
Cryptanalysis of Subterranean-SAE

Fukang Liu1,3, Takanori Isobe2,3, Willi Meier4

1 Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China

liufukangs@163.com
2 National Institute of Information and Communications Technology, Japan

3 University of Hyogo, Hyogo, Japan
takanori.isobe@ai.u-hyogo.ac.jp

4 FHNW, Windisch, Switzerland
willi.meier@fhnw.ch

Abstract. Subterranean 2.0 designed by Daemen, Massolino and Rotella is
a Round 1 candidate of the NIST Lightweight Cryptography Standardization
process. In the official document of Subterranean 2.0, the designers have made a
cryptanalysis of the state collisions in unkeyed absorbing by reducing the number
of rounds to absorb the message from 2 to 1. However, no cryptanalysis of the
authenticated encryption scheme Subterranean-SAE is made. For Subterranean-
SAE, the designers introduce 8 blank rounds to separate the controllable input
and output, and expect that 8 blank rounds can achieve a sufficient diffusion.
Therefore, it is meaningful to investigate the security by reducing the number
of blank rounds. Moreover, the designers make no security claim but expect a
non-trivial effort to achieve full-state recovery in a nonce-misuse scenario. In this
paper, we present the first full-state recovery attack in a nonce-misuse scenario
with practical time complexity 216. Moreover, in a nonce-respecting scenario and
if the number of blank rounds is reduced to 4, we can mount a key-recovery
attack with time complexity 2122 and data complexity 269.5. The distinguishing
attack can also be achieved with time and data complexity 233. Our cryptanalysis
does not threaten the security claim for Subterranean-SAE and we hope it can
help further understand the security of Subterranean-SAE.

Keywords: AEAD, Subterranean 2.0, full-state recovery, distinguishing attack,
key recovery, conditional cube tester

1 Introduction

The National Institute of Standards and Technology (NIST) started a public lightweight
cryptography competition project in as early as 2013 and initiated the call for
submissions in 2018, with the hope to select a lightweight cryptographic standard by
combining the efforts of both academia and industry. The 56 Round 1 candidates of
the NIST Lightweight Cryptography Standardization project became public on April
18, 2019. Such a competition is motivated by the development in many fields such as
the sensor networks, healthcare, distributed control systems, and the Internet of Things,
etc. With the development in these fields, some new requirements for a cryptographic
primitive start to appear, covering the aspects of energy, power, area and throughput.

Although the competition is at the first round and there are so many primitives
to be analyzed, it would be better to start the cryptanalysis as early as possible to
help understand the security of the submitted candidates, which may in turn help
determine which candidates should be moved to the next round for more attention.
Since the publication of the submitted primitives, there has been a heated discussion at
the lwc-forum Google Group5 and the weaknesses of some constructions were pointed
out. In addition, some weaknesses of the new proposed underlying primitives are also
identified, like the very first probability 1 iterative differential characteristic in the
SNEIK round function in [10], which was utilized to mount a forgery attack on full
SNEIKEN in [5]. In addition, an iterative differential characteristic with probability 2−3

in TRIFLE-BC was also identified and used to mount an attack on reduced TRIFLE
in [9].

Benefiting from the development in cryptanalysis in these years, some submitted
primitives have been well analyzed by the designers. However, to have a better
understanding, the third-party cryptanalysis is important as well. In this paper, our target
is the primitive Subterranean 2.0 [2] designed by Daemen, Massolino and Rotella. The
main reason is that we observed that its structures in keyed and unkeyed mode are
interesting and its round function is very simple. As said by the designers in the official
document [2], the function is very simple and therefore it is an attractive target for
cryptanalysis. Moreover, the degree of the one-round permutation is only 2, which
gives us an impression that cube attack [1,3] may be feasible. In the recent three
years, the cube attack has attracted the attention of many cryptographers. Especially,
there is a series of publications of the application of cube attack to Keccak-based
constructions [4,6,7,11]. Moreover, the bit-based division property introduced by Todo
and Morii in [13] has also been applied to achieve a theoretical cube attack on stream
ciphers in [12,14].

On the other hand, we observe that the designers of Subterranean 2.0 only
investigated the security of state collisions in unkeyed absorbing by reducing the
number of rounds to absorb the message from 2 to 1. However, there is little
cryptanalysis for the authenticated encryption scheme Subterranean-SAE. We also
noted in the official document [2] of Subterranean 2.0, that the designers made the
following statement:

In nonce-misuse scenario or when unwrapping invalid cryptograms returns more
information than a simple error, we make no security claims and an attacker may even
be able to reconstruct the secret state. Nevertheless we believe that this would probably
a non-trivial effort, both in attack complexity as in ingenuity.

Therefore, we are motivated to devise a full-state recovery attack in the nonce-
misuse scenario. In addition, the blank rounds in Subterranean-SAE are used to separate
the controllable input and output and the designers choose 8 blank rounds. Thus, we
believe that it is still interesting and meaningful to investigate its security when the
number of blank rounds is reduced.

5 https://groups.google.com/a/list.nist.gov/forum/#!forum/
lwc-forum

2

https://groups.google.com/a/list.nist.gov/forum/#!forum/lwc-forum
https://groups.google.com/a/list.nist.gov/forum/#!forum/lwc-forum

Our Contributions. Inspired from the idea of the conditional cube tester proposed
by Huang et al [4], we propose four types of conditional cube tester, each of which
requires that the number of the conditions involving the secret bits is 1. As far as we
know, the additional constraint on the number of conditions is new, which is not well
studied in previous work, although such a case has appeared in [7]. Then, we can mount
three types of attacks on Subterranean-SAE as follows. Our results 6 are summarized in
Table 1.

– For the full-state recovery attack in nonce-misuse scenario, the cube size is rather
small, i.e. 2 or 3. Therefore, we have to carefully trace the propagation of the cube
variables so that we can distinguish two cases with success probability 1. Inspired
from the idea of [8], we can manage to detect the propagation of the cube variables
in a dedicated way and finally determine valid cube variables of small cube size.
With such four conditional cube testers, some secret state bits can be recovered.
Finally, we guess some extra secret state bits to construct sufficient linear equations.
In this way, the full-state recovery attack on Subterranean-SAE can be achieved
with practical time complexity 216.

– With a similar dedicated tracing method, we found 33-dimensional cube variables
which can be used to mount a distinguishing attack on Subterranean-SAE if the
number of blank rounds is reduced to 4.

– When the number of blank rounds is reduced to 4, the key-recovery attack is also
feasible. The attack procedure is composed of two steps. The first step is to recover
some secret state bits as in the full-state recovery attack. The second step is to
guess some key bits to construct a linear boolean equations system, each solution
of which corresponds to the full key. In this way, we can achieve the key-recovery
attack with time complexity 2122 and data complexity 269.5.

This paper is organized as follows. We briefly introduce Subterranean 2.0 and the
cube attack, cube tester and conditional cube tester in Section 2. Then, the full-state
recovery attack is described in Section 3. The distinguishing attack and key-recovery
attack are shown in Section 4 and Section 5, respectively. Finally, the paper is concluded
in Section 6.

Table 1: The analytical results of Subterranean-SAE
Attack Type Blank rounds Data Time Nonce-misuse Ref.

Full-state recovery attack arbitrary 1177 216 Yes Section 3
Distinguishing attack 4/8 233 233 No Section 4
Key-recovery attack 4/8 269.5 2122 No Section 5

Data This represents the number of messages. The length of each message in
the query is not greater than 32 × 7 = 224 bits.

Time This represents the required number of encryption queries.

6 The source code to verify how to recover the secret state bits and the distinguishing attack is
available at https://github.com/Crypt-CNS/Subterranean-SAE.git

3

https://github.com/Crypt-CNS/Subterranean-SAE.git

2 Preliminaries

In this section, we will give an introduction of the round function of Subterranean
2.0 and its authenticated encryption scheme Subterranean-SAE. More details can be
referred to the official document [2]. Moreover, since our technique benefits from
the development of cube attack, we will also briefly describe the main idea of cube
attack [3], cube tester [1] and conditional cube tester [4].

2.1 Description of Subterranean 2.0

The subterranean 2.0 round function is composed of 4 simple operations and operates
on a 257-bit state. Denote the 257-bit state by s and the four operations by χ, ι, θ, π.
The one-round permutation R = π ◦ θ ◦ ι ◦χ is detailed as follows, where s[i] represents
the i-th bit of s.

χ : s[i]← s[i] ⊕ s[i + 1]s[i + 2],
ι : s[0]← s[0] ⊕ 1,
θ : s[i]← s[i] ⊕ s[i + 3] ⊕ s[i + 8],
π : s[i]← s[12i],

where 0 ≤ i ≤ 256. In addition, we denote the state after χ, ι, θ operation by sχ, sι and
sθ, respectively.

2.2 The Subterranean-SAE Authenticated Encryption Scheme

Based on the subterranean 2.0 round function, the designers have constructed an
authenticated encryption scheme named Subterranean-SAE, as illustrated in Figure 1.
In this scheme, the input consists of a 128-bit key K, a 128-bit nonce N, an associated
data A and a message M. The output is the ciphertext C and tag T . The procedure to
generate the ciphertext and tag can be briefly described as follows:

Step 1: Absorb the key: Initialize a state s with all bits set to 0. Split the 128-bit key K
into four 32-bit blocks K0, K1, K2 and K3. Then, make four times of consecutive
calls of duplex(s,Ki) (0 ≤ i ≤ 3) to update the internal state. Finally, make
a call of duplex(s,NULL) to further update the internal state, where NULL
represents an empty string.

Step 2: Absorb the nonce: Split the 128-bit nonce N into four 32-bit blocks N0, N1, N2
and N3. Then, make four times of consecutive calls of duplex(s,Ni) (0 ≤ i ≤ 3)
to update the internal state. Finally, make a call of duplex(s,NULL) to further
update the internal state.

Step 3: Blank rounds: Make 8 times of consecutive calls of duplex(s,NULL) to
update the internal state.

Step 4: Absorb the associated data: Split the |A|-bit associated data A into a series of
32-bit blocks, denoted by Ai (0 ≤ i < d|A|/32e), where |A| denotes the length
of A. Then, make d|A|/32e times of consecutive calls of duplex(s, Ai) (0 ≤ i <
d|A|/32e) to update the internal state. If |A| is a multiple of 32 (the case when A
is empty also belongs to this case), make one more call of duplex(s,NULL) to
update the internal state.

4

Fig. 1: The construction of Subterranean-SAE

Step 5: Message encryption: Split the |M|-bit (|M| ≥ 0) message M into a series of
32-bit blocks, denoted by Mi (0 ≤ i < d|M|/32e), where |M| denotes the length
of M. Then, make d|M|/32e times of consecutive calls of duplex(s,Mi) (0 ≤ i ≤
d|M|/32e) to update the internal state. Before each call of duplex(s,Mi), make
a call of extract(s) (0 ≤ i < d|M|/32e) and then the corresponding ciphertext
is Ci = extract(s) ⊕ Mi. If |M| is a multiple of 32 (the case when M is empty
also belongs to this case), make one more call of duplex(s,NULL) to update
the internal state.

Step 6: Blank rounds: Make 8 times of consecutive calls of duplex(s,NULL) to
update the internal state.

Step 7: Extract tag: Make 4 times of consecutive calls of duplex(s,NULL). After
each call of duplex(s,NULL), make a call of extract(s) to obtain 32-bit Ti

(0 ≤ i ≤ 3).

The details of duplex(s, σ) and extract(s) are as follows, where σ is a bit string
with at most 32 bits. The readers can also refer to the official document of Subterranean
2.0 to have a better understanding, especially for the case whether the length of A and
M is a multiple of 32 or not.

The above pseudocode is slightly different from the official document since we
introduced two extra arrays order0[] and order1[]. The details of the order0[] and
order1[] are specified in Table 2.

5

Algorithm 1 duplex(s, σ)
1: R(s)
2: j = 0
3: for j from 0 to |σ| − 1 do
4: s[order0[j]]=s[order0[j]]⊕σ[j]
5: end for
6: s[order0[j]]=s[order0[j]]⊕1

Algorithm 2 extract(s)
1: for j from 0 to 31 do
2: z[j]=s[order0[j]]⊕ s[order1[j]]
3: end for
4: return z

2.3 Cube Tester

Cube tester was first proposed by Aumasson et al. at FSE 2009 [1] after Dinur et al.
introduced cube attack at Eurocrypt 2009 [3]. Different from standard cube attack,
which aims at key extraction, cube tester performs non-randomness detection. In our
paper, we only concentrate on a specific non-random behaviour, i.e. the cube sum is
zero. To describe cube tester, we first recall the concept of cube attack as follows.

Theorem 1. [3] Given a polynomial F : {0, 1}n → {0, 1} of degree d. Suppose 0 <
k < d and t denotes the monomial x0...xk−1. Then, F can be written as

F = t · Pt(xk, . . . , xn−1) + Qt(X),

where none of the terms of Qt(X) is divisible by t. Then the sum of F over all values of
the cube (defined by t) is∑

x′∈CUt

F =
∑

x′∈CUt

f (x′, xk, . . . , xn−1) = Pt(xk, . . . , xn−1).

Table 2: The details of order0[] and order1[]

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
order0[i] 1 176 136 35 249 134 197 234 64 213 223 184 2 95 15 70 241

i 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 −

order0[i] 11 137 211 128 169 189 111 4 190 30 140 225 22 17 165 256 −

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
order1[i] 256 81 121 222 8 123 60 23 193 44 34 73 255 162 242 187 16

i 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 − −

order1[i] 246 120 46 129 88 68 146 253 67 227 117 32 235 240 92 − −

6

If there exists such a cube CUt that the following equation always hold, then CUt

can be viewed as one type of cube tester [1], i.e. the sum over it always equals zero.∑
x′∈CUt

F =
∑

x′∈CUt

f (x′, xk, . . . , xn−1) = Pt(xk, . . . , xn−1) = 0.

For example, consider the following polynomial F:

F(x0, x1, x2, x3) = x0x1 + x1x2 + x2x4 + x1x3 + x1x2x4.

Then, the following equation always holds:∑
(x0,x3)∈{0,1}2

F(x0, x1, x2, x3) = 0.

The reason is that that none of the monomial in F(x0, x1, x2, x3) is divisible by x0x3.
However, if we sum F over all values of (x1, x2), then we can obtain the following
equation: ∑

(x1,x2)∈{0,1}2
F(x0, x1, x2, x3) = 1 + x4.

That is, the sum is dependent on the value of x4.

2.4 Conditional Cube Tester

Conditional cube tester was first proposed by Huang et al. [4], which was used to
detect the non-randomness of Keccak-based constructions, i.e. the cube sum is zero.
Different from the standard cube tester, conditional cube tester works only when certain
conditions hold. For example, consider the following polynomial F, where c is an
unknown variable over GF(2).

F(x0, x1, x2, x3) = c · x0x1 + x1x2 + x2x4 + x1x3 + x1x2x4.

If we have some conditions to ensure c = 0 always holds, then∑
(x0,x1)∈{0,1}2

F(x0, x1, x2, x3) = 0.

However, when c can not be controlled and is randomly chosen, then the sum of F over
all values of (x0, x1) can not be predicted and behaves randomly as well.

2.5 Our Conditional Cube Tester

According to the general definition of conditional cube tester, once the attacker
determines the cube variables and the corresponding conditions involving the secret
information, he can manage to extract the secret information as well. Specifically,
if the cube sum is zero, he can make a decent conclusion that the conditions hold

7

simultaneously, thus collecting equations of the involved secret information. However,
such a conclusion may be wrong since it is still possible that the cube sum will be zero
even if the conditions are not satisfied. Hence, there are two directions to confirm the
correctness of such a conclusion. One direction is to obtain a strict distinguisher which
can distinguish two cases (cube sum is zero and nonzero) with success probability 1.
The second direction is to introduce sufficient number of cube variables and number of
rounds to diffuse them, which will make the cube sum unpredictable if the conditions do
not hold, i.e. the event that cube sum is zero in this case happens with an overwhelming
probability. Our paper will consider both directions.

3 Full-State Recovery Attack

In this section, we will describe how to mount a full-state recovery attack for
Subterranean-SAE in nonce-misuse scenario.

3.1 Overview

Suppose the same nonce can be reused for several times. Our attack procedure can be
divided into two steps.

Step 1: Use four types of conditional cube tester to recover some secret state bits.
Step 2: Guess extra unknown secret state bits to construct a sufficient number of linear

boolean equations. Solve the equation system to recover the full state and check
its correctness according to the ciphertext and tag value.

Since the Step 1 is to recover the secret state bits using a conditional cube tester,
we first briefly introduce its general idea and procedure. The conditional cube tester
[4] can be viewed as a distinguisher. Only when certain linear conditions hold will the
cube sum be zero. Therefore, the attacker will try to find a way to involve the secret bits
into these conditions. Once he determines the conditions and the corresponding cube
variables, he can continuously adjust the values of the public bits involved in the linear
conditions until he observed that the cube sum becomes zero. After repeating the above
procedure with different cube variables, a certain number of linear equations in terms
of secret bits can be collected. Finally, solve the equation system to recover the secret
bits.

For Step 2, after the attacker guesses some extra secret state bits, he can collect a
sufficient number of linear equations. Then, he can solve this linear equation system
with the well-known Gauss elimination algorithm to obtain one solution. For each
solution, the full state is recovered and the attacker can verify its correctness by
computing the tag and the ciphertext and comparing them with the correct value. A
match will suggest the correct value of the secret state.

Additional Constraint. In recent two years, the conditional cube tester has been
intensively investigated [4,6,7,8,11]. However, in order to apply it to Subterranean-
SAE, additional constraint to build the conditional cube tester is essential, which has

8

not been clearly discussed before, as far as we know. The additional constraint is the
number of conditions involving the secret bits, as specified below.

Additional constraint: The number of conditions involving the secret bits is one.
Denote this condition by L(x) = 0, where L(x) represents a linear expression of x. The
conclusion that L(x) = 1 if the cube sum is nonzero requires strictly random behavior
if L(x) = 0 is not satisfied.

What benefits will this additional constraint bring? Once we observe that the cube
sum is not zero, we can immediately obtain an equation L(x) = 1. Once the cube sum is
zero, we can also construct an equation L(x) = 0. In other words, whatever the cube sum
is, there is no need to adjust the values of public bits in L(x) and and we can directly
collect an equation.

However, once there are more than 1 conditions involving the secret bits, suppose
they are L0(x) = 0 and L1(x) = 0. When the cube sum is zero, two linear equations
L0(x) = 0 and L1(x) = 0 are obtained. However, when the cube sum is not zero, there
will be three possible values for (L0(x), L1(x)), which are (0, 1), (1, 0) and (1, 1). If the
attacker has no control of the bits in the expressions L0(x) and L1(x), then he obviously
cannot know the actual value of L0(x) or L1(x). As far as we know, in all previous
applications of conditional cube tester to Keccak-based constructions, the attacker can
always have control of the bits involved into the key-dependent bit conditions, which is
the public message. Thus, he can always adjust the message until he observes that the
cube sum becomes zero.

As will be shown, to apply the conditional cube tester to Subterranean-SAE, the
condition is directly imposed on one bit of the secret state. Thus, once more bit
conditions are involved, the attacker cannot determine which condition holds if the
cube sum is not zero. In this case, he can only know that the conditions do not hold
simultaneously.

3.2 Determining Parameters for the Conditional Cube Tester

Since the publication of conditional cube tester [4], MILP-based methods to search
the corresponding parameters have been developed [6,11]. In addition, there is also
a dedicated method to search the cube variables for Keccak-MAC in [8]. Our way
to search the parameters for conditional cube tester is based on a similar idea of the
dedicated method [8].

There are four types of conditional cube tester in our attack, denoted by TYPE-I,
TYPE-II, TYPE-III and TYPE-IV conditional cube tester respectively. The method to
determine the parameters will vary for different types of conditional cube tester.

To make this part understandable, we first give an illustration of how the message
is processed in Subterranean-SAE, as shown in Figure 2. The input and output of the
round permutation is denoted by MS in

i and MS ot
i when processing the message block,

i.e. MS ot
i = R(MS in

i).
Before the attack, we send an encryption query (N, A, M0, M1, M2, M3) to collect

the corresponding tag T0, where Mi = 0 (0 ≤ i ≤ 2) for simplicity. Our first aim is to
recover some bits of the secret states (MS in

1 ,MS in
2 ,MS in

3) and the final aim is to recover
the full MS in

1 in this query.

9

Fig. 2: Processing the message

According to the process to absorb the message in Figure 2, it can be observed that
the attacker can always control 32 bits of the input to the round permutation as well
as extract 32-bit information after one-round permutation. Thus, we use an equivalent
description of this process, as depicted in Figure 3. Specifically, si (i ≥ 0) denotes the
input of the (i + 1)-th round permutation, while si

χ, si
ι, si

θ denotes the state after χ, ι, θ
operation in the (i + 1)-th round, respectively. Note that the attacker can always control
32 bits of si and extract 32-bit information of si by making a call of zi = extract(si).

In the following part, we suppose the secret input state is s0 and will introduce how
to use the three types of conditional cube tester to recover some secret bits of it. Then,
we will describe how to deploy it to recover some secret bits of (MS in

1 ,MS in
2 ,MS in

3).

Fig. 3: Equivalent description of processing the message

10

TYPE-I Conditional Cube Tester. For the TYPE-I condition cube tester, we only
choose two cube variables v0 and v1, where v0 and v1 are set at s0 and s1 respectively.
The condition is imposed on a certain bit s0[x], denoted by f (s0[x]) = 0, where f (s0[x])
is either s0[x] or s0[x] ⊕ 1. Then, v0 and v1 should have the following constraints:

Constraint 1: If f (s0[x]) = 0 holds, after one-round permutation for v0, v0 will not be
next7 to v1. In this case, z2 is linear in (v1, v2).

Constraint 2: If f (s0[x]) = 0 does not hold, after one-round permutation for v0, v0 will
be next to v1 and some bits of z2 will contain the quadratic term v1v2 with
probability 1.

An illustration for the TYPE-I condition cube tester is given in Figure 4.

Fig. 4: Illustration of TYPE-I conditional cube tester

TYPE-II Conditional Cube Tester. For the TYPE-II condition cube tester, we choose
three cube variables v0, v1 and v2, where v0 and (v1, v2) are set at s0 and s1 respectively.
The condition is imposed on a certain bit s0[x], denoted by f (s0[x]) = 0, where f (s0[x])
is either s0[x] or s0[x] ⊕ 1. Then, v0 and (v1, v2) should have the following constraints:

Constraint 1: v1 and v2 are not next to each other, i.e. they will not multiply with each
other after one round permutation.

Constraint 2: If f (s0[x]) = 0 holds, after one-round permutation for v0, v0 will not be
next to v1 nor v2. In this case, z2 is linear in (v0, v1, v2). Since the degree
of the one-round permutation is 2, z3 will not contain the term v0v1v2.

Constraint 3: If f (s0[x]) = 0 does not hold, after one-round permutation for v0, v0
will be next to v1. In addition, after one more round permutation, z3 will
contain the cubic term v0v1v2 with probability 1.

An illustration for the TYPE-II condition cube tester is given in Figure 5.

7 ’Next’ here means that v0 and v1 have adjacent indices as state bits. Same meaning for the
remaining part of this paper.

11

Fig. 5: Illustration of TYPE-II conditional cube tester

TYPE-III Conditional Cube Tester. For the TYPE-III condition cube tester, we
choose two cube variables v0 and v1, where v0 and v1 are set at s0 and s2 respectively.
The condition is imposed on a certain bit s0[x], denoted by f (s0[x]) = 0, where f (s0[x])
is either s0[x] or s0[x] ⊕ 1. Then, v0 and v1 should have the following constraints:

Constraint 1: If f (s0[x]) = 0 holds, after two-round permutation for v0, v0 will not be
next to v1. In this case, z3 will not contain the term v0v1.

Constraint 2: If f (s0[x]) = 0 does not hold, after two-round permutation for v0, v0
will be next to v1 and some bits of z3 will contain the term v0v1 with
probability 1.

An illustration for the TYPE-III condition cube tester is given in Figure 6.

Fig. 6: Illustration of TYPE-III conditional cube tester

TYPE-IV Conditional Cube Tester. For the TYPE-IV condition cube tester, we
choose two cube variables v0 and v1, where v0 and v1 are set at s0 and s2 respectively.
Different from the previous three types of conditional cube tester, the condition is

12

imposed on a certain bit s1[x] rather than s0[x], denoted by f (s1[x]) = 0, where f (s1[x])
is either s1[x] or s1[x] ⊕ 1. Then, v0 and v1 should have the following constraints:

Constraint 1: If f (s1[x]) = 0 holds, after two-round permutation for v0, v0 will not be
next to v1. In this case, z3 will not contain the term v0v1.

Constraint 2: If f (s1[x]) = 0 does not hold, after two-round permutation for v0, v0
will be next to v1 and some bits of z3 will contain the term v0v1 with
probability 1.

Constraint 3: The value of f (s1[x]) will remain the same if v0 takes different values.

The TYPE-IV conditional cube tester will allow us to recover more secret state
bits. An illustration for the TYPE-IV condition cube tester is given in Figure 7. One
can easily capture the difference between TYPE-III and TYPE-IV condition cube tester
according to the illustrations.

Fig. 7: Illustration of TYPE-IV conditional cube tester

Tracing Propagation of Cube Variables. Suppose a variable v is set at the input state
bit si[p]. According to the definition of χ operation, there will be three bits containing
the variable. We classify the bits into three types in a similar way as [8] in order to
achieve better tracing.

– Core bit: The bit si
χ[p] is defined as the core bit since si

χ[p] will always contain the
variable v. After ι, θ and π operations, it will propagate to three bit positions of si+1,
which will be stored in the array CORE[] of size 3 (0 ≤ i ≤ 2).

– Zero-condition bit: The bit si
χ[p − 1] is defined as the zero-condition bit since

si
χ[p−1] will not contain the variable v if si[p+1] = 0. The variable v in si

χ[p−1] will
propagate to three bit positions of si+1, which will be stored in the array ZERO[] of
size 3.

– One-condition bit: The bit si
χ[p−2] is defined as the one-condition bit since si

χ[p−
2] will not contain the variable v if si[p − 1] = 1. The variable v in si

χ[p − 2] will
propagate to three bit positions of si+1, which will be stored in the array ONE[] of
size 3.

13

Searching Cube Variables for TYPE-I Conditional Cube Tester. Suppose v0 is set
at s0[k] (k ∈ {e|e = order0[j], 0 ≤ j ≤ 31}). Using the above tracing algorithm, we can
obtain CORE[i], ZERO[i] and ONE[i] (0 ≤ i ≤ 3) for the propagation of v0. Then we
determine the compatible cube variable v1 set at s1 according to CORE[i], ZERO[i] and
ONE[i] (0 ≤ i ≤ 3) with Algorithm 3 in Appendix A. According to the result obtained
from Algorithm 3, it is not sufficient to determine whether a candidate for v1 is valid.
The reason is that the attacker can only extract fixed 32-bit information z2 of s2, where
z2[i] = s[order0[i]] ⊕ s[order1[i]] (0 ≤ i ≤ 31). Suppose the condition used to slow
down the propagation of v1 does not hold, then s1

χ will contain the term v0v1. However,
the attacker cannot ensure the quadratic term v0v1 will propagate to z2. In this case, z2

is still linear in (v0, v1). Therefore, for each candidate of v1, we have to make a further
filtering. Suppose v1 is set at one candidate bit position q and the zero-bit/one-bit bit of
v0 will propagate to s1[q−1] (or s1[q+1]). Then, we trace the propagation of a variable
vq (which is quadratic) set in s1[q − 2] (or s1[q − 1]) with the above tracing method
and obtain the array CORE′. At last, we check whether there is an element CORE[i]
(0 ≤ i ≤ 2) satisfying

CORE′[i] = order0[j],CORE′[i] , order1[j],

or

CORE′[i] , order0[j],CORE′[i] = order1[j],

where 0 ≤ j ≤ 31. If there is, the candidate bit position q is valid. In other words, if the
predefined bit condition f (s0[x]) = 0 does not hold, at least one bit of z2 will contain the
quadratic term v0v1. If it holds, z2 is linear in (v0, v1). Thus, we can obtain an equation
based on the cube sum of z2 as follows:∑

z2 , 0⇒ f (s0[x]) = 1,∑
z2 = 0⇒ f (s0[x]) = 0,

where f (s0[x]) is either s0[x] or s0[x] ⊕ 1.
With this method to select cube variables, we can find 24 possible choices for (v0, v1)

and recover 24 secret bits of s0, as listed in Table 3. To have a better understanding of
this table, we give an explanation for one choice. Consider the parameter that v0 is set
at s0[2] and v1 is set at s1[213]. If the condition s0[3] = 0 does not hold, the cube sum
of z2 will not equal to zero. Therefore, if we observe that the cube sum of z2 is zero, we
can know that s0[3] = 0. Otherwise, s0[3] = 1.

Searching Cube Variables for TYPE-II Conditional Cube Tester. For TYPE-II
conditional cube tester, the number of cube variables is 3. Therefore, only when the
secret bits cannot be recovered by TYPE-I and TYPE-III conditional cube tester will
we use it. Note that v0 is set at s0. Similarly, we will obtain the candidate for v1 set
at s1. However, different from TYPE-I conditional cube tester, we do not filter the
case when v0v1 does not appear at z2. We still trace the propagation of the quadratic
term v0v1 to the state s2 and record the bit positions in s2 which always contain the

14

Table 3: Parameters for TYPE-I conditional cube tester

Position of v0 2 4 11 15 22 64 64 70 95 95 111 128
Position v1 213 22 128 128 2 197 111 176 30 137 136 95

Position of condition 3 5 10 16 21 65 63 69 96 94 112 129
Value of condition 0 0 1 0 1 0 1 1 0 1 0 0

Position of v0 128 134 136 165 169 197 197 211 213 225 234 241
Position v1 140 95 140 184 184 165 17 211 190 189 189 190

Position of condition 127 133 135 166 168 198 196 212 214 226 233 240
Value of condition 1 1 1 0 1 0 1 0 0 0 1 1

term v0v1. In addition, we also trace the propagation of v2 set in s1 to the state s2 and
record the bit positions in s2 which always contain the term v2. We expect that after χ
operation, there will always exist a cubic term v0v1v2 in s2

χ, which can be easily detected
with the recorded bit positions for the propagation of v0v1 and v2. Moreover, the cubic
term will also always propagate to the output bits in z3. Therefore, we can construct a
distinguisher as follows:

If the predefined bit condition f (s0[x]) = 0 does not hold, at least one bit of z3 will
contain the cubic term v0v1v2. If it holds, s2 is linear in (v0, v1, v2) and z3 will obviously
not contain the cubic term v0v1v2. Thus, we can obtain an equation based on the cube
sum of z3 as follows: ∑

z3 , 0⇒ f (s0[x]) = 1,∑
z3 = 0⇒ f (s0[x]) = 0,

where f (s0[x]) is either s0[x] or s0[x] ⊕ 1.
In this case, we have 2 choices for (v0, v1, v2) and can recover 2 secret bits of s0, as

listed in Table 4. The explanation for this table is the same as that for Table 3.

Table 4: Parameters for TYPE-II conditional cube tester

Position of v0 1 2
Position of v1, v2 (1,11) (1,11)

Position of condition 2 1
Value of condition 0 1

Searching Cube Variables for TYPE-III Conditional Cube Tester. For the TYPE-
III conditional cube tester, the number of cube variables is two. The cube variables
(v0, v1) are set at s0 and s2 respectively. Similarly, we first obtain three kinds of bit

15

positions in s1 which will contain the variable v0 and record them in the array CORE,
ZERO and ONE respectively. Next, for the three bit positions in CORE, we trace
their propagation to s2 and record all the possible influenced bit positions in the array
CORE2. Similarly, we can obtain ZERO2 and ONE2 to record the possible influenced
bit positions of s2 caused by the variables in the bit positions ZERO and ONE in
s1. Note that ZERO2 and ONE2 will contain all possible influenced bit positions.
However, the information provided by CORE2, ZERO2 and ONE2 is still not sufficient
to help determine a candidate position for v1. The reason is that some bits of s1

will influence the propagation of the variables located at ZERO and ONE. Therefore,
to find out which bits of s2 will always contain the variable propagating from the
bit positions ZERO (or ONE) of s1, we compute two extra arrays ZEROCore and
ONECore. ZEROCore/ONECore is used to record the bit positions of s2 that always
contain the variable if there is a variable in the bit positions ZERO/ONE of s1. Based
on the five arrays CORE2[], ZERO2[], ONE2[], ZEROCore[] and ONECore[], we define
additional five arrays core2[], zero2[], one2[], zeroCore[] and oneCore[], which are used
to record which bits in order0[] (only the first 32 elements) will be next to the element in
CORE2[], ZERO2[], ONE2[], ZEROCore[] and ONECore[] respectively. For example,
supposing CORE2[0]=164 or CORE2[0]=166, we will add 165 to the array core2[]
since order0[31]=165.

At last, we can determine a candidate bit position in s2 for v1. The bit position q
(q ∈ {e|e = order0[j], 0 ≤ j ≤ 31}) can be viewed as a candidate only if it satisfies the
following condition:

q ∈ zeroCore, q < core2, q < one2,

or

q ∈ oneCore, q < core2, q < zero2.

A valid bit position p for v1 should satisfy one more condition. For example,
suppose p − 1 ∈ ZEROCore (or p + 1 ∈ ZEROCore). Then at lease one bit of z3 will
contain the term s2[p]s2[p− 1] (or s2[p]s2[p + 1]) with probability 1. In other words, if
the propagation of v0 is not prevented by a condition, a quadratic term v0v1 will always
appear at the expression of s3. However, if such a propagation is prevented, s3 is linear
in (v0, v1). Therefore, we can construct a distinguisher as follows:

If the predefined bit condition f (s0[x]) = 0 does not hold, at least one bit of z3 will
contain the cubic term v0v1. If it holds, s2 is linear in (v0, v1) and z3 will obviously not
contain the cubic term v0v1. Thus, we can obtain an equation based on the cube sum of
z3 as follows: ∑

z3 , 0⇒ f (s0[x]) = 1,∑
z3 = 0⇒ f (s0[x]) = 0,

where f (s0[x]) is either s0[x] or s0[x] ⊕ 1.
In total, we have 27 possible choices for (v0, v1) and recover 27 secret bits of s0, as

listed in Table 5. The explanation for this table is the same as that for Table 3.

16

Table 5: Parameters for TYPE-III conditional cube tester

Position of v0 1 11 15 17 22 30 30 35 35 70 111 136 137 140
Position v1 15 111 35 35 35 197 11 1 11 140 35 1 1 223

Position of condition 0 12 14 18 23 31 29 36 34 71 110 137 136 141
Value of condition 1 0 1 0 0 0 1 0 1 0 1 0 1 0

Position of v0 140 165 169 176 176 184 190 211 223 234 241 249 249 −

Position v1 169 11 30 95 211 2 11 70 189 22 2 95 2 −

Position of condition 139 164 170 177 175 185 191 210 224 235 242 248 250 −

Value of condition 1 1 0 0 1 0 0 1 0 0 0 1 0 −

Searching Cube Variables for TYPE-IV Conditional Cube Tester. For the TYPE-
IV conditional cube tester, the number of cube variables is two. The cube variables
(v0, v1) are set at s0 and s2 respectively. Similarly, we first obtain three kinds of bit
positions in s1 which will contain the variable v0 and record them in the array CORE,
ZERO and ONE respectively. Next, for the three bit positions in CORE, we trace their
propagation one by one and record all the possible bit positions of s2 that will contain
the variables propagating from CORE[0], CORE[1] and CORE[2] of s1 in CORE0,
CORE1 and CORE2, respectively. Then, we further classify the positions of CORE0,
CORE1 and CORE2. Taking the propagation of CORE[0] as instance. According
to the tracing method, the positions of s2 containing the variables propagating from
CORE[0] of s1 can be classified into three types and we denote them by CORE0core,
CORE0zero, CORE0one. CORE0core stores the positions that always contain the
variables propagating from CORE[0] of s1. CORE0zero stores the positions that contain
the variables propagating from CORE[0] of s1 based on a bit condition on s1 whose
value is zero. CORE0one stores the positions that contain the variables propagating
from CORE[0] of s1 based on a bit condition on s1 whose value is one. Similarly,
we can obtain CORE1core, CORE1zero, CORE1one, CORE2core, CORE2zero and
CORE2one.

Now, we deal with ZERO and CORE. For both of them, we record all the possible
bit positions of s2 containing the variables propagating from ZERO and ONE of s1 in
ZEROAll and ONEAll respectively.

Finally, similar to the the search for TYPE-III conditional cube cube vari-
ables, we additionally define 14 arrays CORE0Next, CORE1Next, CORE2Next,
CORE0coreNext, CORE0zeroNext, CORE0oneNext, CORE1coreNext, CORE1zeroNext,
CORE1oneNext, CORE2coreNext, CORE2eroNext, CORE2oneNext, ZEROALLNext
and ONEAllNext to record which bits in order0[] (only the first 32 elements) will
be next to the element in CORE0, CORE1, CORE2, CORE0core, CORE0zero,
CORE0one, CORE1core, CORE1zero, CORE1one, CORE2core, CORE2ero, CORE2one,
ZEROALL and ONEAll, respectively. For example, supposing CORE0[0]=164 or
CORE0[0]=166, we will add 165 to the array CORE0Next since order0[31]=165.

Based on the newly defined 14 arrays, we can determine a candidate position
denoted by p for v1 in s2. The value of p has to satisfy one of the follow 6 conditions:

17

Condition 1:

p ∈ CORE0zeroNext
p < CORE0oneNext

p < CORE0coreNext
p < CORE1Next
p < CORE2Next

p < ZEROAllNext
p < ONEAllNext

Condition 2:

p ∈ CORE0oneNext
p < CORE0zeroNext
p < CORE0coreNext

p < CORE1Next
p < CORE2Next

p < ZEROAllNext
p < ONEAllNext

Condition 3:

p ∈ CORE1zeroNext
p < CORE1oneNext

p < CORE1coreNext
p < CORE0Next
p < CORE2Next

p < ZEROAllNext
p < ONEAllNext

Condition 4:

p ∈ CORE1oneNext
p < CORE1zeroNext
p < CORE1coreNext

p < CORE0Next
p < CORE2Next

p < ZEROAllNext
p < ONEAllNext

18

Condition 5:

p ∈ CORE2zeroNext
p < CORE2oneNext

p < CORE2coreNext
p < CORE0Next
p < CORE1Next

p < ZEROAllNext
p < ONEAllNext

Condition 6:

p ∈ CORE2oneNext
p < CORE2zeroNext
p < CORE2coreNext

p < CORE0Next
p < CORE1Next

p < ZEROAllNext
p < ONEAllNext

It can be easily observed that any of the 6 conditions is used to ensure that only
one bit condition on s1 will determine whether v0 will be next to v1, which is irrelevant
with the conditions on s0 since we consider candidates from the propagation of core
bits. Similar to previous three types of conditional cube tester, we have to further verify
whether the quadratic term will appear in z3 if the specified condition does not hold.
Only then can we finally determine the position for p.

With such a searching method, we can recover extra 43 secret bits of s1. The
parameters for TYPE-IV conditional cube tester are given in Table 6. We give an
explanation here. Take the first choice for instance. The cube variable v0 is set at s0[1]
and v1 is set at s2[190]. Note that flipping s0[1] will have no influence on the value of
s1[213]. If the condition that s1[213] = 1 does not hold, then the cube sum of z3 is
nonzero with probability 1. If it holds, the cube sum is zero with probability 1. Thus,
we can recover s1[213] as follows based on the cube sum of z3.∑

z3 = 0⇒ s1[213] = 1.∑
z3 , 0⇒ s1[213] = 0.

Experimental Verification. We have implemented the four types of conditional cube
tester and can successfully recover the 24 + 2 + 27 = 53 secret state bits of s0 and 43
secret bits of s1. In each test, we will randomly generate 100000 examples of (s0, s1).
Our experiments show that the 96 secret bits can always be correctly recovered for
the 100000 random examples. Observe that by continuously performing the four types
of conditional cube tester, i.e. continuously treating (si, si+1) as secret states, we can
always recover 53 secret state bits of si and 43 secret bits of si+1. In other words, we
can recover in total 53 + 43 = 96 secret bits of si (i ≥ 1).

19

Table 6: Parameters for TYPE-IV conditional cube tester

Position of v0 1 1 2 4 11 15 15 17 17 22 35
Position v1 190 211 136 70 17 165 15 190 111 211 95

Position of condition 213 236 106 85 194 195 193 238 45 217 109
Value of condition 1 0 1 1 0 0 1 0 0 0 1

Position of v0 35 64 64 70 95 111 111 128 128 136 140
Position v1 184 137 70 197 165 165 15 249 190 35 249

Position of condition 173 92 90 49 178 203 201 183 245 160 182
Value of condition 1 0 1 0 1 0 1 0 1 1 1

Position of v0 165 169 169 184 184 184 189 190 190 197 197
Position v1 176 189 234 95 30 184 134 4 70 234 70

Position of condition 77 229 227 102 100 166 79 38 59 251 58
Value of condition 1 0 1 0 1 0 1 0 0 1 1

Position of v0 213 213 223 225 225 225 234 234 249 249 −

Position v1 70 225 197 70 225 184 11 189 70 11 −

Position of condition 83 147 41 82 146 169 149 234 86 148 −

Value of condition 0 0 0 1 1 0 0 0 0 1 −

3.3 Recovering Full State

Based on the above method, 96 bits of the secret state s1 can be recovered. Note that we
can also extract 32-bit information z1 = extract(s1), where

z1[j] = s1[order0[j]] ⊕ s1[order1[j]], (0 ≤ j ≤ 31).

Since some bits s1[order0[j]] and s1[order1[j]] (0 ≤ j ≤ 31) are known, we can recover
in total 111 bits of s1. Moreover, we know extra 32 − 16 = 16 linear equations of the
secret state s1. The recovered 111 secret bits are listed in Table 7, as marked in red. The
time complexity to recover the 111 secret bits is 24×22 +2×23 +27×22 +43×22 = 392
times of encryption.

Now, we describe how to recover the full state. Set the nonce N and the associated
data A as constants. Randomly choose a message longer than 128 bits denoted by M.
The procedure to recover some secret state bits is described as below.

1. Send an encryption query (N, A,M) and obtain (C,T). Our goal is to recover the
secret state (MS in

1 ,MS in
2 ,MS in

3) in this query, as shown in Figure 2.
2. The first phase is to recover some bits of MS in

1 using TYPE-IV conditional cube
tester. At this phase, we treat MS in

0 , MS in
1 and MS in

2 as s0, s1 and s2 respectively.
Based on the parameters of the parameters for TYPE-IV conditional cube tester in
Table 6, we can recover 43 secret bits of MS in

1 .
3. The second phase is to recover some bits of MS in

1 and MS in
2 . At this phase,

when asking an encryption query, the first message block has to be kept the same
with that in the very first query. Then, we treat MS in

1 , MS in
2 and MS in

3 as s0, s1

and s2 respectively. Based on the four types of conditional cube tester and their

20

corresponding parameters in Table 3, Table 4, Table 5 and Table 6, we can recover
53 extra secret bits of MS in

1 and 43 secret bits of MS in
2 .

4. The forth phase is to recover some bits of MS in
2 and MS in

3 . At this phase, when
asking an encryption query, the first two message blocks have to be kept the same
with those in the very first query. Then, we treat MS in

2 , MS in
3 and MS in

4 as s0, s1

and s2 respectively. Using the four types of conditional cube tester, we can recover
53 extra secret bits of MS in

2 and 43 secret bits of MS in
3 .

5. The fifth phase is to recover some more bits of MS in
3 . At this phase, when asking

an encryption query, the first three message blocks have to be kept the same with
those in the very first query. Then, we treat MS in

3 , MS in
4 and MS in

5 as s0, s1 and s2

respectively. Based on the first three types of conditional cube tester, 53 extra secret
bits of MS in

3 can be recovered.

After the above procedure, we can know 111 secret bits and 16 linear equations of
MS in

1 , MS in
2 and MS in

3 , respectively. Such a phase will require 3 × (24 × 22 + 2 × 23 +

27× 22 + 43× 22) = 1176 encryption queries. The recovered 111 bit positions are listed
in Table 7, as marked in red.

Table 7: Information of known bits, secret bits and guessed bits, where the known bits
are marked in red, the guessed bits are marked in blue, and the secret bits are marked in
black.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
252 253 254 255 256

Computing the Remaining Unknown Secret Bits of MSin
1

. Based on the above
method, we can collect sufficient leaked bit information of MS in

1 , MS in
2 and MS in

3 . Now
we explain how to use this leaked information to recover the full state. The main idea is
to construct a quadratic boolean equation system which can be efficiently solved with
the method of change of variables.

Since we have known 111 bits of MS in
1 , there will be 257 − 111 = 146 unknown

secret state bits, which can be treated as 146 unknown variables. Moreover, since the

21

degree of the one-round permutation is only 2, we can know that the 111 recovered bits
of MS in

2 are quadratic in the 146 unknown variables. Moreover, since 111 bits of MS in
2

are known, we can know that some of the 111 bits of MS in
3 will be linear in MS in

2 and
also quadratic in the 146 unknown variables. The reason is that si

χ[k − 1] and si
χ[k − 2]

will be linear in si if si[k] is known. We write the expression of the known bits of si+1

quadratic in the 146 unknown variables when the 111 bits of si are recovered for a better
understanding.

si+1[0] = si
χ[0] ⊕ si

χ[3] ⊕ si
χ[8]. (1)

si+1[1] = si
χ[12] ⊕ si

χ[15] ⊕ si
χ[20]. (2)

si+1[3] = si
χ[36] ⊕ si

χ[39] ⊕ si
χ[44]. (3)

si+1[14] = si
χ[168] ⊕ si

χ[171] ⊕ si
χ[176]. (4)

si+1[16] = si
χ[192] ⊕ si

χ[195] ⊕ si
χ[200]. (5)

si+1[23] = si
χ[19] ⊕ si

χ[22] ⊕ si
χ[27]. (6)

si+1[29] = si
χ[91] ⊕ si

χ[94] ⊕ si
χ[99]. (7)

si+1[41] = si
χ[235] ⊕ si

χ[238] ⊕ si
χ[243]. (8)

si+1[59] = si
χ[194] ⊕ si

χ[197] ⊕ si
χ[202]. (9)

si+1[65] = si
χ[9] ⊕ si

χ[12] ⊕ si
χ[17]. (10)

si+1[71] = si
χ[81] ⊕ si

χ[84] ⊕ si
χ[89]. (11)

si+1[82] = si
χ[213] ⊕ si

χ[216] ⊕ si
χ[221]. (12)

si+1[83] = si
χ[225] ⊕ si

χ[228] ⊕ si
χ[233]. (13)

si+1[100] = si
χ[172] ⊕ si

χ[175] ⊕ si
χ[180]. (14)

si+1[135] = si
χ[78] ⊕ si

χ[81] ⊕ si
χ[86]. (15)

si+1[136] = si
χ[90] ⊕ si

χ[93] ⊕ si
χ[98]. (16)

si+1[149] = si
χ[246] ⊕ si

χ[249] ⊕ si
χ[254]. (17)

si+1[164] = si
χ[169] ⊕ si

χ[172] ⊕ si
χ[177]. (18)

si+1[166] = si
χ[193] ⊕ si

χ[196] ⊕ si
χ[201]. (19)

si+1[170] = si
χ[241] ⊕ si

χ[244] ⊕ si
χ[249]. (20)

si+1[178] = si
χ[80] ⊕ si

χ[83] ⊕ si
χ[88]. (21)

si+1[182] = si
χ[128] ⊕ si

χ[131] ⊕ si
χ[136]. (22)

si+1[185] = si
χ[164] ⊕ si

χ[167] ⊕ si
χ[172]. (23)

si+1[191] = si
χ[236] ⊕ si

χ[239] ⊕ si
χ[244]. (24)

si+1[195] = si
χ[27] ⊕ si

χ[30] ⊕ si
χ[35]. (25)

si+1[196] = si
χ[39] ⊕ si

χ[42] ⊕ si
χ[47]. (26)

22

si+1[212] = si
χ[231] ⊕ si

χ[234] ⊕ si
χ[239]. (27)

si+1[217] = si
χ[34] ⊕ si

χ[37] ⊕ si
χ[42]. (28)

si+1[234] = si
χ[238] ⊕ si

χ[241] ⊕ si
χ[246]. (29)

si+1[235] = si
χ[250] ⊕ si

χ[253] ⊕ si
χ[1]. (30)

si+1[238] = si
χ[29] ⊕ si

χ[32] ⊕ si
χ[37]. (31)

si+1[242] = si
χ[77] ⊕ si

χ[80] ⊕ si
χ[85]. (32)

si+1[250] = si
χ[173] ⊕ si

χ[176] ⊕ si
χ[181]. (33)

si+1[255] = si
χ[233] ⊕ si

χ[236] ⊕ si
χ[241]. (34)

si+1[234] = si
χ[238] ⊕ si

χ[241] ⊕ si
χ[246]. (35)

si+1[165] = si
χ[181] ⊕ si

χ[184] ⊕ si
χ[189]. (36)

si+1[44] = si
χ[14] ⊕ si

χ[17] ⊕ si
χ[22]. (37)

si+1[129] ⊕ si+1[193] = si
χ[9] ⊕ si

χ[14] ⊕ si
χ[3] ⊕ si

χ[11]. (38)

si+1[58] ⊕ si+1[79] = si
χ[182] ⊕ si

χ[190] ⊕ si
χ[177] ⊕ si

χ[180]. (39)

Moreover, we write the expressions for extra two output bits.

zi+1[7] = si
χ[238] ⊕ si

χ[241] ⊕ si
χ[246] ⊕ si

χ[19] ⊕ si
χ[22] ⊕ si

χ[27]. (40)

zi+1[17] = si
χ[132] ⊕ si

χ[135] ⊕ si
χ[140] ⊕ si

χ[125] ⊕ si
χ[128] ⊕ si

χ[133]. (41)

For the above 41 equations, the term on the right side will be quadratic in the 146
unknown variables, which can be easily verified based on Table 7. Now we describe
how practical it is to recover the remaining 146 unknown secret bits of MS in

1 . We guess
16 secret bits among the 146 unknown variables as follows, which are marked in blue
in Table 7.

7, 9, 25, 27, 51, 53, 55, 57, 73,
75, 114, 116, 118, 123, 125, 151

In this way, after one round permutation, there are at most 54 possible quadratic
terms formed by the remaining 146 − 16 = 130 unknown variables. By replacing
the 54 possible quadratic terms with 54 new variables, we can view the 130 unknown
variables as 54 + 130 = 184 variables. Note that we can know 16 extra linear equations
of MS in

1 , 111 bits of MS in
2 , 16 extra linear equations of MS in

2 and the above 41 quadratic
equations in terms of the (not-guessed) 146 unknown variables. Thus, we can in total
construct 16 + 111 + 16 + 41 = 184 linear equations in terms of the new 184 variables.
As a result, each guessed value of 16 secret state bits will suggest only one solution for
the full state. We can check each solution by computing the corresponding ciphertext
and tag obtained with the full state and compare it with the pre-obtained value. Only
the correct value of the full state will remain. Thus, the time complexity to recover the
full state is upper bounded by 216.

23

Remark. We note that it is possible to extract more equations based on the known
bits of MS in

3 . Since the time complexity is very small and practical, we stop making a
further explanation.

Key-recovery. After the full secret state is recovered, we can compute backward until
the state after K3 is absorbed, denoted by KS ot

3 . In other words, we can know 257 −
32 = 225 bits of KS ot

3 . Then, we can guess the 32-bit K0 and 3 bits of K1 that are
injected at bit positions (2, 136, 189). In this way, we can know that the state after K2 is
absorbed is linear in the remaining 29 secret bits of K1 and the 32-bit K2, thus making
the 225 known bits of KS ot

3 quadratic in these 29 + 32 = 61 variables. By computing
the propagation of the 29 bits of K1 for one-round permutation, we can easily count
the quadratic terms formed by 61 secret variables and find that there are at most 123 +

3 = 126 possible quadratic terms. Thus, by replacing these 126 quadratic terms with
126 new variables, we can know that the 225 known bits of KS ot

3 will be linear in
the 126 + 61 = 187 variables. In other words, we can construct an equation system
of size 225 in terms of 187 variables. Only the right guess for the 32 + 3 = 35 key
bits will make this equation system have a solution. After the solution for (K0,K1,K2)
is obtained, combing with the recovered full state, we can compute the 32-bit K3 and
recover the full key. Hence, after the full state is recovered, the time complexity to
recover the secret key is 235.

4 Distinguishing Attack on 4-Blank-Round Subterranean-SAE

Similar to the full-state recovery attack, we consider an equivalent presentation of the
state transform as depicted in Figure 3. Suppose we are able to control 32 bits of s0

and s1. Moreover, only zi (i ≥ 7) can be collected by the attacker. Now, we show how
to construct a cube tester by setting cube variables at s0 and s1.

According to the array order0 in Table 2, the 32 controllable bit positions in s0 and
s1 are as follows:

1, 2, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 136, 137,
140, 65, 169, 176, 184, 189, 190, 197, 211, 213, 223, 225, 234, 241, 249.

Therefore, by properly setting 29 cube variables in s1, s2 will be linear in the 29 cube
variables. There are in total 23 = 8 possible ways to choose these 29 cube variables.
For example, setting s1[1], s1[136] and s1[189] to constants and other controllable bits
to cube variables, then s2 will be linear in these 29 cube variables. Denote the 29 cube
variables set in s1 by v1

i (0 ≤ i ≤ 28). Next, we expect that there will be 4 cube variables
in s0 denoted by v0

i (0 ≤ j ≤ 3) which satisfy the following constraints:

Constraint 1: v0
j (0 ≤ j ≤ 3) are not next to each other in s0, i.e. they do not multiply

with each other after one-round permutation.
Constraint 2: After one more round permutation for v0

j (0 ≤ j ≤ 3), none of them are
next to any of v1

i (0 ≤ i ≤ 28). Moreover, v0
j (0 ≤ j ≤ 3) are still not next

to each other.

24

With the tracing algorithm in section 3, we can easily obtain the 3 × 3 = 9 influenced
bit positions in s1 for each possible cube variable set in s0. Then based on whether the
9 influenced bit positions are next to any of the 32 controllable bit positions in s1, we
can directly determine a candidate for the cube variable set in s0. With such an idea to
determine candidates, we obtain 5 valid bit positions in s0 as follows:

30, 137, 189, 190, 223.

In other words, if we set five cube variables in s0[i] (i ∈ {3, 137, 189, 190, 223}), after
one round permutation, none of them will propagate to the positions which are next to
the 32 controllable bit positions in s1 and they will not be next to each other either.
Of course, the bit positions 189 and 190 cannot be chosen simultaneously. Moreover,
we also observe that if s1[136] is set to a constant, then a cube variable set in s0[111]
will not propagate to the positions which are next the remaining 31 controllable bit
positions in s1 nor next to the above five cube variables. Note that our goal is to select
only 4 positions in s0 for v0

i (0 ≤ j ≤ 3). Thus, we can easily find a solution, as displayed
in Table 8. Our experiments have shown that the analysis is correct.

Table 8: Cube variables for conditional cube tester

Bit positions in s0 30, 111, 137, 223
Bit positions 2, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 137, 140,

in s1 165, 169, 176, 184, 190, 197, 211, 213, 223, 225, 234, 241, 249

With the 33 cube variables in Table 8, s2 will be linear in them. Since the degree of
one round permutation is 2, the cube sum of z7 will always be zero. Now we describe
how to construct a distinguisher for Subterranean-SAE when the number of blank
rounds is reduced to 4.

Step 1: Set associated data empty and the first message block M0 as a constant.
Step 2: Treat N2, N3 as s0, s1 respectively. When the number of blank rounds is reduced

to 4, we can treat the ciphertext block C0 as z7, as shown in Figure 8. According
to Table 8, send= 233 encryption queries (N, A,M) with N taking all possible
233 values and compute the sum of C[0]. The sum will always be zero.

Complexity Evaluation. Since we need to send 233 encryption queries (N, A,M) with
different N, the data and time complexity are both 233.

5 Key-recovery Attack on 4-Blank-Round Subterranean-SAE

When the number of blank rounds is reduced to 4, a key-recovery attack will be feasible.
The attack procedure can be divided into two steps on the whole.

25

Fig. 8: Cube tester for 4-blank-round Subterranean-SAE

Step 1: With a similar idea of the full-state recovery attack, recover y secret bits of the
state after N1 is absorbed.

Step 2: Guess (128 − x) bits of the secret key and let the remaining x secret key bits
as variables. Then with the y recovered state bits, construct a quadratic boolean
equation system in terms of the x variables. There will be x(x−1)

2 quadratic terms
and we replace them with x(x−1)

2 new variables. In this way, we can obtain y
linear equations in terms of x +

x(x−1)
2 variables. If y ≥ x +

x(x−1)
2 , the x secret

key bits can be computed by solving this linear equation system.

To make this part more clear, similar to the distinguishing attack, we first consider
an equivalent representation of the state transform. In our distinguishing attack, the cube
sum is always zero, which cannot help recover extra secret information. Thus, we hope
the cube sum will depend on the value of one secret state bit as in the full-state recovery
attack. Then, according to the cube sum, we can directly obtain one secret state bit.

While the cube variables are set at s0 and s1 and the attacker can only get zi (i ≥ 7)
in the distinguishing attack, we will set cube variables at si (0 ≤ i ≤ 2) and suppose the
attacker can only get zi (i ≥ 8) in the key-recovery attack. The main idea can be briefly
described as follows:

1. Set 32 cube variables in s2, denoted by v2
j = s2[order0[j]] (0 ≤ j ≤ 31).

2. Set n cube variables in s1, denoted by v1
j = s1[order0[r]] where 0 ≤ j < n and

r ∈ {k|0 ≤ k ≤ 31}.
3. Set 33− n cube variables in s0, denoted by v0

j = s0[order0[r]] where 0 ≤ j < 33− n
and r ∈ {k|0 ≤ k ≤ 31}.

Suppose f (s0[x]) represents either s0[x] or s0[x]⊕1. There will be some constraints
on v0 and v1 as follows:

Constraint 1: v0 will not multiply with each other after one-round permutation.
Constraint 2: v1 will not multiply with each other after one-round permutation.
Constraint 3: If a certain bit condition f (s0[x]) = 0 holds, then the positions in s1

containing the variables propagating from v0 will not be next to the
positions containing v1.

Constraint 4: If this certain bit condition f (s0[x]) = 0 does not hold, then there is at
least one position in s1 containing the variables propagating from v0 and
is next to some positions containing the variable v1.

26

With the above constraints, we can know that s2 will be linear in (v0, v1) if f (s0[x]) =

0 holds. Since there are extra 32 cube variables in s2 and the degree of the one-round
permutation is 2, we can know that the degree of z8 is at most 26 = 64 in terms of s2.
Thus, the degree-65 term v0v1v2 will not appear in the expression of z8 and the cube
sum of s8 will be zero in this case.

However, when the condition does not hold, s2 will contain a quadratic term. Then,
the degree-65 term v0v1v2 is expected to appear in the expression of z8 due to the
sufficient diffusion for the cube variables. For this case, the cube sum of s8 cannot
be predicted.

Consequently, according to the cube sum, we can directly recover the one secret bit
s0[x] as the full-state recovery attack. Combining the methods to select cube variables
for full-state recovery attack and distinguishing attack, we can find 22 valid choices
for (v0, v1) and therefore recover 22 secret bits of s0, as listed in Table 9 and Table 10
in Appendix A. For a better understanding of the two tables, we take the first choice
Table 9 for instance and give an explanation.

For the first choice in Table 9 to recover the secret state s0[2], the cube variables v0

are set at 6 bit positions of s0 and v1 are set at 27 bit positions of s1. Specifically,

v0
0 = s0[1], v0

1 = s0[30], v0
2 = s0[111], v0

3 = s0[137], v0
4 = s0[189], v0

5 = s0[233],
v1

0 = s1[1], v1
1 = s1[4], v1

2 = s1[11], v1
3 = s1[15], v1

4 = s1[17],
v1

5 = s1[22], v1
6 = s1[30], v1

7 = s1[35], v1
8 = s1[64], v1

9 = s1[70],
v1

10 = s1[95], v1
11 = s1[111], v1

12 = s1[128], v1
13 = s1[134], v1

14 = s1[137],
v1

15 = s1[140], v1
16 = s1[165], v1

17 = s1[169], v1
18 = s1[176], v1

19 = s1[184],
v1

20 = s1[189], v1
21 = s1[197], v1

22 = s1[211], v1
23 = s1[223], v1

24 = s1[225],
v1

25 = s1[241], v1
26 = s1[249].

Once the condition s0[2] = 0 holds, the cube sum of z8 is zero. However, when s0[2] ,
0, three bits of s2 will always contain a quadratic term v0

0v1
0. Moreover, similar to the

full-state recovery attack, we have verified that there will always be a cubic term in a
certain bit of s3. Since there are 65 cube variables and sufficient number of rounds to
diffuse v0, v1 and v2, we expect there will be a term of degree 65 in z8. Therefore, based
on the cube sum of z8, we directly recover the secret state bit s0[2] as follows:∑

z8 , 0⇒ s0[2] = 1,∑
z8 = 0⇒ s0[2] = 0.

Now, we describe how to use the above method to recover the secret state after N1
is absorbed. Set the associated data A as empty and the first message block M0 as a zero
constant. Denote the state after Ni is absorbed as NS in

i , as depicted in Figure 9. The
attack procedure can be described as follows:

Step 1: Send an encryption query (N, A,M) and obtain (C,T).
Step 2: Keep M0 and N0 as constant. Treat NS in

1 , NS in
2 and NS in

3 as s0, s1 and s2

respectively. For each choice of the 65 cube variables in Table 9 and Table 10,
send 265 encryption queries (N, A,M) with N taking all possible 265 values and

27

Fig. 9: Key recovery attack

compute the sum of C0. If the sum is zero, the corresponding condition will
hold. If it is not zero, the condition will not hold. Whatever the sum is, we can
recover one secret bit of NS ot

0 . The time and data complexity to recover the 22
secret bits of NS ot

0 are both 22 × 265 = 269.5.

After recovering the 22 secret bits of NS ot
0 , we will start to construct 22 equations.

Suppose K0, K1 and K2 are fixed, we then use a trivial MILP-based method to find the
maximum number of variables in K3 which are still linear after two-round permutation
and the Gurobi solver returns 9. The 9 positions are listed below:

11, 35, 70, 95, 140, 165, 190, 213, 241.

In other words, if we fix the remaining 32 − 9 = 23 bits of K3 as constants, NS in
0 will

be linear in these 9 secret bits. Since NS ot
0 is quadratic in NS in

0 , we therefore cannot
construct a linear equation system. Guessing 3 more bits among the 9 secret bits will
reduce the number of variables to 6. Therefore, there will be 6×(6−1)/2 = 15 quadratic
terms. By replacing the 15 quadratic terms with 15 new variables, we can now know that
NS ot

0 is linear in the 6 + 15 = 21 variables. Since 22 bits of NS ot
0 have been recovered,

we can construct 22 linear equations in terms of 21 variables. It is expected there is only
one solution for each guess of Ki (0 ≤ i ≤ 3). For each solution, we compute the tag T ′

and the corresponding ciphertext C′. Only when T = T ′ and C′ = C will imply that the
recovered key is correct.

Complexity Evaluation. The key-recovery attack is divided into two steps. The first
step is to recover 22 secret state bits. The time complexity and data complexity at this
step is 22 × 265 ≈ 269.5. After the 22 secret bits are recovered, we will start the second
step. At this step, we will guess 122 bits of the secret key and let the remaining 6 key bits
keep as variables. For each guess of the 122 secret key bits, we can construct a linear
equation system of size 22 to compute the 6 unknown key bits with Gauss elimination.
The time to solve this equation system is negligible. Moreover, we expect there is only
one solution for this linear equation system. After the 6 unknown key bits are computed,
the key is known and we can compute the ciphertext and tag computed based on this
key and compare it with the pre-obtained ciphertext and tag. The probability that they

28

match with each other is lower than 2−128. Therefore, only the correct key will remain
and the time complexity of the second step is 2122. In total, the time complexity and
date complexity of key-recovery attack are 2112 and 269.5, respectively.

Remark. As can be observed in our full-state recovery and key-recovery attack, the
problem is finally reduced to solving a quadratic boolean equation system. One may
claim that this can be solved with existing state-of-the-art solvers. However, as pointed
out by many papers, the performance to solve the quadratic (or higher degree) boolean
equation system is instable. Hence, the time complexity of our method by re-linearizing
or change of variables to convert the quadratic boolean equation system into a linear
equation system can be viewed as an upper bound.

6 Conclusion

The designers of Subterranean 2.0 expect that it may require a non-trivial effort to
mount a full-state recovery attack for Subterranean-SAE in the nonce-misuse scenario.
Following this expectation, we make the first effort to achieve it with practical time
complexity 216. In addition, the same nonce is only required to be reused for 1177
times. Moreover, to investigate the security provided by the number of blank rounds,
we consider the reduced variant of Subterranean-SAE by reducing the number of blank
rounds to 4 from 8. For such a variant, a distinguishing attack can be achieved with time
and data complexity 233. The key-recovery attack is also faster than brute force for this
variant with time complexity 2122 and data complexity 269.5. We hope our cryptanalysis
can help further understand the security of Subterranean-SAE.

Acknowledgement We thank Joan Daemen for a discussion on the results in this paper
and providing insightful comments.

References

1. Jean-Philippe Aumasson, Itai Dinur, Willi Meier, and Adi Shamir. Cube testers and
key recovery attacks on reduced-round MD6 and Trivium. In Fast Software Encryption,
16th International Workshop, FSE 2009, Leuven, Belgium, February 22-25, 2009, Revised
Selected Papers, pages 1–22, 2009.

2. Joan Daemen, Pedro Maat Costa Massolino, and Yann Rotella. The
Subterranean 2.0 cipher suite, 2019. https://csrc.nist.gov/Projects/
Lightweight-Cryptography/Round-1-Candidates.

3. Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polynomials. In Advances
in Cryptology - EUROCRYPT 2009, 28th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Cologne, Germany, April 26-30, 2009.
Proceedings, pages 278–299, 2009.

4. Senyang Huang, Xiaoyun Wang, Guangwu Xu, Meiqin Wang, and Jingyuan Zhao.
Conditional cube attack on reduced-round Keccak sponge function. In Advances in
Cryptology - EUROCRYPT 2017 - 36th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017,
Proceedings, Part II, pages 259–288, 2017.

29

https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates

5. Mustafa Khairallah. Forgery attack on SNEIKEN. Cryptology ePrint Archive, Report
2019/408, 2019. https://eprint.iacr.org/2019/408.

6. Zheng Li, Wenquan Bi, Xiaoyang Dong, and Xiaoyun Wang. Improved conditional
cube attacks on Keccak keyed modes with MILP method. In Advances in Cryptology
- ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications of
Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings,
Part I, pages 99–127, 2017.

7. Zheng Li, Xiaoyang Dong, Wenquan Bi, Keting Jia, Xiaoyun Wang, and Willi Meier.
New conditional cube attack on Keccak keyed modes. IACR Trans. Symmetric Cryptol.,
2019(2):94–124, 2019.

8. Fukang Liu, Zhenfu Cao, and Gaoli Wang. Finding ordinary cube variables for Keccak-
MAC with greedy algorithm. Cryptology ePrint Archive, Report 2018/799, 2018. To appear
at IWSEC 2019. https://eprint.iacr.org/2018/799.

9. Fukang Liu and Takanori Isobe. Iterative differential characteristic of trifle-bc. Cryptology
ePrint Archive, Report 2019/727, 2019. To appear at SAC 2019. https://eprint.
iacr.org/2019/727.

10. Léo Perrin. Probability 1 iterated differential in the SNEIK permutation. Cryptology ePrint
Archive, Report 2019/374, 2019. https://eprint.iacr.org/2019/374.

11. Ling Song, Jian Guo, Danping Shi, and San Ling. New MILP modeling: Improved
conditional cube attacks on Keccak-based constructions. In Advances in Cryptology -
ASIACRYPT 2018 - 24th International Conference on the Theory and Application of
Cryptology and Information Security, Brisbane, QLD, Australia, December 2-6, 2018,
Proceedings, Part II, pages 65–95, 2018.

12. Yosuke Todo, Takanori Isobe, Yonglin Hao, and Willi Meier. Cube attacks on non-blackbox
polynomials based on division property. In Advances in Cryptology - CRYPTO 2017 - 37th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017,
Proceedings, Part III, pages 250–279, 2017.

13. Yosuke Todo and Masakatu Morii. Bit-based division property and application to simon
family. In Fast Software Encryption - 23rd International Conference, FSE 2016, Bochum,
Germany, March 20-23, 2016, Revised Selected Papers, pages 357–377, 2016.

14. Qingju Wang, Yonglin Hao, Yosuke Todo, Chaoyun Li, Takanori Isobe, and Willi Meier.
Improved division property based cube attacks exploiting algebraic properties of superpoly.
In Advances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I, pages 275–
305, 2018.

A Algorithm and Tables

We present the algorithm and some tables in this section.

30

https://eprint.iacr.org/2019/408
https://eprint.iacr.org/2018/799
https://eprint.iacr.org/2019/727
https://eprint.iacr.org/2019/727
https://eprint.iacr.org/2019/374

Table 9: Cube variables for conditional cube tester

Bit positions in s0 1, 30, 111, 137, 189, 223,
Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 137, 140,

in s1 165, 169, 176, 184, 189, 197, 211, 223, 225, 241, 249
condition s0[2] = 0

Bit positions in s0 2, 30, 137, 189,
Bit positions 2, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 137, 140,

in s1 165, 169, 176, 184, 189, 197, 211, 213 , 223, 225, 234 , 241, 249
condition s0[3] = 0

Bit positions in s0 2, 30, 111, 137, 189, 223,
Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 137, 140,

in s1 165, 169, 176, 184, 189, 197, 211, 223, 225, 241, 249
condition s0[1] = 1

Bit positions in s0 4, 30, 137, 189,
Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 137, 140,

in s1 165, 169, 176, 184, 189, 197, 211, 213, 223, 225, 234, 241, 249
condition s0[5] = 0

Bit positions in s0 11, 30, 137, 189,
Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 137, 140,

in s1 165, 169, 176, 184, 189, 197, 211, 213, 223, 225, 234, 241, 249
condition s0[10] = 1

Bit positions in s0 15, 137, 189, 223,
Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 137, 140,

in s1 165, 169, 176, 184, 189, 197, 211, 213, 223, 225, 234, 241, 249
condition s0[16] = 0

Bit positions in s0 22, 111, 137, 189, 223,
Bit positions 2, 4, 11, 15, 17, 30, 35, 64, 70, 95, 111, 128, 134, 137, 140, 165,

in s1 169, 176, 184, 189, 197, 211, 213, 223, 225, 234, 241, 249
condition s0[21] = 1

Bit positions in s0 64, 30, 111, 137, 189, 223,
Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 128, 137, 140, 165, 169,

in s1 176, 184, 189, 197 , 211, 213, 223, 225, 234, 241, 249
condition s0[65] = 0

Bit positions in s0 64, 30, 111, 137, 189, 223,
Bit positions 1, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 137, 140, 165,

in s1 169, 176, 184, 189, 211, 213, 223, 225, 234, 241, 249
condition s0[63] = 1

Bit positions in s0 70, 30, 137, 189,
Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 137, 140,

in s1 165, 169, 176 , 184, 189, 197, 211, 213, 223, 225, 234, 241, 249
condition s0[69] = 1

Bit positions in s0 95, 30, 137, 189,
Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 136, 140,

in s1 165, 169, 176, 184, 189, 197, 211, 213, 223 , 225, 234, 241, 249
condition s0[96] = 0

31

Table 10: Cube variables for conditional cube tester

Bit positions in s0 111, 30, 137, 189,
Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 136, 140,

in s1 165, 169, 176, 184, 189, 197, 211, 213, 223, 225, 234, 241, 249
condition s0[112] = 0

Bit positions in s0 134, 30, 111, 189, 223,
Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 137, 165,

in s1 169, 176, 184, 189, 197, 211, 213, 223, 225, 234, 241, 249
condition s0[133] = 1

Bit positions in s0 136, 30, 189, 223,
Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 137, 140,

in s1 165 169, 176, 184, 189, 197, 211, 213, 223, 225, 234, 241, 249
condition s0[135] = 1

Bit positions in s0 165, 30, 137, 189,
Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 137, 140,

in s1 165, 169, 176, 184 , 189, 197, 211, 213, 223, 225, 234, 241, 249
condition s0[166] = 0

Bit positions in s0 184, 30, 137, 223,
Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 137, 140,

in s1 165, 169, 176, 184, 189, 197, 211, 213, 223, 225, 234, 241, 249
condition s0[185] = 0

Bit positions in s0 197, 30, 111, 137, 223,
Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 137, 140,

in s1 169, 176, 184, 189, 197, 211, 213, 223, 225, 234, 241, 249
condition s0[196] = 1

Bit positions in s0 211, 30, 137, 223,
Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 136, 140,

in s1 165, 169, 176, 184, 189, 197, 211 , 213, 223, 225, 234, 241, 249
condition s0[212] = 0

Bit positions in s0 213, 30, 137, 223,
Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 136, 140,

in s1 165, 169, 176, 184, 190 , 197, 211, 213, 223, 225, 234, 241, 249
condition s0[214] = 0

Bit positions in s0 225, 30, 111, 137, 189,
Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 137, 140,

in s1 165, 176, 184, 189 , 197, 211, 213, 223, 225, 234, 241, 249
condition s0[226] = 0

Bit positions in s0 241, 30, 111, 137, 189,
Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 137, 140,

in s1 165, 176, 184, 190 , 197, 211 , 213 , 223, 225, 234, 241, 249
condition s0[240] = 1

Bit positions in s0 249, 30, 111, 137, 189,
Bit positions 1, 4, 11, 15, 17, 22, 30, 35, 64, 70, 95, 111, 128, 134, 137, 140,

in s1 165, 176, 184, 190, 197, 211, 213, 223, 225, 234, 241, 249
condition s0[248] = 1

32

Algorithm 3 Determine candidates of cube variables for TYPE-I conditional cube tester
1: vector<> candidate
2: int V1Pos, conditionValue
3: int zero[], one[], core[]
4: int zeroSize=0, oneSize=0, coreSize=0
5: for i from 0 to 2 do
6: if CORE[i]-1 ∈ {e|e = order0[j], 0 ≤ j ≤ 31} then
7: core[coreSize]=CORE[i]-1
8: coreSize++;
9: end if

10: if CORE[i]+1 ∈ {e|e = order0[j], 0 ≤ j ≤ 31} then
11: core[coreSize]=CORE[i]+1;
12: coreSize++;
13: end if
14:
15: if ZERO[i]-1 ∈ {e|e = order0[j], 0 ≤ j ≤ 31} then
16: zero[zeroSize]=ZERO[i]-1
17: zeroSize++;
18: end if
19: if ZERO[i]+1 ∈ {e|e = order0[j], 0 ≤ j ≤ 31} then
20: zero[zeroSize]=ZERO[i]+1;
21: zeroSize++;
22: end if
23:
24: if ONE[i]-1 ∈ {e|e = order0[j], 0 ≤ j ≤ 31} then
25: one[oneSize]=ONE[i]-1
26: oneSize++;
27: end if
28: if ONE[i]+1 ∈ {e|e = order0[j], 0 ≤ j ≤ 31} then
29: one[oneSize]=ONE[i]+1;
30: oneSize++;
31: end if
32: end for
33:
34: for i from 0 to zeroSize-1 do
35: if zero[i] < core and zero[i] < one then
36: v1Pos=zero[i]
37: conditionValue=0
38: candidate.pushback([v1Pos,conditionValue])
39: end if
40: end for
41:
42: for i from 0 to oneSize-1 do
43: if one[i] < core and one[i] < zero then
44: v1Pos=one[i]
45: conditionValue=1
46: candidate.pushback([v1Pos,conditionValue])
47: end if
48: end for
49: return candidate

33

	Cryptanalysis of Subterranean-SAE
	Fukang Liu, Takanori Isobe, Willi Meier

