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1. Introduction

Tropical (or max-plus) semiring is the set Rmax = R ∪ {−∞} equipped with the

operations of tropical addition a ⊕ b = max{a, b} and multiplication a ⊗ b = a + b.

Note that the tropical addition is not invertible, but the multiplication is a group

operation. The multiplicative inverse of a ∈ R equals −a, and will be commonly

denoted by a−. The operations of tropical addition and multiplication are extended

to matrices and vectors in the usual way.

Tropical algebra is a semiring, which means in particular that the addition oper-

ation does not admit inverses. Furthermore, the class of invertible matrices in this

algebra is very scarce and the matrix inversion cannot be used by the attacker. For

this reason, Grigoriev and Shpilrain [3] suggested the tropical algebra as a platform

to modify Stickel’s Protocol. One of their ideas is that using the tropical algebra
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instead of the classical algebra is promising since matrices in the tropical algebra

are usually not invertible and the decomposition problem cannot be simplified in

general. Kotov and Ushakov demonstrated the weakness of Stickel’s key exchange in

the tropical scheme by showing that they can attack it successfully without having

to solve any ”tough” problem [5].

The main idea of this paper is to consider some modifications of Stickel’s protocol

using classes of commuting matrices other than matrix powers or matrix polynomi-

als. In one of the cases that we consider, the use of a different class of commuting

matrices allows us to share less information with the attacker. This seems to be quite

promising, however in this case we can also construct a simple and rather successful

heuristic attack on the protocol. We also show that the ideas of Kotov-Ushakov

attack apply to all protocols that we construct, thus leading to an appropriate gen-

eralized version of this attack that can be specialized to a variety of protocols.

The paper is organized as follows. In Section 2 we start with some basic definitions

and key notions of tropical matrix algebra. In Section 3 we introduce two new

classes of commuting matrices in tropical algebra. One of them, based on the work

of Jones [2] on the roots of some special tropical matrices, extends the notions of

matrix powers and polynomials for such matrices, and the other extends a class of

commuting matrices found by Linde and de la Puente [6]. In Section 4 we introduce

new protocols using these new classes of commuting matrices. Then, in Section 5

we recall the Kotov-Ushakov attack [5] on the tropical Stickel protocol, prove that it

actually works, extend it to one of our new protocols and analyse its performance in

practice. In Section 6 we construct some heuristic attacks on another protocol which

we introduced before, and construct a generalized version of Kotov-Ushakov attack

which applies to all our new protocols.

2. Elements of tropical algebra

Let us start with introducing some basic definitions. By [m] and [n] we denote

{1, . . . ,m} and {1, . . . , n}.

Definition 1 (Tropical matrix addition and multiplication). For c ∈ Rmax and

A ∈ Rm×nmax one defines c⊗A by

(c⊗A)ij = c⊗ aij ∀i ∈ [m], ∀j ∈ [n].

For two matrices A = (aij) ∈ Rm×nmax and B = (bij) ∈ Rm×nmax , one defines A⊕B by

(A⊕B)ij = aij ⊕ bij ∀i ∈ [m], ∀j ∈ [n].
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For matrix A = (aij) ∈ Rm×pmax and matrix B = (bij) ∈ Rp×nmax , we define A ⊗ B ∈
Rm×nmax as the matrix with entries

(A⊗B)ij =

p⊕
k=1

aik ⊗ bkj ,∀i ∈ [m], ∀j ∈ [n].

The neutral element with respect to matrix multiplication can be characterized as

follows.

Definition 2 (Identity matrix). Matrix I ∈ Rn×nmax is called a tropical identity

matrix if its entries are

Iij =

{
0, if i = j,

−∞, if i 6= j,

for i, j ∈ [n].

In words, all diagonal entries of a tropical identity matrix are equal to 0 and all

off-diagonal entries are equal to −∞.

Tropical identity matrix I ∈ Rn×nmax satisfies A⊗ I = I ⊗ A = A for all A ∈ Rn×nmax ,

and it is a special case of the following.

Definition 3 (Tropical diagonal matrices). Matrix D ∈ Rn×nmax is called a tropical

diagonal matrix, if

Dij =

{
di, if i = j,

−∞, if i 6= j,

for some di ∈ Rmax and i, j ∈ [n]. We also denote D = diag(d1, . . . , dn).

Diagonal matrices with finite diagonal entries are invertible: for any D =

diag(d1, . . . , dn) with di ∈ R for i ∈ [n], the inverse is D− = diag(d−1 , . . . , d
−
n ),

so that D− ⊗ D = D ⊗ D− = I. Diagonal matrices with finite entries form an

Abelian group. Another important group of invertible matrices consists of tropical

permutation matrices. For a permutation σ of {1, . . . , n}, the corresponding tropical

permutation matrix Pσ is defined by

Pσij =

{
0, j = σ(i),

−∞, otherwise.

Products of tropical diagonal and tropical permutation matrices are called tropical

monomial matrices. The group of tropical monomial matrices is precisely the group

of all invertible matrices in tropical matrix algebra (e.g., [1] Theorem 1.1.3).

Any matrix over Rmax can be written as a tropical linear combination of tropical

elementary matrices.
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Definition 4 (Elementary matrices). Let Eij ∈ Rn×nmax be a matrix with entries

(Eij)kl =

{
0, if k = i, l = j
−∞, otherwise.

for i, j ∈ {1, . . . , n} and k, l ∈ {1, . . . , n}.
Any matrix of this form is called a tropical elementary matrix.

Let us now consider the tropical matrix powers.

Definition 5 (Matrix powers).

A⊗k = A⊗A⊗ . . .⊗A︸ ︷︷ ︸
k

.

Tropical matrix powers are a natural extension of scalar tropical powers:

a⊗k = a⊗ a...⊗ a︸ ︷︷ ︸
k

= a+ ...+ a︸ ︷︷ ︸
k

= k × a,∀a ∈ Rmax, k ∈ N.

Also note that scalar tropical matrix powers can be easily defined for arbitrary real

exponents:

a⊗r = r × a, r ∈ R.
Furthermore, we can also consider tropical polynomials.

Definition 6 (Polynomials). Tropical polynomial is a function of the form

x 7→ p(x) =

d⊕
k=0

ak ⊗ x⊗k.

where ak ∈ Rmax for k = 0, 1, ..., d.

Here x can be a scalar or a square matrix of any dimension. As in the usual algebra,

any two tropical matrix powers or polynomials of the same matrix commute, and

therefore they can be used to build a tropical version of Stickel’s protocol.

Using the tropical matrix powers we can define a tropical analogue of (I −A)−1.

Definition 7 (Kleene stars). Suppose A ∈ Rn×nmax then denote A∗ = I⊕A⊕A⊗2⊕
. . .. If this series converges then it is called the Kleene star of A.

The Kleene stars can be characterized by the following well-known result, as idem-

potents with all diagonal entries equal to 0.

Proposition 1 (e.g., [1]). Let A ∈ Rn×nmax . Then A = B∗ if and only if A = A⊗2

and aii = 0 for all i.
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3. Two classes of commuting matrices

3.1. Jones matrices. Tropical polynomials are used in the tropical version of

Stickel’s protocol suggested by Grigoriev and Shpilrain. We now describe a special

kind of matrices considered by Jones [2], for which the notion of polynomial can be

extended.

Definition 8 (Jones matrices). Let A = (aij) be an n× n tropical matrix which

satisfies the following property:

(3.1) aij ⊗ ajk ≤ aik ⊗ ajj ∀i, j, k ∈ [n].

We call A a Jones matrix.

Notice that any Kleene star A ∈ Rn×nmax is a Jones matrix where ajj = 0 for all

j ∈ [n] and (3.1) reduces to aij ⊗ ajk ≤ aik for all i, j, k ∈ [n].

We will consider the following operation:

Definition 9 (Deformation). Let A = (aij) be a Jones matrix and α ∈ R. Matrix

A(α) = (a
(α)
ij ) defined by

(3.2) a
(α)
ij = aij ⊗ (aii ⊕ ajj)⊗(α−1) ∀i, j ∈ [n].

is called a deformation of A.

The proof techniques of the following two theorems are very close to those in

Jones [2]. However, the statements were not explicitly stated and proved in that

work.

The next theorem shows that the class of Jones matrices is stable under deforma-

tions for α ≤ 1.

Theorem 3.1. If A is a Jones Matrix then A(α) is also a Jones matrix for any

α ≤ 1.

Proof. We have for all i, j, k that

a
(α)
ij ⊗ a

(α)
jk = aij ⊗ (aii ⊕ ajj)⊗(α−1) ⊗ ajk ⊗ (ajj ⊕ akk)⊗(α−1),

a
(α)
ik ⊗ a

(α)
jj = aik ⊗ (aii ⊕ akk)⊗(α−1) ⊗ a⊗αjj .

Hence the inequality which we want to prove is

aij ⊗ (aii ⊕ ajj)⊗(α−1) ⊗ ajk ⊗ (ajj ⊕ akk)⊗(α−1)

≤ aik ⊗ (aii ⊕ akk)⊗(α−1) ⊗ a⊗αjj .
(3.3)
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Multiplying both parts by (aii ⊕ ajj)⊗(1−α) ⊗ (ajj ⊕ akk)⊗(1−α) ⊗ (aii ⊕ akk)⊗(1−α)

we obtain that (3.3) is equivalent to

aij ⊗ ajk ⊗ (aii ⊕ akk)⊗(1−α)

≤ aik ⊗ a⊗αjj ⊗ (aii ⊕ ajj)⊗(1−α) ⊗ (ajj ⊕ akk)⊗(1−α).
(3.4)

To prove (3.4) we observe that

aij ⊗ ajk ⊗ (aii ⊕ akk)⊗(1−α) = aij ⊗ ajk ⊗ (a
⊗(1−α)
ii ⊕ a⊗(1−α)kk )

≤ aik ⊗ ajj ⊗ (a
⊗(1−α)
ii ⊕ a⊗(1−α)kk ) = aik ⊗ ajj ⊗ a⊗(1−α)ii ⊕ aik ⊗ ajj ⊗ a⊗(1−α)kk

(3.5)

and that

(aii ⊕ ajj)⊗(1−α) ⊗ (ajj ⊕ akk)⊗(1−α) ≥ a⊗(1−α)ii a
⊗(1−α)
jj ,

(aii ⊕ ajj)⊗(1−α) ⊗ (ajj ⊕ akk)⊗(1−α) ≥ a⊗(1−α)jj a
⊗(1−α)
kk ,

which implies

aik ⊗ a⊗αjj (aii ⊕ ajj)⊗(1−α) ⊗ (ajj ⊕ akk)⊗(1−α)

≥ aik ⊗ a⊗αjj (a
⊗(1−α)
ii a

⊗(1−α)
jj ⊕ a⊗(1−α)jj a

⊗(1−α)
kk )

= aik ⊗ ajj ⊗ a⊗(1−α)ii ⊕ aik ⊗ ajj ⊗ a⊗(1−α)kk .

(3.6)

Combining (3.5) and (3.6) yields (3.4). �

Note that in Theorem 3.1 α can be negative.

Matrix deformations do not always commute, as the following counterexample

shows.

Example 1. Let us consider matrix A =

 0 1 −1
−1 0 −2
−1 0 −2

, then we have:

A(− 2
3 ) =

 0 1 −1
−1 0 −2
−1 0 4

3

 and A(− 4
5 ) =

 0 1 −1
−1 0 −2
−1 0 8

5

.

A(− 2
3 ) ⊗A(− 4

5 ) =

 0 1 3
5

−1 0 − 2
5

1
3

4
3

44
15


and A(− 4

5 ) ⊗A(− 2
3 ) =

 0 1 1
3

−1 0 − 2
3

3
5

8
5

44
15

.

We can see that A(− 2
3 ) ⊗A(− 4

5 ) 6= A(− 4
5 ) ⊗A(− 2

3 ).
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Thus for α, β < 0 we have A(α) ⊗A(β) 6= A(β) ⊗A(α) in general. However, we can

obtain the following result.

Theorem 3.2. For any α, β ∈ R such that 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 and 0 ≤ α+β ≤
1, let A be a Jones matrix. Then we have A(α) ⊗A(β) = A(β) ⊗A(α) = A(α+β).

Proof. It suffices to prove that A(α) ⊗A(β) = A(α+β), i.e., that

(3.7)

n⊕
j=1

aij⊗(aii⊕ajj)⊗(α−1)⊗ajk⊗(ajj⊕akk)⊗(β−1) = aik⊗(aii⊕akk)⊗(α+β−1).

We have

n⊕
j=1

aij ⊗ (aii ⊕ ajj)⊗(α−1) ⊗ ajk ⊗ (ajj ⊕ akk)⊗(β−1)

= aik ⊗ (aii ⊕ akk)⊗(α−1)a⊗βkk ⊕ a
⊗α
ii ⊗ aik ⊗ (aii ⊕ akk)⊗(β−1)

⊕
⊕

j /∈{i,k}

aij ⊗ (aii ⊕ ajj)⊗(α−1) ⊗ ajk ⊗ (ajj ⊕ akk)⊗(β−1).

(3.8)

Let us analyze the first two terms. When aii ≥ akk we obtain

aik ⊗ (aii ⊕ akk)⊗(α−1) ⊗ a⊗βkk ⊕ a
⊗α
ii ⊗ aik ⊗ (aii ⊕ akk)⊗(β−1)

= aik ⊗ a⊗βkk ⊗ a
⊗(α−1)
ii ⊕ aik ⊗ a⊗(α+β−1)ii = aik ⊗ a⊗(α+β−1)ii

= aik ⊗ (aii ⊕ akk)⊗(α+β−1).

(3.9)

The remaining case aii ≤ akk is treated similarly. As these two terms already

yield the required expression aik ⊗ (aii ⊕ akk)⊗(α+β−1), it remains to prove that the

remaining terms do not exceed it. Since

aij ⊗ (aii ⊕ ajj)⊗(α−1) ⊗ ajk ⊗ (ajj ⊕ akk)⊗(β−1)

≤ aik ⊗ ajj ⊗ (aii ⊕ ajj)⊗(α−1) ⊗ (ajj ⊕ akk)⊗(β−1),

it remains to show that

(3.10) ajj ⊗ (aii ⊕ ajj)⊗(α−1)(ajj ⊕ akk)⊗(β−1) ≤ (aii ⊕ akk)⊗(α+β−1).

which is equivalent to

(3.11) ajj ≤ (aii ⊕ akk)⊗(α+β−1)(aii ⊕ ajj)⊗(1−α)(ajj ⊕ akk)⊗(1−β).
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If aii ≥ akk then we have

(aii ⊕ akk)⊗(α+β−1) ⊗ (aii ⊕ ajj)⊗(1−α) ⊗ (ajj ⊕ akk)⊗(1−β)

= a
⊗(α+β−1)
ii ⊗ (aii ⊕ ajj)⊗(1−α−β) ⊗ (aii ⊕ ajj)⊗β ⊗ (ajj ⊕ akk)⊗(1−β)

≥ a⊗(α+β−1)ii ⊗ (aii ⊕ ajj)⊗(1−α−β) ⊗ ajj ≥ ajj .

For the remaining case akk ≥ aii the same holds by symmetry. �

In particular, A(0) is an idempotent and plays the role of unity for A(α) for 0 ≤
α ≤ 1.

Corollary 1. Let A be a Jones matrix. Then A(0) satisfies A(α) ⊗A(0) = A(0) ⊗
A(α) = A(α) for all 0 ≤ α ≤ 1.

We also obtain the following result of Jones [2].

Corollary 2. Let A be a Jones matrix. Then A(k/l) = (A(1/l))⊗k holds for any

integer l > 0 and integer k : 1 ≤ k ≤ l.

Proof. We use a simple induction: if A(k/l) = (A(1/l))⊗k then A(k+1/l) = A(k/l) ⊗
A(1/l) = (A(1/l))⊗k ⊗A(1/l) = (A(1/l))⊗(k+1). �

Now we are able to extend the commutativity to all α and β from the unit interval

[0, 1]

Theorem 3.3. If A is a Jones matrix then A(α) ⊗ A(β) = A(β) ⊗ A(α) for any α

and β such that 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1.

Proof. First consider the case of rational α = k1
l1

and β = k2
l2

. Then α = k1l2
l1l2

and

β = k2l1
l1l2

. Then A(α) = A

(
k1l2
l1l2

)
=

(
A

(
1

l1l2

))⊗k1l2
and A(β) =

(
A

(
1

l1l2

))⊗k2l1
, so

A(α)⊗A(β) = A(β)⊗A(α) since both A(α) and A(β) are powers of A

(
1

l1l2

)
. The claim

follows for any real α and β in [0, 1] since rational numbers are dense on the real line

and since the tropical arithmetic operations are continuous. �

We now discuss a connection between Kleene stars and Jones matrices. It helps

us to construct Jones matrices in practice. The key observations are that 1) the set

of Jones matrices is stable under scaling by diagonal matrices, 2) any Kleene star is

a Jones matrix.

Proposition 2. Let A be a Jones matrix and D and F be arbitrary diagonal

matrices. Then D ⊗A⊗ F is also a Jones matrix.
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Proof. Let A ∈ Rn×nmax , D = diag(d1, . . . , dn) and F = diag(f1 . . . , fn). The inequality

aij ⊗ ajk ≤ aik ⊗ ajj is equivalent to

(3.12) di ⊗ aij ⊗ fj ⊗ dj ⊗ ajk ⊗ fk ≤ di ⊗ aik ⊗ fk ⊗ dj ⊗ ajj ⊗ fj .

Observing that the entries of B = D ⊗A⊗ F are equal to bij = di ⊗ aij ⊗ fj for all

i and j, we obtain that (3.12) is the same as bij ⊗ bjk ≤ bik ⊗ bjj . �

As any Kleene star is a Jones matrix, we have the following immediate corollary.

It shows how Kleene stars can be used to construct Jones matrices.

Corollary 3. Let A be a Kleene star and D and F be arbitrary diagonal matrices.

Then D ⊗A, A⊗ F and D ⊗A⊗ F are Jones matrices.

The other way around, if we have a Jones matrix with finite diagonal entries, then

by means of an appropriate scaling it can be transformed to Kleene star.

Proposition 3. Let B ∈ Rn×nmax be a Jones matrix with finite diagonal entries.

Then

(i) For D = diag(b−11, . . . , b
−
nn), A1 = B ⊗D and A2 = D ⊗B are Kleene stars;

(ii) For D = diag(b
⊗−1/2
11 , . . . , b

⊗−1/2
nn ), A = D ⊗B ⊗D is a Kleene star.

Proof. The Kleene star inequality aij ⊗ ajk ≤ aik is a special case of (3.1) when

aii = 0. By Proposition 2, matrices A1, A2 and A satisfy (3.1). Then it suffices to

observe that all diagonal entries of these matrices are equal to 0. �

3.2. Linde–De la Puente matrices. Let us consider the following set of matrices,

which extends a set of matrices considered by Linde and De la Puente [6].

Definition 10 (Linde–De la Puente matrices). For arbitrary real number r ≤ 0

and real number k ≥ 0, we denote by [2r, r]kn the set of matrices A ∈ Rn×nmax such that

aii = k, for all i ∈ [n] and aij ∈ [2r, r] for i, j ∈ [n] and i 6= j. Matrices of this form

will be called Linde-De la Puente matrices.

We now show that any two matrices of this kind commute.

Theorem 3.4. Let A ∈ [2r, r]k1n , B ∈ [2s, s]k2n for any r, s ≤ 0 and aii = k1 ≥ 0,

bii = k2 ≥ 0 then

A⊗B = B ⊗A = k2 ⊗A⊕ k1 ⊗B.

Proof. For all i, j we have

(A⊗B)ij = aii ⊗ bij ⊕ aij ⊗ bjj ⊕
⊕

p/∈{i,j}

aip ⊗ bpj

= k1 ⊗ bij ⊕ k2 ⊗ aij ⊕
⊕

p/∈{i,j}

aip ⊗ bpj .
(3.13)
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We now argue that aip ⊗ bpj ≤ k1 ⊗ bij ⊕ k2 ⊗ aij . Indeed,

aip + bpj ≤ r + s ≤ max(2r, 2s) ≤ max(aij , bij) ≤ max(k1 + bij , k2 + aij).

Note that we used the well-known inequality r+s
2 ≤ max(r, s). Then we obtain:

(A⊗B)ij = k1 ⊗ bij ⊕ aij ⊗ k2 ⊕
⊕

p/∈{i,j}

aip ⊗ bpj

= k1 ⊗ bij ⊕ aij ⊗ k2
= (k2 ⊗A⊕ k1 ⊗B)ij

= (B ⊗A)ij ,

(3.14)

which shows the claim. �

Note that Linde and de la Puente obtained a special case of this result, for s = r

and k1 = k2 = 0.

We also observe the following commutativity property.

Theorem 3.5. Let A ∈ [2a, a]kn with a ≤ 0 and B = (bij) ∈ Rn×nmax . If 0 ≤ bij ≤ k
for all i, j ∈ [n] then A⊗B = B ⊗A.

Proof. For all i, j we have

(A⊗B)ij = aii ⊗ bij ⊕ aij ⊗ bjj ⊕
⊕

p 6∈{i,j}

aip ⊗ bpj

= k ⊗ bij ,
(3.15)

since a ≤ 0 ≤ bij ≤ k. Similarly, for all i and j

(B ⊗A)ij = bii ⊗ aij ⊕ bij ⊗ ajj ⊕
⊕

p 6∈{i,j}

bip ⊗ apj

= bij ⊗ k.
(3.16)

Hence A⊗B = B ⊗A. �

4. Protocols based on commuting matrices in tropical algebra

In this section, we discuss several implementations of public key exchange protocols

that use the new classes of commuting matrices in tropical algebra described in

Section 3. These implementations follow the idea of the tropical version of Stickel’s

protocol suggested by Grigoriev and Shpilrain [3], which we next recall.
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4.1. Tropical Stickel’s protocol of [3].

Protocol 1 (Tropical Stickel’s protocol of [3]).

Alice and Bob agree on public matrices A,B,W ∈ Rn×nmax . Then they exchange

messages as follows:

(1) Alice chooses two random tropical polynomials p1(x), p2(x) and sends U =

p1(A)⊗W ⊗ p2(B) to Bob.

(2) Bob chooses two random tropical polynomials q1(x), q2(x) and sends V =

q1(A)⊗W ⊗ q2(B) to Alice.

(3) Alice computes her secret key using a public key V which is obtained from

Bob and she has Ka = p1(A)⊗ V ⊗ p2(A).

(4) Bob also computes his secret key using Alice public key U and he obtains

Kb = q1(A)⊗ U ⊗ q2(B).

Note that both Alice and Bob using different public keys, i.e., public matrices V

and U respectively but since p1(A) ⊗ q1(A) = q1(A) ⊗ p1(A) and p2(B) ⊗ q2(B) =

q2(B)⊗p2(B), in the end they have the same secret keys Ka = Kb = p1(A)⊗q1(A)⊗
W ⊗ q2(B)⊗ p2(B).

4.2. Stickel’s protocol with quasi-polynomials. By Theorem 3.3, if A ∈ Rn×nmax

is a Jones matrix then its deformations A(α) and A(β) commute for any α, β : 0 ≤
α, β ≤ 1. Using this we can define a quasi-polynomial, where the role of monomials

is played by deformations.

Definition 11 (Quasi-polynomial). Let A ∈ Rn×nmax be a Jones matrix. Matrix B

is called a quasi-polynomial of A if

B =
⊕
α∈R

aα ⊗A(α)

for some finite subset R of rational numbers in [0, 1] and aα ∈ Rmax for α ∈ R.

The requirements that R consists of rational numbers and is finite are not neces-

sary in theory, but we have to impose them for practical implementation.

We now suggest another tropical implementation of Stickel’s protocol, where we

use tropical quasi-polynomials instead of tropical polynomials.

Protocol 2 (Stickel’s protocol using tropical quasi-polynomial).

Alice and Bob agree on some Jones matrices A,B ∈ Rn×nmax and an arbitrary matrix

W ∈ Rn×nmax .

(1) Alice chooses two random quasi-polynomials p′1(A), p′2(B) and computes U =

p′1(A)⊗W ⊗ p′2(B). Then Alice sends U to Bob.

11



(2) Bob chooses two random quasi-polynomials q′1(A), q′2(B) and computes V =

q′1(A)⊗W ⊗ q′2(B). Then Bob sends V to Alice.

(3) Alice and Bob compute their secret keys Ka = p′1(A) ⊗ V ⊗ p′2(B) and

Kb = q′1(A)⊗ U ⊗ q′2(B), respectively.

Since p′1(A)⊗ q′1(A) = q′1(A)⊗p′1(A) and p′2(B)⊗ q′2(B) = q′2(B)⊗p′2(B), we have

a common secret key Ka = Kb.

4.3. Protocols using [2r, r]kn. The protocols that we next describe are based on

Theorems 3.4 and 3.5.

Protocol 3. Alice and Bob agree on a public matrix W ∈ Rn×nmax .

(1) Alice chooses matrices A1 ∈ [2a, a]k1n and A2 ∈ [2b, b]k2n for some random

a, b < 0 and k1, k2 ≥ 0. Then Alice sends U = A1 ⊗W ⊗A2 to Bob.

(2) Bob chooses matrices B1 ∈ [2c, c]l1n and B2 ∈ [2d, d]l2n for some random

c, d < 0 and l1, l2 ≥ 0. Then Bob sends V = B1 ⊗W ⊗B2 to Alice.

(3) Alice computes the secret key Ka = A1 ⊗ V ⊗A2 = A1 ⊗B1 ⊗W ⊗B2 ⊗A2

and Bob computes the secret key Kb = B1⊗U⊗B2 = B1⊗A1⊗W⊗A2⊗B2.

Protocol 4. Alice and Bob agree on a public matrix W ∈ Rn×nmax .

(1) Alice chooses matrix A1 ∈ [2a, a]kn and sends k to Bob.

(2) Bob chooses matrix B2 ∈ [2b, b]ln and sends l to Alice.

(3) Alice chooses matrix A2 with entries in [0, l], computes U = A1 ⊗W ⊗ A2

and sends it to Bob.

(4) Bob chooses matrix B1 with entries in [0, k], computes V = B1 ⊗W ⊗ B2

and sends it to Alice.

(5) Alice computes the secret key Ka = A1 ⊗ V ⊗A2 = A1 ⊗B1 ⊗W ⊗B2 ⊗A2

and Bob computes the secret key Kb = B1⊗U⊗B2 = B1⊗A1⊗W⊗A2⊗B2.

For both protocols, since A1 ⊗ B1 = B1 ⊗ A1 and A2 ⊗ B2 = B2 ⊗ A2, it is

immediate that Alice and Bob have the same secret key Ka = Kb.

5. Security of Stickel’s protocol with tropical quasi-polynomials

5.1. Attacking tropical Stickel’s protocol. To break any implementation of

Stickel’s protocol, we can follow the idea of cryptanalysis of classical Stickel’s proto-

col suggested in [7]. Applying this idea to Protocol 1, an attacker commonly named

Eve, needs to find matrix X and Y such that the following conditions hold:

A⊗X = X ⊗A, B ⊗ Y = Y ⊗B,(5.1)

12



and

(5.2) X ⊗W ⊗ Y = U.

If Eve finds such X and Y then she can compute the key by multiplying V from

the left by X and from the right by Y . Then she will obtain

X ⊗ V ⊗ Y = X ⊗ q1(A)⊗W ⊗ q2(B)⊗ Y.

Since q1(A) commutes with X and q2(B) commutes with Y , we have

X ⊗ V ⊗ Y = q1(A)⊗X ⊗W ⊗ Y ⊗ q2(B)

= q1(A)⊗ U ⊗ q2(B) = Kb.

Kotov and Ushakov [5] observed that when we seek X and Y in the form of tropical

polynomials, solving this problem is reduced to solving a tropical one-sided system

where the variables satisfy certain conditions.

Equation (5.2) can be equivalently written as

(5.3)

D⊕
α,β=0

xα ⊗ yβ ⊗ (A⊗α ⊗W ⊗B⊗β − U) = E,

where E is a matrix of the same dimension as A or B with all entries equal to 0. As

we denote Tαβ = A⊗α ⊗W ⊗B⊗β − U , it is convenient to rewrite (5.3) as

(5.4)

D⊕
α,β=0

(xα ⊗ yβ ⊗ Tαβγδ ) = 0, ∀γ, δ ∈ [n].

If we denote zαβ = xα ⊗ yβ then we find that this is a system of tropical linear

one-sided equations (of the type “A ⊗ x = b”) with coefficients Tαβγδ and unknowns

zαβ , where pairs γδ play the role of rows and pairs αβ play the role of columns. Such

systems are considered, e.g., in [1], but here we have an additional requirement that

unknowns have a special structure: zαβ = xα ⊗ yβ = xα + yβ .

These ideas motivate the following attack suggested by Kotov and Ushakov [5].

The goal of this attack is to solve (5.4). Following the usual optimization notation,

we denote by arg min
γ,δ

(−Tαβγδ ) the set of pairs (γ, δ), at which the minimum of Tαβγδ is

attained.

Attack 1 (Kotov-Ushakov [5]).
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(1) Compute

cαβ = min
γ,δ

(−Tαβγδ )

Sαβ = arg min
γ,δ

(−Tαβγδ ).
(5.5)

(2) Among all minimal covers of [n] × [n] by Sαβ , that is, all minimal subsets

C ⊆ {0, . . . , D} × {0, . . . , D} such that

(5.6)
⋃

(α,β)∈C

Sαβ = [n]× [n].

find a cover for which the system

(5.7)

{
xα + yβ = cαβ , if (α, β) ∈ C,
xα + yβ ≤ cαβ if (α, β) /∈ C.

is solvable.

We now prove that Attack 1 actually works.

Theorem 5.1. Let A,B,W ∈ Rn×nmax and U be the message sent by Alice to Bob

in Protocol 1. If D is bigger than the maximal degree of any tropical polynomial

that can be used by Alice and Bob in that protocol, then the Kotov-Ushakov attack

yields

(5.8) X =

D⊕
α=0

xα ⊗A⊗α, Y =

D⊕
β=0

yβ ⊗B⊗β .

that satisfy X ⊗W ⊗ Y = U .

Proof. Since D is bigger than the maximal degree as any tropical polynomial used

by Alice and Bob, it is clear from the Protocol 1 that U = X ⊗W ⊗ Y where X

and Y satisfy (5.8) for some xα and yβ , for α, β ∈ {0, . . . , D}. Therefore, there exist

xα and yβ that satisfy (5.3) or, equivalently, (5.4). It is also clear that any xα and

yβ that solve (5.4) yield X and Y that satisfy (5.8) and X ⊗W ⊗ Y = U . Thus

the protocol can be broken by solving (5.4) and (with Tαβ defined using U that is

produced by the protocol) this system is solvable.

It remains to show that the Kotov-Ushakov attack actually finds a solution to

(5.4) (provided that a solution exists, which is the case).

Consider the system

(5.9)

D⊕
α,β=0

zαβ ⊗ Tαβγδ = 0, ∀γ, δ ∈ [n].
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According to the theory of A⊗ x = b, and namely [1] Theorem 3.1.1 and Corollary

3.1.2, we have

(1) If the solution exists then vector C = (cαβ) where cαβ = min
γ,δ

(−Tαβγδ ) is the

greatest solution.

(2) Vector Z = (zαβ) is a solution if and only if there exists a set C ⊆ {0, . . . , D}×
{0, . . . , D} such that (5.6) holds and zαβ = cαβ for all (α, β) ∈ C and zαβ ≤
cαβ for all (α, β).

Since zαβ = xα ⊗ yβ , for all α and β, it follows that checking the solvability of (5.4)

amounts to finding at least one system (5.7) that is solvable with C being a minimal

cover (i.e a set satisfying (5.6) that is minimal with respect to inclusion). This is

what Attack 1 actually does. �

Note that Theorem 5.1 was not formally stated and proved in [5].

Although the complexity of Attack 1 in terms of the maximal degree of polynomial

is non-polynomial, it is quite efficient when, for example, this maximal degree stays

bounded and the dimension of matrices is allowed to grow, see [5].

We now describe a version of Kotov and Ushakov attack that applies to Proto-

col 2 where we have tropical quasi-polynomials instead of polynomials. In this case,

instead of (5.1) we need to require that X, respectively Y , commute with any quasi-

polynomial of A, respectively of B. Obviously, it is then reasonable to seek X and

Y themselves in the form of quasi-polynomials.

5.2. Kotov and Ushakov attack on Protocol 2. We first select a big enough

finite subset T of rational numbers in [0, 1] such that, e.g., we have R ⊆ T with

certainty for any set R that can be used by Alice and Bob. Then we define

(5.10) X =
⊕
α∈T

xα ⊗A(α), Y =
⊕
β∈T

yβ ⊗B(β).

then using (5.2) we impose

X ⊗W ⊗ Y =
⊕
α,β∈T

xα ⊗A(α) ⊗W ⊗ yβ ⊗B(β)

=
⊕
α,β∈T

xα ⊗ yβ ⊗A(α) ⊗W ⊗B(β) = U.
(5.11)

Equation (5.11) can be equivalently written as

(5.12)
⊕
α,β∈T

xα ⊗ yβ ⊗ (A(α) ⊗W ⊗B(β) − U) = E,
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where E is a matrix of the same dimension as A or B with all entries equal to 0. As

we denote Tαβ = A(α) ⊗W ⊗B(β) − U , we can rewrite (5.12) as follows:

max
α,β∈T

(xα ⊗ yβ ⊗ Tαβγδ ) = 0, ∀γ, δ ∈ [n].

This system is very similar to (5.4): a system of the type “A⊗x = b” where the role

of unknowns is played by zαβ = xα + yβ . This leads us to the following attack:

Attack 2.

(1) Compute cαβ and Sαβ by (5.5), where Tαβ = A(α) ⊗ W ⊗ B(β) − U and

α, β ∈ T .

(2) Among the minimal sets C ⊆ T × T that satisfy (5.6) we seek those which

satisfy

(5.13)

{
xα + yβ = cαβ , if (α, β) ∈ C,
xα + yβ ≤ cαβ , if (α, β) /∈ C.

Thus the Kotov-Ushakov attack on the Protocol 2 is very similar to the original

one. The proof of the following theorem is omitted, since it is also very similar to

that of Theorem 5.1.

Theorem 5.2. Let A,B,W ∈ Rn×nmax and U be the message sent by Alice to Bob

in Protocol 2. If R ⊆ T for any set R that can be used by Alice and Bob in that

protocol, then the Kotov-Ushakov attack yields

(5.14) X =
⊕
α∈T

xα ⊗A(α), Y =
⊕
β∈T

yβ ⊗B(β).

that satisfy X ⊗W ⊗ Y = U .
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We implemented Attack 2 in GAP by modifying the existing code from [5]. Fig-

ure 1 and Figure 2 show how the the average computation time grows in practice as

we increase the maximal degree of monomials in tropical polynomial (Protocol 1) or

the maximal denominator of the degree of monomials in tropical quasi-polynomial

(Protocol 2).

Figure 1. (a) Dependence of average computation Attack 1 on the

maximal degree of tropical polynomials and (b) running time for

generating Ka or Kb in Protocol 1

On one hand, we see that the average computation time of the Kotov-Ushakov

attack grows quite rapidly with the increase of the maximal degree of tropical poly-

nomials or the maximal denominator of tropical quasi-polynomials. On the other

hand, this increase is not so dramatic, and a possible reason for this is the slow

growth of the average number of tested minimal covers, as reported in [5].

6. Security of protocols using Linde – De la Puente matrices

6.1. Attacks on Protocol 3 in some special cases. Recall that Alice’s secret

key is Ka = A1 ⊗ V ⊗A2 = A1 ⊗B1 ⊗W ⊗B2 ⊗A2. Using Theorem 3.4, we obtain

Ka = (l1 ⊗A1 ⊕ k1 ⊗B1)⊗W ⊗ (k2 ⊗B2 ⊕ l2 ⊗A2)

= (l1 ⊗ k2 ⊗A1 ⊗W ⊗B2)⊕ (l1 ⊗ l2 ⊗A1 ⊗W ⊗A2)

⊕ (k1 ⊗ k2 ⊗B1 ⊗W ⊗B2)⊕ (k1 ⊗ l2 ⊗B1 ⊗W ⊗A2)

= (l1 ⊗ l2 ⊗ U)⊕ (k1 ⊗ k2 ⊗ V )⊕ (l1 ⊗ k2 ⊗A1 ⊗W ⊗B2)

⊕ (k1 ⊗ l2 ⊗B1 ⊗W ⊗A2).

(6.1)
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Figure 2. (a) Dependence of average computation Attack 2 on the

maximal degree of tropical polynomials and (b) running time for

generating Ka or Kb in Protocol 2

Let us discuss how Eve can find l1⊗ l2 and k1⊗ k2 and hence recover the first two

terms of the above expression (underlined).

Lemma 1. We have k1 ⊗ k2 = ust ⊗w−st and l1 ⊗ l2 = vst ⊗w−st, where s, t is any

pair of indices for which maxi,j wij = wst.

Proof. We have

ust = k1 ⊗ wst ⊗ k2 ⊕
⊕

(s′,t′)6=(s,t)

(A1)ss′ ⊗ ws′t′ ⊗ (A2)t′t,

vst = l1 ⊗ wst ⊗ l2 ⊕
⊕

(s′,t′)6=(s,t)

(B1)ss′ ⊗ ws′t′ ⊗ (B2)t′t.
(6.2)

However, we also have (A1)ss′ ≤ k1, (A2)t′t ≤ k2, (B1)ss′ ≤ l1, (B2)t′t ≤ l2 and

ws′t′ ≤ wst, and therefore ust = k1 ⊗wst ⊗ k2 and vst = l1 ⊗wst ⊗ l2, and hence the

claim follows. �

Using Lemma 1 the attacker can recover l1 ⊗ l2 ⊗ U ⊕ k1 ⊗ k2 ⊗ V which is the

underlined part of Ka = Kb. Let us consider the following special case when this

allows the attacker to recover the whole key.

Definition 12 (W is vanishing). W is called vanishing in A1 ⊗ W ⊗ A2 and

B1 ⊗W ⊗B2 if A1 ⊗W ⊗A2 = A1 ⊗A2 and B1 ⊗W ⊗B2 = B1 ⊗B2.
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Theorem 6.1 (Attack when W is vanishing). If W is vanishing in A1 ⊗W ⊗A2

and B1 ⊗W ⊗B2, then

(6.3) Ka = Kb = l1 ⊗ l2 ⊗ U ⊕ k1 ⊗ k2 ⊗ V,

where k1 ⊗ k2 = ust ⊗ w−st, and l1 ⊗ l2 = vst ⊗ w−st, and s, t is any pair of indices for

which maxi,j wij = wst.

Proof. Let U = A1 ⊗W ⊗A2 = A1 ⊗A2 and V = B1 ⊗W ⊗B2 = B1 ⊗B2. In this

case Kb = B1⊗A1⊗A2⊗B2 = Ka = K. Repeatedly applying Theorem 3.4 we find

that

K = k2 ⊗ l1 ⊗ l2 ⊗A1 ⊕ k1 ⊗ l1 ⊗ l2 ⊗A2

⊕ k1 ⊗ k2 ⊗ l2 ⊗B1 ⊕ k1 ⊗ k2 ⊗ l1 ⊗B2

= l1 ⊗ l2 ⊗ U ⊕ k1 ⊗ k2 ⊗ V.

The expressions for k1 ⊗ k2 and l1 ⊗ l2 follow from Lemma 1. �

In our experiments, the case of vanishing W was not typical, occurring in no more

than about 1% experiments. When the range of the entries of W is much bigger

than that of other matrices (A(1), A(2), B(1) and B(2)), it is more natural to assume

that the following property holds.

Definition 13 (W is dominant). Let A(1) = (a
(1)
ij ), A(2) = (a

(2)
ij ), B(1) = (b

(1)
ij )

and B(2) = (b
(2)
ij ) be n× n matrices over Rmax. Matrix W = (wij) ∈ Rn×nmax is called

dominant in A(1) ⊗W ⊗A(2), B(1) ⊗W ⊗B(2), A(1) ⊗W ⊗B(2), A(1) ⊗W ⊗B(2),

if the following property

(A(1) ⊗W ⊗A(2))il = a
(1)
is ⊗ wst ⊗ a

(2)
tl ,

(B(1) ⊗W ⊗B(2))il = b
(1)
is ⊗ wst ⊗ b

(2)
tl ,

(A(1) ⊗W ⊗B(2))il = a
(1)
is ⊗ wst ⊗ b

(2)
tl ,

(B(1) ⊗W ⊗A(2))il = b
(1)
is ⊗ wst ⊗ a

(2)
tl

(6.4)

holds for all i, l and some s and t such that wst = maxi,j wij .

It turns out that we also can reconstruct the whole key in this case.

Theorem 6.2 (Attack when W is dominant). Suppose that W is dominant in

A(1) ⊗W ⊗A(2), B(1) ⊗W ⊗B(2), A(1) ⊗W ⊗B(2) and B(1) ⊗W ⊗A(2). Then the

entries of the key K = (kil) can be found as follows:

(6.5) kil = w−st ⊗ (vst ⊗ uil ⊕ ust ⊗ vil ⊕ uit ⊗ vsl ⊕ vit ⊗ usl).
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Proof. Using (6.1) and (6.4), we obtain for the entries kil that

kil = (l1 ⊗ l2 ⊗ uil)⊕ (k1 ⊗ k2 ⊗ vil)⊕ (l1 ⊗ k2 ⊗ a(1)is ⊗ wst ⊗ b
(2)
tl )

⊕ (k1 ⊗ l2 ⊗ b(1)is ⊗ wst ⊗ a
(2)
tl ).

(6.6)

The attacker can compute l1 ⊗ l2 and k1 ⊗ k2 as in Lemma 1: l1 ⊗ l2 = vst ⊗ w−st
and k1 ⊗ k2 = ust ⊗ w−st. To compute the rest, we observe that by (6.4)

uit = a
(1)
is ⊗ wst ⊗ a

(2)
tt , usl = a(1)ss ⊗ wst ⊗ a

(2)
tl ,

vit = b
(1)
is ⊗ wst ⊗ b

(2)
tt , vsl = b(1)ss ⊗ wst ⊗ b

(2)
tl ,

and recall that a
(2)
tt = k2, a

(1)
ss = k1, b

(2)
tt = l2 and b

(1)
ss = l1. Using this we then

obtain that

uit ⊗ w−st = a
(1)
is ⊗ k2, usl ⊗ w−st = k1 ⊗ a(2)tl ,

vit ⊗ w−st = b
(1)
is ⊗ l2, vsl ⊗ w−st = l1 ⊗ b(2)tl .

Substituting this into (6.6) we obtain

kil = vst ⊗ w−st ⊗ uil ⊕ ust ⊗ w−st ⊗ vil ⊕ uit ⊗ w−st ⊗ vsl ⊕ vit ⊗ w−st ⊗ usl,

which can be simplified to (6.5). �

We also considered the formulae (6.3) and (6.5) as heuristic attacks on Protocol 3.

To analyze the success of these attacks we considered the following two parameters:

1) the success rate, i.e., the percentage of instances where the secret key Ka = Kb

is exactly equal to expression (6.3) or (6.5), 2) the similarity rate: the average

percentage of the entries of the matrix computed by (6.3) or (6.5) which are equal

to those in the secret key Ka = Kb in the case of “no success” when the matrix

computed by (6.3) or (6.5) does not coincide with the key. We performed 10000

times experiments for matrices of dimensions 5, 20, 30 and 40 and with entries

of W randomly selected in various ranges using Matlab R2018a. For the attack

based on (6.5), the results of our experiments are shown in Table 1. As we would

expect, both the average success rate and the average similarity rate grow with

the range of W . Also, the average success rate rapidly decreases with dimension,

while the change of similarity rate is rather insignificant. For the entries of W

randomly selected in [0, 100000] and other parameters within [−100, 100] and the

given four dimensions, the average success rate for the attack based on (6.5) becomes

overwhelming, indicating that in this case W is highly likely to be dominant.
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Dimension of matrices 5 20 30 40

Success rate, entries of

W in [−5, 5]

17.81% 0.03% 0% 0%

Similarity rate, entries

of W in [−5, 5]

90.55% 86.17% 85.99% 85.18%

Success rate, entries of

W in [−50, 50]

45.44% 4.2% 1.59% 1.17%

Similarity rate, entries

of W in [−50, 50]

94.62% 94.18% 94.30% 94.47%

Success rate, entries of

W in [−100, 100]

66.8% 13.51% 6.99 % 3.62%

Similarity rate, entries

of W in [−100, 100]

97.41% 97.31% 97.53% 97.58%

Success rate, entries of

W in [−500, 500]

92.5% 35.13% 26.61% 22.17%

Similarity rate, entries

of W in [−500, 500]

98.38% 96.63% 97.23% 97.96%

Success rate, entries of

W in [−1000, 1000]

96.57% 44.88% 33.97% 29.02%

Similarity rate, entries

of W in [−1000, 1000]

99.70% 95.32% 94.40% 94.91%

Success rate, entries of

W in [−10000, 10000]

99.72% 85.87% 72.20% 59.51%

Similarity rate,

entries of W in

[−10000, 10000]

99.97% 98.35% 96.50% 94.44%

Success rate, en-

tries of W in

[−100000, 100000]

99.99% 98.68% 96.35% 92.66%

Similarity rate,

entries of W in

[−100000, 100000]

99.99% 99.87% 99.56% 99.15%

Table 1. Dependency of the success and similarity rate on dimen-

sion and the range of entries of W for the attack based on (6.5).

Parameters a, b are in the range [−20,−1], parameters c, d are in

the range [−100,−60], and k1, k2, l1, l2 are random positive num-

bers in the range [0, 100].
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The performance of the attack based on (6.3) for W in all ranges shown in Table 1

was quite poor: in all series of 10000 experiments, the average success rate did not

exceed 1.2% and the average similarity rate (among the unsuccessful cases) did not

exceed 2.1%.

In view of the success of simple heuristic attack based on (6.5), for which we

observed at least 85% similarity rate between the key and the outcome of this attack

in all our series of 10000 experiments, it is still challenging to suggest W that would

be in some sense guaranteed to withstand this attack and (6.3) and for which no

other obvious heuristic attacks would work. However, on the attacker’s side we still

would like to have an attack that can reconstruct Ka = Kb with certainty. Such

attack will be developed in the next subsections.

6.2. Generalized Kotov-Ushakov attack. Previous subsection yields a simple

but efficient enough heuristic attack on Protocol 3 based on (6.5). We now discuss

how the Kotov-Ushakov attack can be generalized to apply to both Protocol 3 and 4.

The main idea is to use tropical identity matrix and tropical elementary matrices

to generate the matrices from set [2r, r]kn, so that they will play the role of matrix

powers in the Kotov-Ushakov attack.

We first describe a generalization of the Kotov-Ushakov attack, which can be

then specialized to both protocols. In the generalized Kotov-Ushakov attack we seek

matrices X and Y such that

X =
⊕
α∈A

xα ⊗Aα, Y =
⊕
β∈B

yβ ⊗Bβ ,

X ⊗W ⊗ Y = U,

xα ∈ Xα(s), yβ ∈ Yβ(t).

(6.7)

Here {Aα : α ∈ A} and (respectively) {Bβ : β ∈ B} are the finite sets of matrices

such that any matrix that can be used by Alice and (respectively) by Bob can be

represented as in the first line of (6.7), provided that the coefficients xα and yβ
satisfy the conditions written in the last line of (6.7). In these conditions, Xα(s) and

Yβ(t) are subsets of R whose specification depends on vectors s and t of unknown

parameters.

The solution of (6.7) is based on the same ideas from [5] that were already used

in Subsection 5.2. After we substitute the first line of (6.7) into the decomposition

problem X ⊗W ⊗ Y = U and denote

(6.8) Tαβ = Aα ⊗W ⊗Bβ − U,

the decomposition problem reduces to solving the system

(6.9) max
α∈A,β∈B

(xα ⊗ yβ ⊗ Tαβγδ ) = 0, ∀γ, δ ∈ [n].
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Here, unlike in Subsection 5.2, xα and yβ also satisfy the conditions in the last line

of (6.7). Our attack then aims to solve equation (6.9) with these conditions.

Attack 3 (Generalized Kotov-Ushakov).

(1) For all α ∈ A and β ∈ B, compute

cαβ = min
γ,δ∈[n]

(−Tαβγδ )

Sαβ = arg min
γ,δ∈[n]

(−Tαβγδ ).
(6.10)

(2) Among all minimal covers of [n] × [n] by Sαβ , that is, all minimal subsets

C ⊆ A× B such that

(6.11)
⋃

(α,β)∈C

Sαβ = [n]× [n],

find a cover for which the system

(6.12)


xα + yβ = cαβ , if (α, β) ∈ C,
xα + yβ ≤ cαβ , if (α, β) /∈ C,
xα ∈ Xα(s), yβ ∈ Yβ(t)

is solvable.

Note that we do not generally know the nature and the complexity of the condi-

tions xα ∈ Xα(s), yβ ∈ Yβ(t), and vectors s and t can themselves be constrained.

However, in the specifications of Attack 3 that will follow in the next subsections,

system (6.12) is always linear, so that its solvability can be checked by the simplex

method. The practical solvability of problem (6.12) depends on how Xα(s) and Yβ(t)

are specified. In both cases considered below these sets are intervals or points, so

that problem (6.12) is still a linear programming problem.

We now present a theorem about the validity of Attack 3.

Theorem 6.3. If (6.7) is solvable, then Attack 3 yields a solution to that system.

Proof. As in the proof of Theorem 5.1, we consider the system

(6.13)
⊕

α∈A, β∈B

zαβ ⊗ Tαβγδ = 0 γ, δ ∈ [n],

which is a slight generalization of (5.9). The validity of Attack 3 is then implied by

the theory of A⊗ x = b ([1] Theorem 3.1.1 and Corollary 3.1.2), taking into account

that zαβ = xα ⊗ yβ , xα ∈ Xα(s) and yβ ∈ Yβ(t). �
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6.3. Kotov-Ushakov attack on Protocol 3. In Protocol 3, we have A1 ∈ [2a, a]k1n
and A2 ∈ [2b, b]k2n with unknown nonpositive a, b, and unknown nonnegative k1 and

k2. Using tropical elementary matrices as Aα and Bβ with α and β being pairs of

indices from [n], we can represent any matrix in [2a, a]k1n and [2b, b]k2n as in the first

line of (6.7). However, for this we also need to restrict the coefficients xα to belong

to [2a, a] for some a ≤ 0 if α = (i, j) with i 6= j or to be equal to some k1 ≥ 0 if i = j.

Similarly, the coefficients yβ should belong to [2b, b] for some b ≤ 0 if β = (i, j) with

i 6= j or to be equal to some k2 ≥ 0 if i = j.

Formally, we set Aα and Bβ for α = β = (i, j) to be:

(6.14) Aα = Aij = Bβ = Bij = Eij ,

where (i, j) ∈ [n]2.

Sets X and Y satisfy

(6.15) X(i,j)(a, k) =

{
[2a, a], i 6= j
{k}, i = j.

(6.16) Y(i,j)(b, l) =

{
[2b, b], i 6= j
{l}, i = j,

where k, l ≥ 0 and a, b ≤ 0.

We now write, essentially, a specialization of Attack 3 to Protocol 3 in the case

where A and B both equal to the set of elementary matrices (which is in one-to-one

correspondence with [n]2).

Attack 4.

(1) For all α = (i, j) ∈ [n]2 and β = (s, t) ∈ [n]2, compute

cijst = cαβ = min
γ,δ∈[n]

(−Tαβγδ )

Sijst = Sαβ = arg min
γ,δ∈[n]

(−Tαβγδ ).
(6.17)

where Aα, Bβ are defined by (6.14) and Tαβ by (6.8) (where α = (i, j),

β = (s, t) with i, j, s, t ∈ [n]).

(2) Among the minimal subsets C ⊆ [n]2 × [n]2 such that

(6.18)
⋃

(α,β)∈C

Sαβ = [n]× [n],
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find a cover for which the system

xij + yst = cijst, for (i, j, s, t) ∈ C
xij + yst ≤ cijst, otherwise,

2a ≤ xij ≤ a, 2b ≤ yst ≤ b, ∀i 6= j, s 6= t,

xii = k1, yss = k2, ∀i, s,
a, b ≤ 0, k1, k2 ≥ 0.

(6.19)

is solvable.

Note that this linear system of equalities and inequalities whose solvability can be

checked by the simplex method.

We now explain why the attack is valid.

Theorem 6.4. Let W ∈ Rn×nmax and let U be the message sent by Alice to Bob in

Protocol 3. Then Attack 4 yields matrices X ∈ [2a, a]k1n and Y ∈ [2b, b]k2n for some

a, b ≤ 0 and k1, k2 ≥ 0 that satisfy X ⊗W ⊗ Y = U .

Proof. In this case we have to solve system (6.7) with Aα and Bβ being tropical

elementary matrices and with A = B being the set of all such matrices, and with the

sets that contain xα and yα taking the forms of (6.15) and (6.16) respectively, also

with the conditions a, b ≤ 0 and k1, k2 ≥ 0 on the parameters of these sets. This

system is the same as X ⊗W ⊗ Y = U where it is required that X ∈ [2a, a]k1n and

Y ∈ [2b, b]k2n for some a, b ≤ 0 and k1, k2 ≥ 0. The latter system has a solution since

U is the message sent by Alice to Bob in Protocol 3.

Since (6.12) in this case becomes (6.19), Attack 4 is indeed a specialization of

Attack 3, and by Theorem 6.3 it finds a solution to the above described specialization

of system (6.7), and hence it finds Linde-De la Puente matrices X and Y which satisfy

X ⊗W ⊗ Y = U . �

6.4. Kotov-Ushakov attack on Protocol 4. In Protocol 4, we have A1 ∈ [2a, a]kn
and A2 ∈ [0, l]n (where [0, l]n is the set of n× n matrices whose all entries belong to

[0, l]) with unknown nonpositive a and unknown nonnegative k and l. Using tropical

elementary matrices and I as Aα and only tropical elementary matrices as Bβ with α

and β being pairs of indices from {1, . . . , n}, we can represent any matrix in [2a, a]kn
and [0, l]n as in the first line of (6.7). However, for this we also need to restrict the

coefficients xα to belong to [2a, a] for some a ≤ 0 if α = (i, j) with i 6= j or to be

equal to k if i = j. The coefficients yβ should belong to [0, l] for any β = (i, j) with

i, j ∈ [n].

Formally, we set Aα and Bβ for each α = β = (i, j) to be the tropical elementary

matrix Eij . Here again (i, j) ∈ [n]2.
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Sets X and Y satisfy

(6.20) X(i,j)(a) =

{
[2a, a], i 6= j
{k}, i = j.

(6.21) Y(i,j) = [0, l] ∀i, j.

Observe that k and l are not parameters in this case, since Alice and Bob are sending

them to one another, so we have to assume that they can be intercepted by Eve.

However, a is an unknown parameter satisfying a ≤ 0.

Hence we suggest the following attack.

Attack 5.

(1) Compute cαβ = cijst and Sαβ = Sijst by (6.17), where Aα and Bβ are defined

by (6.14) and Tαβ by (6.8) for α = (i, j) and β = (s, t) with i, j, s, t ∈ [n].

(2) Among the minimal sets C ⊆ [n]2 × [n]2 that satisfy (6.18) we seek those

which satisfy

xij + yst = cijst, for (i, j, s, t) ∈ C
xij + yst ≤ cijst, otherwise,

2a ≤ xij ≤ a, ∀i 6= j, xii = g,∀i
0 ≤ yst ≤ h ∀s, t, a ≤ 0.

(6.22)

Note that this is a linear system of equalities and inequalities whose solvability

can be checked by the simplex method. The proof of the validity of this attack is

similar to that of Theorem 6.4 and is omitted.

7. Conclusions and further research

Using the results previously obtained in [2] and [6] and extending them, we de-

scribed two useful classes of commuting matrices in tropical algebra and suggested

some new implementations of Stickel’s protocol based on them. For one of these im-

plementations we developed two simple attacks which, strictly speaking, work only

in very special situations but one of them can be rather successfully used as heuris-

tic attack in a general situation. We also showed how the Kotov-Ushakov attack

can be generalized to apply to all of our protocols. We analyzed the performance of

this attack on the tropical Stickel protocol suggested by [3] and our new modification

that uses quasi-polynomials. We conclude that the Kotov-Ushakov attack works well

when the number of generators (Aα and Bβ) is limited, but the complexity quickly

grows as the number of these generators increases. This means that the Kotov-

Ushakov attack is not really so successful for big D in the tropical Stickel protocol
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of [3] (Protocol 1) as well as when too large subsets of rational numbers in [0, 1] are

used in the protocol with quasi-polynomials (Protocol 2). We also do not expect it

to be successful for large n in the protocols with [2r, r]kn matrices (Protocols 3 and 4).

Therefore, it still makes sense to search for alternative attacks on our new protocols.

For Protocol 3, since at least one rather successful heuristic attack has been found,

it is neccessary to look for a class of matrices W that will safeguard against such

attacks.

Intuitively, matrix commutativity in tropical algebra should be more common than

in the usual algebra and it is a promising topic of research of independent interest.

Besides that, some new protocols using tropical algebra have been recently sug-

gested in [4]. Unlike the previous tropical implementations of Stickel protocol, these

new protocols use more sophisticated algebraic tools such as semi-direct product, and

therefore they are immune to Kotov-Ushakov attack and present a new interesting

object of study.
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