
Weak Keys in the Rekeying Paradigm: Attacks
on COMET-128 and mixFeed

Mustafa Khairallah

School of Physical and Mathematical Sciences
Nanyang Technological University

mustafam001@e.ntu.edu.sg

Abstract. In this article, we analyze two of the NIST Round 1 Candidates for the
Lightweight Cryptography Standardization Process: COMET and mixFeed. We show
how AEAD modes that are based on rekeying can be modelled as modes without
rekeying in the multi-key setting, where every nonce is treated as a different user.
Then we show that the security degradation due to weak keys in the multi-key setting
will affect these modes in the single key setting. We show how the weak key analysis
of both these modes may be applied.
Keywords: weak keys · authenticated encryption · comet · mixfeed · nist · forgery ·
AEAD

1 Introduction
Lightweight Symmetric Key Cryptography has been a growing research area in the past
10 years or more, with applications varying between block cipher design, autheticated
encryption, hash functions and much more. This has lead the NIST to release a call for
proposals for a new lightweight cryptography standard [nis18]. In this preprint, we study
two of these proposals: COMET-128 [GJN19] and mixFeed [CN19], analyzing the existence
and behaviour of weak keys for these two primitives.

2 Background
2.1 Weak Key Analysis of Authenticated Enryption
Weak keys are defined as keys that behave in a non-expected manner compared to how the
encryption algorithm was intended and detecting whether a secret key belongs to the set
of weak keys is easy [HP08]. For example, if an algorithm requires that every call to the
primitive used in that algorithm uses a different key, but for some keys the key is fixed for
all primitive calls, that is an unexpected behaviour. In many cases (as the cases we target
in this article) this behaviour is detectable with one verification query, since if the weak
key occurs, it immediately leads to forgery. Usually, the security bounds are calculated on
average over the whole key space, which limits the vulnerability of the weak keys in the
single key setting.

Whether the weak keys are exploitable or not is another issue. For example, several
NIST candidates including: Remus [IKMP19], mixFeed [CN19], GIFT-COFB [BCI+19],
HyENA [CDJN19] and COMET [GJN19] and potentially others have keys or masks that
can behave in unexpected ways. However, it is not clear how these keys are exploitable.
An example of a case where the weak keys were exploitable in the AEAD forgery context
is the attack on POET by Abdelraheem et al. [ABT14].

mailto:mustafam001@e.ntu.edu.sg


2 Weak Keys in the Rekeying Paradigm: Attacks on COMET-128 and mixFeed

2.2 Multi-Key Analysis
In [LMP17], Luykx et al. show that the effect of analyzing the security of a symmetric key
primitive in the multi-key setting can lead to drastic security degradations when the same
primitive is used by a huge number of users using different keys. They gave a formula for
the adevrsarial advantage gain against a scheme that has weak keys when used by many
users at the same time. If the probability that any key is a weak key is p, the probability
that all the µ keys (where µ is the number of users) are not weak is given by

(1− p)µ (1)

and the probability that at least one of them is weak is given by

1− (1− p)µ (2)

This probability increases almost linearly when µ is small and approaches 1 when
µ > p−1. For example, if p = 2−32, the advantage is 0.98 at µ = 234, 0.63 at µ = 232, 0.39
at µ = 231, 2−16 at µ = 216 and 2−31 at µ = 2.

NIST Candidates for the new lightweight cryptography standard has been required so
far to be secure only in the single key setting [nis18]. Usually, considering only the single
key setting reduces the vulnerabilities related to weak keys compared to the multi-key
setting [LMP17]. However, due to the way COMET-128 and mixFeed apply a rekeying
function to every new message and the way that key is used internally, it allows us to
apply the multi-key-weak-key analysis, by viewing every message as a different user and
the rekeying function as an authority that assigns a key to every user based on that user’s
id (nonce) and the master key. In this setting, we divide the algorithm into two parts:

1. Z =KDF(N,K): the rekeying function.

2. (C, T ) =Enc(A,M,N,K,Z): the AEAD portion after initialization.

Moreover, the multi-key setting is interesting on its own for practical uses, specially
in the field of ubiquitous computing and IoT where an astronomical number of devices
is expected to use the upcoming standard. However, this article only focuses on the
application of the multi-key analysis in the single key setting. We do not make any claims
on the security in the multi-key setting, but we predict that the degradation will grow
further.

2.3 Forgery Attacks on nonce based CBC-like AEAD with repeated
keys

Before we move on to the weak key analysis of COMET-128 and mixFeed we show simple
forgery attacks on schemes that use a CBC-like structure with block keys that come from
a permutation and use a linear feedback function. Table 1 represents a wide class of serial
block cipher based AEAD modes, where K is the block key, S1, S represent the internal
state after the cipher call and after the linear feedback, respectively, M,C are the plaintext
and ciphertext strings, respectively, of length m each. ρ is a linear invertible operation
over two blocks, and P is a permutation over the space of K.

Given this representation it is easy to see that if K is constant or is P has a short
cycle, that is a very undesirable behaviour and can lead to many types of forgery. Let’s
assume that M consists of two blocks. The adversary can apply the following attack:

1. Ask for the encryption of M .

2. Calculate the internal state values for S1, S at different points in the execution.



Mustafa Khairallah 3

Table 1: Simplistic View of the Encryption Phase CBC-Like AEAD Modes

1: S[−1]← rand()
2: K ← rand()
3: i = 0
4: for i < m:
5: S1[i]← EK(S[i− 1])
6: (S[i], C[i])← ρ(S1[i],M [i])
7: K ← P (K)

3. Find a ciphertext block Cx and a plaintext block Mx such that (S[1], Cx) =
ρ(S1[0],Mx). This is very easy due to the properties of ρ.

4. Use the same tag from the encryption query with the ciphertext Cx to build a
verification query.

If K is not fixed, but P has a short cycle of length l, then the same attack is applicable,
but modified to

1. Ask for the encryption of M of legnth 2l.

2. Calculate the internal state values for S1, S at different points in the execution.

3. Find a ciphertext block Cx and a plaintext block Mx such that (S[l], Cx) =
ρ(S1[0],Mx). This is very easy due to the properties of ρ.

4. Use the same tag from the encryption query with the ciphertext CX = Cx|C[l +
1]|C[l + 2]| · · · |C[2l − 1] to build a verification query.

Another possible forgery attack is

1. Ask for the encryption of M of legnth l + 1.

2. Calculate the internal state values for S1, S at different points in the execution.

3. Find a ciphertext block Cx and a plaintext block Mx such that (S[0], Cx) =
ρ(S1[l],Mx). This is very easy due to the properties of ρ.

4. Use the same tag from the encryption query with the ciphertext CX = C[0]|C[1]| · · · |C[l−
1]|Cx|C[1]|C[2]| · · · |C[l] to build a verification query.

3 Attack on COMET-128

3.1 Brief Description of COMET-128
COMET [GJN19] is a block cipher based AEAD algorithm submitted to the NIST Stan-
dardization Process for Lightweight Cryptography. The schematic of the algorithm provided
in the specification is given in Figure 1. It is based on related-key security and the ideal
cipher model, where first, the key derivation function (KDF) is applied on the nonce N and
the master key K to get the session key Z0. Afterwards, Zi is used as the key to the block
cipher call with index i, where Zi is the output of a permutation applied on Zi−1.



4 Weak Keys in the Rekeying Paradigm: Attacks on COMET-128 and mixFeed

Figure 1: The schematic of COMET captured from the specification document [GJN19]

3.2 Multi-Key Representation and Summary of Results
Following the setting in Section 2.2, we show that for every pair (N |A,K) there are 264

weak keys, with probability 2−64 that the KDF outputs one of these keys. For simplicity of
description of the attack, we will drop A, w.l.o.g., considering authenticated encryption
without associated data. However, while this simpler setting is enough to show our claims,
the results are equally applicable in the case of a constant A.

The existence of these weak keys and the applicability of the multi-key analysis leads
to a set of interesting results:

1. After one query of length at least 32 bytes, forgery is successful with adverserial
advantage 2−64.

2. With 263 online queries of 32 bytes each, forgery is successful with adverserial
advantage ∼ 2−1. This is acheived with 0 offline queries, which contradicts the claims
made by the designers.

3. With 264 online queries of 32 bytes each, forgery is successful with adverserial
advantage approaching ∼ 1.

4. If the the forgery is successful, the master key is identified easily with high probability
with 265 offline queries.

3.3 Existence of Weak Keys
The specification of COMET-128 does not include any discussion on the weak key analysis.
COMET-128 uses a CBC-like structure, where the master key is used as an IV , and the
session key Z is used as the block cipher key and is updated after each block cipher call:



Mustafa Khairallah 5

1. At 5 points during the algorithm execution, the least significant 5 bits of Z are
XORed with one of 5 constants. This is done for domain separation.

2. After each block cipher call, the least significant 64 bits of Z are multiplied by a
constant α = x over GF(264).

The second update is what we target in our attacks. If the value of the least significant
64 bits of Z during one stage of the algorithm is 064, this means that Z is constant over
all the blocks of that stage. Since this event is defined over 64 bits of Z, which is chosen
uniformally at random from the KDF (a permutation over GF(2128)), there are 264 weak
values of Z for each stage of the algorithm and the probability that Z at a certain stage is
weak is equal to 264

2128 = 2−64. Since COMET-128 applies the KDF with a different N for
every different message and since the KDF is a permutation, given µ online queries, we get
µ messages encrypted with µ different values Zi.

3.4 Existensial Forgery Attack with Weak Keys
Given we have established how the weak keys behave and their probability, we describe
how to forge a ciphertext once a weak key has been sampled by the KDF. Let M be the
known message encrypted with a weak key Za ⊕ 0010125 = 064|Zat

(refer to Figure 1),
where |M | ≥ 256. Let M1 and M2 be the first two message blocks after parsing M , with
C1 and C2 as the corresponding ciphertexts. Since the attacker knows M and C, he can
retreive the internal state values S1 and S2, where S1 is the state before the absorption of
M1 and S2 is the state after the absorption of M2. Hence, we have

S1 = Shuffle−1(M1 ⊕ C1) (3)

and

S2 = M2 ⊕ Shuffle−1(M2 ⊕ C2) (4)

The attacker wants to find Mx and Cx, such that

S1 = Shuffle−1(Mx ⊕ Cx) (5)

and

S2 = Mx ⊕ Shuffle−1(Mx ⊕ Cx) (6)

Which is a simple well-defined Linear system of equations defined over 256 boolean
variables and easily solvable. The attacker removes C1 and C2 from the ciphertext, and
inserts Cx in the location of C1, while shifting the rest of the ciphertext 16 bytes backwards
and reducing the ciphertext size by 16, leading to a successful forgery. This attack has
been verified by modifying the reference implementation of COMET-128 to use some weak
keys Zi. The overall complexity of the attack is 264 online queries, 0 offline queries and
264 offline time complexity to find Mx and Cx and succeeds with probability close to 1.

While this attack is powerful in its own regard, as it disproves the claims made by the
designers that forgery requires D online queries and T offline queries, such that DT = 2187.5

or D ∼ 264 and T ∼ 2119, in order to get a near 1 advantage, and makes the security
of COMET-128 questionable in both the single key and multi-key settings, in the next
section we show that because of another feature of COMET-128, all the security of the
scheme collapses once this event happens.



6 Weak Keys in the Rekeying Paradigm: Attacks on COMET-128 and mixFeed

Table 2: Intergrity Claims Made by the Designers of COMET-128 vs. Our Attack: De is
the number of encryption queries, Dv is the number of verification queries and T is the
number of offline primitive queries

Method De Dv T
Tag Guessing [GJN19] - 2128 -

Decryption-Encryption Matching [GJN19] 2121 2128 -
Decryption-Offline Matching 1 [GJN19] - 2121 2128

Decryption-Offline Matching 2 [GJN19] - 265 2122.5

Weak Key Analysis [Ours] 265 264 -

Table 3: Privacy Claims Made by the Designers of COMET-128 vs. Our Attack: De is
the number of encryption queries, Dv is the number of verification queries and T is the
number of offline primitive queries

Method De Dv T
Online-Online Matching [GJN19] 265 - 2191

Online-Offline Matching [GJN19] 265 - 2183

Key Guessing [GJN19] 1 - 2128

Weak Key Analysis [Ours] 265 264 265

3.5 Key Recovery Attack
The previous existential forgery attack can be used as a filter to discover the occurence of
a weak key. Once the forgery succeeds, we know that Z during the message encryption
phase of the algorithm has one of the weak key values, which are 264 values. The attacker
can then choose a message that has been previously encrypted with a weak key, and
reverse the algorithm with each of these values. Since the master key K is used as an
IV in COMET-128, this will lead to 264 possible key candidates. For each of these key
candidates, the attacker can apply KDF(N,K) and verify whether the KDF generates the
corresponding Z. Since the probability that EK(N) = Z is 2−128, we expect to be able to
uniquely identify the master key at this point, which completely breaks the system. The
complexity is O(1) · 264.

3.6 Summary of Results
The designers make several claims in their document. First, they claim that the permute
function has a period of 264 and hence the only way for the key to repeat is to encrypt
more than 264 blocks. We have shown that both claims are false, since there are 264 keys
with period 1 and consequently this is another way for the key to repeat, and it is easily
detectable with a single verification query.

The designers also mention four ways to attack the integrity of COMET-128, we
interpret them as suggested by the designers in section 5.1.4 of [GJN19]. When subsituting
in the bounds they give for the values of n = the block size and κ = the key size, we get
the results in Table 2 for interity and Table 3 for privacy. Our weak key analysis shows
that these claims are not true in both cases.

4 Attack on mixFeed
4.1 Brief Description of mixFeed
mixFeed [CN19] is an AES-based AEAD algorithm submitted to round 1 of the NIST
Lightweight Cryptography Standardization Process. It uses a hybrid feedback structure,



Mustafa Khairallah 7

EKa
EKb

EKc

M0

C0

M1

C1

M2

C2

M3

C3

δM

T

Figure 2: Part of the Encryption Phase of mixFeed

where half the input to the block cipher comes directly from the plaintext, while the
other half is generated from the previous block cipher call and the plaintext in a CBC-like
manner. The initial session key is generated using a KDF that depends on the master key
K and the nonce N , then each block key is the output of applying a permutation P to the
previous block key. The permutation P is defined as 11 rounds of the AES key Scheduling
Algorithm [DR13]. The encryption part is shown in Figure 2. It was shown in a previous
attack [Kha19] that given a known plaintext/ciphertext pair, the attacker can force the
input to the block cipher to a certain value during the forgery challenge, so we consider this
part of the analysis as a given and we do not include it in this article. Forcing the input
to the block cipher is not enough to lead to an attack and is applicable to many block
cipher based schemes. The question is whether the attacker can get enough information
about the session key to increase the adversarial advantage.

4.2 Weak Key Analysis of mixFeed
The designers of mixFeed discuss the multi-key analysis in a brief statement in the
specification. However, they do not mention the weak-key analysis. At first, it is not
obvious why the weak key analysis is relevant to mixFeed. However, when we study how
the mode operates, it is quite similar to modes like COMET, except that the key update
function between blocks is not a multiplication by constant over a finite field, but it is
the key schedule permutation of AES itself. In other words, every block cipher call takes
as a key Ki = P (Ki−1), where Ki−1 is the key used in the previous block and P is the
permutation that applies 11 rounds of the AES key schedule. As explained in Section 2.3,
insertion or omition forgeries succeed if the key is repeated, i.e. if the permutation cycle
used to update the key is smaller than the message length. If the permutation is well
designed, e.g. maximal length LFSR or arithemtic counter, the probability of this event
should be very low. Also, if the permuation is an ideal permutation picked uniformally at
random, it should have n cycles whose lengths follow a Poisson distribution.

The AES key schedule permutation is not designed to be an ideal permutation and it
should not be used as one. It can be described as a permutation over four 32-bit words,
which consists of 11 rounds. The rounds differ only in the round constant. We define the
permutation fc over a 32 bit word as the feedback function in round c as:

W → SubWord(W ≫ 8) + rcon[c] (7)

where W ≫ r represents bitwise right rotation of W by r bits and rcon[c] is defined
as xc%11|024 such that x is defined over GF(28). Given this permutation, a single round of
the AES key schedule can be defined as

W0,W1,W2,W3 →W0⊕fc,W1⊕W0⊕fc,W2⊕W1⊕W0⊕fc,W3⊕W2⊕W1⊕W0⊕fc (8)



8 Weak Keys in the Rekeying Paradigm: Attacks on COMET-128 and mixFeed

Table 4: 8 round unrolling of the AES key schedule

Round 0 W0 W1 W2 W3
Round 1 W0 ⊕ f0 W1 ⊕W0 ⊕ f0 W2 ⊕W1 ⊕W0 ⊕ f0 W3 ⊕W2 ⊕W1 ⊕W0 ⊕ f0
Round 2 W0 ⊕ f0 ⊕ f1 W1 ⊕ f1 W2 ⊕W0 ⊕ f0 ⊕ f1 W3 ⊕W1 ⊕ f1
Round 3 W0 ⊕ f0 ⊕ f1 ⊕ f2 W1 ⊕W0 ⊕ f0 ⊕ f2 W2 ⊕W1 ⊕ f1 ⊕ f2 W3 ⊕W2 ⊕ f2
Round 4 W0 ⊕ f0 ⊕ f1 ⊕ f2 ⊕ f3 W1 ⊕ f1 ⊕ f3 W2 ⊕ f2 ⊕ f3 W3 ⊕ f3
Round 8 W0 ⊕

⊕7
i=0 fi W1 ⊕

⊕3
i=0 f2∗i+1 W2 ⊕ f2 ⊕ f3 ⊕ f6 ⊕ f7 W3 ⊕ f3 ⊕ f7

where fc is applied to W3 and eight unrolled rounds can be defined as in Table 4.
In fact, there is an iterative structure over 4 rounds, where we can write the value of

any key word after 4 rounds in terms of the initial value of this word and a certain set
of feedback functions. If a key is a fixed point over R rounds, where R is a multiple of 4,
then the involved feedback functions must add up to 0. If the feedback function is ideal,
we expect this to happen with probability 2−32 for each word and 2−128 in total, but of
course, this is not the case. It is trivial to see that there is only 1 value which is a fixed
point after 4 rounds, and in general the conditions for a fixed point after R rounds are

R/4−1⊕
i=0

f3+4i = 0 (9)

R/4−1⊕
i=0

f2+4i = 0 (10)

R/4−1⊕
i=0

f1+4i = 0 (11)

R/4−1⊕
i=0

f4i = 0 (12)

(13)

For example, fixed points over 8 rounds must satisfy

f3 ⊕ f7 = 0 (14)
f2 ⊕ f6 = 0 (15)
f1 ⊕ f5 = 0 (16)
f0 ⊕ f4 = 0 (17)

(18)

The last condition can be written as f0(W3)⊕ f4(W3 ⊕ f3) = 0. Since f0 and f4 differ
only in the constant value, we can rewrite the condition as

SubWord(W ≫ 8)⊕ SubWord(W ≫ 8⊕∆) = δ (19)

where ∆ = f3 and δ = rcon[4] ⊕ rcon[0]. Clearly, this a non-linear equation. What
is interesting, is that this equation is defined over the Sbox of AES and can be divided
into three equations on the form Sbox(x)⊕ Sbox(x⊕ y) = 0 and one equation of the form
Sbox(x) ⊕ Sbox(x ⊕ y) = a. For the first three equations, y = 0 since the AES Sbox is
bijective, while for the last one y has 127 possible values that can be retreived from the
Difference Distribution Table of the AES Sbox. Hence, we reduce the possibilities of f3 to
127 values. Then,



Mustafa Khairallah 9

Table 5: Representatives of 20 Cycles of length= 1133759136 for the AES Key Schedule
11 Round Permutation Used in mixFeed

000102030405060708090a0b0c0d0e0f
00020406080a0c0e10121416181a1c1e
0004080c1014181c2024282c3034383c
00081018202830384048505860687078
00102030405060708090a0b0c0d0e0f0
101112131415161718191a1b1c1d1e1f
20222426282a2c2e30323436383a3c3e
4044484c5054585c6064686c7074787c
80889098a0a8b0b8c0c8d0d8e0e8f0f8
303132333435363738393a3b3c3d3e3f
707172737475767778797a7b7c7d7e7f
000306090c0f1215181b1e2124272a2d
00050a0f14191e23282d32373c41464b
00070e151c232a31383f464d545b6269
000d1a2734414e5b6875828f9ca9b6c3
00152a3f54697e93a8bdd2e7fc11263b
00172e455c738aa1b8cfe6fd142b4259
00183048607890a8c0d8f00820385068
001c3854708ca8c4e0fc1834506c88a4
001f3e5d7c9bbad9f81736557493b2d1

f3(W2⊕W3⊕ f2)⊕ f7(W2⊕W3⊕ f2⊕ f6) = f3(W2⊕W3⊕ f2)⊕ f7(W2⊕W3) = 0 (20)

Hence, similar arguments can be made about f2 and similarily f1 and f0. By such
argument, one expects roughly about 227.9 (to be verified) fixed points for the reduced-
round AES key schedule of 8 rounds. One can go analyzing more rounds. While this
problem is interesting on its own regard, it is not the scope of our result and we leave it to
future work. We just mention the analysis to show that the AES Key Schedule is far from
an ideal permutation and also because the cycle length we have found is a multiple of 4.

We have run a simple cycle finding script using brute force and found at least 20 cycles
of length 1133759136 ∼ 230.08, out of 33 seeds we have tried. We give a representative of
each of those cycles in Table 5, in case the reader want to verify the results. We will also
make our simple script available online. It is not clear to us why this number is special.
However, this means that there are at least 234.4 weak keys which allow forgery of messages
of legth 230.08 + 1 blocks into messages of length 231.08 + 1. Finding each of these cycles
takes around 1 hour on a single-core personal computer using brute force, hence we do not
know how many cycles are there of these structure or of different length. We found a large
set of values that do not belong to cycles of that length or smaller. However, our findings
are good enough to show that the security bounds claimed by the designers of mixFeed
are not true. The designers claim that the adversarial advantage is σT

2192 . However, as we
explained in the analysis of COMET-128, by applying multi-key-weak-key analysis, we
see that the advantage increases drasctically. According to the designers, after encrypting
a message of 230.08 + 1 blocks and decrypting a message of length 231.08 + 1 blocks, the
adversarial advantage should be 2−160.92. However, the weak key analysis show that forgery
is successful with probability at least 2−93.59. After encrypting 218.92 such messages, with
overall online complexity of 250 blocks, the adverserial advantage is 2−74.68.

While this result does not make mixFeed insecure, it shows a huge gap in the security
analysis of mixFeed and calls for further cryptanalytic efforts if mixFeed is to be used in the



10 Weak Keys in the Rekeying Paradigm: Attacks on COMET-128 and mixFeed

real world. As mentioned earlier, our result is just a lower bound found by brute forcing
some key values. For example, there is a big question mark on the special cycle length we
found, which may potentially be related to more cycles, further increasing the advantage.
Since we cannot do a full characterization of the AES Key Schedule Permutation to
find all the cycles and given that the experiments show that a certain cycle length is
highly probable, we use statistical inference to argue about the average cycle length of the
permutation. We assume that the cycle length of a random permutation follows a Poisson
distributions [Gra06], such that

L(l = k) = e−λλk

k! (21)

where λ in this case is the average cycle length, then it is easy to see that the Maximum
Likelihood Estimate of λ in our case is 1133759136, while a hypothesis that the average
cycle length is in the order of 250 can be easily rejected. None of these results are conclusive.
Nevertheless, without proper understanding of the underlying permutation, and given our
experimental results which show a huge gap between the security claims and reality, it is
hard to argue for the security of mixFeed.

It is worth noting that the weak key analysis does not lead to the master key recovery,
like in the case of COMET-128, since mixFeed does not use the master key during the
main part of the encryption.

4.3 Summary of Results

The designers of mixFeed make a security claim that the adversarial advantage is bounded
by DT

2192 . We believe a better characterization would have been max( DT2192 ,
1

2128 ), since the
designers should have included key guessing and tag guessing attacks. It is not clear
whether this bound is for privacy or integrity or both. We have shown that the integrity
bound for the adversarial advantage cannot be lower than 2−75 at (D,T ) = (250, 1), with
the results making it very uncovincing that this is a tight lower bound.

5 Conclusion

We have applied the multi-key-weak-key analysis to two AEAD modes: COMET-128 and
mixFeed, showing a huge gap between the security claims and reality for both of them.
In the case of COMET-128, the whole security of the system breaks when the number of
queries approaches the bound of 264, which contradicts the security bounds specified by
the designers, and there should be no security claims beyond 64 bits. This may be fixed
by choosing a different key permutation P , which will probably impact the performance
of the scheme. In case of mixFeed, we enhanced the adverserial advantage by a factor of
at least 267.32 compared to the designers claim and at least 253.32 compared to tag/key
guessing attacks. We do not see how can this be fixed for mixFeed, since the choice of P is
inherit in the mode design and even if instantiated with a different cipher, we expect the
security degradation to be even more drastic, as AES has quite a strong key scheduling
permutation compared to other ciphers. However, Whether it can be further enhanced is
inconclusive. While our results invalidate many of the claims made by the designers, we
do not make any claims on the practical security of these modes in real life lightweight
applications as it is not the scope of this article and we leave this to future work, for third
party evaluation of our results and for future cryptanalysis efforts.



Mustafa Khairallah 11

Acknowlegement
I would like to thank Thomas Peyrin, Tetsu Iwata and Kazuhiko Minematsu on many
fruitful discussions on topics related to this analysis, inluding weak keys, birthday bound
security and the AES Key Scheduling.

I would like to thank Mridul Nandi, Shay Gueron, Ashwin Jha and Bishwajit Chakraborty
for going through this draft and discussing the findings.

Statement
This document is in the state of a very early draft, I apologize for any typos or errors. I
welcome constructive comments to my email.

References
[ABT14] Mohamed Ahmed Abdelraheem, Andrey Bogdanov, and Elmar Tischhauser.

Weak-key analysis of poet. IACR Cryptology ePrint Archive, 2014:226, 2014.

[BCI+19] Subhadeep Banik, Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, Mridul
Nandi, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and Yosuke Todo. GIFT-
COFB. NIST Lightweight Cryptography Project, 2019. https://csrc.nist.
gov/Projects/Lightweight-Cryptography/Round-1-Candidates.

[CDJN19] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, and Mridul Nandi. HyENA.
NIST Lightweight Cryptography Project, 2019. https://csrc.nist.gov/
Projects/Lightweight-Cryptography/Round-1-Candidates.

[CN19] Bishwajit Chakraborty and Mridul Nandi. mixFeed. NIST Lightweight
Cryptography Project, 2019. https://csrc.nist.gov/Projects/
Lightweight-Cryptography/Round-1-Candidates.

[DR13] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the advanced
encryption standard. Springer Science & Business Media, 2013.

[GJN19] Shay Gueron, Ashwin Jha, and Mridul Nandi. COMET: COunter Mode En-
cryption with authentication Tag. NIST Lightweight Cryptography Project,
2019. https://csrc.nist.gov/Projects/Lightweight-Cryptography/
Round-1-Candidates.

[Gra06] Andrew Granville. Cycle lengths in a permutation are typically poisson. the
electronic journal of combinatorics, 13(1):107, 2006.

[HP08] Helena Handschuh and Bart Preneel. Key-recovery attacks on universal hash
function based mac algorithms. In Annual International Cryptology Conference,
pages 144–161. Springer, 2008.

[IKMP19] Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas Peyrin.
REMUS. NIST Lightweight Cryptography Project, 2019. https://csrc.nist.
gov/Projects/Lightweight-Cryptography/Round-1-Candidates.

[Kha19] Mustafa Khairallah. Forgery attack on mixfeed in the nonce-misuse scenario.
IACR Cryptology ePrint Archive, 2019:457, 2019.

[LMP17] Atul Luykx, Bart Mennink, and Kenneth G Paterson. Analyzing multi-key
security degradation. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 575–605. Springer, 2017.

https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates


12 Weak Keys in the Rekeying Paradigm: Attacks on COMET-128 and mixFeed

[nis18] Submission Requirements and Evaluation Criteria for the Lightweight
Cryptography Standardization Process , 2018. https://csrc.nist.
gov/CSRC/media/Projects/Lightweight-Cryptography/documents/
final-lwc-submission-requirements-august2018.pdf.

https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf

	Introduction
	Background
	Weak Key Analysis of Authenticated Enryption
	Multi-Key Analysis
	Forgery Attacks on nonce based CBC-like AEAD with repeated keys

	Attack on COMET-128
	Brief Description of COMET-128
	Multi-Key Representation and Summary of Results
	Existence of Weak Keys
	Existensial Forgery Attack with Weak Keys
	Key Recovery Attack
	Summary of Results

	Attack on mixFeed
	Brief Description of mixFeed
	Weak Key Analysis of mixFeed
	Summary of Results

	Conclusion

