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Abstract. Fog computing, as an extension of cloud computing, enables
end user with limited resources to outsource computational and storage
overheads to fog nodes. Attribute-based encryption with keyword search
(ABKS) achieves both fine-grained access control and keyword search.
However, the search algorithm in the previous ABKS scheme requires
that each keyword between the target keyword set and the ciphertext
keyword set be the same, otherwise the algorithm doesn’t output any
search result, which is not conducive to use. In this paper, we provide a
new system in fog computing, the ciphertext-policy attribute-based en-
cryption with dynamic keyword search (ABDKS). In ABDKS, the search
algorithm requires only one keyword to be identical between the two key-
word sets and outputs the corresponding correlation.
Considering the efficiency issue, we propose an improved version of AB-
DKS called ABDKS-E. In ABDKS-E, all user attribute secret keys are
randomized and stored in the cloud rather than locally, and if some-
one needs to update attributes, any others don’t need to update theirs’
together. Moreover, we propose a heuristic concept called reverse out-
sourcing, i.e., the cloud is allowed to outsource computing tasks to idle
users reversely. With the help of reverse outsourcing, the computational
overheads of cloud in ABDKS-E can be further reduced.

Keywords: Fog computing · Outsourcing · Access control · Attribute-
based encryption · Keyword search.

1 Introduction

Cloud computing is an Internet-based computing method, through which da-
ta can be stored, shared and processed. With the development of 5G, IoT, and
the emergence of countless intelligent devices, tremendous data needs storage
and procession in the cloud, which could gives rise to huge network congestion
and latency. Cloud computing is unable to meet the requirements of the con-
temporary era, so fog computing [3, 21, 22, 27] is proposed. As shown in Fig. 1,
fog nodes are closer to the end user and process data at the edge of the network,
which infiltrates into factories, automobiles, electrical appliances, street lamps
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and various articles in people’s daily life. Compared with cloud computing, fog
computing can reduce request response time, save energy, and reduce network
bandwidth, although it’s overall computing ability is not as powerful as cloud’s.
While enjoying the convenience brought by fog computing services, data security
is still a critical issue to be considered.

Fig. 1. The instruction of fog computing.

Sensitive information is usually encrypted before being uploaded to the cloud
and the encrypted data should be amenable to access control. Ciphertext-policy
attribute-based encryption (CP-ABE) [1] achieves fine-grained access control on
encrypted data. For finding a ciphertext containing a specific keyword among
all encrypted data, ciphertext-policy attribute-based encryption with keyword
search (CP-ABKS) [23, 30] supports both fine-grained access control and key-
word search simultaneously, which has a wide range of applications in industrial,
academic and medical fields. In CP-ABKS, the user’s computational overheads
increase with the complexity of the access structure. Outsourcing technology [8]
is considered as a promising solution. CP-ABKS schemes in fog computing envi-
ronment [18,26] reduce user’s computational overheads by outsourcing comput-
ing tasks to fog nodes. Therefore, user only needs to perform few operations on
resource-limited devices, such as smartphone or ipad.

1.1 Motivation

The search algorithms in previous CP-ABKS schemes [13,18,23,26,30] require
that each keyword between the target keyword set and the ciphertext keyword
set be the same when searching for a ciphertext. As long as the two keyword sets
are not completely identical, their algorithms can’t output any search result.

Moreover, we find that schemes in [18,23,30] are vulnerable to what we call
peer-decryption attack. In such attack, the ciphertext may be eavesdropped and
decrypted by an adversary who has sufficient authorities but noting about the
keywords. For example, while downloading a ciphertext, an employee maybe
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eavesdropped and peeped by colleagues or bosses with the same or higher ac-
cess authorities. In this case, the ciphertext can be decrypted by his peers or
superiors, and his privacy will be revealed.

The CP-ABKS scheme for fog computing [18] adopted the mechanism of at-
tribute update proposed by Zhang et al. [28]. In this mechanism, when updating
an attribute for a user, the key authority center must update each user and each
ciphertext associated with the attribute, regardless of whether or not those users
have applied for attribute updates. Obviously, this mechanism no longer works
if there are millions of users in the system.

Although, the cloud in CP-ABKS schemes [13, 18, 23, 26, 30] is supposed to
have powerful computing power, little attention has been paid to reduce the
computational burden of the cloud. There are countless intelligent devices con-
nected to the Internet all over the world. They have certain computing power
and are not in use most of the time. Is there any way to aggregate this computing
resources to provide computing services for the cloud?

1.2 Our Contributions

Motivated by the observations in previous CP-ABKS schemes as above, we
first present a new system on fog computing, the ABDKS, which achieves dy-
namic keyword search and peer-decryption resistance.
• Dynamic keyword search: The search algorithm of ABDKS returns the

search result as long as one keyword is identical between the target keyword
sets and the ciphertext keyword set. In addition, it outputs the correlation of
the two keyword set for result ranking.

• Peer-decryption resistance: In ABDKS, anyone who wants to decrypt a
ciphertext if and only if he has sufficient authority and knows at least one
element in the ciphertext keyword set. Thus, the ABDKS can resist peer-
decryption attack.

For efficiency issues, we further propose an improved version of ABDKS
called ABDKS-E, which supports efficient attribute update and can be adapted
to reverse outsourcing.
• Efficient attribute update: In ABDKS-E, all users’ attribute secret keys

are randomized and stored in the cloud. To update an attribute for a user, the
key authority center only needs to regenerate a new secret key to replace the
original one for him, instead of updating the corresponding attribute key of
each user and updating the related ciphertext as in [18,28].

• Reverse outsourcing: We first propose a heuristic concept called reverse
outsourcing, i.e., the cloud is allowed to outsource computing tasks to idle
users (with online devices that have some computing power but are not used)
to reduce its workload. We assume that the cloud will reward idle users after
they complete the corresponding computing tasks correctly, and propose the
rational idle user model [9] in which users are more willing to earn rewards
than saving computing resources. To demonstrate how reverse outsourcing
works, we apply reverse outsourcing to ABDKS-E, and use game theory [11]
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and Nash equilibrium [16] to analyze each user’s strategy: when and only when
all users execute the scheme honestly, each user can get the maximum benefit.

1.3 Organization

This paper is organized as follows. Section 2 discusses several previous works.
Section 3 describes the necessary preliminaries. Section 4 presents the system and
security model. We give a concrete construction and explicit analysis of ABDKS
in section 5 and section 6 respectively. In section 7, we introduce the construction
of ABDKS-E. In the end, section 8 summarizes the paper and prospects for the
future research.

2 Related Works

Sahai et al. [19] initially introduced the concept of attribute-based encryption
(ABE). Generally, there are two types of ABE schemes, i.e., key-policy ABE
(KP-ABE) [7] and ciphertext-policy ABE (CP-ABE) [1]. Bethencourt et al. [1]
proposed the first CP-ABE scheme which realizes fine-grained access control
based on the tree-based structure. From then on, large numbers of CP-ABE
schemes have been proposed to achieve various functions [5,10,25]. However, with
the increase of the number of attributes and the complexity of access structure,
general CP-ABE schemes are computationally expensive.

Green et al. [8] provided a method to outsource the decryption of ABE ci-
phertexts. Li et al. [14] outsources both key-issuing and decryption. Zhang et
al. [29] fully outsources key generation, encryption and decryption. In the wake
of 5G and IoT techniques, fog computing is considered as a new data resource,
which can provide many high-quality outsourcing services. Zuo et al. [31] pro-
posed a practical CP-ABE scheme in fog computing environment and Zhang et
al. [28] initially supports fog computing as well as attribute update.

Searching over encrypted data, the keyword can not be revealed because it
may reflect sensitive information of ciphertext. In 2000, Song et al. [20] initially
introduced a searchable encryption (SE) technique. Boneh et al. [2] proposed the
first public key encryption with keyword search. After that, various SE schemes,
such as single keyword search [24], multi-keyword search [4] and fuzzy keyword
search [15] have emerged. To support both fine-grained access control and key-
word search simultaneously, plenty of ciphertext-policy attribute-based encryp-
tion (CP-ABKS) schemes [6,12,13,17,18,23,26,30] have been proposed. Among
them, [18,26] are constructed in fog computing environment.

3 Preliminaries

In this section, we introduce some background knowledge, which includes
access structure, access tree, bilinear maps, Diffie-Hellman assumption and its
variants.
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3.1 Access Structures

Definition 1 (Access structure [1]). Let {P1, P2, . . . , Pn} be a set of par-
ties. A collection A ⊆ 2{P1,P2,...,Pn} is monotone if ∀B,C: if B ∈ A and B ⊆
C then C ∈ A. An access structure (respectively, monotone access structure)
is a collection (respectively, monotone collection) A of non-empty subsets of
{P1, P2, . . . , Pn}, i.e., A ⊆ 2{P1,P2,...,Pn} \ {∅}. The sets in A are called the
authorized sets, and the sets not in A are called the unauthorized sets.

In this paper, attributes take the role of the parties and we only focus on the
monotone access structure A, which consists of the authorized sets of attributes.
Obviously, attributes can directly reflect a user’s authority.

Definition 2 (Access tree [1]). Let T be a tree representing an access struc-
ture. Each non-leaf node of the tree represents a threshold gate, described by its
children and a threshold value. If numx is the number of children of a node x
and kx is its threshold value, then 0 ≤ kx ≤ numx. When kx = 1, the threshold
gate is an OR gate and when kx = numx, it is an AND gate. Each leaf node x
of the tree is describe by an attribute and a threshold value kx = 1.

We introduce a few functions defined in [1] as follows. parent(x) denotes the
parent of the node x in the tree. The function att(x) is defined only if x is a leaf
node and denotes the attribute associated with the leaf node x in the tree. The
access tree T also defines an ordering between the children of every node, that
is, the children of a node are numbered from 1 to num. The function index(x)
returns such a number associated with the node x, where the index values are
uniquely assigned to nodes in the access structure for a given key in an arbitrary
manner.

Definition 3 (Satisfying an access tree [1]). Let T be an access tree with
root r. Denote by Tx the subtree of T rooted at the node x. Hence T is the
same as Tr. If a set of attributes γ satisfies the access tree Tx, we denote it as
Tx(γ) = 1. We compute Tx(γ) recursively as follows. If x is a non-leaf node,
evaluate Tx′(γ) = 1 for all children x′ of node x. Tx(γ) returns 1 if and only if
at least kx children return 1. If x is a leaf node, then Tx(γ) returns 1 if and only
if att(x) ∈ γ.

3.2 Bilinear Map and DBDH Assumption

We briefly recall the definitions of the bilinear map and the decisional bilinear
Diffie-Hellman (DBDH) assumption. Let G0 and GT be two multiplicative cyclic
groups of prime order p. Let g be a generator of G0 and e be a efficient com-
putable bilinear map, e : G0×G0 → GT . The bilinear map e has a few properties:
(1) Bilinearity: for all u, v ∈ G0 and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab. (2)
Non-degeneracy: e(g, g) 6= 1. We say that G0 is a bilinear group if the group
operation in G0 and the bilinear map e : G0 × G0 → GT are both efficiently
computable. Notice that the map e is symmetric since e(ga, gb) = e(g, g)ab =
e(gb, ga).
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Given the bilinear map parameter (G0,GT , p, e, g) and three random elements
(x, y, z) ∈ Z3

p, if there is no probabilistic polynomial time (PPT) adversary algo-
rithm B can distinguish between (g, gx, gy, gz, e(g, g)xyz) and (g, gx, gy, gz, ϑ), we
can say that the DBDH assumption holds, where ϑ is randomly selected from
GT . More specifically, the advantage ε of B in solving the DBDH problem is
defined as∣∣∣Pr[A(g, gx, gy, gz, Z=e(g, g)xyz)=1]−Pr[A(g, gx, gy, gz, Z=R)=1]

∣∣∣. (1)

Definition 4 (DBDH). We say that the DBDH assumption holds if no PPT
algorithm has a non-negligible advantage ε in solving DBDH problem.

4 System and Security Model

In this section, we introduce the system description, system overview, threat
model and security model of ABDKS.

4.1 System Description

As shown in Fig. 2, we consider a ciphertext retrieval scenario in fog comput-
ing. It consists of five parties: Key Authority Center (KAC), Data Owner (DO),
Cloud Server (CS), End User (EU), and Fog Nodes. The specific role of each
party is given as follows:
• Key Authority Center (KAC): The KAC is a fully trusted third party which is

in charge of generating public parameters, secret keys, and handling attribute
update.

• Data Owner (DO): The DO defines an access structure, chooses a set of key-
words to generate a ciphertext CT with the help of fog nodes, then uploads
CT to the CS.

• Cloud Server (CS): The CS has unlimited computing power and storage ca-
pacity, it can provide computing and storage services to users.

• End User (EU): Resource-constrained user can generate trapdoor with the help
of fog nodes and issue search queries based on their authority. Moreover, it
can take the advantage of fog nodes to decrypt ciphertext.

• Fog Nodes: The fog node can help reduce computational overheads during the
encryption process of DO or the trapdoor generation and decryption processes
of EU.

4.2 System Model

The ABDKS includes the following six algorithms:
• Setup(1λ,L) → (PK,MSK): Given security parameter λ and a set of all

possible attributes L, the KAC generates public key PK and master secret
key MSK.
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• KeyGen(PK,MSK,S) → SK: On input the public key PK, the master
secret key MSK and an attribute set S, the KAC generates a secret key SK
for the EU.

• Enc(PK,A,M,KW ) → CT : On input an access structure A, a keyword set
KW and the message M , the DO generates the ciphertext CT with the help
of fog nodes, and uploads the ciphertext to the CS.

• Trap(SK,KW ′) → (Ta, Tk): To issue a search query, the EU generates a
trapdoor (Ta, Tk) by his own secret key SK and a set of target keyword KW ′

with the help of fog nodes.
• Search({CT}, (Ta, Tk)) → {

(
CT(i),

−→mr(i), l(i)
)
} or ⊥: On input a trapdoor

(Ta, Tk), the CS conducts searching operations among all ciphertexts {CT}.
For each ciphertext CT ∈ {CT}, if the following two conditions satisfied, we
call CT an accessible ciphertext:
• there is at least one keyword kw such that kw ∈ KW ′

⋂
KW ,

• the user is authorized to obtain CT ,
where KW ′ is the target keyword set of (Ta, Tk), KW is the ciphertext key-
word set of CT . The algorithm finally returns the accessible ciphertext set
{
(
CT(i),

−→mr(i), l(i)
)
}, where CT(i) ∈ {CT} denotes the i-th accessible cipher-

text; matching result vector −→mr(i) implies the relationship between KW ′ of
(Ta, Tk) and KW(i) of the accessible ciphertext CT(i); correlation l(i) is the
number of non-zero integers in −→mr(i), indicating the correlation of KW ′ and
KW(i). If no accessible ciphertext exists, the algorithm outputs ⊥.

• Dec(CT(i),
−→mr(i), SK,KW ′) → M : On input CT(i),

−→mr(i), SK,KW ′, the EU
can decrypt the accessible ciphertext CT(i) with the help of fog nodes and
outputs M .

4.3 Threat Model

In this paper, we assume that the KAC is a fully trusted third party, while
the CS and fog nodes are honest-but-curious entities, which exactly follow the
protocol specifications but also are curious about the sensitive information of ci-
phertexts and trapdoors. Users are not allowed to collude with CS or fog nodes.
Nevertheless, malicious users may collude with each other to access some unau-
thorized ciphertexts. During transmitted, the ciphertext may be eavesdropped
and decrypted by peer-decryption adversary who has sufficient authorities but
noting about the keywords.

4.4 Security Model

The ABDKS achieves chosen plaintext security, and the security game be-
tween a PPT adversary A and the challenger C is as follows.
• Initialization: A chooses and submits a challenge access structure A∗ to C.
• Setup: C runs Setup algorithm and returns the public key PK to A.
• Phase 1: A adaptively submits any attribute set S to C with the restriction

that S doesn’t satisfy A∗. In response, C runs KeyGen algorithm and answers
A with the corresponding SK.
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Fig. 2. System description of fog computing.

• Challenge: A chooses two equal-length challenge messages (m0,m1), a set
of keywords KW ∗ and submits them to C. Then C picks a random bit ϑ ∈
{0, 1}, runs Enc algorithm to encrypt (mϑ,KW

∗), and returns the challenge
ciphertext CT ∗ to A.

• Phase 2: This phase is the same as Phase 1.
• Guess: A outputs a guess bit ϑ′ of ϑ. We say that A wins the game if and

only if ϑ′ = ϑ. The advantage of A to win this security game is defined as

Adv(A) =
∣∣∣Pr[ϑ′ = ϑ]− 1

2

∣∣∣.
Definition 5. The ABDKS achieves IND-CPA security if there exist no PPT
adversary winning the above security game with a non-negligible advantage ε
under the DBDH assumption.

In addition, the ABDKS also achieves chosen keyword security, and the se-
curity game between A and C is as follows.
• Initialization: A chooses and submits a challenge access structure A∗ to C.
• Setup: C runs Setup algorithm and gives PK to A.
• Phase 1: A adaptively submits any attribute set S and keyword set KW to
C with the restriction that S doesn’t satisfy A∗. In response, C runs Trap
algorithm and responds A with the corresponding trapdoor (Ta, Tk).

• Challenge: A submits two challenge keyword sets KW 0∗ and KW 1∗ with
equal number of keywords. Then, C picks a random bit ϑ ∈ {0, 1}, and returns
the challenge ciphertext CT ∗.

• Phase 2: This phase is the same as Phase 1.
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• Guess: A outputs a guess bit ϑ′ of ϑ. We say that A wins the game if and
only if ϑ′ = ϑ. The advantage of A to win this security game is defined as

Adv(A) =
∣∣∣Pr[ϑ′ = ϑ]− 1

2

∣∣∣.
Definition 6. The ABDKS achieves IND-CKA security if there exist no PPT
adversary winning the above security game with a non-negligible advantage ε
under the DBDH assumption.

5 Construction of ABDKS

Here, we present the concrete construction of ABDKS scheme with dynamic
keyword search and peer-decryption resistance.

Without loss of generality, we suppose that there are n possible attributes in
total and L = {a1, a2, ..., an} is the set of all possible attributes. Assume G0,GT
are multiplicative cyclic groups with prime order p and the generator of G0 is
g. Let λ be the security parameter which determines the size of groups. Let
e : G0 ×G0 → GT be a bilinear map and H : {0, 1}∗ −→ Zp be a hash function
which maps any string to a random element of Zp. We also define the Lagrange
coefficient ∆i,L(x) =

∏
j∈L,j 6=i

x−j
i−j , where i ∈ Zp and a set L, of elements in Zp.

The details of our scheme are as follows.
• Setup(1λ,L) → (PK,MSK): Given a security parameter λ and all possible

attributes L, the KAC chooses a bilinear group G0 with prime order p and
generator g. Next, it randomly picks α, β ∈ Zp and h ∈ G0. For each attribute
aj ∈ L, it randomly selects a vj ∈ Zp and sets PKj = gvj . Finally, it generates
the master secret key MSK and the public key PK as

PK =
{
G0, g, h, g

α, e(g, g)β , e(g, h)β , {PKj = gvj | ∀aj ∈ L}
}

; (2)

MSK = {α, β, {vj | ∀aj ∈ L}} . (3)

• KeyGen(MSK,S) → SK: While receiving an attribute set S from the EU,
the KAC randomly selects r, r′ ∈ Zp and returns the secret key SK as

SK =
{
gβ+αr, gαrhr

′
, hαrhr

′
, gr
′
, {g

αr
vj , h

αr
vj | ∀aj ∈ S}

}
. (4)

• Enc(PK,A,M,KW ) → CT : The DO randomly chooses ck ∈ Zp as a sym-
metric encryption key and encrypts message M with ck, Eck(M), by using
symmetric encryption (AES). Then, it encrypts ck as follows:
1. The DO sends an access structure A to fog nodes, which in turn represent

A with an access tree T . Then the fog nodes randomly choose a polynomial
qx for each node x of T from the root node R in a top-down manner:
for each node x of T , the degree of qx is dx = kx − 1, where kx is the
threshold value of x; beginning with root node R, fog nodes pick a random
s1 ∈ Zp, set qR(0) = s1 and randomly choose dR = kR − 1 other points
of qR to define the polynomial completely; for any other node x, fog nodes
set qx(0) = qparent(x)(index(x)) and choose dx other points to define qx
completely. Fog nodes send the attribute ciphertext CT ′1,



10 Fei Meng, Mingqiang Wang, and Leixiao Cheng

CT ′1 =
{
T , gs1 , hs1 , {Cj,1 =gvjqx(0), Cj,2 =hvjqx(0) |∀aj=att(x)∈X}

}
, (5)

to DO, where X is a set of attributes corresponding with all leaf nodes in
T . Given CT ′1, the DO randomly picks s2 ∈ Zp and generates CT1 as

CT1 = {gs2 , gs1gs2 , hs1 , hs2 , CT ′1}. (6)

2. The DO chooses the ciphertext keyword set KW = {kw1, kw2, . . . , kwt},
where kwi means the i-th keyword. Then, it randomly selects r1, r2 ∈ Zp,
computes g

1
r1 , and sends hs2r1 ,KW1,KW2 to fog nodes, where

KW1 = {H(kw1)r1, H(kw2)r1, . . . ,H(kwt)r1}; (7)

KW2 = {H(kw1)r2, H(kw2)r2, . . . ,H(kwt)r2}. (8)

The fog nodes return DO the keyword ciphertext

CT ′2 = {Ci1 = h
s2r1

H(kwi)r1 , Ci2 = g
1

H(kwi)r2 | ∀i ∈ [1, t]}. (9)

3. The DO generates CT2 = {e(g, h)βs2 , g
1
r1 , CT ′2} and outputs the final ci-

phertext CT as

CT = {T , Eck(M), C = ck · e(g, g)βs2 · e(g, g)
1
r2 , CT1, CT2}. (10)

• Trap(SK,KW ′) → (Ta, Tk): To issue a search query of the target keyword
set KW ′ = {kw′1, kw′2, . . . , kw′t}, the Trap algorithm proceeds as follows.
1. The EU randomly chooses x′, y′, z′, r3 ∈ Zp, and uses SK to generate the

attribute trapdoor Ta as

Ta =
(
Ta0, Ta1, Ta2, Ta3, Ta4

)
=
(
x′ + y′, h(αr+r

′)(x′+y′)+z′ ,

gr
′(x′+y′)+z′ , {Taj3 = g

αrx′
vj | ∀aj ∈ S}, {Taj4 = h

αry′
vj | ∀aj ∈ S}

)
.

(11)

2. The EU computes gr3 and sends {H(kw′1)r3, . . . ,H(kw′t)r3} to fog nodes,

which return {gH(kw′j)r3 | ∀j ∈ [1, t]} to the former. Finally, the EU generates
the keyword trapdoor Tk as

Tk = (Tk0, Tk1) = (g(β+αr)+r3 , {Tkj1 = gH(kw′j)r3 | ∀j ∈ [1, t]}). (12)

• Search({CT}, (Ta, Tk)) → {(CT(i),−→mr(i), l(i))} or ⊥: For each CT ∈ {CT},
the algorithm conducts the following two steps: access precomputation and
keyword matching.
1. Access Precomputation: Due to the access precomputation process is a

recursive procedure, we define the recursive algorithm F ′x(Cj,1, Cj,2, Ta
j
3, Ta

j
4, x)

intaking Cj,1, Cj,2, x in CT ′1 of CT and Taj3, Ta
j
4 in (Ta, Tk).

For each node x of T in CT , the CS runs a recursive algorithm as follows:
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(a) If x is a leaf node of T . Let aj=att(x). If aj ∈ S, the CS computes

F ′x(Cj,1, Cj,2, Ta
j
3, Ta

j
4, x) = e(Cj,2, Ta

j
3) · e(Cj,1, Taj4)

= e(hvjqx(0), g
αrx′
vj ) · e(gvjqx(0), h

αry′
vj ) = e(g, h)αrqx(0)(x

′+y′).
(13)

If aj 6∈S, set F ′x(Cj,1, Cj,2, Ta
j
3, Ta

j
4, x)=null.

(b) If x is a non-leaf node, the recursive algorithm is defined as: for all child
nodes z of x, where ai = att(z), the CS computes F ′z = F ′z(Ci,1, Ci,2, Ta

i
3, Ta

i
4, z)

recursively. Let Sx be an arbitrary kx-sized set of child nodes z satisfying
F ′z 6= null. If Sx doesn’t exist, F ′x = null. Otherwise, the CS calculates

F ′x =
∏
z∈Sx

F
′∆i,S′x (0)
z

=
∏
z∈Sx

(e(g, h)αr(x
′+y′)qparent(z)(index(z)))∆i,S′x (0)

= e(g, h)αrqx(0)(x
′+y′),

(14)

where i = index(z) and S′x = {index(z) : z ∈ Sx}.
By calling the above algorithm on the root node R of T , the CS gets F ′R =

e(g, h)αrs1(x
′+y′). Then, the CS computes D′ as

D′ = e(g, h)βs2 ·
[F ′R · e(Ta1, gs1+s2)

e(Ta2, hs1+s2)

] 1
Ta0 = e(g, h)(β+αr)s2 . (15)

2. Keyword Matching: Given TK and CT , the CS interacts Tk1 = {Tkj1 =

gH(kw′j)r3 | ∀j ∈ [1, t]} of TK with {Ci1 = h
s2r1

H(kwi)r1 | ∀i ∈ [1, t]} of CT : for
each j ∈ [1, t], the CS checks whether there exists an i ∈ [1, t] such that

D′ · e(Tkj1, Ci1) = e(Tk0, h
s2). (16)

(a) If no i makes the above formula hold, the CS outputs a matching result
mrj = 0, which means that kw′j in KW ′ of Tk is not in KW of CT .

(b) If there is an i such that the above formula holds, which means that
there exists a kwi in KW such that kw′j = kwi, the CS sets mrj = i.

After that, CS sets the matching result vector−→mr = (mr1,mr2, . . . ,mrt),
the correlation l ∈ [0, t] be the number of non-zero elements in −→mr, which
represents the number of identical keywords between KW ′ and KW . If
l > 0, the CS outputs the accessible ciphertext tuple (CT,−→mr, l); otherwise,
it turns to the next ciphertext.

If there is no ciphertext satisfying the above conditions, the algorithm outputs
⊥. Otherwise, the CS ranks the accessible ciphertext tuples as {CT(i),−→mr(i), l(i)}
based on the correlation, as shown in Table 1, which is allowed to be obtained
by the EU.

• Dec((CT,−→mr), SK,KW ′) → M : The EU accesses (CT,−→mr) in Table 1 ac-
cording to l, and decrypt CT with the help of fog nodes in the following steps:
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Table 1. Accessible ciphertext for the EU generated by the CS.

Ciphertext Matching result vector Correlation

CT(1)
−→mr(1) l(1)

CT(2)
−→mr(2) l(2)

...
...

...

1. The EU selects a random d ∈ Zp, keeps it secret, and sends a randomized
secret key SK ′ to fog nodes, where

SK ′ =
{
SK ′1, SK

′
2, SK

′
3, SK

′
4 = {SK ′j4 }

}
=
{
g
β+αr
d , g

αr
d h

r′
d , g

r′
d , {g

αr
vjd | ∀aj ∈ S}

}
.

(17)

2. The fog nodes interact SK ′ and CT to perform some precomputation, which
greatly reduces the computational costs of user decryption. The interaction
procedure is similar to the access precomputation of Search algorithm de-
scribed above. Due to the precomputation process is a recursive procedure,
we define the recursive algorithm Fx(Cj,1, SK

′j
4 , x) intaking Cj,1, x in CT ′1

of CT and SK ′j4 in SK ′. For each node x of T in CT , the fog nodes perform
the following recursive algorithm:
(a) If x is a leaf node of T . Let aj = att(x). If aj 6∈ S, Fx(Cj,1, SK

′j
4 , x) =

null. If aj ∈ S, then fog nodes compute

Fx(Cj,1, SK
′j
4 , x) = e(gvjqx(0), g

αr
vjd ) = e(g, g)

αrqx(0)
d . (18)

(b) If x is a non-leaf node, the recursive algorithm is defined as: for all
child nodes z of x, where ai = att(z), the fog nodes calculate Fz =
Fz(Ci,1, SK

′i
4 , z) recursively. Let Sx be an arbitrary kx-sized set of z

satisfying Fz 6= null. If Sx doesn’t exist, Fx = null. Otherwise, the fog
nodes compute

Fx =
∏
z∈Sx

F
∆i,S′x

(0)
z = e(g, g)

αrqx(0)
d . (19)

By running the above algorithm recursively, the fog nodes obtain FR =
e(g, g)

αrs1
d for the root node R of T and return D to the EU, where

D =
e(SK ′1, g

s2) · FR · e(SK ′3, hs1hs2)

e(SK ′2, g
s1gs2)

= e(g, g)
βs2
d . (20)

3. For the −→mr, there is at least one element mrj in −→mr such that mrj = i 6= 0,
i.e., the jth keyword kw′j in KW ′ is identical to the ith keyword kwi in KW .
Then, the EU derives ck as

C

Dd · e(gH(kw′j), Ci2)
=

ck · e(g, g)βs2 · e(g, g)
1
r2

(e(g, g)
βs2
d )d · e(gH(kw′j), g

1
H(kwi)r2 )

= ck. (21)
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4. Finally, the EU decrypts Eck(M) with ck by symmetric decryption.

Remark 1. Attribute update is very important to keep the system dynamic and
protect data from eavesdropping and sniffing by revoked users. we briefly describe
how to apply the basic idea of attribute update in [28] to the ABDKS as follows:
1. To update aj → aw, the KAC randomly selects v′j 6= vj ∈ Zp and computes

ukj→w =
vj
vw

, ukj→j =
vj
v′j

, cuj→j =
v′j
vj

. The KAC updates the public attribute

key of aj as PK ′j = PK
1

ukj→j
j = gv

′
j and sends ukj→w, ukj→j , cuj→j to the

updated user, non-updated users, the CS respectively.
2. The updated user updates its secret key as

SKu=
{
gβ+αr, gαrhr

′
, hαrhr

′
, gr
′
, {g

αr
vi , h

αr
vi | ∀ai∈S\{aj}}, g

αr
vj
·ukj→w

, h
αr
vw
·ukj→w

}
.

(22)
Each non-updated user updates its secret keys as

SKnu=
{
gβ+αr, gαrhr

′
, hαrhr

′
, gr
′
, {g

αr
vi , h

αr
vi | ∀ai∈S\{aj}}, g

αr
vj
·ukj→j

, h
αr
vj
·ukj→j

}
.

(23)
The CS updates the attribute ciphertext CT ′1 of CT as

CT ′1 =

{
T , gs1 , hs1 , Cj,1 = gvjqx(0)·cuj→j , Cj,2 = hvjqx(0)·cuj→j ,

{Ci,1 = gviqx(0), Ci,2 = hviqx(0), | ∀ai = att(x) ∈ X \ {aj}}

}
. (24)

6 Analysis of ABDKS

In this section, we provide a security analysis of ABDKS and demonstrate
its performance from in a theoretical point of view.

6.1 Security Analysis

Theorem 1. Supposed that a PPT adversary A can break the IND-CPA secu-
rity of ABDKS with a non-negligible advantage ε > 0, then there exists a PPT
simulator B that can distinguish a DBDH tuple from a random tuple with an
advantage ε

2 .

Proof. Given the bilinear map parameter (G0,GT , p, e, g). The DBDH challenger
C selects a′, b′, c′ ∈ Zp, θ ∈ {0, 1}, R ∈ GT at random. Let Z = e(g, g)a

′b′c′ , if

θ = 0, R else. Next, C sends B the tuple 〈g, ga′ , gb′ , gc′ ,Z〉. Then, B plays the
role of challenger in the following security game.
• Initialization:A chooses and submits a challenge access structure A∗ to B.
• Setup: B chooses β′, x ∈ Zp at random and sets h = gx, gα = ga

′
, e(g, g)β =

e(g, g)β
′+a′b′ = e(g, g)β

′
e(ga

′
, gb
′
), e(g, h)β = (e(g, g)β)x. For each attribute

aj ∈ L, B picks a random sj ∈ Zp . If aj ∈ A∗, set PKj = gvj = g
a′
sj ; otherwise,

PKj = gvj = gsj . Then, B sends PK = {G0, g, h, g
α, e(g, g)β , e(g, h)β , {PKj |

∀aj ∈ L}} to A.
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• Phase 1: A adaptively submits any attribute set S ∈ L to B with the re-
striction that S 2 A∗. In response, B picks r̂, r̃ ∈ Zp at random, computes

gr = gr̂

gb′
= gr̂−b

′
, gβ+αr = gβ

′+a′b′+a′(r̂−b′) = gβ
′+a′r̂, gαr̂hr̃, hαr̂hr̃, gr̃. For

each aj ∈ S, if aj ∈ A∗, B computes g
αr̂
vj = gsj r̂ and h

αr̂
vj = hsj r̂; otherwise,

g
αr̂
vj = g

a′r̂
sj and h

αr̂
vj = h

a′r̂
sj . Afterwards, B answers A with the corresponding

secret key SK = {gβ′+αr̂, gαr̂hr̃, hαr̂hr̃, gr̃, {g
αr̂
vj , h

αr̂
vj | ∀aj ∈ S}}.

• Challenge: A chooses two equal-length challenge messages (m0,m1), a set
of keywords KW ∗ = {kw∗1 , kw∗2 , . . . , kw∗t } and submits them to B. Then, B
randomly chooses r1, r2, s1 ∈ Zp, sets gs2 = gc

′
, hs2 = gc

′x, e(g, h)βs2 = Zx ·
e(g, g)β

′c′x and generates

CT ′∗1 =
{
T ∗, gs1 , hs1 , {Cj,1 =gvjqx∗ (0), Cj,2 =hvjqx∗ (0) |∀aj=att(x∗)∈X ∗}

}
,

where X ∗ is a set of attributes corresponding with all leaf nodes in T ∗; CT ∗1 =

{gs2 , gs1gs2 , hs1 , hs2 , CT ′∗1 }; CT ′∗2 =
{
{Ci∗1 = h

s2
H(kw∗

i
)r1 , Ci∗2 = g

1
H(kw∗

i
)r2 | ∀i ∈ [1, t]}

}
;

CT ∗2 =
{
e(g, h)βs2 , g

1
r1 , CT ′∗2

}
. After that, B randomly picks θ′ ∈ {0, 1}, sets

C∗ = mθ′ · e(g, g)βs2 · e(g, g)
1
r2 where e(g, g)βs2 = Z · e(g, g)β

′c′ , and returns
A the final challenge ciphertext CT ∗ = {T ∗, C∗, CT ∗1 , CT ∗2 }.

• Phase 2: This phase is the same as Phase 1.
• Guess: A outputs a guess bit θ′′ of θ′. If θ′′ = θ′, B guesses θ = 0 which

indicates that Z = e(g, g)a
′b′c′ in the above game. Otherwise, B guesses θ = 1

i.e., Z = R.
If Z = e(g, g)a

′b′c′ , then CT ∗ is available and A′s advantage of guessing θ′ is
ε. Therefore, B′s probability to guess θ correctly is

Pr
[
B
(
g, ga

′
, gb
′
, gc
′
,Z = e(g, g)a

′b′c′
)

= 0
]

=
1

2
+ ε. (25)

Else Z = R, then CT ∗ is random from the view of A. Hence, B′s probability
to guess θ correctly is

Pr
[
B
(
g, ga

′
, gb
′
, gc
′
,Z = R

)
= 1
]

=
1

2
. (26)

In conclusion, B′s advantage to win the above security game is

Adv(B) =
1

2

(
Pr
[
B
(
g, ga

′
, gb
′
, gc
′
,Z = e(g, g)a

′b′c′
)

= 0
]

+ Pr
[
B
(
g, ga

′
, gb
′
, gc
′
,Z = R

)
= 1
] )
− 1

2
=

1

2
ε.

(27)

ut

Theorem 2. Supposed that a PPT adversary A can break the IND-CKA secu-
rity of ABDKS with a non-negligible advantage ε > 0, then there exists a PPT
simulator B that can distinguish a DBDH tuple from a random tuple with an
advantage ε

2 .
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Proof. The proof process of this theorem is similar to that of Theorem 1. The
DBDH challenger C sends B the tuple 〈g, ga′ , gb′ , gc′ ,Z〉, in which Z = e(g, g)a

′b′c′

or R. A chooses a challenge access structure A∗ initially. B returns public key
in the same way as in Theorem 1. Then A adaptively submits any attribute set
S and keyword set KW to B, where S 2 A∗. Since B can generate secret keys
as in Theorem 1, it can naturally answer A with the corresponding trapdoor
(Ta, Tk). In the challenge phase, A submits two challenge keyword sets KW 0∗

and KW 1∗ with equal number of keywords. B randomly picks θ′ ∈ {0, 1}, gener-
ates CT ∗2 with KW θ′∗ and returns the challenge ciphertext (CT ∗1 , CT

∗
2 ). If A′s

advantage of guessing θ′ is ε, then B′s advantage to distinguish a DBDH tuple
from a random tuple is ε

2 . ut

Remark 2. Previous ABKS schemes [18,23,30] are vulnerable to peer-decryption
attack, in which ciphertext may be eavesdropped and decrypted by an adversary
who has sufficient authority but noting about the keywords. In those schemes,
the symmetric secret key (or message) is encrypted as ck · e(g, g)βs2 by an ac-
cess structure A. Any adversary A with attribute set SA |= A can calculate
e(g, g)βs2 so to get ck. While in ABDKS, the symmetric secret key (or message)

is encrypted as ck · e(g, g)βs2 · e(g, g)
1
r2 . As shown in Eq.(21), A without any

information of keywords KW = {kwi} cannot compute e(g, g)
1
r2 even if he has

sufficient authority SA |= A to compute e(g, g)βs2 . Thus, the ABDKS resists
peer-decryption attack, since adversary A can’t get ck.

6.2 Comparison with Other Schemes

From a theoretical point of view, we compared our ABDKS with a few up-to-
the-minute CP-ABE schemes [18,26,28] in fog computing environment as shown
in Table 2. Besides fine-grained access control, keyword search and attribute
update, the ABDKS has richer functions such as dynamic keyword search and
peer-decryption resistance.

Table 2. Functional comparison among previous ABKS schemes and ABDKS.

SchemesFine-grained access controlKeyword searchAttribute updateDynamic keyword searchPeer-decryption resistance

[28]
√ √

[26]
√ √

[18]
√ √ √

ABDKS
√ √ √ √ √

The ABDKS achieves dynamic keyword search rather than single keyword
search in [18], even though, we compared the computational overheads of ABD-
KS with [18] from the perspective of user, fog nodes, cloud as shown in Table 3.

For user, compared with [18], the user workload of ABDKS is significantly
lower in the Enc phase, and slightly higher in other phases.

For fog nodes, the ABDKS has more computational costs in the Enc and
Trap phases than those of [18]. Specifically, in the Enc phase of ABDKS, {Cj,2 |
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Table 3. Comparison of computational overhead between ABDKS and [18].

Algorithm
ABDKS [18]

Fog nodes User Fog nodes User

Enc 2(1 + n + t)g 5g + 2e (n + 2)g (n + 4)g + e

Trap tg (2S + 3)g 2(S + 1)g (2S + 1)g

Search (2Se + e + g) + (t2e + e) (S + 1)e + 2g

Dec (n + 3)e e + g (n + 2)e e
1 e: Bilinear pairing. g: Exponentiation in group. S: Number of user attributes.
n: Number of attributes in T . t: Number of keywords.

j ≤ n} in CT ′ is generated by fog nodes, which can be regarded as the index
like {Il,1 | l ≤ n} in [18]. While in [18], {Il,1 | l ≤ n} is generated by the DO.
This means that, compared with [18], the ABDKS outsources part of the index
generation from user to fog nodes. In the Trap phase, if only single keyword
considered as in [18], the computational costs of fog nodes in ABDKS will be
reduced to g rather than tg which is greatly lower than that of [18].

For cloud, in order to achieve dynamic keyword search, the ABDKS also has
more computational costs in the Search phase than that of [18]. In fact, [18] can
also achieve dynamic search, but if so, their computational costs of EU in the
Enc phase will grow to (nt+4)g+e, and the costs of CS in the Search phase will
grow to (t2S + 1)e + 2g, which are both greatly larger than those of ABDKS.
Therefore, the ABDKS is more efficient than [18] with the same functionality.

7 ABDKS-E

As shown in Remark 1, we applied the method of [28] to ABDKS to support

attribute update. In this case, the attribute secret key {g
αr
vj , h

αr
vj | ∀aj ∈ S} of

secret key SK in Eq.(4) is stored on the user side. Updating an attribute from
aj to aw for updated user requires the joint efforts of KAC, all users with aj and
the CS. Obviously, this method is complicated and not applicable when there
are millions of users in the system. Therefore, we provide an improved version
of ABDKS called ABDKS-E, i.e., ABDKS with efficient attribute update. In
ABDKS-E, all users’ attribute secret keys are randomized and stored in the
cloud rather than user side. To update an attribute for a user, we simply need
the KAC to generate a new secret key to replace the original one for the updated
user. No changes are required to any non-updated user or ciphertext associated
with the updated attribute.



Attribute-Based Dynamic Keyword Search 17

7.1 Construction of ABDKS-E

At first, we define a notion called lagrange-route product. Actually in
traditional CP-ABE schemes, the calculation of the lagrange-route product is
implied in the decryption process of ciphertexts.

Definition 7 (Lagrange-Route Product). If the access tree T is exposed to
the CS, the CS can compute the lagrange coefficient of each node in T . For each
leaf node z of T , there is only one route from z to the root node R. We define
the route as a set Sz→R = (xo, x1, x2, . . . , xR−1), where x0 = z and xR−1 is R’s
child node. Then, the lagrange-route product is defined as:

πz =
∏

x∈Sz→R

∆i,qx(0). (28)

Following the notations in Section 5, the details of ABDKS-E are shown as
follows.
• Setup(1λ,L)→ (PK,MSK): This algorithm is the same as that of ABDKS,

it generates the master secret key MSK and the public key PK as

PK =
{
G0, g, h, g

α, e(g, g)β , e(g, h)β , {PKj = gvj | ∀aj ∈ L}
}

;

MSK = {α, β, {vj | ∀aj ∈ L}} .

• KeyGen(MSK,S, Uid) → (SKEU , SKCS , SKFog): While receiving an at-
tribute set S and user’s ID Uid from the EU, the KAC randomly selects
r, r′, z′ ∈ Zp, computes x′ = H(Uid ‖ r ‖ r′), y′ = H(r ‖ Uid ‖ r′), and gen-
erates the user secret key SKEU , the auxiliary decryption secret key SKFog,
and the randomized attribute secret key SKCS as

SKEU = {x′, y′, g(β+αr)}; SKFog = {g(β+αr)x
′
, gαrx

′
hr
′x′ , gr

′x′};

SKCS =

x′ + y′, h(αr+r
′)(x′+y′)+z′ , gr

′(x′+y′)+z′ ,

{SKj,1 = g
αrx′
vj , SKj,2 = h

αry′
vj | ∀aj ∈ S}

 .

The KAC sends SKEU to EU, SKFog to Fog nodes, and (Uid, SKCS) to the
CS respectively. The CS stores (Uid, SKCS) for all users.

• Enc(PK,A,M,KW ) → CT : The encryption process is the same as that of
ABDKS. The DO submits

CT = {T , Eck(M), C = ck · e(g, g)βs2 · e(g, g)
1
r2 , CT1, CT2}

to the CS, where CT1 = {gs2 , gs1gs2 , hs1 , hs2 , CT ′1}, CT ′1 ={T , gs1 , hs1 , {Cj,1 =

gvjqx(0), Cj,2 = hvjqx(0) | ∀aj = att(x) ∈ X}}, CT2 = {e(g, h)βs2 , g
1
r1 , CT ′2},

CT ′2 = {Ci1 = h
s2

H(kwi)r1 , Ci2 = g
1

H(kwi)r2 | ∀i ∈ [1, t]}.
• Trap(SKEU , SKCS ,KW

′) → (Ta, Tk): The CS takes SKCS as Ta, and the
EU generates Tk in the same way of ABDKS, where

Tk = (Tk0, Tk1) = (g(β+αr)+r3 , {Tkj1 = gH(kw′j)r3 | ∀j ∈ [1, t]}).
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• Search({CT}, Ta, Tk)→ {CT(i),−→mr(i), l(i)} or ⊥: This algorithm is the same
as that of ABDKS, it outputs ⊥ or Table 1.

• PreDec(CT ′1, SKCS) →
−→
F : In ABDKS-E, the CS can do some precompu-

tation for users to reduce their local computational overheads. For each leaf
node x of T , supposed ai = att(x). The CS computes Fx = Fx(Ci,1, SKi,1, x) =

e(gvjqx(0), g
αrx′
vj ) = e(g, g)αrqx(0)x

′
. Then the CS constructs the precomputa-

tion vector
−→
F , where

−→
F = {(Fx1)πx1 , (Fx2)πx2 , . . . , (Fxn)πxn }. (29)

Finally, the CS constructs Table 4 for EU as follows.

Table 4. Accessible ciphertext for the user generated by the CS.

Ciphertext Matching result vector Correlation Precomputation

CT(1)
−→mr(1) l(1)

−→
F (1)

CT(2)
−→mr(2) l(2)

−→
F (1)

...
...

...
...

• Dec(CT, SKEU , SKFog,KW
′,
−→
F ) → ck: The EU is allowed to download the

tuple (CT,
−→
F ,−→mr) in Table 4 according to l, and decrypt CT with the help of

fog nodes in the following steps:

1. Given
−→
F , the EU picks out Fxi ∈

−→
F such that att(xi) ∈ S

⋂
X . Then the

EU computes

P =
∏

att(x)∈S
⋂
X

(Fx)πx =e(g, g)
αrx′

∑
att(x)∈S

⋂
X
qx(0)

∏
x∈Sz→R

∆i,qx (0)

=e(g, g)αrs1x
′
.

2. The fog nodes interact SKFog and CT to compute Q as

Q =
e(g(β+αr)x

′
, gs2) · e(gr′x′ , hs1hs2)

e(gαrx′hr′x′ , gs1gs2)
= e(g, g)βs2x

′−αrs1x′ (30)

and return Q to the EU.
3. There is at least one mrj in −→mr such that mrj = i 6= 0, i.e., kw′j = kwi.

Thus, the EU can make use of the jth keyword in KW ′ and ith keyword in
KW to derives ck as

ck =
C

(P ·Q)
1
x′ · e(gH(kw′j), Ci2)

=
ck · e(g, g)βs2 · e(g, g)

1
r2

(e(g, g)βs2x′)
1
x′ · e(gH(kw′j), g

1
H(kwi)r2 )

.

4. Eventually, the EU can decrypt Eck(M) with ck by symmetric decryption.
• Attribute update: When the attribute set of EU changes from S to Snew,

the KAC only needs to run KeyGen(Msk, Snew, Uid) to generate a tuple of
new secret keys (SKEU , SKCS , SKFog) to replace the original ones.
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7.2 Analysis of ABDKS-E

The ABDKS-E can also achieve IND-CPA and IND-CKA security and the
security proofs are similar to those of ABDKS, so we omit them here. Compared
with ABDKS, ABDKS-E is more efficient for attribute update. When a user
requests to update an attribute, the KAC only needs to generate a set of new keys
(SKEU , SKCS , SKFog) for him, instead of updating everyone’s corresponding
attribute secret key in previous schemes [18,28].

7.3 Reverse Outsourcing

We find that some computing tasks of the CS in ABDKS-E can be reversely
outsourced to idle users. Idle users refer to those with smart devices that are not
in use and connected to the Internet. Each idle user can provide a small amount
of computational resource for the cloud, but the total is very considerable. Here,
we formally introduce the concept of reverse outsourcing.

Definition 8 (Reverse Outsourcing). As is known to all, the cloud service
provider can provide outsourcing services for end users to reduce their local com-
putational burden. The reverse outsourcing is on the contrary i.e., the cloud can
divide a computing task into several parts and outsource them to different idle
users.

When the CS outsources a computing task to idle users, they must follow the
protocol specification. If idle users complete the task and pass the inspection,
they will be rewarded by the CS. In this paper, the reverse outsourcing is applied
to rational idle user model, which is defined as follows .

Definition 9 (Rational Idle User Model). Rational idle user are selfish
and lazy, and always attempt to maximize their profits, which means that they
prefer to get rewards from the CS, rather than save the computational resource
of their smart devices. Therefore, for each rational idle user Ui, it holds that
ut++
i > ut+i > ut−i > ut−−i , where

• ut++
i is the utility of Ui when he can get rewards without following the protocol

specification.
• ut+i is the utility of Ui when he follows the protocol specification and gets

rewards.
• ut−i is the utility of Ui when he doesn’t get rewards without following the pro-

tocol specification.
• ut−−i is the utility of Ui when he follows the protocol specification but doesn’t

get rewards.

In rational idle user model, any system user is independent from each other.
Since the performance of Ui satisfies ut++

i > ut+i > ut−i > ut−−i , he may try
to defraud rewards without following the protocol honestly. So each Ui has two
strategies: follow the protocol or not. In order to analyze the best strategy for
each Ui, we formalize the reverse outsourcing game by means of game theory
and introduce the notion of Nash equilibrium.
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Definition 10 (Reverse Outsourcing Game). The reverse outsourcing game
is a tuple GRO = {U, T, ST,R, V }, where
• U = {U1, U2, . . . , Un} is the set of n rational idle users, where n ≥ 1. Each of

them needs to complete a computing task in order to get rewards from the CS.
• T = {T1, T2, . . . , Tn} is the set of computing tasks, where Ti is assigned to Ui.
• ST = {st1, st2, . . . , stn} is the set of rational idle users’ strategies in GRO.

In particular, sti ∈ {st0i , st1i } is the set of Ui’s strategies. st0i denotes that Ui
wants to be rewarded without following the protocol specification; st1i denotes
that Ui follows the protocol honestly.

• R = {R1, R2, . . . , Rn} is the set of computational results, where Ri is the result
of Ti.

• V is a verification algorithm to check whether R is valid or not. If R is valid,
i.e., each Ri is valid, then every rational idle user will get the same reward.
Otherwise, none of them will get anything.

Definition 11 (Nash Equilibrium of GRO). For a given strategy ST ∗ =
(st∗1, st

∗
2, . . . , st

∗
n), ST ∗ is Nash equilibrium for GRO, if and only if for any ra-

tional idle user Ui ∈ U , when the game GRO is finished, for any stj ∈ {st0j , st1j},
it holds that

uti(st
∗
i | ST ∗ \ {st∗i }) ≥ uti(sti | ST ∗ \ {st∗i }), (31)

where st∗i ∈ {st0i , st1i }.

In ABDKS-E, algorithm PreDec can be reversely outsourced to a set of
rational idle users U . For instance, for each leaf node x of T , the CS sends a
tuple {Ci,1, SKi,1, x} to a rational idle user Ui and asks him to compute the

function Fx(Ci,1, SKi,1, x) = e(g, g)αrqx(0)x
′
. The probability that Ui does not

follow the protocol but obtains the correct result e(g, g)αrqx(0)x
′

is negligible. If
Ui cheats, for example, by randomly generating an incorrect result, the cheating
behavior can be detected by a small change to the Enc algorithm: the DO adds
H(ck) into CT . In this case, when the EU obtains CT from Table 4, which means
his attribute set S |= T , he can report an error to the CS. This is because he
can’t calculate a ck′ such that H(ck′) 6= H(ck) since the cheated user Ui gave
him an incorrect result of e(g, g)αrqx(0)x

′
. Then, any participant Ui will not get

rewarded. Thus, the utility of Ui for choosing a strategy sti ∈ {st0i , st1i } satisfies

uti(sti | ST \ {sti})=

{
ut+i , sti=st1i and ∀stj=st1j for stj ∈ST \ {sti};
ut−i , sti = st0i or ∃stj=st0j for stj ∈ST \ {sti}.

The utility of Ui reaches the maximum when all users follow the protocol. Ac-
cording to Nash equilibrium theory, each user follows the protocol honestly and
returns the right result, which is the best strategy to maximize its own profit.
Not following the protocol and generating wrong results will not increase the
utility of Ui but consume his computational resources without rewards. There-
fore, if and only if all rational idle users implement the protocol honestly, the
profit of each user can be maximized.
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8 Conclusion

In this paper, we propose an attribute-based encryption with dynamic key-
word search (ABDKS) scheme in fog computing environment at first. The AB-
DKS initially achieves dynamic keyword search and peer-decryption resistance,
which makes it more practical and secure. The strict security proof has shown
that it is selective CPA and CKA security. Then, we improve ABDKS to ABDKS-
E for efficient attribute update. We also propose a heuristic concept the reverse
outsourcing to reduce the workload of cloud. In the future, we will continue to
focus on privacy issues of cloud computing, such as how to protect the privacy
of user identity and data access policy.
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