their local com-
putational burden. However, the reverse outsourcing is on the contrary. There
are innumerable users all over the world, whose intelligent devices are idle and
connected to the Interne. We can call them “idle users” and each of them can
provide a small amount of computational resource for the cloud. In order to
reduce the cloud computational overhead, the cloud can divide a computational
task into several parts and outsource them to different idle users respectively. It
must be noted that, the reverse outsourcing has to prevent sensitive information
leakage.

When the CS outsources a computational task to idle users, they must fol-
low the protocol specification. If the reverse outsourcing computational task is
checked valid, the corresponding idle users can be rewarded by the CS. In this
paper, the reverse outsourcing is applied to rational idle user model, which is
defined as follows .

Definition 11 (Rational Idle User Model). Rational idle user are selfish
and lazy, and always attempt to maximize their profits, which means that they
prefer to get rewards from the CS, rather than save the computational resource
of their idle smart devices. Therefore, for each rational idle user Ui, it holds that
ut++
i > ut+i > ut−i > ut−−i , where

• ut++
i is the utility of Ui when he can get rewards without following the protocol

specification.
• ut+i is the utility of Ui when he follows the protocol specification and gets

rewards.
• ut−i is the utility of Ui when he doesn’t get rewards without following the pro-

tocol specification.
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• ut−−i is the utility of Ui when he follows the protocol specification but doesn’t
get rewards.

In rational idle user model, any system user is independent from each other.
Since the performance of each user Ui satisfies ut++

i > ut+i > ut−i > ut−−i , this
means that Ui have different strategies. In order to analyze the best strategy
for a rational idle user, we formalize the reverse outsourcing game by means of
game theory and introduce the notion of Nash equilibrium.

Definition 12 (Reverse Outsourcing Game). The reverse outsourcing game
is a tuple GRO = {U, T, ST,R, V }, where
• U = {U1, U2, . . . , Un} is the set of n rational idle users, where n ≥ 1. Each of

them needs to complete a computational task in order to get rewards from the
CS.

• T = {T1, T2, . . . , Tn} is the set of computational tasks, where Ti is assigned to
Ui.

• ST = {ST1, ST2, . . . , STn} is the set of rational idle users’ strategies in GRO.
In particular, STi = {st0i , st1i } ∈ ST is the set of Ui’s strategies. st0i denotes
that Ui wants to be rewarded without following the protocol specification; st1i
denotes that Ui follows the protocol honestly.

• R = {R1, R2, . . . , Rn} is the set of computational results , where Ri is the
result of Ti.

• V is a verification algorithm to check whether R is valid or not. If R is valid,
i.e., each Ri is valid, then every rational idle user will get the same reward.
Otherwise, none of them will get anything.

Definition 13 (Nash Equilibrium of GRO). For a given strategy ST ∗ =
(st∗1, st

∗
2, . . . , st

∗
n), ST ∗ is Nash equilibrium for GRO, if and only if for any ra-

tional idle user Ui ∈ U , when the game GRO is finished, for any sti ∈ STi, it
holds that

uti(st
∗
i , st

∗
j ) ≥ uti(sti, st∗j ), (75)

where st∗i ∈ STi.

In our scheme, either PreDECck or PreDecRN can be reversely outsourced
to a set of rational idle users U . For instance, for each leaf node x of T ′, the CS
sends a tuple {Ccki , SK ′i, x} to a rational idle user Ui and asks him to compute
the function F ckx = e(Ccki , SK

′
i). Under the discrete logarithm assumption, the

probability that Ui does not follow the protocol but obtains the correct result

e(g, g)
αrqx(0)

d is negligible. If Ui cheats, for example, by randomly generating
an incorrect result, the cheating behavior can be detected with only a small
improvement on the original scheme. While generating ciphertext, the DO adds
Hash(RN) and Hash(ck) into CTU . When an end user decrypts CTU , if his
attribute set S |= T ′ or S |= T , but he can’t calculate the correct RN or ck, he
can report an error to the CS. Then, every participant Ui will not be rewarded by
the CS. According to Nash equilibrium theory, a rational idle user doesn’t follow
the protocol to generate wrong computational results, which will not increase
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his utility but consume his computational resources without rewards. Therefore,
if and only if all rational idle users implement the protocol honestly, the profit
of each user can be maximized.

7.3 Analysis of ABFKS-PER

The security proof of this scheme is similar to that of ABFKS, so we omit
it here. The ABFKS-PER also achieves IND-CPA and IND-CKA security as
well as peer-peeping resistance. Since many ABKS schemes, including ABFKS,
fail to protect the privacy of access structure and user authority and do not
support efficient attribute update, we have proposed the ABFKS-PER, which
supports privacy preserving, efficient attribute update and reverse outsourcing.
Specifically, the privacy of access structure is protected by replacing each leaf
node with an zi − or node. The zi − or node has two child nodes i.e., real leaf
node zi and fake leaf node z′i. Supposed that there are n leaf nodes in T , the
probability of the cloud to recover T from T ′ is 2−n. For the user, only SK
and SK ′′ can be obtained, all attribute secret keys (SK ′) are stored in the
cloud. By filling up fake attribute secret keys, every user has all the attributes
in the view of cloud so that the privacy of user authority is also protected.
When a user requests to update an attribute, the KAC only needs to generate
a set of new keys (SK,SK ′, SK ′′) for this user, instead of updating everyone’s
corresponding attribute secret key as previous schemes [16,26]. Considered that
there are countless idle intelligent devices connected to the Internet all over the
world, which can provide computing resources for the cloud, we initially propose
the concept of reverse outsourcing. In the rational idle user model,the cloud is
allowed to outsource computational tasks to rational idle users. As far as we are
concerned, we think reverse outsourcing may be a new trend in cloud computing.

8 Conclusion

In this paper, we propose an attribute-based encryption with functional key-
word search (ABFKS) scheme in fog computing environment at first. The ABFK-
S initially achieves functional keyword search and peer-peeping resistance, which
makes it more practical and secure. The strict security proof has shown that it
is selective CPA and CKA security. For privacy and efficiency iuuses, we im-
prove ABFKS to ABFKS-PER. In ABFKS-PER, the privacy of access structure
and user authority are both protected against the cloud and efficient attribute
update makes the scheme more practical. We also propose a novel concept of
reverse outsourcing. In the future, we will continue to focus on issues of cloud
computing, fog computing and edge computing.
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