
On the α Value of Polynomials in the Tower

Number Field Sieve Algorithm

Aurore Guillevic* and Shashank Singh†

*Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
†Indian Institute of Science Education and Research Bhopal, Bhopal, India

August 1, 2019

Abstract

In this paper, we provide a notable step towards filling the gap between
theory (estimates of running-time) and practice (a discrete logarithm record
computation) for the Tower Number Field Sieve (TNFS) algorithm. We
propose a generalisation of ranking formula for selecting the polynomials
used in the very first step of TNFS algorithm. For this we provide a
definition and an exact implementation (Magma and SageMath) of the
α-function. This function measures the bias in the smoothness probability
of norms in number fields compared to random integers of the same size.
We use it to estimate the yield of polynomials, that is the expected number
of relations, as a generalisation of Murphy’s E function, and finally the
total amount of operations needed to compute a discrete logarithm with
TNFS algorithm in the targeted fields.

This is an improvement of the earlier work of Barbulescu and Duquesne
on estimating the running-time of the algorithm. We apply our estimates
to a wide size range of finite fields GF(pn), for small composite n =
12, 16, 18, 24, that are target fields of pairing-friendly curves.

1 Introduction

The hardness of discrete logarithm computation in finite fields is a the heart
of many cryptosystems since the introduction of the Diffie-Hellman problem.
Elliptic curves now replaced finite fields in Diffie-Hellman based protocols,
however this setting is still widely used in pairing-based cryptography, where
protocols use bilinear maps. These maps are available on a subset of well-chosen
elliptic curves named pairing-friendly. Typically, a pairing maps two points
from two distinct subgroups of `-torsion of an elliptic curve E/Fq to a finite
field extension Fqk . The protocol relies on the hardness of computing discrete
logarithms on the elliptic curve side and on the finite field side.

Usually, to improve the pairing efficiency, several implementation choices
were made, the most popular until 2015 being a Barreto-Naehrig curve whose
target field is Fp12 , and the characteristic has the special property of satisfying
p = 36u4 + 36u3 + 24u2 + 6u + 1, where u is some integer. One widely used
sparse seed was u = −262 − 255 − 1, so that p is a 254-bit prime, and the elliptic
curve E/Fp : y2 = x3 + 2 has prime order.

1

In recent years, new advances have been made in computing discrete log-
arithms in non-prime finite fields, the peak of improvements being a quasi-
polynomial time algorithm in small characteristic, in 2014. In medium character-
istic, the major improvements are variants of the tower number field sieve (TNFS)
that promise to be very efficient for finite fields having non-prime subfields of
appropriate size. These new theoretical developments in medium-characteristic
fields are of first importance for pairing-based cryptography. The most popular
implementations used to include a 3072-bit finite field GF(p12), particularly
subject to the new special TNFS algorithms.

In 2016, Kim and Barbulescu published a new variant of the Tower Number
Field Sieve algorithm [30], that improved on the previous TNFS algorithm [9]
in the case where the extension degree was composite. Combined with Joux
and Pierrot Special-NFS variant [27], this reduced considerably the asymptotic
complexity of a discrete logarithm computation in finite fields of composite
extension degree and special characteristic, typically a target field of Barreto-
Naehrig curve.

In this paper, we study the cost of the STNFS algorithm in the cases of
pairing-friendly fields. For obtaining an accurate estimate, we generate optimised
parameters as for running a real-world computation, and then simulate the
STNFS algorithm with these parameters. Our aim is to provide a better
estimate of the running-time of these new algorithms, since an implementation
is not available for now (it would require a tremendous effort, and first, many
algorithmic number theory issues need to be fixed).

Our contribution is twofold: first we provide algorithms to compute better
parameters (alpha-value), together with Magma and SageMath implementations.
This is the first step towards a complete implementation of the Tower-NFS
algorithm. Murphy’s E value can also be used to estimate the yield of polynomials
and as a byproduct of our work, for some chosen popular pairing-friendly curves,
we run the estimates for a large interval of parameter sizes (pk), to obtain
an overview of the way the algorithm scales for fixed extension degree k and
increasing characteristic p. While we were polishing the present work, Barbulescu,
El Mrabet and Ghammam posted a preprint [11] on security estimates. We have
a different approach here.

Organisation of the paper. In Sections 2 and 3 we recall the NFS and
TNFS algorithms. Section 4 presents the Murphy-α function for NFS and our
generalisation to the TNFS setting. The implementation is explained in Section 5.
Section 6 generalises Murphy E ranking function of polynomials to the TNFS
setting and explains our simulation algorithm. Sections 7 present our results for
finite fields of pairing-friendly curves.

2 Number Field Sieve

The The number field sieve (NFS) is an index calculus algorithm for computing
discrete logarithm problem in the finite field FQ (say), where Q = pn for some
prime p. It consists of following four main phases:

1. Polynomial Selection and Initial Setup

2. Relation Collection (Sieving)

2

3. Linear Algebra

4. Individual Discrete Logarithm (Descent) and Final Value

2.1 Polynomial Selection and Initial Setup

This is an important step of the NFS algorithm. It determines the overall cost
of the algorithm. The basic aim of this step is to select two irreducible integer
polynomials f(X) and g(X) having a common irreducible factor φ(X) of degree
n modulo p i.e., gcd(f(X), g(X)) = φ(X) (mod p). Additionally, we expect the
polynomials to have some nice properties, the details of which will be discussed
in the Section 4. The choice of these polynomials, i.e. (f, g), provides with us
the following commutative diagram, given in the Figure 1.

Z[X]

Z[X]/(f(X)) Z[X]/(g(X))

Fp[X]/(φ(X))Fpn = = Fp(ω)

mod (p, φ(X)) mod (p, φ(X))

Figure 1: Commutative diagram for NFS

In the diagram given in Figure 1, Z[X]/(f(X)) (respectively Z[X]/(g(X)))
is an order in the Number Field Kf (respectively Kg), generated by f(X)
(respectively g(X)). The actual computations are carried over to the maximal
ordersOf andOg of Kf and Kg respectively. Let αf := X (mod f(X)), αg := X
(mod g(X)), ω := X (mod φ(X)) and `d(f) represents the leading coefficient of
the polynomial f(X). For a chosen bound B, we set the factor base F = Ff ∪Fg,
where

Ff =

a :
a is a prime ideal of Of with norm ≤ B
or a prime ideal above a prime factor of `d(f)
or a prime ideal above index ideal [Of : Z[αf]]

and Fg is similarly defined with respect to the polynomial g(X).

Remark 1. By the abuse of notation, we have used X for the polynomials defined
over integers as well as over a finite field Fp.
Remark 2. A factor base, in an index calculus algorithm, is usually defined as a
subset of the cyclic group of Z/pZ. In the above, this subset is identified by the
prime ideals of F through the mapping, given in the commutative diagram. We
provide more detail later in the Section 2.2.

3

2.2 Relation Collection

In this step linear relations between the logarithms of field elements, corre-
sponding to the factor base, are generated. A set of random polynomials
T (X) = a + bX ∈ Z[X] with coefficients a, b ≤ A for some chosen bound A
are considered. We call a polynomial a + bX smooth, if the principal ideals
(a+ bαf)Of and (a+ bαg)Og can be factored into the elements of Ff and Fg
respectively i.e.,

(a+ bαf)Of =
∏

a∈Ff

ae(a) and (a+ bαg)Og =
∏
b∈Fg

be(b).

Let hf and hg be the class number of the number fields Kf and Kg respectively.
We have

((a+ bαf)Of)
hf =

 ∏
a∈Ff

ae(a)

hf

,

i.e. ((a+ bαf))
hf Of =

∏
a∈Ff

(
ahf
)e(a)

. (2.1)

The ideal ahf is a principal ideal, let δa be its generator i.e., ahf = δaOf . Thus
Equation (2.1) can be written as

((a+ bαf))
hf Of =

 ∏
a∈Ff

(δa)
e(a)

Of .
Converting the equality of principal ideals into the elements, we get

((a+ bαf))
hf = u ·

 ∏
a∈Ff

(δa)
e(a)

 (2.2)

for some unit u ∈ O?f . By the Dirichlet’s Unit Theorem, we know that

O?f = U × ZrR+rC−1

where U = 〈u0〉 is a finite cyclic group consisting of all the roots of unity in
Kf , rR is the number of real embeddings of Kf in R, and rC is the number of
complex embeddings of Kf in C. Let r = rR + rC − 1 and u1, u2, · · · , ur ∈ Of
such that,

u = u
e(u0)
0

r∏
i=1

u
e(ui)
i . (2.3)

The {ui} are called the fundamental system of units for Kf .
Substituting the value from Equation (2.3) to Equation (2.2), we get

((a+ bαf))
hf = u

e(u0)
0

r∏
i=1

u
e(ui)
i ·

 ∏
a∈Ff

(δa)
e(a)

 (2.4)

4

Let us denote the mapping from Z[X]/(f(X)) (⊂ Of) to Fpn by ψf : Of 7→ Fpn .
We have ψf (a+ bαf) = a+ bω. Applying ψf to Equation (2.4), we get

((a+ bω))
hf = ψf (u0)e(u0)

r∏
i=1

ψf (ui)
e(ui) ·

 ∏
a∈Ff

(ψf (δa))
e(a)

 . (2.5)

Equation (2.5) is a multiplicative relation involving the elements of finite field
only. The field element identified with the factor base element a ∈ Ff is ψf (δa)
and this is what we tried to explain in the Remark 2 above.

Taking logarithm on both sides of Equation (2.5) and dividing by hf (we
assume that gcd(hf , `) = 1, where ` | pn − 1 is the order of the subgroup
considered to compute discrete logarithms) we get,

log ((a+ bω)) =

r∑
i=0

e(ui)
log (ψf (ui))

hf
+
∑
a∈Ff

e(a)
log (ψf (δa))

hf
. (2.6)

Note that the quantities
log(ψf (ui))

hf
are some fixed constants and they will appear

in every equations, we should not bother about what they are. On the other

hand each quantity
log(ψf (δa))

hf
is related to the factor base element a, we call it

virtual logarithm corresponding to a.
Similarly, for the field Kg, let ψg : Og 7→ Fpn with ψg(a+ bαg) = a+ bω and

Og = V × Zs, where V = 〈v0〉. Let {vi}si=1 be the fundamental system of units
and hg be the class number of Kg. We will have (assuming gcd(hg, `) = 1 where
` | pn − 1),

log ((a+ bω)) =

s∑
i=0

e(vi)
log (ψg(vi))

hg
+
∑
b∈Fg

e(b)
log (ψg(δb))

hg
. (2.7)

From Equation (2.6) and Equation (2.7), we get

r∑
i=0

e(ui)
log (ψf (ui))

hf
+
∑
a∈Ff

e(a)
log (ψf (δa))

hf

=

s∑
i=0

e(vi)
log (ψg(vi))

hg
+
∑
a∈Fg

e(b)
log (ψg(δb))

hg
. (2.8)

The above Equation (2.8) is a valid relation, modulo ` where gcd(hfhg, `) = 1
and ` | pn − 1, involving the virtual logarithms of factor base elements and
(r + s + 2) extra fixed elements. The availability of such a relation is due to
the assumptions that the chosen polynomial T (X) = a+ bX is smooth (in the
sense defined earlier) and the fundamental system of units for both the number
fields are available with us. The smoothness of T (X) is ensured over the random
choices of its coefficients. In practice, the fundamental system of units, i.e., the
generators of unit groups of each number field is often not available with us.
This difficulty is overcome by using the concept called Schirokauer’s maps. The
logarithm in finite field Fpn is defined modulo pn − 1 and pn − 1 is composite.
Thanks to the Chinese Remainder Theorem, it would be enough to compute
logarithms modulo co-prime factors of pn − 1. The discrete logarithm modulo

5

small factors of pn − 1 can be computed using Pollard’s rho algorithm. Let ` be
a (large) prime factor of pn − 1. Schirokauer observed that if we are concerned
about the discrete logarithm modulo `, then it is enough to write a relation
which is valid modulo `. For this case he has proposed the generators of units
and its corresponding exponents in terms of the coefficients of T (X) i.e., a and
b. We skip the details of Schirokauer’s maps and refer to the paper [40] for the
interested ones.

Using the Schirokauer’s maps, Equation (2.8) can be written as

r∑
i=0

λi,f (a+ bαf)log (ψf (u∗i)) +
∑
a∈Ff

e(a)
log (ψf (δa))

hf

=

s∑
j=0

λj,g(a+ bαg)log (ψg(v
∗
i)) +

∑
a∈Fg

e(b)
log (ψg(δb))

hg
(mod `), (2.9)

where {u∗i } and {v∗j } are some units in Kf and Kg respectively and λi,f and λj,g
are easily computable functions called Schirokauer maps modulo ` for Kf and Kg

respectively. We compute more than #F + r + s+ 2 such independent relations
by randomly trying with different polynomials T (X). Note that we have taken
T (X) to be linear here, but nothing stops us from making it quadratic or cubic,
such a variant of NFS is termed as NFS-HD.

Recall that a random polynomial T (X) = a+ bX will give a relation if the
principal ideals (a+bαf)Of and (a+bαg)Og are respectively Ff and Fg-smooth.
The ideal (a+bαf)Of is Ff -smooth provided the quantity Res(f(X), a+bX) ∈ Z
is B-smooth i.e., all its prime divisors are less than or equal to B. Similar things
hold for (a+ bαg)Og. In other words, the probability that a randomly chosen
T (X), with coefficients in (−A,A], gives us a relation, is the same as the
probability that the quantities

|Res(f(X), a+ bX)| and |Res(g(X), a+ bX)| (2.10)

are B-smooth. Heuristically, B-smoothness behaviour of the quantities given in
Equation (2.10) is assumed to be similar to that of a random integer of same
size. This heuristic assumption is not precise and the imprecision is captured
by the quantity called Murphy α-value, which we explain later in the Section 4
but for now we will go by the assumption. The quantity in Equation (2.10) is
approximated by [28, 12]

|Res(f(X), a+ bX)|× |Res(g(X), a+ bX)| ≈ ‖f‖∞‖g‖∞Adeg(f)+deg(g), (2.11)

where Res represents the resultant, and ‖f‖∞ and ‖g‖∞ represent the maximum
of the absolute values of the coefficients of f(X) and g(X) respectively. The
lower the value of product of resultants, given in Equation (2.11), the higher
the chance of its B-smoothness and hence the chance of getting a relation. This
is the reason why in the polynomial selection phase, we try to minimise the
degrees and the absolute values of polynomial coefficients. In practice, sieving
techniques [14, 20, 18, 21] are used for getting the polynomials T (X)’s which are
most likely to be smooth and then the actual factorisation is used for constructing
the relations.

6

2.3 Linear Algebra

The relation collection step provides with us a sparse system of linear equations
with unknowns, the virtual logarithms of factor base elements and logarithms of
(r + s+ 2) field elements corresponding to units {u∗i }ri=0 and {v∗i }si=0, which is
valid modulo a prime `. The system is solved modulo ` using the Lanczos or
Block-Wiedemann algorithm. The cost of solving this system depends on the
number of unknowns and hence roughly on the factor-base bound B.

2.4 Individual Discrete Logarithm and Final Value

The aim of this step is to compute the actual discrete logarithm of a target
element τ(ω) of the field Fpn . Suppose

(
F?pn , ·

)
= 〈ζ(ω)〉. Let

pn − 1 =

E∏
i=0

peii , where pi’s are prime and p0 < p1 < . . . < pE (= `, say).

If the discrete logarithms modulo peii for i = 1, . . . , E are known, the actual
logarithm can be built using the Chinese Remainder Theorem. For a small
factor m =

∏j−1
i=0 p

ei
i of pn − 1, the Pollard’s rho algorithm can be used for

computing discrete logarithm modulo m. For the remaining prime factors
pi, i = j, j + 1, . . . , E, the discrete logarithm modulo pi is computed first, and
then using Hensel lifting, the logarithm modulo peii is computed. In most cases,
the exponent ej equals 1 for the larger prime divisors pj of pn − 1, so the Hensel
lifting is rarely needed. Thus the computation of discrete logarithm finally boils
down to the computation of discrete logarithm modulo a few larger prime factors
of pn − 1 and this is the basic aim of the individual discrete logarithm phase
of the NFS algorithm. Let ` be one such prime factor. Moreover we assume
that the prime ` divides Φn(p), that is, the subgroup cannot be embedded in a
proper subfield of Fpn .

For a target element τ(ω), we look for a field element of the form τ(ω)m1 ·
ζ(ω)m2 for m1,m2 ∈ Z+, such that τ(X)m1 · ζ(X)m2 is smooth either in Kf or
in Kg. In contrast with the relation collection, we don’t need it to be smooth in
both the number fields and by the abuse of notation, we also call it smooth. If
it is smooth in Kf , similar to Equation (2.6), we get

log (τ(ω)m1 · ζ(ω)m2) =

r∑
i=0

λi,f log (ψf (v′i)) +
∑
a∈Ff

e(a)
log (ψf (δa))

hf
(mod `).

On simplification, we get

log (ζ(τ)) =
1

m1

−m2 +

r∑
i=0

λi,f log
(
ψf (v′i)

)
+
∑
a∈Ff

e(a)
log (ψf (δa))

hf

 (mod `).

(2.12)

The target logarithm is obtained by substituting the values of virtual logarithms
(which are already available from the linear algebra) on the right side of Equa-
tion (2.12). For more details on how an ideal (τ(αf)m1 · ζ(αf)m2)Of is written
in term of the elements of Ff , we refer to the papers [25, 17]. This step is much
less costly than Relation Collection and Linear Algebra.

7

2.5 Polynomial Selection Algorithms

The polynomial selection plays an important role in determining the cost of NFS
algorithm. The basic aim of polynomial selection is to find two irreducible integer
polynomials having a common irreducible factor of degree n modulo p. As seen
in the relation collection step, in addition to the basic property, coefficient size
(the infinity norm) and degrees of these polynomials should also be small. We
broadly classify the polynomial selection algorithms into the following three
types:

1. JLSV methods;

2. Joux-Pierrot (JP) method;

3. Sarkar-Singh (SS) method.

2.5.1 JLSV

There are three variants of it namely JLSV0, JLSV1 and JLSV2. In JLSV0,
a random irreducible polynomial f(X), with ‖f(X)‖∞ = O(1) is chosen and
g(X) = f(X) +p. In JLSV1, f(X) is an irreducible polynomial randomly chosen
as f(X) = f1(X) + u, where u ≈ √p and f1(X) is a random polynomial of
degree n with ‖f1(X)‖∞ = O(1), and g(X) = u2f(X) + u1 where u1/u2 ≡ u
(mod p). We will skip the details of JLSV2, as it is never better than other
existing ones, in performance.

2.5.2 Joux-Pierrot Method

This is the best polynomial selection algorithm for special primes. A prime p
is said to be special if there exists a polynomial Γ(X) ∈ Z[X] of degree m with
‖Γ(X)‖∞ = O(1) and a positive integer u ≈ p1/m such that Γ(u) ≡ 0 (mod p).
The algorithm works as follows:

• Randomly select a monic polynomial f1(X) ∈ Z[X] of degree n with
‖f1(X)‖∞ = O(1) such that f(X) = f1(X)− u ∈ Z[x] is irreducible.

• Set g(X) = ResU (Γ(U), U − f1(X)).

The above process is repeated until both f(X) and g(X) are irreducible. Also
note that g(X) = Γ(f(X)+u) ≡ 0 (mod p, f(X)) and thus the basic requirement
is satisfied.

2.5.3 Sarkar-Singh Method

This method is parameterised on a divisor d of n. Let k = n÷ d and let r ≥ k.
The following is repeated until f(X) and g(X) are irreducible over Z and φ(X)
is irreducible modulo p:

1. A random irreducible polynomial A(X) of degree (r + 1) is selected such
that ‖A(X)‖∞ = O(log p) and A(X) has an irreducible factor A1(X) of
degree k modulo p.

8

2. A lattice L ⊂ Rr+1 is constructed from the coefficients of polynomials{
pX0, pX1, . . . , pXk−1, X0A1(X), X1A1(X), X2A1(X), . . . , Xr−kA1(X)

}
.

Let (b0, b1, · · · , br) be the smallest vector in the LLL-reduced basis of this
lattice and let B(X) =

∑
biX

i.

3. Two monic polynomials C0(X) and C1(X) with small coefficients such
that deg(C0(X)) = d and deg(C1(X)) < d are randomly chosen and

f(X) = ResU (A(U), C0(X) + UC1(X)) ;

g(X) = ResU (B(U), C0(X) + UC1(X)) ;

φ(X) = ResU (A1(U), C0(X) + UC1(X)) (mod p).

The generalised Joux-Lercier (gJL) and the Conjugation methods [7] of poly-
nomial selection are the special cases of Sarkar-Singh method corresponding to
d = 1 and d = n, r = n÷d respectively. Note that the Conjugation method gives
the lowest asymptotic complexity for the specific values of p. However there are
the values of p where Sarkar-Singh polynomial selection method turns out to be
better than Conjugation and generalised Joux-Lercier methods. From now on
we will not consider the gJL and Conjugation methods separately and instead
include them into Sarkar-Singh type algorithms.

2.6 Asymptotic Complexities

The Number Field Sieve is a complex algorithm. It is very difficult to work out
the concrete cost of this algorithm. However, its asymptotic complexity analysis
is comparatively easier and is based on heuristics. It is customary to use the
following sub-exponential expression in the asymptotic complexity analysis:

LQ (a, c) = exp
(

(c+ o(1)) (lnQ)
a

(ln lnQ)
1−a
)
.

For a finite field FQ where Q = pn, we write p = LQ (a, cp). In the complexity
analysis, we mainly focus on the most expansive steps of NFS namely relation
collection and linear algebra steps. The bound B and A are chosen in such a
way that the costs of these steps turn out to be same, and the sum of the costs
is referred as the overall asymptotic cost of the algorithm.

The field FQ is classified as small characteristic, if a < 1/3; medium char-
acteristic, if 1/3 ≤ a < 2/3 and large characteristic, if a > 2/3. The case
a = 2/3 is referred as boundary case. In the small characteristic case the FFS
algorithm [1, 2] and its QPA variants [8, 19] are currently the state-of-the-art and
we will not discuss them in this paper. For the remaining cases, the complexity
analysis is classified into two types: special prime and general prime.

General Primes

For general primes, Sarkar-Singh type algorithms are the ones which provide the
best heuristic asymptotic complexities for boundary to large characteristic cases.
For boundary case the asymptotic cost of NFS, is given by

CostNFSb = LQ (1/3, cb) where cb = 2

2r + 1

3cpkts
+

√(
2r + 1

3cpkts

)2

+
kcp(ts − 1)

3(r + 1)

 ,

9

where the various parameters are the one used in the description of SS algorithm
and ts is taken to be the sieving dimension i.e., (ts − 1) is the degree of T (X).
Note that in the description of NFS, we have taken T (X) to be linear i.e., ts = 2.
The minimum cost is obtained for p = LQ

(
2/3, (12)1/3

)
and which is equal to

LQ
(
1/3, (48/9)1/3

)
, corresponding to ts = 2 and r = 1. The asymptotic cost for

large prime case, i.e. for p = LQ(a, cp) where a > 2/3, turns out to be

CostNFSl = LQ

(
1/3, (64/9)1/3

)
.

For the details of how they are obtained, we refer to the papers [40, 7, 9].

Special Primes

All the polynomial selection algorithms mentioned for general primes are also
applicable to special primes but they do not provide the best complexity. It is the
JP polynomial selection algorithm which is the state-of-art and the corresponding
cost of NFS is given by [27]

CostSNFSb = LQ

(
1

3
,

(
32

9

)1/3

·
(
m+ 1

m

)1/3
)
,

CostSNFSl = LQ

(
1

3
,

(
32

9

)1/3
)
.

We have not yet mentioned the cost of NFS algorithm for medium charac-
teristic finite fields. This is because the Tower Number Field Sieve (TNFS),
a generalisation of NFS, is the best algorithm for it. The TNFS algorithm is
described in the Section 3 below.

3 Tower Number Field Sieve Algorithm

It is a generalisation of the NFS algorithm and works exactly in the same way.
The crucial difference between the two is in the initial setup. Let n = η · κ and
h(Y) ∈ Z[Y] be a monic irreducible polynomial of degree η (when n is prime,
η = n and κ = 1) with small coefficients and h(Y) is also irreducible modulo p.
Let Kh be a number field generated by h(Y) and let y := Y mod h(Y). Suppose
Oh be the ring of algebraic integers of Kh and p be a prime ideal above p in Oh.

Let Zy := Z[Y]
〈h(Y)〉 be a subring of Oh.

With this initial setup, we work with the polynomial ring Zy[X] in the same
fashion as with Z[X] in NFS. Two polynomials fy(X) and gy(X) in Zy[X] are
selected such that they have a common irreducible factor φy(X) of degree κ
modulo p and this gives the following commutative diagram given in Figure 2:

This can be seen as if we were trying to apply NFS to Fqκ where q = pη.
Let Ky,f and Ky,g be the number fields generated by fy(X) and gy(X) re-
spectively and Oy,f and Oy,g be their corresponding rings of algebraic inte-
gers. Similar to NFS, let αy,f := X mod fy(X), αy,g := X mod (gy(X)) and
`d(fy(X))(respectively `d(gy(X))) be the leading coefficient of fy(X) (respec-
tively gy(X)). The commutative diagram provides us two different ways to map
an element, say Ty[X] = a(y) + b(y)X, of Zy[X] into an element of Fpn . For a

10

Zy[X]

Zy[X]/(f(X)) Zy[X]/(g(X))

Fpn

mod p mod p

Figure 2: Commutative diagram for TNFS.

given bound B, consider a set By,f consisting of degree 1 prime ideals of norm
at most B, prime ideals above `d(fy(X)) and index ideal [Oyf : Zy[αyf]] in Kyf .
The By,g is similarly defined and the factor base is set to be By = Byf ∪ Byg.

Next step is to construct about #By relations and then proceed to the linear
algebra. For getting a relation, it is sufficient to look for a value of a(y) and b(y)
for which the principal ideals (a(y) + b(y)αy,f)Oy,f and (a(y) + b(y)αy,g)Oy,g
can be factored into the elements of By,f and By,g respectively. We call such
a polynomial Ty(X) = a(y) + b(y)X to be smooth, in the sense similar to
that of NFS. In terms of implementation, testing a polynomial a(y) + b(y)X
for smoothness is equivalent to testing the two resultants ResY (ResX(a(Y) +
b(Y)X, fY (X)), h(Y)) ∈ Z and ResY (ResX(a(Y) + b(Y)X, gY (X)), h(Y)) ∈ Z
for B-smoothness. Modulo the complication caused by units, sufficiently many
relations are generated. The linear algebra step remains the same as that of
NFS. The individual discrete logarithm phase can be described similar to that
of NFS. For more details of it, we refer to the papers [23, 22, 42].

When η = 1, the TNFS turns out to be same as NFS and in this case Zy = Z.
It is in this sense that the TNFS is said to be a generalisation of NFS. On
the other hand, in TNFS the fields Ky,f and Ky,g can be seen as tower field
extensions i.e., Q→ Kh → Ky,f and Q→ Kh → Ky,g and hence the name.

3.1 Polynomial Selection

The polynomial selection step in the TNFS consists of first selecting h(Y) ∈ Z[Y]
of degree η and then a pair of irreducible polynomials (fy(X), gy(X)) ∈ Zy[X]2

such that they have a common irreducible factor φy(X) of degree κ modulo the
prime ideal p = 〈p, h(y)〉. For efficiency purpose, the absolute value of coefficients
and degree of bi-variate polynomials fY (X) and gY (X) should be small and
this is why, we also need ‖h(Y)‖∞ to be the smallest possible. We divide the
polynomial selection algorithms in the following two broad categories:

1. The generalised Singh-Sarkar (GSS) Method (for all primes);

2. The generalised Joux-Pierrot (GJP) Method (for special primes only).

Note that the JLSV methods of polynomial selection can also be used in the TNFS
setting but they are not cost effective for the fields relevant to cryptography.

11

3.1.1 The Generalised Singh-Sarkar (GSS) Method

It is a generalisation of Sarkar-Singh method in the setting of tower number
field sieve algorithm. First an irreducible polynomial h(Y) ∈ Z[Y], of degree
η, is randomly selected such that ‖h(Y)‖∞ is the smallest possible and h(Y) is
irreducible modulo p. Let y := Y mod h(Y) and Fpη = Fp[Y]/(h(Y)). Let d be
a divisor of κ, k = κ÷ d and let r ≥ k. The following is repeated until fy(X)
and gy(X) are irreducible over Zy and φy(X) is irreducible over Fpη :

1. A random irreducible polynomial Ay(X) ∈ Zy of degree (r + 1) is selected
such that ‖AY (X)‖∞ = O(log p) and over Fpη , Ay(X) has an irreducible
factor A1y(X) of degree k.

2. A lattice L ⊂ Rη·(r+1) is constructed from the coefficients of bi-variate
polynomials{

p Y iXj
}j=0,...,k−1

i=0,...,η−1

⋃ {
Y iXj A1Y (X)

}j=0,...,r−k

i=0,...,η−1

3. Let (bij)
j=0,...,r
i=0,...,η−1 be the smallest vector in the LLL-reduced basis of this

lattice and let By(X) =
∑
bij y

iXj .

4. Two monic polynomials C0(X) and C1(X) in Zy having very small infinity
norms such that deg(C0(X)) = d and deg(C1(X)) < d are randomly chosen
and

fy(X) = ResU (Ay(U), C0(X) + UC1(X)) ;

gy(X) = ResU (By(U), C0(X) + UC1(X)) ;

φy(X) = ResU (A1y(U), C0(X) + UC1(X)) (mod p)

Note: The GSS method of polynomial selection presented above is the most
general presentation of the algorithm. With different parameters, it gives rise
to Sarkar-Singh algorithms A, C,D [37, 38, 39] and the generalised Conjugation
method of Jeong and Kim [31]. We will not consider these methods separately.

3.1.2 The Generalised Joux-Pierrot (GJP) Method

This method is applicable to the special primes only. It is a direct application of
JP method to the TNFS setting. We assume that there exist an integer u ≈ p1/m

and a polynomial Γ(U) with ‖Γ(U)‖∞ = O(1) such that Γ(u) ≡ 0 (mod p). The
algorithm works as follows:

1. A polynomial f1y(X) ∈ Zy[X] of degree κ, with ‖f1y(X)‖∞ = O(1), is
randomly selected.

2. fy(X) = f1y(X)− u and gy(X) = Γ (f1y(X)), where c is an integer of size
O(1).

The above process is repeated until both fy(X) and gy(X) are irreducible. The
TNFS algorithm along with GJP polynomial selection method is termed as
SexTNFS [30] algorithm in the literature but we will simply call it TNFS for
notional convenience. On the other hand it is interesting to note that for κ = 2,
two polynomial selection algorithms viz. GSS and GJP turn out to be the same.

12

3.2 Asymptotic Complexities for Medium-Characteristic
Finite Fields

The TNFS algorithm is best suited for the medium characteristic finite fields.
The asymptotic cost of TNFS for these fields turns out to be similar to what
we get for boundary to large characteristic fields using classical NFS. And this
holds for special and general primes both.

General Primes. In the setting of GSS method of polynomial selection, if we
consider p = LQ(a, cp) with 1/3 < a ≤ 2/3 and η = cη(lnQ/ ln lnQ)2/3−a, the
run time of TNFS algorithm is given by

CostTNFSm = LQ (1/3, cb) (3.1)

where cb = 2

(
2r+1

3cpcηkts
+

√(
2r+1

3cpcηkts

)2

+
kcpcη(ts−1)

3(r+1)

)
.

Special Primes. For p = LQ(a, cp) with 1/3 < a ≤ 2/3, considering the
parameters of GJP polynomial selection method, we get the run time of the
TNFS algorithm as

CostSTNFSm = LQ

(
1

3
,

(
32

9

)1/3
)
.

For more details on how it is derived, we refer to the papers [30, 31].

3.3 Galois Automorphism

The polynomial selection algorithms presented in the Sections 2.5 are randomised
in nature. For a fixed set of parameters, each run of them outputs a new
polynomial pair with similar properties (degree and infinity norm) and there
is no reason to believe their behaviour to be same. If we somehow ensure
that the number field Kf , corresponding to an NFS polynomial f(X), has
non-trivial automorphisms AutQ(Kf), the associated factor base Ff can be
made #AutQ(Kf) times smaller. Moreover AutQ(Kf) is a cyclic group and
#AutQ(Kf) divides deg(f). For more detail, we refer to the Section 4.3 of the
paper [26]. The same is true for g(X) as well. Such choices of NFS polynomials
are possible, thanks to the work of Foster [16] which provides a list of such
polynomials with degrees equal to 2, 3, 4, 5 or 6. In the polynomial selection
methods, e.g. JLSV0 and JLSV1, where one of the polynomials is selected as
a random polynomial of degree n and the other is derived from it, it is very
easy to have automorphisms for the first polynomial. All we need is to select
the first polynomial randomly from the list suggested by Foster. However, it
is not possible to have Galois automorphisms with GJL-NFS. If Kf has cyclic
Galois group, then f cannot have an irreducible factor of degree κ > 1. Either f
is irreducible mod p or it splits completely into degree 1 factors. On the other
hand, in the Sarkar-Singh polynomial selection method, automorphisms of order
d can be obtained for both the polynomials.

The case of TNFS is tricky. We have three polynomials namely h(Y), fy(X)
and gy(X). It is possible to select h(Y) from the list suggested by Foster and

13

hence the automorphism set AutQ(Kh) has size deg(h). At the same time, it
is also possible to have non-trivial automorphisms AutKh(Kf) and AutKh(Kg)
for fy(X) and gy(X) respectively, similar to what we get in classical NFS. The
effect of automorphisms AutQ(Kh) and AutKh(Kf) can be combined and the
factor base Ff can be reduced by a factor of #AutQ(Kh) ·#AutKh(Kf). The
same holds for Fg as well.

When gcd(κ, η) = 1 this is easy to set Galois automorphisms for h and f, g
because the coefficients of f, g can be in Z (no y coefficient). When gcd(κ, η) > 1,
the trick from Barbulescu-Duquesne is to choose the coefficients of f, g to be
invariant under the automorphisms of Kh. For example, if σ(y) = 1/y is an
automorphism of Kh, then the trace y + 1/y of σ is invariant by σ.

Polynomials with Galois Automorphism. From [16], these polynomials
have a Galois automorphism. We use them when possible (with Sarkar-Singh
and Joux-Pierrot) to obtain a speed-up in the relation collection.

• ct(X) = X2 − tX + 1, s 7→ 1/X; ct(X) = X2 + t, X 7→ −X;

• ct(X) = X3 − tX2 − (t+ 3)X − 1, X 7→ −(X + 1)/X;

• ct(X) = X4 − tX3 − 6X2 + tX + 1, X 7→ −(X + 1)/(X − 1);

• ct(X) = X6 − 2tX5 − (5t+ 15)X4 − 20X3 + 5tX2 + (2t+ 6)X + 1, X 7→
−(2X + 1)/(X − 1).

Galois Automorphism for Special Primes. The parameters of pairing-
friendly curves are special. For BN curves, the prime p has a polynomial form
Γ(U) = 36U4 + 36U3 + 24U2 + 6U + 1. To obtain a Galois automorphism with
fY , gY , we define fY (X) = Rest(ctY (X),Γ(t)) and gY (X) = cuY (X). Practical
examples are provided in Table 6.

4 Murphy α-value

As pointed out in the Section 3.3, two similar-looking polynomial pairs may
differ in their behaviour. In this section, we present a measure due to Murphy,
which determines the smoothness behaviour of a polynomial pair suitable for
TNFS. We will first present it for classical NFS and then propose its extension
for TNFS.

Recall that, in the asymptotic cost analysis of NFS, we approximate the
B-smoothness behaviour of Res(T (X), f(X)) with a random integer of similar
size. It is not precise and the behaviour differs from polynomial to polynomial.
The Murphy’s α-value is a measure to capture it. Murphy [34] has suggested
to compare the behaviours of the two polynomials locally with respect to small
primes. Below we outline Murphy’s description of the α-value of the polynomial
f(X), which is based on the papers [34, 4, 5].

For a given prime `, let val`(z) denotes the highest power of ` dividing the
integer z. Let V be a random variable representing val`. We note that V takes

14

its values in Z+ ∪ {0}. Expectation of V is given by

ν`(Z) = Exp(V) =

∞∑
v=0

v ·Pr(V = v)

=

∞∑
v=1

Pr(V ≥ v)

= Pr(V ≥ 1) + Pr(V ≥ 2) + Pr(V ≥ 3) . . .

=
1

`
+

1

`2
+

1

`3
+ . . . =

1

`− 1
(4.1)

where Pr is the asymptotic probability.
Note that in the computation of expectation above, we have tacitly used

the notion of asymptotic probabilities. This is done to avoid the mathematical
fallacy caused by countably infinite sample space Z. Asymptotic probability is
the limit of probabilities over the sequence of closed ball of radius r, as r tends
to infinity. For more rigorous mathematical setup, we refer the readers to the
paper [10] by Barbulescu and Lachand.

The value of ν` gives an idea of the expected prime power, `ν` , contained
in a random integer. We next define similar such expectation for the integers
coming from the resultant Res(T (X), f(X)) i.e.,

ν`(f) =

∞∑
i=1

Pr(val`(Res(T (X), f(X))) ≥ i). (4.2)

Note that in Equation (4.2), the domain of random variable V is the set of
sieving polynomials i.e., T (X), whereas in Equation (4.1), the domain is a set of
integers. Based on these expectations, Murphy defined the local value of α, i.e.,
α` as follows:

α` = log(`) · (ν`(Z)− ν`(f))

= log(`) ·
(

1

`− 1
− ν`(f)

)
. (4.3)

For a given bound B, the α-value for the polynomials f(x) is defined as the sum
of local values of α for primes ` less than B.

α(f,B) =
∑

` prime, `<B

α`. (4.4)

The value of α(f) indicates the B-smoothness benefit of Res(T (X), f(X)) over
a random integer of similar size, in the logarithmic scale. It is clear from the
definition of α(f) that for negative values of α, the resultants start behaving
better than random integers of same size (they have more small prime factors).

The α-value of g(X) is similarly computed and the final suitable choice of
polynomials f(X) and g(X) is made based on the Murphy-E function defined
below:

E(f, g, A,B,Q) =

∫
Coeff(T)∈A

ρ

(
log |Res(T (X), f(X))| −Q+ α(f)

log(B)

)
·ρ
(

log |Res(T (X), f(X))|+ α(g)

log(B)

) (4.5)

15

where ρ is Dickman’s rho function, A is the sieving bound and Q is the average
size of special-qs on the f -side. For more details of Murphy-E function, we
refer to the papers [34, 4, 5]. The values of α(f) and α(g) are required for the
estimation of Murphy-E function and the computation of α-values boils down
to the valuation of ν`(f) and ν`(g) for all primes ` less than B.

4.1 Classical 2-dimension α(f)

When the degree of the sieving polynomial is 1, i.e. T (X) = a + bX, the
α-value defined for this case is called two dimensional alpha i.e., αdim=2. The
computation of two-dimensional α was studied by Bai, Brent and Thomé in
[5] and was implemented in C in the cado-nfs software [41] by Bai, Thomé
and Zimmermann. We will revisit the details of computing αdim=2 below, as it
provides with us a way to extend this concept for TNFS. Our presentation is
based on the description given in the paper [5].

For the computation of αdim=2, it is required to compute the probabilities
Pr(val`(Res(a + bX, f(X))) ≥ i) ∀i, for a given prime `. Let F (X,Y) be a
homogenisation of f(X), then the above probabilities are represented by

Pr(val`(F (a, b))) ≥ i). (4.6)

Since,

val`(F (a, b)) = val`(F (at, bt)),

for any t, coprime to `, the suitable pairs of coprime integers satisfying Equa-
tion (4.6), correspond to the elements of the zero-dimensional variety on the
projective line P1(F`i), defined by F (X,Y). The projective line P1(F`i) con-
sists of `i affine points (a : 1) where a ∈ F`i and `i−1 points at infinity i.e.,
(1 : `y), y ∈ [0, `i−1]. Thus we have,

Pr(val`(F (a, b))) ≥ i) =
affine roots + # projective roots

`i + `i−1
(4.7)

Now, it remains to compute the number of affine and the number of projective
roots for a given prime `. The affine roots of F (X,Y) are the roots of f(X)
modulo `i and the projective roots are the root 0 of fpro(X) := Xdeg f · f

(
1
X

)
if

it exists and its lifts modulo `i.

Proposition 3. Let f(X) ∈ Z[X] and ` be a prime integer. Let ι = val` (Disc(f)).

1. Simple Roots: If f(a) ≡ 0 (mod `j) and f ′(a) 6≡ 0 (mod `), then a
can be uniquely lifted to a root of f(X) modulo `j+1 for j ≥ 1.

2. Multiple Roots: If f(a) ≡ 0 (mod `j) and f ′(a) ≡ 0 (mod `), then
a root a of f(X) modulo `j, either lifts to ` roots {(a + t `j) : t ∈ [0, `)}
modulo `i+1 or does not lift modulo `i+1, depending on whether f(a) is 0
modulo `j+1 or not. Moreover whenever j > ι, a collection of `τ solutions
modulo `j give rise to `τ solutions modulo `j+1.

Proof. For proof, we refer to the Section 2.6 of the book [35].

16

The Proposition 3 gives a way to compute the number of affine and projective
roots modulo increasing powers of `. For example, for a prime ` for which
val` (Disc(f)) = 0, there will not be any multiple roots. Let naff

` (respectively
npro
`) be the number of distinct roots of f(X)(respectively fpro(X)) modulo `.

Then,

ν`(f) =

∞∑
i=1

(
naff
` + npro

`

)
`i + `i−1

=

(
naff
` + npro

`

)
`+ 1

∞∑
i=1

1

`i−1

=

(
naff
` + npro

`

)
`+ 1

(
`

`− 1

)
If ` is a bad prime, i.e., the prime for which val` (Disc(f)) = ι (6= 0), in this
case in addition to some simple roots (as above), there will be multiple roots
as well. The behaviour of the multiple roots are not very coherent but thanks
to the Proposition 3, we have only to compute the number of roots modulo
(ι+1)th power of `. Let nsim

` be the sum of number of affine and projective simple
roots, and maff

`,i (respectively mpro
`,i) represents the number of affine (respectively

projective) multiple roots of f(X) modulo `i, then

ν`(f) =

(
nsim
`

`+ 1

) (
`

`− 1

)
+

ι∑
i=1

(
maff
`,i +mpro

`,i

)
`i + `i−1

+

∞∑
j=1

(
maff
`,ι+1 +mpro

`,ι+1

)
`ι+j + `ι+j−1

=

(
nsim
`

`+ 1

) (
`

`− 1

)
+

ι∑
i=1

(
maff
`,i +mpro

`,i

)
(`+ 1)`i−1

+

(
maff
`,ι+1 +mpro

`,ι+1

)
(`+ 1)`ι

(
`

`− 1

)
(4.8)

The software cado-nfs provides a SageMath and a C implementation of the
α function for NFS. It uses a recursive lifting process of the roots modulo bad
primes that we describe in Algorithms A.1 and A.2 in Appendix A. We will use
the same strategy but with prime ideals instead of prime numbers for lifting
roots modulo bad prime ideals in the TNFS setting.

4.2 Extension of the Murphy-α Value to the TNFS

In this section, we will propose an extension of the concept of the Murphy α
value to the TNFS polynomials and this is very much needed to make TNFS
practical. Consider the tower Q→ Kh → Kf in the TNFS set-up. Recall that
Kh is a number field generated by h(Y) ∈ Z[Y], Zy := Z[Y]/(h(Y)) is a subring
of Oh, the ring of algebraic integers of Kh, and f(X) ∈ Zy[X] is an irreducible
polynomial. We aim to formulate the concept of Murphy α-value for a TNFS
polynomial fy(X).

Similar to the classical case, it would be enough to define the local value of α
i.e., α`(fy) for a given prime integer `. Given a prime integer `, it would be logical
to consider the prime ideals above ` in Oh and work with them. Let l be a prime
ideal above ` and f(l, `) be its relative degree. Our plan is the following. We
will first find the expected valuation of the resultant Res((a(y) + b(y)X, fy(X))),

17

with respect to the prime ideal l, and then we will bring down the result with
respect to the prime integer `.

Similar to Equation (4.2), we can define

νl(f) =

∞∑
i=1

Pr(vall(Res((a(y) + b(y)X, fy(X))) ≥ i) . (4.9)

Let Fy(X,Z) be the homogeneous equation corresponding to fy(X). The Equa-
tion (4.9) can now be written as

νl(fy) =

∞∑
i=1

Pr(vall(Fy(a(y), b(y))) ≥ i) . (4.10)

We can now define the expected valuation with respect to the prime integer ` as
follows:

ν`(fy) =
∑
l|`

f(l, l)× νl(fy) . (4.11)

Thus a suitable Murphy-α value for a TNFS polynomial fy(X) can be defined
as follows:

α`(fy) = log(`) · (ν`(Z)− ν`(fy)) (4.12)

= log(`) ·
(

1

`− 1
− ν`(fy)

)
(4.13)

It still remains to compute the probabilities Pr(vall(Fy(a(y), b(y))) ≥ i) for
each l above `. The suitable pairs (a(y), b(y)) of coprime algebraic integers, for
which vall(Fy(a(y), b(y))) ≥ i, correspond to the roots of Fy(a(y), b(y)) on the
projective line P1

(Oh
li

)
. The projective line P1

(Oh
li

)
consists of N

(
li
)

:=
∣∣Oh

li

∣∣
affine points and N

(
li−1

)
projective points. Affine roots of Fy(a(y), b(y)) are

the zeros of fy(X) modulo li and if ` divides the leading coefficient of Fy,
the projective roots of Fy(a(y), b(y)) are the lifts of the root 0 of fypro(X) :=

Xdeg fy(X) · fy
(

1
X

)
modulo li. Thus,

Pr(vall(Fy(a(y), b(y))) ≥ i) =
affine roots of Fy + # projective roots of Fy

N (li) + N (li−1)

The number of affine and projective roots of Fy can be obtained using the
Proposition 4.

Proposition 4. Let fy(X) ∈ Oh[X] and l be a prime ideal in Oh. Let ιy =
vall (Discy(fy(X))).

Simple Roots: If fy(a) ≡ 0 (mod lj) and f ′y(a) 6≡ 0 (mod l), then a can be

uniquely lifted to a root of fy(X) modulo lj+1 for j ≥ 1.

Multiple Roots: If fy(a) ≡ 0 (mod lj) and f ′y(a) ≡ 0 (mod l), then the root

a of fy(X) modulo lj , either lifts to
∣∣Oh

l

∣∣ roots modulo lj+1 or does not lift
modulo lj+1, depending on whether fy(a) is 0 modulo lj+1 or not. Moreover
there exists ι such that whenever j > ι, a collection of m solutions modulo
lj give rise to m solutions modulo lj+1.

18

Proof. The proof is exactly the same as that of Proposition 3 when adopted to
the Algebraic Number Theory setting.

The Proposition 4 is crucial. It provides us a way to compute the number of
affine and projective roots of Fy modulo a power of prime ideal l. We have two
cases:

Case 1: For a prime ideal l for which vall (Disc(fy)) = 0, there are only simple
roots and for each i, the number of simple roots (affine and projective) of
fy(X) modulo li is same as number of roots modulo l. Let naff

l (respectively
npro
l) be the number of distinct roots of fy(X)(respectively fypro(X))

modulo l, then

νl(fy) =

∞∑
i=1

naff
l + npro

l

N (li) + N (li−1)

= (naff
l + npro

l) ·
∞∑
i=1

1

N (l)
i
+ N (l)

i−1

=
naff
l + npro

l

N (l) + 1
· N (l)

N (l)− 1
.

Case 2: If vall (Disc(fy)) = ι (6= 0), we call such prime ideals a bad prime. In
this case, the roots of fy(X) modulo li could be simple as well as with
multiplicity. It turns out that the number of multiple roots modulo li get
fixed for i ≥ ι+ 1, thanks to the Proposition 4.

Let nsim
l be the sum of number of affine and projective simple roots modulo

l, and maff
l,i (respectively mpro

l,i) represents the number of affine (respectively

projective) multiple roots of f(X) modulo li, then

νl(fy) =

(
nsim
l

N (l) + 1

) (
N (l)

N (l)− 1

)
+

ι∑
i=1

(
maff

l,i +mpro
l,i

)
N (l)

i
+ N (l)

i−1

+

∞∑
j=1

(
maff

l,ι+1 +mpro
l,ι+1

)
N (l)

ι+j
+ N (l)

ι+j−1

=

(
nsim
l

N (l) + 1

) (
N (l)

N (l)− 1

)
+

ι∑
i=1

(
maff

l,i +mpro
l,i

)
N (l)

i
+ N (l)

i−1

+

(
maff

l,ι+1 +mpro
l,ι+1

)
(N (l) + 1) N (l)

ι

(
N (l)

N (l)− 1

)
Once we have νl(fy), we can compute ν`(fy).

ν`(fy) =
∑
l|`

f(l, l)× νl(fy) (4.14)

Thus, we can finally compute the value of α`(fy) using Equation (4.13) and
hence the value of α(fy, B) for a given bound B.

19

5 Exact Implementation of α

An exact implementation of α means an exact algorithm to compute the number
of roots modulo bad primes (resp. bad ideals). The software cado-nfs [41]
provides an exact implementation of α for NFS in SageMath and in C from
the paper [5]. The other strategy is a Monte-Carlo approximation of bad prime
valuation, this is explained in [18], and implemented for NFS-HD in cado-nfs.
The function MurphyAlphaApproximation in Magma applies this technique. The
exact implementation has two advantages: it is exact, and is it much faster
(when comparing the Magma approximation and the exact cado-nfs function
in SageMath). We refer to [4, § 3.2.3] and [5] for α computation in dimension
two for NFS. To have a fast ranking of polynomials for TNFS, we first need an
exact and fast implementation of α. We take the same approach as in cado-nfs:
a recursive lifting process of the roots modulo bad prime ideals. The algorithms
and technical details of the cado-nfs implementation are provided in Appendix A.
We present here the adaptation to the TNFS setting, and some experimental
data. The source code is available at

https://gitlab.inria.fr/tnfs-alpha/alpha

5.1 Recursive Lifting Process Modulo Principal Ideals

To compute an exact value of α, we need a lifting process of the multiple roots
of fy modulo bad ideals l. For principal ideals l (above a prime `), we build on
the algorithms of the cado-nfs implementation explained in Appendix A. This is
our Algorithm 5.1. We now sketch the process, and we provide an explanation
in Appendix A.

Let r ∈ Oh be a multiple affine root of fy modulo l. We need to lift r modulo
l, l2, l3, . . . , lι and determine the minimal ι needed to obtain a simple root. Assume
that l is principal, and γ ∈ Oh is a generator of l. Since fy(r) = 0 mod l, then
fy(r + γX) = 0 mod l. If we assume that fy(r + γX) 6= 0 mod l2, then we solve
fy(r + γX)/γ = 0 mod l (the roots are in Oh/l). A solution s gives a lift r + γs
modulo l2 of r. Now let v be the valuation at l of the content of the polynomial
fy(r + γX). It means that cont(fy(r + γX)) = 0 mod lv and v is the maximum.
We can lift r to many roots modulo lv:

r + c1γ + c2γ
2 + c3γ

3 + . . .+ cv−1γ
v−1 (mod lv)

and ci ∈ Oh/l, that is, ci can take #Oh/l = N(l) values: there are N(l)v−1

roots above r. Algorithm 5.2 line 5 adds v to the contribution of roots modulo
l and proceeds with fv = fy(r + γX)/γv. At this point we know that fy has
one root r modulo l, in other words maff

l,1 = #{r} = 1, and this root lifts

to |Oh/l|k−1 = N(l)k−1 roots modulo lk for all 2 ≤ k ≤ v, in other words,
maff

l,k = |l/Oh|k−1. We need to count the number of roots modulo lv+1, this is the
number of roots s of fv = fy(r + γX)/γv modulo l. Each root s of fv modulo l
gives a lift of the root r modulo lv+1. Since

γvfv(X) = f(r + γX)

then a root of fv satisfies

γvfv(s) = f(r + γs)

20

https://gitlab.inria.fr/tnfs-alpha/alpha

and since fv(s) = 0 mod l, then

f(r + γs) = 0 mod lv+1

and f has N(l)v−1 roots modulo lv+1 of the form

r + sγ + c2γ
2 + . . .+ cvγ

v ∈ lv+1, ∀ci ∈ Oh/l .

If f ′v(s) 6= 0 mod l then the lifting process is over: we have ι = v+1, the algorithm
accounts for one more root si modulo lv+1 (that is, maff

l,v+1 = N(l)v−1) and termi-

nates, with
∑∞
k=v+1m

aff
l,k/N(l)k−1 =

∑∞
k=v+1N(l)v−1/N(l)k−1 = 1/(N(l)− 1).

The contributions of the roots modulo l, with maff
l,1 = 1, maff

l,k = N(l)k−1 for

1 ≤ k ≤ v, and maff
l,v = N(l)v−1 finally is

ι∑
i=1

maff
l,i

N(l)i +N(l)i−1
+

∞∑
j=1

maff
l,ι+1

N(l)ι+j +N(l)ι+j−1

=
1

N(l) + 1

(
v∑
k=1

maff
l,k

N(l)k−1
+

∞∑
k=v+1

maff
l,v

N(l)k−1

)

=
1

N(l) + 1

(
#{r}+

v∑
k=2

#{r + c1γ + . . .+ ck−1γ
k−1 : ∀ci ∈ Oh/l}

N(l)k−1

+

∞∑
k=v+1

#{r + s1γ + . . .+ sk−vγ
k−v + . . .+ ck−1γ

k−1 : ∀ci ∈ Oh/l, si fixed}
N(l)k−1

)

=
1

N(l) + 1

(
1+

v∑
k=2

N(l)k−1

N(l)k−1
+

∞∑
k=v+1

N(l)v−1

N(l)k−1

)
=

1

N(l) + 1

(
v +

1

N(l)− 1

)
(5.1)

5.2 Recursive Lifting Modulo Non-Principal Ideals

Assume that r is a multiple affine root of fy modulo l, and l is not principal.
We want to lift r to a root modulo l2. In this case, there is no generator γ
of l. However, we can easily obtain a pair of generators (δ, γ) of l. A lift
of r modulo l2 can be expressed as r + s1δ + s2γ, where s1, s2 ∈ Oh. We
need to lift r up to lι to obtain simple roots, for a certain ι. First we compute
v = vall cont(fy(r+δX1+γX2)). Instead of computing the roots of fy(r+γX)/γv,
we compute the roots of the bivariate polynomial f1 = fy(r+ δX1 + γX2)/(dγv)
where d ∈ Q so that f1 has integer coefficients (in Oh) and cont(f1) = 1. A
root of f1 modulo l is a pair (s1, s2) where sj ∈ Oh/l. The solution (s1, s2)
can be lifted to (s1, s2) where si ∈ Oh, and one has f1(s1δ + s2γ) ∈ l, that is,
f1(s1δ + s2γ) = 0 mod l. Since dγvf1(X1, X2) = fy(r + δX1 + γX2) where d is
coprime to `, we have

dγvf1(s1, s2) = fy(r + δs1 + γs2)

and since f1(s1, s2) ∈ l and γv ∈ lv, then γvf1(s1, s2) ∈ lv+1 and

fy(r + δs1 + γs2) ∈ lv+1 .

21

Algorithm 5.1: average val homogeneous coprime TNFS (fy,Discfy , l, Nl,Kh,Oh)

Input: Irreducible polynomial fy ∈ Oh[X], discriminant
Discfy = Disc(fy) ∈ Oh, prime ideal l ∈ Oh, norm
Nl = N(l) = #|Oh/l|, number field Kh, maximal order Oh

Output: vall(fy)
1 if (Discfy +l) = Oh then Discfy and l are coprime
2 return number of roots(fy, l)/(Nl − 1) ·Nl/(Nl + 1) = nfy,lNl/(N

2
l − 1)

3 else bad prime ideal
4 if IsPrincipal(l) then there exists a generator γ of l
5 γ ← Generator(l)
6 v ← average val affine TNFS Pr(fy, l, γ) ·Nl affine roots
7 if vall(LeadingCoefficient(fy)) ≥ 1 then projective roots
8 v ← v+average val affine TNFS Pr(Reverse(fy)(γX), l, γ)

9 else more complicated: two generators, l = 〈δ, γ〉
10 (δ, γ)← Generators(l)
11 v ← average val affine TNFS(fy, l, δ, γ) ·Nl

12 if vall(LeadingCoefficient(fy)) ≥ 1 then
13 v ← v+average val affine TNFS Bivariate(Reverse(fy)(δX1 +

γX2), l, δ, γ)

14 v ← v/(Nl + 1)
15 return v

Algorithm 5.2: average val affine TNFS Pr(fy, l, γ)
Input: Irreducible polynomial fy ∈ Oy[X], bad principal prime ideal l of

generator γ
Output: Contribution of affine roots at bad prime ideal l

1 v ← vall cont(fy)
2 fv ← fy/γ

v γ generator: l = 〈γ〉
3 for s in Roots(fv mod l) do
4 if (f ′v mod l)(s) 6= 0 then simple root, end of lifting
5 v ← v + 1/(Nl − 1) the lifting pattern stabilises, as in eq. (A.4)
6 else multiple root, lifting one more step
7 s← liftOh(s) a lift in Oh s.t. s = s mod l
8 f2 ← fv(s+ γX) by construction, vall(cont(f2)) ≥ 1
9 v ← v + average val affine TNFS Pr(f2, l, γ)/Nl

10 return v

22

At this point, the lifted root can be written r+(s1δ+s2γ)+r2l
2+. . .+rvl

v modulo
lv+1, for any ri. If ∂f1/∂X1(s1, s2) 6= 0 mod l or ∂f1/∂X2(s1, s2) 6= 0 mod l then
the lifting process ends and the contribution of roots is the same as in (5.1). The
corresponding algorithms are 5.3 and 5.4.

Algorithm 5.3: average val affine TNFS(fy(X), l, δ, γ)
Input: Irreducible univariate polynomial fy(X) ∈ Zy[X], bad non-principal

prime ideal l of generators (δ, γ)
Output: Contribution of affine roots at bad prime ideal l

1 v ← vall cont(fy)
2 fv ← fy/γ

v γ is not “the” generator: l = 〈δ, γ〉
3 fv ← fv · lcm([Denominator(fvi) : fvi in Coefficients(fv)])

lcm is coprime to `, and γ is a uniformising parameter
now fv ∈ Oh[X] and vall(cont(fv)) = 0

4 for s ∈ F`dl in Roots(fv mod l) do
5 if (f ′v mod l)(s) 6= 0 then simple root, end of lifting
6 v ← v + 1/(Nl − 1) the lifting pattern stabilises, as in eq. (A.4)
7 else multiple root, lifting one more step
8 s← liftOh(s) a lift in Oh s.t. s = s mod l
9 f2 ← fv(s+ δX1 + γX2) by construction, vall(cont(f2)) ≥ 1

10 v ← v + average val affine TNFS Bivariate(f2, l, δ, γ)/Nl

11 return v

5.3 Experimental Results

We present the results obtained when computing α(fy, h,B) for two pairs of
polynomials (fy, h). The polynomials h are Y 2 +5 and Y 3 +15 of class number 2.
The polynomials f in Zy[X] were generated with random coefficients, such that
their discriminant has many small prime factors. Following [4, § 3.2.3 Table 3.1],
we generated 108 random vectors a, b of coefficients in [−A,A] and positive
leading coefficient, of length the degree of h, such that the ideals made of a and
b in the maximal order Oh are coprime. For each sample (a, b), we counted the
valuation at all prime ideals l above the primes ` ≤ B = 2000 of the pseudo-norm
(resultants), in other words we computed a(y) ∈ Zy, b(y) ∈ Zy, and

vall(Res(a(y) + b(y)x, fy(x))

and obtained the average frequencies over 108 samples. When the theoretical
valuation vall(fy) is smaller than 100/N = 10−6, sampling 108 pairs is not
enough for a comparison. In the other cases, we obtain good confidence in
our implementation: the ratio of experimental valuation and exact theoretical
valuation is in [0.99, 1.01], in particular for the bad ideals and the projective
ideals. Moreover, the proportion of pairs (a, b) producing coprime ideals is very
close to ζKh(2) (precision 10−4).

5.4 Quadratic h, Monic f

We use h = Y 2 + 5 of class number 2 and fy = X4 − 3yX3 − (6y + 1)X2 −
(y + 10)X − 10y where y is a root in C of h. We present the results in Table 1.

23

Algorithm 5.4: average val affine TNFS Bivariate(fy(X1, X2), l, δ, γ)
Input: Irreducible bivariate polynomial fy(X1, X2), bad non-principal prime

ideal l of generators (δ, γ)
Output: Contribution of affine roots at bad prime ideal l

1 v ← vall cont(fy)
2 fv ← fy/γ

v γ is not “the” generator: l = 〈δ, γ〉
3 fv ← fv · lcm([Denominator(fvij) : fvij in Coefficients(fv)])

lcm is coprime to `, and γ is a uniformising parameter
now fv ∈ Oh[X1, X2] and vall(cont(fv)) = 0

4 R← { }
5 for (s1, s2) ∈ (F`dl)2 in Roots(fv mod l) do

6 if
(
∂fv
∂X1

mod l
)
(s1, s2) 6= 0 or

(
∂fv
∂X2

mod l
)
(s1, s2) 6= 0 then simple root

7 v ← v + 1/(Nl − 1) the lifting pattern stabilises
8 else multiple root, lifting one more step
9 (s1, s2)← (liftOh(s1), liftOh(s2)) a lift in Oh s.t. si = si mod l

10 R← R ∪ {(s1, s2)} fv(s1δ + s2γ) = 0 mod l

11 Remove from R the duplicate pairs (s′1, s
′
2) where s′1δ + s′2γ generates the same

ideal in Oh as another (s1, s2)
12 for (s1, s2) ∈ R do
13 f2 ← fv(s1 + δX1, s2 + γX2) by construction, vall(cont(f2)) ≥ 1
14 v ← v + average val affine TNFS Bivariate(f2, l, δ, γ)/Nl

15 return v

The experimental ratio of pairs co-prime ideals is 0.53895969, and ζKh(2) =
0.53892176 (computed with PARI-GP). Finally we compute α(h, fy, 2000) =
−1.432 (in base e), that is, the norms are 1.432/ log(2) = 2.066 bits smaller
compared to random integers of the same size.

5.5 Cubic h, Non-Monic f

We use h = Y 3 + 15 of class number 2 and f = (8y2 − 8y − 6)X4 − (11y2 +
11y − 1)X3 − (8y2 − 12y − 9)X2 − (6y2 − 10y − 9)X + 9y2 + 6y + 11 where y is
a root in C of h. We present the results in Table 2. The experimental ratio of
pairs co-prime ideals is 0.55132143, and ζKh(2) = 0.55133622 (computed with
PARI-GP). Finally we compute α(h, fy, 2000) = −2.861 (in base e), that is, the
norms are 2.861/ log(2) = 4.127 bits smaller compared to random integers of the
same size.

We are now equipped with all the values, needed to plug in for the computation
of the Murphy-E value (Equation (4.5)). The computation of Murphy-E value
for a given tuple of polynomials (h, fy, gy) and a bound B, requires the evaluation
of integral given in Equation (4.5), which is again an uphill task. In practice, we
do not compute this integral, instead do simulations to compute the actual cost
of TNFS for a given (h, fy, gy). The value of (h, fy, gy) which gives the minimum
run time complexity is taken as the suitable tuple of polynomials for TNFS and
corresponding cost is the estimated run time complexity of TNFS algorithm.
The more details of how it is achieved is discussed in the Section 6 below.

24

N(l) l
vall

Disc(fy)
vall(fy)

1/N
∑

a,b

vall(Res(
a + bx, fy))

ratio

bad ideals
2 (2, y + 1) 4 4/3 = 1.3333333 1.3333729 1.0000297
3 (3, y + 1) 2 0 = 0.0000000 0.0000000 1.0000000
3 (3, y + 5) 1 1/4 = 0.2500000 0.2499631 0.9998523
5 (5, y) 2 5/6 = 0.8333333 0.8333601 1.0000321
29 (29, y + 13) 1 1/30 = 0.0333333 0.0333405 1.0002147
263 (263, y + 28) 1 197/17292 = 0.0113926 0.0113707 0.9980793
487 (487, y + 344) 1 1/488 = 0.0020492 0.0020496 1.0002048

good ideals
7 (7, y + 3) 0 7/24 = 0.2916667 0.2916396 0.9999071
7 (7, y + 4) 0 7/48 = 0.1458333 0.1458752 1.0002874

192 (19) 0 361/130320 = 0.0027701 0.0027685 0.9994064
23 (23, y + 8) 0 23/528 = 0.0435606 0.0435682 1.0001746
29 (29, y + 16) 0 29/420 = 0.0690476 0.0690197 0.9995954
41 (41, y + 6) 0 41/420 = 0.0976190 0.0976229 1.0000399
41 (41, y + 35) 0 41/420 = 0.0976190 0.0976069 0.9998754
43 (43, y + 34) 0 43/1848 = 0.0232684 0.0232764 1.0003426
47 (47, y + 29) 0 47/1104 = 0.0425725 0.0426022 1.0006992

Table 1: vall(fy) for ideals above primes ` < 50, and experimental value for
a sampling of N = 108 pairs of coprime ideals (a, b), for h = Y 2 + 5 and
fy = X4 − 3yX3 − (6y + 1)X2 − (y + 10)X − 10y.

6 Cost Estimation of TNFS through Simulations

In this section, we aim to estimate an accurate cost of solving the DLP using
TNFS algorithm. We are given with the values of field characteristic p and
extension degree n. As explored in the papers [30, 6], the TNFS algorithm works
best for the minimum possible value of κ. We choose κ a nontrivial smallest
factor of n and η as n÷ κ. When n is even, κ is taken as 2. Below we provide
the details of our approach to estimating the cost of TNFS:

1. For a given η, we first generate all the irreducible polynomial h(Y)’s of
degree η in Z[Y] having coefficients in {−1, 0,+1}, degree equal to η and
which are also irreducible modulo p. These polynomials are generated
in such a way that the dh := #AutQ(Kf) is the largest possible. Since
dh|deg(h), we aim to have dh equal to η in the best case. If the set of
h(Y)’s is empty, we increase the coefficient size i.e., ‖h‖∞ = 2 and check
again. In almost all the cases ‖h‖∞ = 1 is sufficient (exceptions are for
degree 2 and 3).

2. Corresponding to each h(Y), we generate the pairs (fy(X), gy(X))’s, using
the best polynomial selection algorithms available. Thus we are left with
many triplets (h(Y), fy(X), gy(X)). Here again, we aim to generate fy(X)
and gy(X) in such a way that df := #AutKh(Kf) and dg := #AutKh(Kg)
are largest possible. Ideally, we should rank them based on the Murphy-E
function and choose the one which is optimum. Since, it is very difficult
to evaluate the Murphy-E function, we compute the values of α(fy, 1000)

25

N(l) l
vall

Disc(fy)
vall(fy)

1/N
∑

a,b

vall(Res(
a + bx, fy))

ratio

bad ideals
22 (2, y2 + y + 3) 2 1/5 = 0.2000000 0.2000187 1.0000935
3 (3, y) 3 1 = 1.0000000 0.9998711 0.9998711
7 (7, y + 1) 2 1/4 = 0.2500000 0.2499979 0.9999916
7 (7, y + 2) 3 3/8 = 0.3750000 0.3751308 1.0003488
7 (7, y + 11) 2 13/48 = 0.2708333 0.2708383 1.0000185

283 (283, y + 85) 1 1/284 = 0.0035211 0.0035212 1.0000350
projective ideals

2 (2, y + 1) 0 4/3 = 1.3333333 1.3334333 1.0000750
17 (17, y + 9) 0 17/72 = 0.2361111 0.2360732 0.9998393

good ideals
5 (5, y) 0 5/24 = 0.2083333 0.2082244 0.9994771

112 (11, y2 + 6y + 3) 0 121/14640 = 0.0082650 0.0082561 0.9989187
133 (13) 0 2197/4826808 = 0.0004552 0.0004569 1.0038091
172 (17, y2 + 8y + 13) 0 289/83520 = 0.0034602 0.0034666 1.0018470
193 (19,) 0 6859/47045880 = 0.0001458 0.0001459 1.0007281
23 (23, y + 21) 0 23/528 = 0.0435606 0.0435377 0.9994746
31 (31, y + 17) 0 31/240 = 0.1291667 0.1291838 1.0001323
31 (31, y + 22) 0 31/240 = 0.1291667 0.1291491 0.9998638
373 (37,) 0 50653/641431602 = 0.0000790 0.0000793 1.0041957
41 (41, y + 7) 0 41/1680 = 0.0244048 0.0244063 1.0000643
412 (41, y2 + 34y + 8) 0 1681/2825760 = 0.0005949 0.0005914 0.9942103
47 (47, y + 11) 0 47/1104 = 0.0425725 0.0425984 1.0006092
472 (47, y2 + 36y + 27) 0 2209/2439840 = 0.0009054 0.0009038 0.9982027

Table 2: vall(fy) for bad and good (including projective) ideals above ` < 50,
and experimental value for a sampling of N = 108 pairs of coprime ideals (a, b),
for h = Y 3 + 15 and f = (8y2 − 8y− 6)X4 − (11y2 + 11y− 1)X3 − (8y2 − 12y−
9)X2 − (6y2 − 10y − 9)X + 9y2 + 6y + 11.

and α(gy, 1000) for each triplets and rank them based on the values of
α(fy, 1000) + α(gy, 1000) and consider a few of them as a possible suitable
polynomials. In practice, we consider 20 to 50 polynomial triplets based
on sum of α values from lowest to highest, call them as good ones. With
the GJP method, the choice of fy, gy is very limited, only h can vary.

3. For each of these triplets, we estimate the cost of the TNFS algorithm
and take the one corresponding to the lowest cost. Estimating the cost
of TNFS for a given tuple (h, fy, gy) is again a complicated task. In the
Section 6.1, we provide the details of how the cost of TNFS is estimated.

6.1 Cost Estimation

We assume the setup given in the Section 3. Suppose that we are given with
the triplets (h(Y), fy(X), gy(X)) along with p, η and κ. The α-values of fy(X)
and gy(X) are also available with us. Further assume that dh := #AutQ(Kh),
df := #AutKh(Kf) and dg := #AutKh(Kg).

We now choose a factor base bound B and a sieving bound A (relative to B)
and proceed as follows:

26

Size of Factor Base

As pointed out in the paper [9], the size of factor base is

#B =
B

logB
(2 + o(1)) (6.1)

and we have also observed the same in our simulations. If we consider the
existence of non-trivial automorphisms, the effective size of factor base is reduced
to

#B =
B

dh · df · logB
+

B

dh · dg · logB
. (6.2)

Cost of Relation Collection

This is the sum of cost of sieving and cost of doing factorisation using the ECM.
For a given sieving bound A, we sieve all the pairs (a(y), b(y)) where ‖a(y)‖∞ ≤ A
and ‖b(y)‖∞ ≤ A, so the volume of sieving space is (2A+1)2·η. More precisely, to
avoid duplicate relations because of the equality a(y)+b(y)x = −(−a(y)−b(y)x),
we restrict to positive leading coefficients lc(b) > 0. This is a usual trick in
sieving: in classical NFS in dimension 2, we have a ∈ [−A,A] and b ∈ [1, A]. For
more details on sieving we refer to the paper [21]. It is not very easy to estimate
the exact cost of sieving, but with the practical experience on the record discrete
logarithm computations, the community tends to believe that it is of the order
which is equal to log(log(B)) times the volume of sieving space.

Cost of relation collection = Cost of sieving + Cost of ECM

= (2A+ 1)2·η/2 · log(log(B)) + Cost of ECM

The cost of ECM for a sieved tuple is approximately LB
(

1
2 ,
√

2
)

and we expect

to get O(2B/ log(B)) sieved tuples. So the cost of doing ECM is LB
(

1
2 ,
√

2
)
·

O(2B/ log(B)). Thus the cost of relation collection is

Cost of relation collection

= (2A+ 1)2·η/2 · log(log(B)) + LB

(
1

2
,
√

2

)
·O(2B/ log(B))︸ ︷︷ ︸

negligible

.

The cost of relation collection can further be brought down in the presence of
non-trivial automorphisms. This can be understood with the following example:
Assume gcd(deg h, n/deg h) = gcd(κ, η) = 1. Assume there is an automorphism
σ : X 7→ −X in Kf and Kg. We can obtain a factor two speed-up: applying σ to
a(y) + b(y)X gives a(y)− b(y)X and we can obtain for free its factorisation into
smooth ideals by applying σ to each factor of a(y) + b(y)X. To avoid processing
−a(y) + b(y)X, we restrict the sieving to positive leading coefficients lc(a) > 0.
The sieving time is divided by 2 because we consider only lc(a) ∈ [1, A]. We get
for free the relation for −a.

In practice, with the suitable choice of polynomials, one can obtain a speedup
by a factor of (# aut(h) gcd(deg(f),deg(g))) due to the automorphisms. Most
of the time, we have # aut(h) = 1 and gcd(deg(f),deg(g)) = 1 or 2. Thus the
estimated cost of relation collection turns out to be

Cost of relation collection =
(2A+ 1)2·η · log(log(B))

2 · (# aut(h) gcd(deg(f),deg(g)))
(6.3)

27

Number of relations

To estimate the number of relations, we follow Murphy’s approach to define the
E value (4.5), but we replace the integral sign by a sum over a large sample (in
practice from 105 to 106 samples are needed to obtain enough accuracy). The
algorithm 6.1 we obtain is also a refinement of [6]. The inputs to determine the
number of relations are polynomials fy, gy, h and α-values αf , αg computed in
Section 4. The drawback is a slower computation time compared to Murphy’s E
value defined for NFS.

E(fy, gy, h, A,B,Q) =
∑

coprime (aOh,bOh), Coeff(a)∈{−A,A}deg h

Coeff(b)∈{−A,A}deg h−1×{0,A}[
ρ

(
log |Res(a(y)− b(y)X, fy(X))| −Q+ α(fy, h)

log(B)

)
· ρ
(

log |Res(a(y)− b(y)X, gy(X))|+ α(gy, h)

log(B)

)]
(6.4)

Algorithm 6.1: Monte-Carlo approximation of Murphy’s E for TNFS (computes
an estimation of the number of relations)
Input: Valid polynomials fy, gy, h, αf , αg, parameter A ∈ N, smoothness

bounds Bf , Bg, average special-q size Q, N ≈ 106

Output: Yield estimate (number of relations)
1 Pf ← 0; Pg ← 0
2 for n := 1 to N do
3 a← random vector in {−A,A}2 deg h

4 b← random vector in {−A,A}2 deg h−1 × {0, A}
5 if gcd(a, b) 6= 1 then gcd of an array of integers
6 continue
7 a← aOh, b← bOh
8 if the ideals a, b are not coprime (a + b 6= 1) then
9 continue

10 Nf ← |Res(h,Res(fy,a− bx))|
11 Ng ← |Res(h,Res(gy,a− bx))|
12 uf ← (lnNf −Q+ αf)/ lnBf ; pf ← ρ(uf) + (1− γ)ρ(u− 1)/ lnNf
13 ug ← (lnNg + αg)/ lnBg ; pg ← ρ(ug) + (1− γ)ρ(u− 1)/ lnNg
14 Pfg ← Pfg + pfpg
15 Pfg ← Pfg/N
16 w ← index of group of torsion units of Oh
17 V ← (2A+ 1)2 deg h/(2wζKh(2))
18 return V × Pfg

The choice of A should be made in such a way that the number of relations
should be greater than or equal to the size of factor base, given in the Equation 6.2
and this does ensure a successful linear algebra step.

28

Cost of Linear Algebra

The cost of linear algebra is estimated using the number of relations from Alg. 6.1
and the size of factor base from Equation 6.2. The number of relations is further
adjusted due to filtering. The filtering is the process of reducing the size of
sparse system of linear equations for faster linear algebra.

We refer to [24, §B] about modelling the filtering step. We assume that the
weight wt of the matrix is of 200 non-zero entries per row, and the filtering step
reduces the size of the matrix by a constant factor flt.We agree that this is not
satisfying enough compared to the effort to define α and Murphy’s E for TNFS,
and more work is needed in the future on this topic.

Computing the right kernel of a sparse matrix of N rows can be efficiently
performed with the block-Wiedemann algorithm. We refer to [29, Theorem 7]
for results on the complexity of this algorithm. For a choice of parameters n
and m, typically n = 2 and m = 4, the algorithm is made of n Krylov sequences
of (N/m + N/n) iterations (that is, smvp for products of a sparse matrix
times a vector), and one sequence of Mksol of N/n iterations (smvp and vector
additions). The total cost in terms of iterations of smvp is n(N/m+N/n)+N/n =
N(1 + n/m+ 1/n). One multiplication of the sparse matrix times a vector costs
the number of rows N times the weight per row wt multiplications modulo `,
that is, Nwt. The total number of multiplications modulo a large prime ` is
N2wt(1 + n/m+ 1/n) that we can approximate by N2wt.

Thus we end up having a sparse linear system of weight wt per row and the
size (number of rows) equal to (#B÷flt) and hence the estimated cost of linear
algebra step performed with block-Wiedemann algorithm is

Cost of Linear Algebra = cnst · wt · (#B ÷ flt)2, (6.5)

where cnst is a constant representing the cost of a multiplication modulo `. To
reflect the higher cost with larger `, we let cnst represents the machine word
size of the prime modulo which the linear algebra is carried out.

The bounds B and A are chosen in the such a way that the estimated cost
of linear algebra and the estimated cost of relation collection turn out to be
almost the same. The cost of individual discrete logarithm phase is very small in
comparison to the other two steps. Hence the sum of the costs of linear algebra
and relation collection steps are taken as the estimated cost of TNFS algorithm
for the given parameters.

7 Some Simulation Results

7.1 BN and BLS-12 curves

We present now the experiments for BLS and BN curves. These curves are
popular pairing-friendly curves in pairing-based cryptography. The target group
of the pairing is a multiplicative subgroup of a finite field extension Fpk , and
k = 12 for these two families of curves. They are special because the prime
p is parameterised by a polynomial of degree 4, resp., 6, and tiny coefficients
(Table 3). We run our STNFS simulation algorithm for parameters of curves
available in public implementations and papers and report the seeds in Table 3.
When there is no seed, we use the code enumerate sparse T.py from [24] and

29

look for prime p and r. The aim is to get machine-word aligned parameters p.
We did not check if the curves were subgroup-secure and twist-secure except
for BLS12-446. We detail the experiments for BN-382 and BLS12-381. The

Curve parameters log2 p seed for p, r, t
Barreto-Naehrig, k = 12, D = 3, p+ 1− t = r, t2 − 4p = −Dy2

p = 36x4+36x3+24x2+6x+1 254 −(262 + 255 + 1) [36]
r = 36x4+36x3+18x2+6x+1 382 −(294 + 276 + 272 + 1) [36]
t = 6x2 + 1 446 2110 + 236 + 1 [36]
y = 6x2 + 4x+ 1 462 2114 + 2101 − 214 − 1 [6]
c = 1 1022 −2254 + 233 + 26

Barreto-Lynn-Scott, k = 12, D = 3, p+ 1− t = rc, t2 − 4p = −Dy2

p = (x−1)2(x4−x2+1)/3+x 381 −(263+262+260+257+248+216) [13]
r = x4 − x2 + 1 440 −(273 + 272 + 250 + 224) [6]
t = x+ 1 442 −(273 + 272 + 271 − 248 + 212) [6]
y = (x− 1)(2x2 − 1)/3 446 −(274+273+263+257+250+217+1)
c = (x− 1)2/3 455 276 + 253 + 231 + 211 [3]

461 −277 − 259 + 29, −277 + 250 + 233 [6]
1150 −2192+2188−2115−2110−244−1

Table 3: Parameters of families BN and BLS with k = 12 and D = 3.

parameters for the other curves are summarised in Tables 4 (BN) and 5 (BLS12)
and the polynomials are reported in Table 6.

For BN-382, the seed is u = −(294 + 276 + 272 + 1) from [36]. We choose h of
degree 6 among the list of monic irreducible degree 6 polynomials of coefficients in
{1,−1, 0}. We set aU,y(X) = X2−Uy, gy(X) = ResU (aU,y(X), U−u) = X2−uy
and fy(X) = ResU (aU,y(X), PBN(U)) = 36X8 + 36yX6 + 24y2X4 + 6y3X2 + y4.
For each possible h, we run Algorithm 6.1 with 105 samples to obtain an
estimation of the total number of relations the polynomials (h, fy, gy) would pro-
duce. We keep the best pair. Finally, with h = Y 6 + Y − 1 (see Table 6),
we have α(fy, h, 1000) = 2.7086, α(gy, h, 1000) = 1.1285, and 1/ζKh(2) =
0.9390. With parameter A = 577 (inclusive bound on the coefficients of
a = [a0, . . . , a5], b = [b0, . . . , b5]) one has a total relation collection space
of V0 = (2A + 1)12/2 = 2121.08 and a core-space (removing non-coprime pairs
of ideals) of V = V0/ζKh(2) = 2120.99. The smoothness bound B = 263.481

induces a factor base of #Ff + #Fg = 2LogIntegral(B) = 259.0555. With these
parameters, Algorithm 6.1 outputs a smoothness probability average of 2−61.4109,
when multiplied by V1, one gets Murphy’s E value to be 259.5823 relations.
We have slightly more relations than primes in the factor base. The time of
relation collection is V0 log logB = 2122.0041 and the time of linear algebra is
d`/264e×200×((#Ff +#Fg)/20)2 = 2122.0001 according to eq. (6.5). Finally the
total estimated cost is 2123. The other parameters for BN curves are presented
in Table 4 and for BLS-12 curves in Table 5.

We also ran the simulation for increasing sizes of p without a particular
sparse seed, to compare how STNFS scales for larger values. Since the prime p
is given by a polynomial of degree 4 for BN curves and 6 for BLS-12 curves, the
choice of the degree of h and the estimated costs differ. Figure 3 presents the
data. For BN curves, h has degree 6 up to p of around 600 bits, and for larger
values of p, h of degree 4 provides a lower cost estimate. For BLS-12 curves, h of

30

degree 12 is the best for p up to 320 bits, then degree 6 is better. We also plot
the function Lp(1/3, 1.923)/28.2 which is the theoretical cost of NFS, assuming
o(1) = 0.0 which is of course false since actually o(1) is unknown, and linearly
re-scaled to match the latest record computation of 768 bits from [32]. In dashed
line we plot the function Lp(1/3, 1.526)/24.5 for the theoretical cost of SNFS,
with unknown o(1) set to 0.0 and linearly re-scaled to fit the record computation
for p of 1024 bits from [17]. The source code is available at

https://gitlab.inria.fr/tnfs-alpha/alpha

curve Barreto-Naehrig
p (bits) 254 382 446 462 1022
r (bits) 254 382 446 462 1022
pk (bits) 3039 4575 5343 5535 12255
u (bits) 63 95 111 115 254
polynomials STNFS STNFS STNFS STNFS STNFS
deg h 6 6 6 6 4
deg fy 8 8 8 8 12
deg gy 2 2 2 2 3
‖fy‖∞ 36 36 36 36 3644
‖gy‖∞(∼ u) 262.01 294.00 2110.00 2114.00 2254.00

1/ζKh(2) 0.9530 0.9390 0.9334 0.8844 0.9461
α(fy, h, 103) 2.0239 2.7086 2.4156 -0.6489 0.5359
α(gy, h, 103) 2.4793 1.1285 1.8456 0.6647 2.3863
A 172 577 970 1152 7372857
B 253.006 263.481 267.971 269.405 297.403

av. Nf (bits) 407.49 489.46 526.06 542.85 1131.51
av. Ng (bits) 461.84 674.34 780.71 807.99 1287.55
av. Nf ·Ng (bits) 869.33 1163.80 1306.77 1350.84 2419.06
av. B-smooth. Pr 2−51.0592 2−61.4109 2−66.3912 2−67.2135 2−96.1975

rel. col. space 2100.17 2121.08 2130.07 2133.05 2189.51

factor base 248.8480 259.0555 263.4444 264.8481 292.3481

rels. obtained 249.0368 259.5823 263.5804 265.6559 293.2330

total cost 2102 2123 2132 2135 2191

Table 4: Summary of parameters and estimated data for the simulation of
STNFS (Alg. 6.1, average over 105 samples) for BN curves, k = 12 and D = 3.

7.2 Other curves: KSS16, KSS18, BLS24 curves

For KSS16, KSS18 and BLS24 curves, we obtain roughly the same results as
in [6]. We present in Figure 4 the estimated cost of running STNFS for these
curves for increasing sizes of p. We observe a slight drift of the estimated cost
above 192 compared to the theoretical Lpk(1/3, (32/9)1/3). It might be due to
an underestimate in the cost of sieving or linear algebra.

In order to provide machine-word aligned parameters (p of bit-length 64w−2),
we run the code from [24] to generate a 766-bit p for KSS16 and a 638-bit p for
KSS18 curves. For BLS24, the paper [15] contains seeds for parameters with p
from 449 to 1119 bits, we took one of 509 bits.

31

https://gitlab.inria.fr/tnfs-alpha/alpha

curve Barreto-Lynn-Scott
p (bits) 381 446 461 461 1150
r (bits) 255 299 309 308 768
pk(bits) 4569 5352 5525 5525 13799
u (bits) 64 75 78 78 192
polynomials STNFS STNFS STNFS STNFS STNFS
deg h 6 6 6 6 6
deg fy 12 12 12 12 12
deg gy 2 2 2 2 2
‖fy‖∞ 2 2 2 2 2
‖gy‖∞(∼ u) 263.71 274.59 277.00 277.00 2191.91

1/ζKh(2) 0.9192 0.9191 0.9388 0.9390 0.9389
α(fy, h, 103) 2.1788 2.1788 1.0472 2.2555 2.2555
α(gy, h, 103) 0.9598 1.4825 2.1857 2.2899 2.3923
A 686 968 1152 1088 32619
B 265.316 268.219 269.752 269.241 298.629

av. Nf (bits) 724.89 760.75 787.52 771.10 1124.36
av. Ng (bits) 497.04 568.25 586.01 583.26 1331.61
av NfNg (bits) 1221.93 1329.00 1373.53 1354.35 2455.97
av B-smooth Pr 2−62.5660 2−66.5471 2−67.2722 2−66.8158 2−96.7408

rel. col. space 2124.08 2130.035 2133.05 2132.06 2190.92

factor base 260.8480 263.6871 265.1871 264.6871 293.5556

rels. obtained 261.3898 263.3666 265.6833 265.1509 294.0898

total cost 2126 2132 2135 2134 2193

Table 5: Summary of parameters and estimated data for the simulation of STNFS
(Alg. 6.1, average over 105 samples) for BLS-12 curves, k = 12 and D = 3.

32

curve polynomials
h = Y 6 + Y 5 − Y 2 − Y − 1

BN-254 fy = 36X8 + 36yX6 + 24y2X4 + 6y3X2 + y4

gy = X2 − uy = x2 + 4647714815446351873y
h = Y 6 + Y − 1

BN-382 fy = 36X8 + 36yX6 + 24y2X4 + 6y3X2 + y4

gy = X2 − uy = x2 + 19807120908796293182354620417y
h = Y 6 − Y 4 + Y 3 − Y + 1

BN-446 fy = 36X8 + 36yX6 + 24y2X4 + 6y3X2 + y4

gy = X2 − uy = x2 − 1298074214633706907132692801781761y
h = Y 6 + Y 5 + Y 3 + Y + 1

BN-462 fy = 36X8 + 36yX6 + 24y2X4 + 6y3X2 + y4

gy = X2 − uy = X2 − 20771722735339766972924978723274751y
h = Y 4 + Y − 1

BN-1022
fy = 36X12 + 36X11 − 372X10 − 414X9 + 1411X8 + 1828X7

−2124X6 − 3644X5 + 277X4 + 2634X3 + 1608X2 + 396X + 36
gy = X3 − uX2 − (u− 3)X − 1, u = −2254 + 233 + 26

h = Y 6 − Y 2 + 1
BLS-381 fy = X12 − 2yX10 + 2y3X6 + y5X2 + y2 − 1

gy = X2 − uy = X2 + 15132376222941642752y
h = Y 6 + Y 4 + Y 3 + Y − 1

BLS-440 fy = X12 − 2yX10 + 2y3X6 + y5X2 − y4 − y3 − y + 1
gy = X2 − uy = X2 + 14167100574508859260928y
h = Y 6 + Y − 1

BLS-442 fy = X12 − 2yX10 + 2y3X6 + y5X2 − y + 1
gy = X2 − uy = X2 + 16528282408568781541376y
h = Y 6 − Y 4 + Y 3 − Y + 1

BLS-446 fy = X12 − 2yX10 + 2y3X6 + y5X2 + y4 − y3 + y − 1
gy = X2 − uy = X2 + 28343567510342708887553y
h = Y 6 + Y 5 − Y 2 − Y − 1

BLS-455 fy = x12 − 2yX10 + 2y3X6 + y5X2 − y5 + y2 + y + 1
gy = X2 − uy = X2 − 75557872733115725645824y
h = Y 6 + Y 5 + Y 2 − Y − 1

BLS-461a fy = X12 − 2yX10 + 2y3X6 + y5X2 − y5 − y2 + y + 1
gy = X2 − uy = X2 + 151116303912580950261248y
h = Y 6 + Y − 1

BLS-461b fy = X12 − 2yX10 + 2y3X6 + y5X2 − y + 1
gy = X2 − uy = X2 + 151115726325920150061056y
h = Y 6 + Y − 1

BLS-1150 fy = X12 − 2yX10 + 2y3X6 + y5X2 − y + 1
gy = X2 − uy, u = −2192 + 2188 − 2115 − 2110 − 244 − 1

Table 6: Polynomials h, fy, gy chosen to minimise the total estimated cost of
STNFS. The simulation of STNFS of Algorithm 6.1 with 105 samples produced
the data of Tables 4 and 5.

33

1024 3072 4968 6144 9216 12288

64

80

96

112

128

144

160

176

192

log2 p
n

log2 cost

Simul. in Fp12 , BN, STNFS deg h = 6, 4
Simul. in Fp12 , BLS12, STNFS deg h = 12, 6

L0
pn(1/3, 1.923)/28.2 (DL theoretical re-scaled DL-768 ↔ 268.32)

L0
pn(1/3, 1.526)/24.5 (SNFS theoretical re-scaled SDL-1024 ↔ 264.4)

Figure 3: Simulation of STNFS for increasing p for BN and BLS12 curves using
Algorithm 6.1 for 105 samples.

Curve parameters log2 p seed for p, r, t
KSS, k = 16, D = 4, p+ 1− t = rc, t2 − 4p = −Dy2

p = (x10 + 2x9 + 5x8 + 48x6 + 152x5 + 240x4 + 625x2 + 2398x+ 3125)/980
r = (x8 + 48x4 + 625)/61250
t = (2x5 + 41x+ 35)/35 330 −234 + 227 − 223 + 220 − 211 + 1 [6]
c = (125/2)(x2 + 2x+ 5) 339 235 − 232 − 218 + 28 + 1 [6]
y = (x5 + 5x4 + 38x+ 120)/70 766 278 − 276 − 228 + 214 + 27 + 1

KSS, k = 18, D = 3, p+ 1− t = rc, t2 − 4p = −Dy2

p = (x8 + 5x7 + 7x6 + 37x5 + 188x4 + 259x3 + 343x2 + 1763x+ 2401)/21
r = (x6 + 37x3 + 343)/343 348 244 + 222 − 29 + 2 [6]
t = (x4 + 16x+ 7)/7 638 280 + 277 + 276 − 261 − 253 − 214

c = (49/3)(x2 + 5x+ 7) 676 −285 − 231 − 226 + 26 [6]
y = (5x4 + 14x3 + 94x+ 259)/21 1484 2186 − 275 − 222 + 24 [6]

BLS, k = 24, D = 3, p+ 1− t = rc, t2 − 4p = −Dy2

p = (x− 1)2(x8 − x4 + 1)/3 + x 318 −232+228−223+221+218+212−1
r = x8 − x4 + 1 509 −251 − 228 + 211 − 1 [15]
t = x+ 1 559 −256 − 243 + 29 − 26 [6]
y = (x− 1)(2x4 − 1)/3 1022 2102 + 2100 − 210 + 27 + 22

c = (x− 1)2/3 1032 −2103 − 2101 + 268 + 250 [6]

Table 7: Parameters of families KSS16, KSS18 and BLS24, and seeds.

34

6144 9216 12288 15360 18432 21504 24576

128

144

160

176

192

208

224

240

256

log2 p
n

log2 cost

Simul. in Fp16 , KSS16, STNFS deg h = 16
Simul. in Fp18 , KSS18, STNFS deg h = 18, 9
Simul. in Fp24 , BLS24, STNFS deg h = 24

L0
pn(1/3, 1.923)/28.2 (DL theoretical re-scaled DL-768 ↔ 268.32)

L0
pn(1/3, 1.526)/24.5 (SNFS theoretical re-scaled SDL-1024 ↔ 264.4)

Figure 4: Simulation of STNFS for increasing p for KSS16, KSS18 and BLS24
curves using Algorithm 6.1 for 105 samples. As a comparison, the complexity of
NFS-DL and SNFS-DL scaled with recent record computations (2017) are given,
but we stress that the simulation is not scaled.

35

curve KSS-16 KSS-18 BLS-24
p (bits) 330 766 348 638 676 318 509 559
r (bits) 257 605 256 474 502 256 409 449
pk(bits) 5280 12255 6257 11556 12161 7621 12202 13403
u (bits) 34 78 45 81 86 32 52 57
polynomials STNFS STNFS STNFS STNFS STNFS STNFS STNFS STNFS
deg h 16 16 18 9 9 24 24 24
deg fy 10 10 8 16 16 10 10 10
deg gy 1 1 1 2 2 1 1 1
‖fy‖∞ 1492 1492 453 1767 1767 2 2 2
‖gy‖∞(∼ u) 233.99 277.58 244.00 280.25 285.00 231.91 251.00 256.00

1/ζKh(2) 0.9906 0.9914 0.91 0.9427 0.9798 0.97 0.95 0.98
α(fy, h, 103) 2.0113 0.6609 2.1259 2.4426 2.6773 2.8417 2.9878 2.5452
α(gy, h, 103) 1.9487 2.1842 2.3048 1.4246 2.4999 2.1136 1.8235 2.1615
A 10 32 9 810 909 5 8 9
B 272.30 299.27 278.08 298.93 2100.45 282.66 298.52 2102.48

av. Nf (bits) 890 1156 782 1571 1597 1002 1154 1185
av. Ng (bits) 612 1336 868 904 950 853 1326 1450
av NfNg (bits) 1503 2492 1650 2475 2547 1855 2480 2635
av B-smooth Pr 2−71.69 2−96.57 2−74.69 2−96.69 2−98.18 2−80.67 2−96.83 2−100.35

rel. col. space 2139.55 2191.72 2151.92 2190.93 2193.92 2165.05 2195.20 2202.90

factor base 267.687 294.19 273.35 293.85 295.35 277.85 293.44 297.35

rels. obtained 267.850 294.33 273.35 293.85 295.70 277.85 293.44 297.35

total cost 2141 2194 2151 2193 2196 2161 2193 2201

Table 8: Summary of parameters and estimated data for the simulation of STNFS
(Alg. 6.1, average over 105 samples) for KSS-16, KSS-18 and BLS-24 curves.

36

curve polynomials
KSS16 h = Y 16 − Y 10 + Y 6 + Y 5 − 1

330
f = X10 − 8X9 + 32X8 − 88X7 + 230X6 − 416X5 + 508X4

−632X3 + 1378X2 + 628X + 1492
gy = X − u = X + 17052993534

KSS16 h = Y 16 + Y 13 − Y 3 + Y − 1

766
f = X10 − 8X9 + 32X8 − 88X7 + 230X6 − 416X5 + 508X4

−632X3 + 1378X2 + 628X + 1492
g = X − 226673591177742701838466

KSS18 h = Y 18 + Y 10 + Y 8 + Y 2 + 1
348 f = X8−11X7+49X6−75X5−42X4+123X3+453X2+315X+63

g = X − 17592190238212
KSS18 h = Y 9 − Y 6 − Y 4 + Y 3 − 1

638
f = X16 − 11X15 + 57X14 − 152X13 + 280X12 − 483X11

+1076X10 − 451X9 + 1767X8 − 451X7 + 1076X6 − 483X5

+280X4 − 152X3 + 57X2 − 11X + 1
g = X2 − 1435597095942163676512258X + 1

KSS18 h = Y 9 + Y 4 − Y 2 − Y − 1

676
f = X16 − 11X15 + 57X14 − 152X13 + 280X12 − 483X11

+1076X10 − 451X9 + 1767X8 − 451X7 + 1076X6 − 483X5

+280X4 − 152X3 + 57X2 − 11X + 1
g = x2 + 38685626227668135805190078X + 1

BLS24 h = Y 24 + Y 16 − Y 4 − Y 2 − 1
318 f = X10 − 2X9 +X8 −X6 + 2X5 −X4 +X2 +X + 1

g = X + 4032557057
BLS24 h = Y 24 + Y 15 − Y 11 − Y 2 − 1
509 f = X10 − 2X9 +X8 −X6 + 2X5 −X4 +X2 +X + 1

g = X + 2251800082118657
BLS24 h = Y 24 + Y 17 − Y 12 − Y 5 + 1
559 f = X10 − 2X9 +X8 −X6 + 2X5 −X4 +X2 +X + 1

g = X + 72066390130949696

Table 9: Polynomials h, fy, gy chosen to minimise the total estimated cost of
STNFS. The simulation of STNFS of Algorithm 6.1 with 105 samples produced
the data of Table 8.

37

field curve
p

bits
r

bits
pk

bits
Fpk

security
deg h NFS variant

targeted 128-bit security level
Fp12 BN 311 311 3732 128 4 TNFS
Fp12 BN 383 383 4596 128 6 STNFS
Fp12 BLS12 384 256 4608 140 4 TNFS
Fp12 BLS12 384 256 4608 132 6 STNFS
Fp18 KSS18 342 256 6156 160 6 TNFS
Fp18 KSS18 342 256 6156 170 9 STNFS
Fp24 BLS24 320 256 7680 172 6 TNFS
Fp24 BLS24 320 256 7680 202 12 STNFS

targeted 192-bit security level
Fp12 BN 847 847 10164 192 3 TNFS
Fp12 BN 1031 1031 12372 192 6 STNFS
Fp12 BLS12 847 566 10164 192 3 TNFS
Fp12 BLS12 1147 766 13764 192 6 STNFS
Fp18 KSS18 512 384 9216 194 3 TNFS
Fp18 KSS18 597 443 10746 192 9 STNFS
Fp24 BLS24 480 386 11520 203 6 TNFS
Fp24 BLS24 480 386 11520 214 12 STNFS

Table 10: Menezes–Sarkar–Singh recommendations from [33, Table 5], without
constants (conservative).

field curve
p

bits
r

bits
pk

bits
Fpk
sec

h
deg

A B
log2

Nf

log2

Ng
Fp12 BN 462 462 5535 131.3 6 1098 274.2 557.0 808.9
Fp12 BLS12 461 309 5525 131.8 6 1169 273.5 791.2 584.8
Fp16 KSS16 330 257 5280 139.0 16 12 280.0 920.4 628.9
Fp16 KSS16 339 263 5411 140
Fp18 KSS18 348 256 6257 152.4 18 11 282.5 842.7 875.3
Fp18 KSS18 676 502 12161 204.9 18 34 2108.9 1114 1642
Fp18 KSS18 1484 1108 26705 257.13 9 11747 2137.7 2185 1928
Fp24 BLS24 559 449 13403 203.72 24 9 2109.8 1295 1460
Fp24 BLS24 1032 827 24760 260.9 24 23 2138.5 1522 2619

Table 11: Barbulescu-Duquesne recommendations. The norms for KSS16-330
and KSS18-348 were the same (920.4 and 628.9), for KSS18 we deduced the
exact value from ρ(log2Nf/82.5) = 2−36.21 and ρ(log2Ng/82.5) = 2−38.33.

38

field curve
p

bits
r

bits
pk

bits
Fpk
sec

h
deg

A B
log2

Nf

log2

Ng
Fp12 BN 446 446 5343 132 6 970 268 489.46 674.34
Fp12 BN 1022 1022 12255 191 4 7372857 297.4 1132 1288
Fp12 BLS12 446 299 5352 132 6 968 268.2 760.75 568.25
Fp12 BLS12 1150 768 13799 193 6 32619 298.6 1124 1332
Fp16 KSS16 330 257 5280 141 16 10 272.3 890 612
Fp16 KSS16 766 605 12255 194 16 32 299.3 1156 1336
Fp18 KSS18 348 256 6257 152 18 9 278.1 786 868
Fp18 KSS18 638 474 11556 193 9 810 298.9 1571 904
Fp24 BLS24 318 256 7621 162 24 5 282.6 1007 854
Fp24 BLS24 509 409 12202 193 24 8 298.5 1151 1326

Table 12: Our simulation results.

7.3 Recommendations

For efficiency reasons, it is better to choose parameter sizes that fit the machine-
word size of the hardware (usually 32 or 64-bit words). We present in Table 12
the simulation results obtained for parameters that match the 128 and 192 bit
security level and where the bit-length of p is a multiple of 64, minus 2 bits (for
lazy-reduction compatibility).

For 128 bits of security, BN and BLS12 curves with p of 448 bits is a good
option. For implementations using lazy modular reduction, one can prefer 446-bit
parameters that offer the same security. KSS16 and KSS18 parameter sizes are
constrained by the size of r that should be 256 bits to provide 128 bits of security
on the curve. In this case p is 330-bit long for KSS16 and 348-bit long for KSS18
curves. For 192 bits of security, our error margin increases and the estimated cost
should not be considered as a precise and exact cost. KSS16 curves of p of 768
bits, KSS18 curves where p is 640-bit long, and BLS24 curves where p is 512-bit
long offer a 192-bit security level (we obtained an estimation between 2191 and
2196). BN curves of 1024-bit p and BLS12 curves of 1152-bit p also offer 192 bits
of security according to our experiments, and this matches [33] (Table 10). Our
estimation is not precise enough to be confident for a recommendation at the
256-bit security level. In particular, a model of the filtering step that matches
the practical experiments of records computations is needed. Moreover, a model
of the matrix density would be required.

8 Summary

In this paper, we have proposed an extension for the concept of Murphy’s α
function to the case of TNFS algorithm and which have helped us to refine the
work of Barbulescu and Duquesne and to provide a better way to estimate the
runtime of the algorithm. We have further provided an open source implementa-
tion of our approach for estimating the runtime of the TNFS algorithm for a
range of finite fields coming from the elliptic curves suggested to be used in the
pairing based cryptography.

Acknowledgements. We warmly thank Pierrick Gaudry and Emmanuel
Thomé for the fruitful technical discussions on alpha.

39

References
[1] Leonard Adleman. The function field sieve. In Leonard M. Adleman and Ming-Deh Huang,

editors, Algorithmic Number Theory (ANTS-I), volume 877 of LNCS, pages 108–121.
Springer, 1994. https://doi.org/10.1007/3-540-58691-1_48.

[2] Leonard M. Adleman and Ming-Deh A. Huang. Function field sieve method for discrete
logarithms over finite fields. Information and Computation, 151(1/2):5–16, 1999. https:

//doi.org/10.1006/inco.1998.2761.

[3] Diego F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient LIbrary for Cryptography.
http://code.google.com/p/relic-toolkit/.

[4] Shi Bai. Polynomial Selection for the Number Field Sieve. Phd thesis, Australian
National University, Australia, September 2011. http://maths.anu.edu.au/~brent/pd/

Bai-thesis.pdf.

[5] Shi Bai, Richard P. Brent, and Emmanuel Thomé. Root optimization of polynomials in
the number field sieve. Math. Comp., 84(295):2447–2457, 2015. https://hal.inria.fr/

hal-00919367, https://doi.org/10.1090/S0025-5718-2015-02926-3.

[6] Razvan Barbulescu and Sylvain Duquesne. Updating key size estimations for pairings.
Journal of Cryptology, Jan 2018. https://doi.org/10.1007/s00145-018-9280-5, http:
//eprint.iacr.org/2017/334.

[7] Razvan Barbulescu, Pierrick Gaudry, Aurore Guillevic, and François Morain. Improving
NFS for the discrete logarithm problem in non-prime finite fields. In Elisabeth Oswald
and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages
129–155. Springer, Heidelberg, April 2015. https://hal.inria.fr/hal-01112879v2.

[8] Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, and Emmanuel Thomé. A heuristic
quasi-polynomial algorithm for discrete logarithm in finite fields of small characteris-
tic. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume
8441 of LNCS, pages 1–16. Springer, Heidelberg, May 2014. https://hal.inria.fr/

hal-00835446v2.

[9] Razvan Barbulescu, Pierrick Gaudry, and Thorsten Kleinjung. The tower number field
sieve. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part II, volume
9453 of LNCS, pages 31–55. Springer, Heidelberg, November / December 2015. https:

//hal.archives-ouvertes.fr/hal-01155635.

[10] Razvan Barbulescu and Armand Lachand. Some mathematical remarks on the polyno-
mial selection in NFS. Math. Comp., 86(303):397–418, 2017. https://hal.inria.fr/

hal-00954365, https://doi.org/10.1090/mcom/3112.

[11] Razvan Barbulescu, Nadia El Mrabet, and Loubna Ghammam. A taxonomy of pairings,
their security, their complexity. Cryptology ePrint Archive, Report 2019/485, 2019.
https://eprint.iacr.org/2019/485.

[12] Yuval Bistritz and Alexander Lifshitz. Bounds for resultants of univariate and bivariate
polynomials. Linear Algebra and its Applications, 432(8):1995 – 2005, 2010. Special
issue devoted to the 15th ILAS Conference at Cancun, Mexico, June 16-20, 2008 http:

//dx.doi.org/10.1016/j.laa.2009.08.012.

[13] Sean Bowe. BLS12-381: New zk-SNARK elliptic curve construction. Zcash blog, March
11 2017. https://blog.z.cash/new-snark-curve/.

[14] Don Coppersmith, Andrew M. Odlyzko, and Richard Schroeppel. Discrete logarithms
in GF(p). Algorithmica, 1(1):1–15, 1986. https://dl.acm.org/citation.cfm?id=6835,
https://doi.org/10.1007/BF01840433.

[15] Craig Costello, Kristin Lauter, and Michael Naehrig. Attractive subfamilies of BLS curves
for implementing high-security pairings. In Daniel J. Bernstein and Sanjit Chatterjee,
editors, INDOCRYPT 2011, volume 7107 of LNCS, pages 320–342. Springer, Heidelberg,
December 2011. https://eprint.iacr.org/2011/465.

[16] Kurt Foster. HT90 and simplest number fields. Illinois J. Math., 55(4):1621–1655, 2011.
http://arxiv.org/abs/1207.6099.

[17] Joshua Fried, Pierrick Gaudry, Nadia Heninger, and Emmanuel Thomé. A kilobit hidden
SNFS discrete logarithm computation. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 202–231. Springer,
Heidelberg, April / May 2017. https://eprint.iacr.org/2016/961.

40

https://doi.org/10.1007/3-540-58691-1_48
https://doi.org/10.1006/inco.1998.2761
https://doi.org/10.1006/inco.1998.2761
http://code.google.com/p/relic-toolkit/
http://maths.anu.edu.au/~brent/pd/Bai-thesis.pdf
http://maths.anu.edu.au/~brent/pd/Bai-thesis.pdf
https://hal.inria.fr/hal-00919367
https://hal.inria.fr/hal-00919367
https://doi.org/10.1090/S0025-5718-2015-02926-3
https://doi.org/10.1007/s00145-018-9280-5
http://eprint.iacr.org/2017/334
http://eprint.iacr.org/2017/334
https://hal.inria.fr/hal-01112879v2
https://hal.inria.fr/hal-00835446v2
https://hal.inria.fr/hal-00835446v2
https://hal.archives-ouvertes.fr/hal-01155635
https://hal.archives-ouvertes.fr/hal-01155635
https://hal.inria.fr/hal-00954365
https://hal.inria.fr/hal-00954365
https://doi.org/10.1090/mcom/3112
https://eprint.iacr.org/2019/485
http://dx.doi.org/10.1016/j.laa.2009.08.012
http://dx.doi.org/10.1016/j.laa.2009.08.012
https://blog.z.cash/new-snark-curve/
https://dl.acm.org/citation.cfm?id=6835
https://doi.org/10.1007/BF01840433
https://eprint.iacr.org/2011/465
http://arxiv.org/abs/1207.6099
https://eprint.iacr.org/2016/961

[18] Pierrick Gaudry, Laurent Grémy, and Marion Videau. Collecting relations for the number
field sieve in GF (p6). LMS Journal of Computation and Mathematics, 19:332 – 350, 2016.
https://hal.inria.fr/hal-01273045.

[19] Robert Granger, Thorsten Kleinjung, and Jens Zumbrägel. Breaking ‘128-bit secure’
supersingular binary curves - (or how to solve discrete logarithms in F24·1223 and F212·367).
In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617
of LNCS, pages 126–145. Springer, Heidelberg, August 2014. http://eprint.iacr.org/

2014/119.

[20] Laurent Grémy. Algorithmes de crible pour le logarithme discret dans les corps finis de
moyenne caractéristique. Doctorat, Université de Lorraine, Nancy, France, Septembre
2017. https://tel.archives-ouvertes.fr/tel-01647623.

[21] Laurent Grémy. Higher dimensional sieving for the number field sieve algorithms. In
Renate Scheidler and Jonathan Sorenson, editors, ANTS 2018 - Thirteenth Algorithmic
Number Theory Symposium, volume 2 of The open book series, pages 275–291, Madison,
United States, February 2019. University of Wisconsin. http://doi.org/10.2140/obs.

2019.2.275, https://hal.inria.fr/hal-01890731.

[22] Laurent Grémy, Aurore Guillevic, François Morain, and Emmanuel Thomé. Computing
discrete logarithms in Fp6 . In Carlisle Adams and Jan Camenisch, editors, SAC 2017,
volume 10719 of LNCS, pages 85–105. Springer, Heidelberg, August 2017. https://hal.

inria.fr/hal-01624662.

[23] Aurore Guillevic. Faster individual discrete logarithms in finite fields of composite
extension degree. Math. Comp., 88(317):1273–1301, February 2019. https://dx.doi.

org/10.1090/mcom/3376, https://hal.inria.fr/hal-01341849v3.

[24] Aurore Guillevic, Simon Masson, and Emmanuel Thomé. Cocks-Pinch curves of embedding
degrees five to eight and optimal ate pairing computation. Cryptology ePrint Archive,
Report 2019/431, 2019. https://eprint.iacr.org/2019/431.

[25] Antoine Joux and Reynald Lercier. Improvements to the general number field sieve for
discrete logarithms in prime fields. A comparison with the Gaussian integer method. Math.
Comp., 72(242):953–967, 2003. https://doi.org/10.1090/S0025-5718-02-01482-5.

[26] Antoine Joux, Reynald Lercier, Nigel Smart, and Frederik Vercauteren. The number field
sieve in the medium prime case. In Cynthia Dwork, editor, CRYPTO 2006, volume 4117
of LNCS, pages 326–344. Springer, Heidelberg, August 2006. https://www.iacr.org/

archive/crypto2006/41170323/41170323.pdf.

[27] Antoine Joux and Cécile Pierrot. The special number field sieve in Fpn - application to
pairing-friendly constructions. In Zhenfu Cao and Fangguo Zhang, editors, PAIRING
2013, volume 8365 of LNCS, pages 45–61. Springer, Heidelberg, November 2014. https:

//eprint.iacr.org/2013/582.pdf.

[28] Michael Kalkbrener. An upper bound on the number of monomials in determinants of
sparse matrices with symbolic entries. Mathematica Pannonica, 8:73–82, 1997. http:

//kalkbrener.at/Selected_publications_files/Kalkbrener97b.pdf.

[29] Erich Kaltofen. Analysis of Coppersmith’s block Wiedemann algorithm for the parallel
solution of sparse linear systems. Math. Comp., 64(210):777–806, 1995. https://doi.

org/10.1090/S0025-5718-1995-1270621-1.

[30] Taechan Kim and Razvan Barbulescu. Extended tower number field sieve: A new
complexity for the medium prime case. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part I, volume 9814 of LNCS, pages 543–571. Springer, Heidelberg,
August 2016. https://eprint.iacr.org/2015/1027.

[31] Taechan Kim and Jinhyuck Jeong. Extended tower number field sieve with application to
finite fields of arbitrary composite extension degree. In Serge Fehr, editor, PKC 2017,
Part I, volume 10174 of LNCS, pages 388–408. Springer, Heidelberg, March 2017. https:

//eprint.iacr.org/2016/526.

[32] Thorsten Kleinjung, Claus Diem, Arjen K. Lenstra, Christine Priplata, and Colin Stahlke.
Computation of a 768-bit prime field discrete logarithm. In Jean-Sébastien Coron and
Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages
185–201. Springer, Heidelberg, April / May 2017. https://eprint.iacr.org/2017/067.

41

https://hal.inria.fr/hal-01273045
http://eprint.iacr.org/2014/119
http://eprint.iacr.org/2014/119
https://tel.archives-ouvertes.fr/tel-01647623
http://doi.org/10.2140/obs.2019.2.275
http://doi.org/10.2140/obs.2019.2.275
https://hal.inria.fr/hal-01890731
https://hal.inria.fr/hal-01624662
https://hal.inria.fr/hal-01624662
https://dx.doi.org/10.1090/mcom/3376
https://dx.doi.org/10.1090/mcom/3376
https://hal.inria.fr/hal-01341849v3
https://eprint.iacr.org/2019/431
https://doi.org/10.1090/S0025-5718-02-01482-5
https://www.iacr.org/archive/crypto2006/41170323/41170323.pdf
https://www.iacr.org/archive/crypto2006/41170323/41170323.pdf
https://eprint.iacr.org/2013/582.pdf
https://eprint.iacr.org/2013/582.pdf
http://kalkbrener.at/Selected_publications_files/Kalkbrener97b.pdf
http://kalkbrener.at/Selected_publications_files/Kalkbrener97b.pdf
https://doi.org/10.1090/S0025-5718-1995-1270621-1
https://doi.org/10.1090/S0025-5718-1995-1270621-1
https://eprint.iacr.org/2015/1027
https://eprint.iacr.org/2016/526
https://eprint.iacr.org/2016/526
https://eprint.iacr.org/2017/067

[33] Alfred Menezes, Palash Sarkar, and Shashank Singh. Challenges with assessing the
impact of NFS advances on the security of pairing-based cryptography. In Raphael C.-W.
Phan and Moti Yung, editors, Mycrypt Conference, Revised Selected Papers, volume
10311 of LNCS, pages 83–108, Kuala Lumpur, Malaysia, December 1-2 2016. Springer.
http://eprint.iacr.org/2016/1102.

[34] B. A. Murphy. Polynomial selection for the number field sieve integer factorisa-
tion algorithm. Phd thesis, Australian National University, Australia, 1999. http:

//maths-people.anu.edu.au/~brent/pd/Murphy-thesis.pdf.

[35] Ivan Niven, Hugh L Montgomery, and Herbert S Zuckerman. An introduction to the
theory of numbers. New York: Wiley, 5th edition, 1991.

[36] Geovandro C. C. F. Pereira, Marcos A. Simpĺıcio Jr., Michael Naehrig, and Paulo S.
L. M. Barreto. A family of implementation-friendly BN elliptic curves. Cryptology ePrint
Archive, Report 2010/429, 2010. http://eprint.iacr.org/2010/429.

[37] Palash Sarkar and Shashank Singh. A general polynomial selection method and new
asymptotic complexities for the tower number field sieve algorithm. In Jung Hee Cheon
and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages
37–62. Springer, Heidelberg, December 2016. https://eprint.iacr.org/2016/485.

[38] Palash Sarkar and Shashank Singh. New complexity trade-offs for the (multiple) number
field sieve algorithm in non-prime fields. In Marc Fischlin and Jean-Sébastien Coron,
editors, EUROCRYPT 2016, Part I, volume 9665 of LNCS, pages 429–458. Springer,
Heidelberg, May 2016. https://eprint.iacr.org/2015/944.

[39] Palash Sarkar and Shashank Singh. A unified polynomial selection method for the
(tower) number field sieve algorithm. Adv. in Math. of Comm., 13(3):435–455, 2019.
https://doi.org/10.3934/amc.2019028.

[40] O. Schirokauer. Discrete logarithms and local units. Philos. Trans. Roy. Soc. London
Ser. A, 345(1676):409–423, 1993. http://doi.org/10.1098/rsta.1993.0139.

[41] The CADO-NFS Development Team. CADO-NFS, an implementation of the number
field sieve algorithm, 2019. GIT version at http://cado-nfs.gforge.inria.fr/.

[42] Yuqing Zhu, Jincheng Zhuang, Chang Lv, and Dongdai Lin. Improvements on the
individual logarithm step in extended tower number field sieve. Cryptology ePrint
Archive, Report 2016/727, 2016. https://eprint.iacr.org/2016/727.

A Implementation of α for NFS in cado-nfs

We briefly describe the implementation of α in cado-nfs [41]. The history (from
July 2008) can be obtained with the command git show 1deffd89 from the git
repository. A SageMath code is written in cado-nfs/polyselect/alpha.sage

and the C code in cado-nfs/polyselect/auxiliary.c. The files makefb.sage
and makefb.c in cado-nfs/sieve/ contain functions to compute explicitly roots
of univariate polynomials modulo `k for a fixed k, while the alpha functions
implicitly compute the number of roots modulo `k. According the cado-nfs team,
the authors and contributors of this code are S. Bai, P. Gaudry, G. Hanrot,
E. Thomé, and P. Zimmermann. The two main algorithms are A.1 and A.2.
Algorithm A.1 returns val`(f) as defined in Section 4, given by Equation 4.8:

val`(f) =
nsim
`

`+ 1

`

`− 1
+

ι∑
i=1

maff
`,i +mpro

`,i

(`+ 1)`i−1
+
maff
`,ι+1 +mpro

`,ι+1

(`+ 1)`ι
`

`− 1

where nsim
` is the number of simple roots of f mod `, and maff

`,i , m
pro
`,i are the

number of multiple affine, resp., projective roots of f modulo `i. One needs to
compute precisely the number of roots of f modulo `, . . . , `ι+1. Note that we
use the word root to denote the elements r of Z/`kZ s.t. f(r) = 0 mod `k. When
` | Disc(f), then it is possible to have more rs than the degree of f .

42

http://eprint.iacr.org/2016/1102
http://maths-people.anu.edu.au/~brent/pd/Murphy-thesis.pdf
http://maths-people.anu.edu.au/~brent/pd/Murphy-thesis.pdf
http://eprint.iacr.org/2010/429
https://eprint.iacr.org/2016/485
https://eprint.iacr.org/2015/944
https://doi.org/10.3934/amc.2019028
http://doi.org/10.1098/rsta.1993.0139
http://cado-nfs.gforge.inria.fr/
https://eprint.iacr.org/2016/727

Algorithm A.1: average valuation homogeneous coprime(f,Discf , `)
Input: Irreducible polynomial f , discriminant Discf = Disc(f), prime `
Output: val`(f)

1 if (Discf mod`) 6= 0 then
2 return number of roots(f, `) · `/(`2 − 1) = nf,``/(`

2 − 1)
3 else bad prime
4 v ← average valuation affine(f, `) · ` affine roots
5 v ← v+ average valuation affine(Reverse(f)(`X), `) proj. roots
6 v ← v/(`+ 1)
7 return v

Algorithm A.2: average valuation affine(f, `)
Input: Irreducible polynomial f , prime `
Output: Contribution of affine roots

1 v ← val` cont(f) content of f : gcd of coefficients
2 fv ← f/`v

3 for r ∈ Roots(fv mod `) do
4 if (f ′v mod `)(r) 6= 0 then simple root, end of lifting
5 v ← v + 1/(`− 1) the lifting pattern stabilises, eq. (A.4)
6 else multiple root, lifting one more step
7 r ← liftZ(r) a lift in Z s.t. r = r mod `
8 f2 ← fv(r + `X) by construction, ` | cont(f2)
9 v ← v + average valuation affine(f2, `)/`

10 return v

Here is a sketch of the lifting process. Let r be a root of f modulo `, and
f ′(r) = 0, so that r is a multiple root. Assume the simplest case where there
is only one multiple root r (nsim

` = 0, the number of multiple affine roots is

maff
`,1 = 1, and there is no projective root, mproj

`,1 = 0). We want to know ι and

lift r modulo `2, `3, . . . , `ι.
Since ` | f(r), then ` | f(r + `X). Solving f(r + `X)/` = 0 mod ` for X ∈

[0, `−1] gives lifts r+`s of r modulo `2. Since f(r+`X) = f(r)+f ′(r)`X mod `2

and f ′(r) = 0 mod `, then f(r + `X) = f(r) mod `2 and r lifts to roots modulo
`2 if and only if `2 | f(r). To generalise this process, we need Lemma 5.

Lemma 5. Let f(X) be a monic irreducible polynomial in Z[X] and let r be a
multiple root of f modulo a prime `, that is f ′(r) = 0 mod `, where f ′(X) is the
formal derivative of f(X). Let v = val`(cont(f(r + `X))). We have v ≥ 1. If
v ≥ 2, then r lifts to `v−1 roots modulo `v.

Proof of Lemma 5. First expand the formula

f(r + `X) = g0 + g1X + g2X
2 + . . .+ gdX

d (A.1)

where gi ∈ Z. By definition, the content of f(r+`X) is the gcd of the coefficients
gi and since we set v = val` cont(f(r + `X)), then `v divides each g0, g1, . . . , gd
and f(r + `X) is identically 0 modulo `v. Let us replace X by a = a1 + a2`+
a3`

2 + . . .+ av−1`
v−2 in Eq. (A.1):

f(r + `a) = g0 + g1a+ g2a
2 + . . .+ gda

d = 0 mod `v (A.2)

43

and this shows that the root r lifts to `v−1 roots modulo `v.

The initial call to algorithm A.2 with input f, ` in our setting has cont(f) = 1
so v = val`(cont(f)) = 0 and fv = f , and since we assumed that there is only one
multiple root r, then the execution arrives at line 8 where f2 = f(r+`X), then at
line 9 and the algorithm is called (recursively) with the input (f2 = f(r+ `X), `).

We now concentrate on this second run of Alg. A.2 with inputs f2 and `.
Let v be the valuation at ` of the content of f2 = f(r + `X), in other words,
`v | cont(f(r + `X)). According to Lemma 5, we can lift r mod ` to `v−1 roots
modulo `v of the form

r + c1`+ c2`
2 + c3`

3 + . . .+ cv−1`
v−1 (mod `v) (A.3)

where ci ∈ [0, ` − 1] can take ` values, so there are `v−1 roots above r. This
means that the number of affine roots modulo `i is maff

`,i = `i−1 for i from 1 to

v, and
∑v
i=1m

aff
`,i/`

i−1 = v. Algorithm A.2 line 9 adds v to the contribution of
roots modulo ` and calls itself with the new inputs f2 = fv(r + `X), ` (this is
recursive).

Let us set a break-point at line 9. We know that f has one root modulo `:
maff
`,1 = #{r} = 1, and this root lifts to `k−1 roots modulo `k for all 2 ≤ k ≤ v:

maff
`,k = `k−1. We need to count the number of roots modulo `v+1, and this

corresponds to the number of roots s of fv. Here we need Lemma 6.

Lemma 6. Let f be an irreducible polynomial in Z[X] and r a multiple root
of f modulo a prime `, that is, f ′(r) = 0 mod `. Let v = val`(cont(f(r + `X)))
and fv = f(r + `X)/`v. The root r lifts to `v−1 roots modulo `v+1 of the form
r + s`+ a2`

2 + a3`
3 + . . .+ av`

v where ai ∈ [0, `− 1] and s is a root of fv(X)
modulo `. If fv(X) has no root modulo ` then r does not lift modulo `v+1.

Proof of Lemma 6. Write

`vfv(X) = f(r + `X)

hence by Lemma 5, for any a = a1 + a2` + a3`
2 + . . . + av−1`

v−2, we have
`vfv(a) = f(r + `a) = 0 mod `v. We want to lift this equation modulo `v+1.
Since `v divides `vfv(X), to lift r from `v to `v+1, we only need to solve
fv(X) = 0 mod `. Let s be a root of fv(X) modulo ` if any. Then

`v fv(s)︸ ︷︷ ︸
=0 mod `

= f(r + `s) = 0 mod `v+1

but one can also replace s by any element s+ a` = s+ `(a2 + a3`+ . . .+ av`
v−2)

and obtain an equality modulo `v+1:

`vfv(s+ a`) = f(r + `(s+ a`))
m

`vfv(s+ a2`+ a3`
2 + . . .+ av`

v−1) = f(r + s`+ a2`
2 + a3`

3 + . . .+ av`
v)

and since s+ a` = s mod `, then fv(s+ a`) = 0 mod `, and f(r + `(s+ a`)) =
0 mod `v+1. This shows that there are `v−1 roots of f modulo `v+1 of the form

r + s`+ a2`
2 + a3`

3 + . . .+ av`
v

where ai ∈ [0, `− 1] and fv(s) = 0 mod `. If fv(X) = 0 has no solution modulo
`, then r does not lift modulo `v+1.

44

According to Lemma 6, each root s of fv corresponds to a lift of the root r
modulo `v+1, and f has `v−1 roots modulo `v+1 of the form

r + s`+ c2`
2 + . . .+ cv−1`

v−1 + cv`
v (mod `v+1) .

In other words, solving f(r + `X) = 0 mod ` fixed the variable c1 in Eq. (A.3).
If f ′v(s) 6= 0 mod ` then the lifting process is over: ι = v + 1, the algorithm
accounts for the contribution of one more root s modulo `v+1 (m`,v+1 = `v−1)
and terminates, with

∑∞
k=v+1m`,k/`

k−1 =
∑∞
k=v+1 `

v−1/`k−1 = 1/(`− 1). The

contributions of the roots modulo `, with n` = 0, m`,1 = 1, m`,k = `k−1 for
1 ≤ k ≤ v, and m`,v = `v−1 is finally

val`(f) =
1

`+ 1

(
v∑
k=1

m`,k

`k−1
+

∞∑
k=v+1

m`,v+1

`k−1

)
=

1

`+ 1

(
#{r}+

v∑
k=2

#{r + c1`+ . . .+ ck−1`
k−1 : ci ∈ [0, `− 1]}

`k−1

+

∞∑
k=v+1

#{r + s1`+ . . .+ sk−v`
k−v + . . .+ ck−1`

k−1 : ci ∈ [0, `− 1], si fixed}
`k−1

)

=
1

`+ 1

(
1 +

v∑
k=2

`k−1

`k−1
+

∞∑
k=v+1

`v−1

`k−1

)
=

1

`+ 1

(
v +

1

`− 1

)
(A.4)

This explains line 5 of Algorithm A.2, and ι = v + 1.
Finally we have the following Lemma 7.

Lemma 7. Let f(X) and r as above, and v = val`(cont(f(r + `X))), fv =
f(r + `X)/`v. Let s be a root of fv modulo `. Then

1. if f ′v(s) 6= 0 mod ` then the lifting process stabilises, and the number of
roots of f modulo `k for k > v is constant and equals `v−1.

2. if f ′v(s) = 0 mod ` then the lifting process of Lemma 5 and Lemma 6 can
be applied recursively with f replaced by fv.

Numerical example. Let f = X5 +12X3 +12X2−11X+8 be an irreducible
monic polynomial of Z[x], Disc(f) = 29 · 35 · 53 · 19 · 23, and α(f, 2000) = 0.511.
We compute the number of (affine) roots of f modulo ` ∈ {2, 3, 5}.

Let ` = 2. Then f = X5 +X = X(X + 1)4 (mod 2) and f ′(X) = X4 + 1 =
(X + 1)4 mod 2. The polynomial f has one simple root r = 0 and one multiple
root r = 1 of multiplicity 4, modulo 2: n2,1 = 1, m2,1 = 1. The simple
root r = 0 will lift to one root modulo 2k for any k, and n2,k = 1. The
recursive formula fi+1 = fi(r + 2X)/2 can be used to obtain a lift. For instance,
f1 = f(0 + 2X)/2 = X (mod 2) has root 0. Then f2 = f1(0 + 2X)/2 = X
(mod 2) has again root 0; f3 = f2(0 + 2X)/2 = X + 1 (mod 2) has root 1. We
deduce that f(0 + 0 · 2 + 0 · 22 + 1 · 23) = 0 (mod 24).

The root r = 1 requires more care. We have f(1) = 22 = 0 mod 2. Let
us compute f(1 + 2X) = 2(16X5 + 40X4 + 88X3 + 116X2 + 54X + 11), v =
val2 cont(f(1 + 2X)) = 1 and set f1(x) = f(1 + 2X)/2. Now f1(X) = 1 mod 2
has no root modulo 2, and the lifting process ends. It means that f(X) has no

45

root modulo 4 above the root 1. Finally n2,k = 1 and m2,k = 0 for any k ≥ 2.
We apply the formula with ` = 2 and v = 1:

val2(f) =
n`
`+ 1

`

`− 1
+

1

`+ 1

(
v∑
k=1

m`,k

`k−1
+

∞∑
k=v+1

m`,v+1

`k−1

)
=

2

3
+

1

3
= 1 .

The lifting pattern is sketched in Fig. 5.

2k n2,k

2

4

8

16

2

1

1

1

0
simple
root

1
mult.
root

0

0

8

Figure 5: Lifting pattern modulo 2k.

Let ` = 3. Here is the pattern of roots mod 3i, for any ci in [0, `− 1]:

3 | f(2) n3 = 1
32 | f(2 + 3c1) n32 = 3
33 | f(2 + 0 · 3 + 32c2) n33 = 3
34 | f(2 + 0 · 3 + 32c2 + 33c3) n34 = 9
35 | f(2 + 0 · 3 + 1 · 32 + 33c3 + 34c4) n35 = 9
36 - f n36 = 0

More precisely, f(X) = X5 + X + 2 mod 3 has one root f(2) = 0 mod 3 with
multiplicity 2, and f ′(X) = 2X4 +1 = −(X2 +1)(X+1)(X+2) mod 3. We have
f(2) = 162 = 2 ·34 and 32 | f(2+3X). It means that the root r = 2 mod ` lifts to
any root r = 2 + 3s mod `2. Since 32 | f(2 + 3X), we set f2(X) = f(2 + 3X)/32,
and f2(x) = 2X2 mod 3 has one root f2(0) = 0 mod 3 with multiplicity 2. Again
32 | f2(0+3X), wet set f3(X) = f2(0+3X)/32 and f3(X) = 2X2 +2X+2 mod 3
has one root f3(1) = 0 mod 3 with multiplicity 2. Finally 3 | f3(1 + 3X), we
set f4 = f3(1 + 3X)/3 and f4 = 2 mod 3 has no root modulo 3. We apply the
formula with ` = 3:

val3(f) =
1

3 + 1

5∑
k=1

m3,k

3k−1
=

1

4

(
1

1
+

3

3
+

3

32
+

9

33
+

9

34

)
= 25/36 .

The lifting pattern is sketched in Fig. 6.
Let ` = 5 and compute the roots of f modulo 5i. First f(X) = X5 + 2X3 +

2X2 + 4X + 3 mod 5 has one root f(3) = 0 mod 5 with multiplicity 3. Since
52 | f(3 + 5X), we set f2(X) = f(3 + 5X)/52 and f2(X) = 3X + 1 mod 5 has
one root f2(3) = 0 mod 5 with multiplicity 1, the lifting process ends (Fig. 7).
We count the roots as follows, where ci, si ∈ [0, 4], ci takes any value and si is

46

3k n3,k

3

9

27

81

243

729

1

3

3

9

9

0

2

2 5 8

2 11 20

2 29 56 11 38 65 20 47 74

11 92 173 38 119 200 65 146 227

Figure 6: Lifting pattern modulo 3k.

fixed:

5 | f(3) n5 = 1
52 | f(3 + 5c1) n52 = 5
53 | f(3 + 3 · 5 + 52c2) n53 = 5
...

...
5k | f(3 + 3 · 5 + s2 · 52 + . . .+ sk−2 · 5k−2 + ck−1 · 5k−1) n5k = 5

We apply the formula with ` = 5:

val5(f) =
1

5 + 1

(
3∑
k=1

m5,k

5k−1
+m5,3

∞∑
k=4

1

5k−1

)
=

1

6

(
1

1
+

5

5
+

5

52
+ 5

1

100

)
=

3

8

5k n5,k

5

25

125

625

3125

1

5

5

5

5

3

3 8 13 18 23

18 43 68 93 118

93 218 343 468 593

218 843 1468 2093 2718

Figure 7: Lifting pattern modulo 5k.

B Application: Counting the Number of Roots

Implicitly, the algorithms A.1 and A.2 count the number of roots of f modulo
pk until the pattern stabilises. We can easily modify the algorithms to count
explicitly npk : these are Algorithms B.1 and B.2. It is also possible to change
the Algorithms of Section 5 to count the number of roots of polynomials modulo
prime ideals.

47

Algorithm B.1: no roots f mod(f,Discf , `, k)
Input: Irreducible polynomial f , discriminant Disc(f), prime `, integer k > 0
Output: n`k number of roots of f modulo `k

1 if (Disc(f) mod `) 6= 0 then
2 return number of roots(f, `)
3 else bad prime
4 naff

`k ← no roots f mod rec(f, `, k) affine roots
5 npro

`k
← 0

6 if leading coefficient(f) = 0 mod ` then
7 npro

`k
← 1

8 if k ≥ 2 then
9 npro

`k
← no roots f mod rec(Reverse(f)(`X)/`, `, k − 1) proj. roots

10 return naff
`k + npro

`k

Algorithm B.2: no roots f mod rec(f, `, k)
Input: Irreducible polynomial f , prime `, positive integer k
Output: n`k(f)

1 v ← val` cont(f) ; fv ← f/`v content of f : gcd of coefficients

2 if v ≥ k then n`k = `k

3 else if k = 1 then n`k = #Roots(fv mod `)
4 else
5 n`k = 0
6 for r ∈ Roots(fv mod `) do
7 if (f ′v mod `)(r) 6= 0 then simple root, end of lifting
8 n`k ← n`k + `v the lifting pattern stabilises, eq. (A.4)
9 else multiple root, lifting one more step

10 r ← liftZ(r) a lift in Z s.t. r = r mod `
11 f2 ← fv(r + `X)/` by construction, ` | cont(f2)
12 n`k ← n`k + `v ∗ no roots f mod rec(f2, `, k − v − 1)

13 return n`k

48

	Introduction
	Number Field Sieve
	Polynomial Selection and Initial Setup
	Relation Collection
	Linear Algebra
	Individual Discrete Logarithm and Final Value
	Polynomial Selection Algorithms
	JLSV
	Joux-Pierrot Method
	Sarkar-Singh Method

	Asymptotic Complexities

	Tower Number Field Sieve Algorithm
	Polynomial Selection
	The Generalised Singh-Sarkar (GSS) Method
	The Generalised Joux-Pierrot (GJP) Method

	Asymptotic Complexities for Medium-Characteristic Finite Fields
	Galois Automorphism

	Murphy -value
	Classical 2-dimension (f)
	Extension of the Murphy- Value to the TNFS

	Exact Implementation of
	Recursive Lifting Process Modulo Principal Ideals
	Recursive Lifting Modulo Non-Principal Ideals
	Experimental Results
	Quadratic h, Monic f
	Cubic h, Non-Monic f

	Cost Estimation of TNFS through Simulations
	Cost Estimation

	Some Simulation Results
	BN and BLS-12 curves
	Other curves: KSS16, KSS18, BLS24 curves
	Recommendations

	Summary
	Implementation of for NFS in cado-nfs
	Application: Counting the Number of Roots

