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Abstract. A surge in DNS cache poisoning attacks in the recent years generated an incentive to push
the deployment of DNSSEC forward. ICANN accredited registrars are required to support DNSSEC
signing for their customers, and the number of signed domains is slowly increasing. Yet with the
increase in number of signed domains, the number of vulnerable DNSSEC deployments is also increasing.
However, due to lack of support for other, more efficient algorithms, the most popular cryptographic
algorithm is RSA. Furthermore, to avoid overhead, the network operators typically use short keys
(> 1024 bits) which are no longer considered secure.
In this work, we propose an automated DNSSEC keys generation and zone files signing with threshold
ECDSA. We show that a generic transformation suffices to turn essentially any MPC protocol into
an equally secure and efficient protocol that computes ECDSA signatures in a threshold setting. The
generality of this approach means that DNS operators can pick from a variety of existing efficient MPC
solutions which satisfy different security/availability trade-offs. We stress that several of these options
were not supported by any previous solution (as a new protocols would have had to be designed for each
scenario). We benchmark all the protocols achievable from our transformation. Moreover, as many of
the underlying MPC protocols naturally support preprocessing, so does our threshold ECDSA solution
(in a way that is independent of both the DNS zone being signed, and the key being used to sign them).
We argue that this sort of preprocessing is crucial for pushing deployment of DNSSEC, as it allows
DNS operators to sign requests with almost no overhead, compared to the common approach where
one operators is completely in charge of their customer’s keys.
Depending on the security level and the network configuration, our protocols can preprocess tens,
hundreds, or even thousands of signatures per second. Then, the online time for signing essentially
matches the RTT for all but the LAN configuration (where signing is still incredibly fast at less than
0.3ms). When comparing with prior work for the same security level, our protocol is never slower and
significantly faster in many configurations. For instance, we can generate 4 times as many signatures
per second in WAN. Finally, we perform the first study to measure the extent to which multiple DNS
operators are used in the Internet and we integrate our novel threshold ECDSA protocols into a DNS
application.

1 Introduction

The Domain Name System (DNS) [50,51] is one of the core infrastructures of Internet. DNS resolves human-
readable domain names to machine-readable IP addresses over the internet. However, DNS was not designed
with security in mind and a number of attacks against DNS, such as DNS cache poisoning and DNS hijacking,
have been identified [12,8,42,58,38]. The DNS security extensions (DNSSEC) [3,5,4] are one of the first
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attempts at securing DNS against such threats using cryptographic techniques. DNSSEC aims at providing
origin authentication and integrity of DNS data. That is, users can verify whether the response to their DNS
queries have originated from the intended DNS server, and that it remained unaltered during transit.

In practice, very few domain owners run their own authoritative name servers and manage their zones,
and this role is usually outsourced to the DNS operators. Outsourcing management of zones comes with
several benefits, such as increased availability and a lesser chance of misconfiguration (presumably, because
the operators have specialists at hand that administer their name servers). However, when DNSSEC is used,
this outsourcing also introduces several issues related to key management. In order to use DNSSEC, the
operator would need to handle domain owners’ private signing keys. This not only means that each domain
owner needs to relinquish control of their signing keys, but it also makes the operator a very lucrative target
for attackers. Access to the signing keys gives the operator full access to the zone, that is, the operator can
change the zone file at will and include malicious information. Assuming that the domain owner trusts the
operator, there are two situations that need to be considered. (1) For operational reasons, the operator may
reuse keys for multiple domains. In fact, [19] find that 132, 000 domains in their measurements share the
same keys. If a single key is compromised, all the domains that share this key will be affected. (2) Consider
a situation where a powerful adversary forces the operator to disclose the signing keys of the domains it
manages. This is not a hypothetical situation. Depending on the country of operation, governments can
legally compel the registrar to behave according their orders and take down domains. It is possible that
compromised keys can result in a complete takeover, for instance, of a top-level domain (TLD) [53]. E.g.,
access to the private part of the ZSK allows an adversary to change the DS record of a child zone and validly
sign them. Such an access gives the adversary the capability to make changes that will result in a failed
verification of the chain of trust [6].

Furthermore, recent large distributed denial of service (DDoS) attacks such as the ones aimed at Dyn
[30] or NS1 [11] have illustrated that there is a real need to distribute management of zones to multiple
operators. However, the situation with respect to using DNSSEC in a multi-operator setting is currently
complex. It is challenging to deploy DNSSEC in an environment where domain owners use multiple DNS
operators to distribute their authoritative DNS service. Despite these challenges, recent efforts have been
made to address using DNSSEC in a setting with multiple operators [41]. The main issue identified by this
RFC is key management, that is, who should be in charge of the signing keys.

1.1 Threshold Signatures

Threshold signatures is a technique wherein a set of n participants jointly compute a signature on a message
in such a way that at least t + 1, with t < n, are required to participate. Threshold signatures are, in
a nutshell, a specific kind of secure multiparty computation (MPC) with applicability to many practical
problems—in particular DNSSEC.

It is easy to see why threshold signatures would be beneficial for DNSSEC: using such a protocol, no
single operator needs to be responsible for the entire signing key. In fact, the domain owner can keep the
key themselves and simply provide shares of the key to the operators, where the shares themselves provide
no information about the signing key (unless more than t operators band together). Using only these shares,
the operators can then digitally sign the zone files, and if the domain owner trusts t+ 1 of the operators, it
is clear that only valid zone files are ever signed.

Therefore, using threshold signatures as a way to distribute the trust in a multi-provider DNSSEC setting
seems like a natural approach. This has previously been studied with threshold RSA as the signing scheme
[16], however, not with threshold ECDSA, which is the topic of this work.

1.2 Contributions

While schemes for threshold signatures were introduced at least a couple of decades ago, it is only recently
that practical schemes for ECDSA have been developed. The renewed interest in threshold signatures, and
threshold ECDSA in particular, is mostly due to its use in cryptocurrencies. However, using threshold
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signatures in the context of cryptocurrencies is substantially different from their deployment in the context
of DNSSEC: First, there is only a handful of DNS operators that are typically used per zone in the world
of DNS, while the identity and number of parties involved in cryptocurrencies can vary to a much higher
degree. Second, when DNS operators use online signing, they need to generate signatures on-the-fly and
hence, many signatures need to be generated per second, especially at large DNS providers. This setting
differs from cryptocurrency transactions where very few signatures need to be generated over time (and
therefore amortization has only been considered to a lesser degree).

It is thus natural to ask whether it is possible to depart from the design of existing threshold ECDSA
protocol and construct protocols that better suits the requirements of the application that we have in mind.

In this work, we answer this question in the positive by describing a very generic and powerful transfor-
mation that can turn essentially any MPC protocols for arithmetic circuits over a field Zp to a protocol over
any other group G of the same order. Naturally, this allows us to perform MPC in the subgroup G ⊆ E(K)
of order p of the curve E(K) used in ECDSA; in particular, this transformation allows us to transform an
efficient protocol over Zp into an essentially equally efficient protocol for curve arithmetic.

Due to the generality of our approach, we are able to obtain several different instantiations of threshold
ECDSA for different corruption models (honest or dishonest majority and passive or active adversaries)
that can be used to compute a large amount of signatures at a very low cost. Another consequence of the
generality of our approach is that key generation becomes very efficient. This too is beneficial in our setting,
as large operators may need to generate many keys as they manage many zones. Moreover, it also makes our
approach very attractive for other applications, such as cryptocurrencies, as key generation turns out to be
a very expensive step in previous protocols.5

Finally, we describe an application based on Knot [44] that employs our novel threshold ECDSA protocol
for the purpose of zone file signing.

Summary of our contributions:

– We present a generic transformation for MPC protocols over Zp to protocols for performing MPC over
elliptic curves. This transformation only introduces a small overhead in terms of efficiency and preserves
the security properties of the original MPC protocol. We believe that this transformation might have
other useful applications beyond ECDSA signing.

– We extend MP-SPDZ [25], one of the main frameworks for MPC, with our transformation. This gives rise
to threshold ECDSA protocols for a variety of configurations, many which had never been implemented
before in the literature. This illustrates the generality and ease of use of our transformation.

– We benchmark all our instantiations and compare with the state of the art for threshold ECDSA. For
the setting of dishonest majority, active security, the signing phase is 16 times as fast in the LAN setting
(while in WAN both our protocol and previous work essentially match the RTT between the different
servers). The preprocessing phase of our protocol allows us to precompute 4 times as many signatures
in the WAN setting (while in the LAN setting the number of preprocessed signatures is essentially the
same as prior work).

– For three parties with an honest majority (for which no prior solutions are available), our approach
preprocesses more than 600 signatures per second, and signing a single message takes around 240ms when
servers are placed on three different continents (North America, Europe and East Asia, respectively).
In a colocated setting, we can process up to 1400 signatures per second, with a single signature taking
around 0.2ms to create.

– We perform the first measurement study to understand the extent to which multiple operators are used
in the Internet. We use Alexa Top-1m dataset to perform our measurements. We find that 40% of the
domains in the Alexa Top-100 use multiple operators while the proportion of domains in the Alexa-1m
is 3.5%. Our measurements also show that there are thousands of domains that use multiple operators
where our threshold ECDSA protocols can be easily used.

5 Remember that, in order to enhance anonymity, users in classic cryptocurrencies such as Bitcoin or Ethereum are
encouraged not to reuse addresses, and therefore, key generation is a much more frequent operation than one might
expect.
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– We describe a full system that can be used by multiple DNS operators for the purpose of implementing
the DNSSEC standard, such that no operator has access to the signing key, and where the overhead is
minimal; essentially, the same as sending a single message between all operators.

Concurrent Work. The core technical idea behind this work has been independently developed by Smart and
Talibi Alaoui [57]. Here is a detailed comparison of the two works: both works observe that generic arithmetic
MPC tools can be used to perform efficient MPC over elliptic curves. Both works include a description of how
SPDZ-style MACs can be adapted to elliptic curve computation, and notice that the same idea can be used for
other arithmetic MPC protocols (e.g., Shamir- and replicated- secret-sharing). Both works mention threshold
ECDSA as a natural application, but we in addition split the protocol in user-independent preprocessing
and user/message-dependent computation, as we imagine many users outsourcing their signing capabilities
to the same subset of semi-trusted servers. The main differences are: we have implemented and benchmarked
the resulting protocols against state of the art threshold ECDSA protocols, and we demonstrate how this
can be effectively integrated into existing DNS infrastructure. They do not report on any implementation,
but instead describe how the same technique can also be used to perform MPC of a shuffle network.

2 Background

The following section provides an overview of DNSSEC and the current state-of-the-art for threshold ECDSA
protocols.

2.1 DNSSEC

DNSSEC [3,5,4] is designed to overcome some of the security limitations of DNS. It provides origin authen-
tication and integrity of DNS resource record sets (RRsets) by digitally signing them. For this purpose, it
introduces three new resource records—DNSKEY, RRSIG and DS. DNSKEY record holds the public keys whose
corresponding private key is used to sign RRsets. DNSKEY is used to verify these signatures. Each zone usu-
ally creates two DNSKEY records—one for a Key Signing Key (KSK) and another for a Zone Signing Key
(ZSK). The private key of the KSK is used to sign DNSKEY records, and the private key of the ZSK is used to
sign all other records. The use of two key pairs facilitates frequent change of ZSKs. The process of changing
the public/private key pairs in DNSSEC is called key rollover. RRSIG or Resource Record Signature hold
the signature of RRsets. DS or Delegation Signer contains the hash of the public key (DNSKEY) of the child
zone. It is uploaded to the parent zone by the registrar. The DS records are signed by the parent zone. It
establishes a chain of trust between the parent and the child zone.

DNSSEC ecosystem. DNSSEC ecosystem has two parts: The signing part and the validation part. Both
parts are necessary for DNSSEC to function. On the signing part, there are three main organizations:
Registries, registrars and DNS operators. Registries are organizations that manage top-level domains (TLDs)
and they are responsible for maintaining TLD zone file. A domain owner owns a domain name and registers
the domain with a registrar. The domain owner is a customer of the registrar. DNS operators are organizations
that run authoritative DNS servers. Each domain name has one or more operators while each operator can
serve many domains. DNS operators decide the life cycle of the keys as well as signatures. this is important
as DNSSEC does not have the possibility to revoke keys and instead relies on generating new keys and
signatures periodically. On the validation part, DNS resolver queries DNS authoritative name servers to
map domain names to IP addresses. DNS resolver also verifies the signatures (RRSIG) for the corresponding
RRset. Furthermore, DNS resolvers check the global chain of trust from the root of DNS to the queried
domain. The domain is resolved when the signature verification and the global chain of trust is checked.

Role of Registrars. Some of the registrars offer their customers the option where (1) the domain owner
can operate the domain, or (2) the registrar becomes the DNS operator and serves as the authoritative
name server for the domain being purchased, or (3) a third-party operates becomes the DNS operator. With
regards to DNSSEC, the registrar plays a critical role irrespective of the option chosen by the domain owner.
When the registrar registers its customer’s domain name with the registry, it adds the NS record as well
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as DS record to the TLD zone file. Typically, only the registrar is allowed to modify information about the
domain names it has registered at the registry. Note that in the case of a third-party as a DNS operator, the
third-party cannot ask the registrar to upload the DS record. Instead, it has to ask the domain owner to relay
the DS record to the registrar. As only the registrar can upload a DS record for the domain to the registry
and a missing DS breaks the chain of trust, the registrar plays a critical role in the DNSSEC ecosystem.

Multi-operator setting. The evolution of DNS over the past two decades has seen the move from the
recommendation to swap secondary zones with other organizations [31] to the reliance on DNS operators
with global points of presence. Nevertheless, many domains were not accessible in the face of large-scaled
distributed denial of service attacks, e.g., on NS1 [11] and Dyn [30] in 2016, because of their reliance on a
single DNS operator. One solution to safeguard against such attacks on the infrastructure of a single operator
is to use multiple DNS operators to host zone files. If the zone is signed by one signing server and only served
by the other operators as a secondary authoritative name server, then standard zone transfer techniques
suffice. However, some operators only support online signing while others offer non-standard DNS features.
DNSSEC in this setting is challenging and does not yet have a suitable solution.

2.2 Threshold ECDSA

Threshold signatures enables a group of n parties to compute a signature only if a certain threshold, say
t + 1 ≤ n, participate in the signing protocol. Moreover, any group of t or less parties will neither learn
anything about the signing key being used, nor will they be able to generate a valid signature on a previously
unsigned message. The appeal of such protocols is that they make it possible to distribute the signing process
and they make it more robust to adversarial attacks or disruptions, while preserving the original verification
procedure of the signature scheme. In particular, signatures that are generated by the threshold protocol
can be verified as if it were computed by a single party.

Protocols for computing signatures in distributed manner date back to the late 1990s and early 2000s,
with protocols for DSS [35], RSA [55,24] or DSA [49]. Works on threshold signatures, specifically threshold
ECDSA, has seen a resurgence. This renewed interest can largely be attributed to their role in crypto currency
schemes where security of the signing key is paramount as it is used to authorize transactions; in a nutshell,
the key is the account. Therefore, the possibility to increase the security of the key by splitting the role of
the signer among several separate entities, without changing the verification procedure, makes it attractive
to use threshold signatures in crypto currency schemes.

Multiple proposals for efficient threshold ECDSA protocols suitable for both 2 and n parties have been
developed in the last couple of years. In the 2-party setting, Lindell [45] provides a protocol that achieves
a throughput of over 100 signatures per second when using four threads. This protocol requires around
2435 ms to generate a key pair and 36.8 ms to sign using a single thread. Doerner et al. [27] propose a
protocol that generates a key pair in 44.32 ms and computes a signature in just over 2 ms. However, the
protocol of Doerner et al. relies heavily on Oblivious Transfer [52] that requires more communication than
the protocol of Lindell, making it less ideal in low-bandwidth environments.

In the more general n-party setting, Gennaro et al. [34] present a protocol with a threshold of t ≤ n− 1.
A variant of their protocol that requires less communication is presented in [13]. Both these works require a
distributed Paillier key generation scheme, which is inefficient. Gennaro and Goldfeder [33] present a protocol
that does not require a dealer for key generation. [33] show that signing takes 29 + t · 24 ms in their work,
397 + t · 91 ms in [13] and 142 + t · 52 ms in [34]. Here t denotes the corruption threshold. [46,47] present
a protocol which signs in 304 ms for n = 2 and in 3 seconds when n = 10. Key generation is significantly
slower than signing and takes around 11 seconds for 2 parties and 17 seconds for 10 parties. Finally, a recent
work by Doerner et al. [29] generalizes their 2-party protocol [27] to work for any number of parties. They
achieve an impressive 37.6 ms for creating a signature with 24 parties and with t = b(n− 1)/2c. (Note that,
as their protocol is dishonest majority, t dictates the number of active parties. In particular, 24 parties with
t = b(n− 1)/2c implies that only 13 parties actually participate in the protocol.)
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3 System and Threat Model

Our system aims to take into account the diversity of the DNS ecosystem. Not only do we want to keep signing
keys of domains secure, but we also want to make sure that the availability of the zone and, consequentially,
zone signing is maintained under unexpected situations such as DDoS. In this section, we introduce the
system and communication model we use in the rest of the work. We also introduce different threat models,
along with the motivation behind each of them, that our solution supports.

3.1 System and Communication Model

Our system considers the scenario where the domain is served by more than one DNS operator. We assume
that the operators can securely communicate with each other, e.g., using a TLS connection where both
endpoints are authenticated. Furthermore, we assume that the domain owners can securely communicate
with the DNS operators. Although a larger pool of operators increases the availability of the domain, domain
owners also need to consider the cost-benefit trade-off. As two or three operators provides sufficient redun-
dancy, we envision our system to be used in the setting where the number of DNS operators per domain is
n = 2 or n = 3.

Our system focuses on the DNSSEC operations at the authoritative name servers. To be specific, we
focus on the key generation and zone signing in the multi-operator setting. We assume that the domain
owner is able to transfer the DS record to the registrar if the registrar is not one of the operators. Otherwise,
our setting does not require the domain owner to be available for key generation and zone signing. In the
setting we consider in this paper, no operator has access to the signing key. They only have access to the
shares of the signing key. Hence, we eliminate the possibility of signing keys being leaked if a DNS operator
is compromised.

3.2 Threat Model

As our distributed DNSSEC system may be used in different scenarios, we consider the guarantees that our
system provides. We phrase these guarantees using standard MPC terminology as our solution supports all
of them. First, we consider the guarantees that can be achieved when the threshold of honest parties varies.
Second, we consider whether an adversary is malicious or not. In each case, we clarify the security that can
be obtained.

Honest vs. dishonest majority. Let n be the number of DNS operators for a domain. In MPC, one kind of
distinction that is made between different protocols is with regards to the number of parties that are needed
to sign a message. A protocol wherein t ≤ b(n − 1)/2c are needed to sign is called honest majority, while
the less restrictive case of t < n is called dishonest majority. Honest majority protocols are typically faster
and can be constructed to satisfy properties, such as guaranteed output, that dishonest majority protocols
cannot achieve. Even if one of the parties has lost its key share, the rest of parties (as long as it is the
majority of the parties, that is, two-out-of-three when n = 3) can run the protocol for zone signing. Thus,
honest majority protocols are beneficial when availability of service is of prime importance. Nevertheless,
there are situations when honest majority protocols do not suffice. Dishonest majority protocols provide
stronger security than honest majority protocols since the adversary needs to corrupt all parties in order to
access the signing key. On the other hand, this means that the service will become unavailable should one
of the parties crash. Hence, there is trade-off between availability and security in these models.

Semi-honest vs. active security. Another way to classify MPC protocols is with respect to the adversary’s
capabilities. In a nutshell, either the adversary follows the protocol or it does not. An adversary of the former
kind is called semi-honest or honest-but-curious, while the latter kind is called active or malicious. Several
real life scenarios can be modelled by a semi-honest adversary. In a situation where the DNS operators trust
each other but do not and cannot share signing keys of domains with each other due to their contract with
the domain owner or due to legal reasons, a protocol constructed to be secure against semi-honest adversary
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is sufficient. Such a protocol keeps private information away from the hands of an eavesdropping employee
at the DNS operator.

We also consider an active adversary that has full control over the actions of one or more of the operators.
In particular, it can act inconsistently or send wrong values during the protocol. It should not be surprising
that security against semi-honest adversaries is easier to obtain than against active adversaries. Moreover,
semi-honest protocols are typically much more efficient. In particular, since semi-honest adversaries are
assumed to always supply the correct information during protocol execution, no extra checks are needed to
ensure that computations are performed correctly.

4 Threshold ECDSA

A signature scheme consists of three operations—key generation, signature creation and signature verification—
that are defined as follows:

– KGen(1λ) on input a security parameter 1λ, outputs a key pair (sk, pk) where sk is used to create signatures
and is kept secret, and pk is used for verification and made public.

– Sig(sk,M) on input the signing key sk and message M ∈ {0, 1}∗, produces a signature σ.
– Vf(pk,M, σ) on input the verification key pk, message M and signature σ, outputs 1 if σ is a valid

signature on M and 0 otherwise.

If needed, we assume that participants agree on a set of public parameters beforehand, and that these
parameters are provided as implicit input to all of the above functions.

4.1 ECDSA

For zone signing, the two most widely used signing algorithms are RSA and ECDSA. RSA continues to be
widely deployed while the rate of adoption of ECDSA is increasing since it was standardised in 2012 [40,21,61].
As mentioned, our focus is on ECDSA which we introduce next. ECDSA as standardized in [43] is defined
as follows: The scheme is parameterized by a subgroup G ⊆ E(K) of prime order p of some curve E(K),
where G is a generator of G. We use Zp to denote a field of order p and H to denote a hash function mapping
messages unto elements of Zp.

– KGen(1λ)
1. Sample at random sk← Zp as the signing key.
2. Compute pk = sk ·G as the public verification key.
3. Output (sk, pk).

– Sig(sk,M)
1. Sample an instance key k ← Zp at random.
2. Compute (rx, ry) = k ·G. If rx ≡ 0 (mod p), go back to Step 1.
3. Compute s = k−1(H(M) + sk · rx).
4. Output σ = (rx, s).

– Vf(pk,M, σ)
1. Parse σ as (rx, s).
2. Compute (r′x, r

′
y) = s−1(H(M) ·G+ rx · pk).

3. Output 1 iff r′x = rx.

It is easy to verify that Sig produces a valid signature:

s−1(H(M) ·G+ rx · pk)

= k(H(M) + sk · rx)−1(H(M) ·G+ rx · pk)

= k ·G · ((H(M) + sk · rx)−1(H(M) + sk · rx))

= k ·G = (rx, ry).
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Security. Unlike its close relative, the Schnorr Signature scheme [54], it is not known whether ECDSA
is secure even in the Random Oracle model. That being said, recent years have seen some work towards
proving ECDSA secure in specifically tailored models, such as [32]. And if nothing else, the widespread use
of ECDSA, nevertheless, provides strong empirical evidence towards its security.

4.2 Secure Multiparty Computation

We assume an MPC engine supporting the standard commands of the arithmetic black-box (ABB) function-
ality as shown in Figure 1, where the notation [a] indicates that the value a is “secret-shared”, i.e., that no
party has access to it.

Arithmetic black-box

– A command ([a], [b], [c])← RandMul() that generates appropriate representations of a random tuple of secret
shared values a, b, c ∈ Zp with c = ab.

– A command [c] ← Mul([a], [b]) that returns c = ab. (This is typically implemented using one invocation of
RandMul and Beaver’s rerandomization technique [10].)

– A command [a]← Rand() that generates appropriate representation of a random value a ∈ Zp.
– A command a← Open([a]) that publicly reconstructs a (or outputs a special symbol ⊥ denoting abort).
– Linear computation for the [·] representation: given the shares [a], [b] and public scalars x, y ∈ Zp, the parties

can compute [c] = x · [a] + y · [b] “for free”, i.e., the computation does not involve communicating with the
other parties.

Fig. 1: The Arithmetic Black-Box Functionality.

4.3 Secure Computation on Arbitrary Groups

We present a novel extension to the ABB that extends its capabilities to secure computation over an arbitrary
abelian group of order p. In some sense, this shows that the actual representation of the group used for doing
MPC is irrelevant, as long as it is possible to perform linear operations. This generalization of arithmetic
MPC has also been observed independently by [57], and might have applications in other contexts. In this
paper, we use this idea to perform MPC in the subgroup G. Importantly for our application, this extension
comes at no extra cost in terms of communication and only a slight increase in complexity in terms of
computation (corresponding to standard operations in the subgroup of the curve).

Consider a protocol implementing the ABB in Figure 1 and assume that the shares [a] are also elements
of Zp (this is the case for most practical protocols based on additive, replicated, or Shamir’s secret sharing).
The idea is to let each party map their share of [a] to a curve point of order p by locally computing Ai = ai ·G,
where ai is party i’s share of a. This mapping, being an homomorphism, preserves linearity and so Ai is a
share of a ·G with the same properties as the original Zp sharing [a]. In the following, we write 〈a〉 to denote
a share of a ·G.

The following two commands are added to the ABB:

– A command 〈a〉 ← Convert([a]) that converts a representation of the shared value a in Zp to a represen-
tation of the value a ·G in the group G.

– A command a ·G← Open(〈a〉) that recovers the secret shared point.

These two commands, along with the functionality of the original ABB (which provide secure computation
over Zp) is enough to give us a protocol for secure computation over the group G.

If we consider the sharing [a] as a vector with elements from Zp, we get the following useful properties:
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– Linearity is preserved, i.e., given the shares 〈a〉, 〈b〉 and scalars x, y ∈ Zp, we can locally compute
〈c〉 = x〈a〉+ y〈b〉.

– If the Open procedure for [·] shares relies only on group operations in Zp, then we can implement Open
for 〈·〉 shares by using the corresponding group operations of G. This follows from the fact that Convert
is structure preserving.

– Secret scalar multiplication by public point is possible by noting that Convert defines an action of Zp on
G, i.e., [a] · P for a P ∈ G is a local operation that results in 〈a · logP (G)〉. Note that opening this share
will result in a · P .

– Finally, given [x] and 〈y〉 (and a multiplication tuple [a], [b], [c]) it is possible to compute 〈xy〉 using a
slight tweak on Beaver’s technique as follows: (1) e = Open([a] + [x]), (2) D = Open(Convert([b]) + 〈y〉),
(3) 〈xy〉 = Convert([c]) + e〈y〉+ [x]D − eD. Note that this is not required for our application but could
be of independent interest.

The properties of Convert and Open, as well as the functionality of the underlying ABB (which provide
secure computation over Zp) is enough to give us a protocol for secure computation over G. This extended
ABB (which we will call ABB+) is shown in Figure 2.

Extended Arithmetic black-box (ABB+)

– RandMul, Mul([·], [·]), Rand, Open([·]) as described in Figure 1.
– A command 〈a〉 ← Convert([a]) that converts a representation of a secret [a] over the field Zp into a repre-

sentation of the secret 〈a〉 over the group G.
– A command a ·G← Open(〈a〉) that reconstructs a curve point a ·G from a secret representation 〈a〉.

Fig. 2: ABB from Figure 1 extended to support computation over elliptic curves.

4.4 Active security using SPDZ like MACs

The previous section showed that one can easily extend a protocol of Zp with functionality for secure
computation over a subgroup of G ⊆ E(K) of order p. A natural question to ask is whether the active
security guarantees of the Zp protocol extend to the G protocol. We provide a positive answer to this
question by showing that the MAC scheme of SPDZ [23] can be used to provide authentication of shares in
G (i.e., 〈·〉 shares) as well.

SPDZ recap. We recall the SPDZ protocol and its security using the description from [22]. Recall that
in SPDZ a value a ∈ Zp is shared as [a] = ((a1, . . . , aN ), (γ(a)i, . . . , γ(a)N )) where party i holds the pair
(ai, γ(a)i), and where a =

∑
i ai and α ·a = γ(a) =

∑
i γ(a)i. The value α ∈ Zp is a global MAC key which is

secret shared using a different scheme, JαK. (The details of this are not important for the following discussion,
it suffices to say that each party has a share αi, such that

∑
i αi = α, as well as other information to make

this sharing secure.) The global MAC key is unknown to all parties and provide a notion of authentication
of the shares.

We recap here the opening phase of the SPDZ protocol for a single value, i.e., the part where the parties
check if the output was computed correctly:6

1. Each Pi has input αi, their share of the global MAC key, and γ(a)i, their share of the MAC on a partially
opened value a.7

6 Note that several openings can be batched at the same time, see the original paper for more details
7 A partial opening entails revealing the value but not the MAC.
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2. Each Pi computes σi = γi(a)− αia and broadcasts a commitment com(σi).

3. All parties open com(σi), compute chk =
∑
i σi and abort if chk 6= 0.

Suppose a′ = a+ ε, i.e., the adversary adds an error ε 6= 0 during the partial opening. Suppose, in addition,
the adversary lies about its MAC in Step 2 of SPDZ opening phase and let ∆ denote this error. The adversary
is successful if ∆ =

∑
i σi. In this case, we have

∆ =

n∑
i=1

σi =

n∑
i=1

γi(a)− αia = αε.

Since ε = (a−a′) 6= 0, then α = ∆ε−1 which happens with probability at most 1/p due to the random choice
of α.

SPDZ-like computation over an elliptic curve. In the remainder of this section, we will use the short-
hand notation cv(a) = Convert(a) for convenience. Consider the most natural modification possible to obtain
a notion of a SPDZ-sharing 〈·〉 over G, from a SPDZ-sharing [·] over Zp, by applying cv to all local shares.
We define 〈a〉 as the vector

〈a〉 = ((cv(ai), . . . , cv(aN )),

(cv(γ(a)i), . . . , cv(γ(a)N ))),

where Pi holds (cv(a1), cv(γ(a)i)). Observe that the linearity of cv implies that
∑
i(cv(ai)) = cv(

∑
i ai) =

cv(a), which makes the above a valid sharing of cv(a). In addition, the semantics of the MAC is preserved
since ∑

i

cv(γ(a)i) = cv(
∑
i

γ(a)i) = cv(α · a).

We can therefore use the same JαK to authenticate the cv’ed share as well. More precisely, we consider a
modified opening procedure that works as follows:8

1. Let αi be the share of the key held by Pi, and Γi = cv(γ(a)i) be the shares of the MAC on A = cv(a).

2. Each Pi computes Σi = Γi − αiA and broadcasts a commitment com(Σi).

3. Open com(Σi), compute chk = Σ1 + · · ·+ΣN and abort if chk 6= 0.

It follows in a straightforward manner, due to the linearity of the group operations, that if the adversary
opens A′ 6= A then the check only passes with probability 1/p. In a nutshell, we are taking a secure linear MAC
procedure, and raising all the MACs and values in the exponent. Since the SPDZ MACs have information
theoretic security, it is straight forward to reduce the security of the “MAC in the exponent” to the security
of the regular MAC (as the reduction can run in unbounded time and retrieve the original MAC). Note that
this would not have been the case with a MAC which was only computationally secure.

Other secret sharing schemes. The MAC check described in the previous section was particular to
additive sharing, i.e., sharing a value a as (a1, . . . , an) such that a =

∑
i ai. However, it is worth pointing

out that this is by no means a requirement. Indeed, all the arguments made in the previous section work as
long as Convert preserves linearity, which is the case for the additive case (as shown), but also for Shamir
secret sharing, replicated secret sharing, etc.

Active security using other approaches. We focus on SPDZ as that is what we benchmark in Section
5. However, the transform described so far also applies to a number of other transforms that we mention
here in brief.

For example, the compiler of Chida et al. [17] achieves active security by keeping track of a randomized
version of the value on a wire. I.e., each share is the pair ([a], [r · a]) where r is random and unknown to all

8 Once again, the procedure is described for a single value, but it can be extended to support batched opening.
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parties. At the end of the protocol parties compute a linear combination of the shares on the input wires
and output wires, i.e.,

[u] =
∑
i

αi · [r · zi] +
∑
j

βj · [r · vj ]

[w] =
∑
i

αi · [zi] +
∑
j

βj · [vj ].

Next r is revealed and parties check if

0
?
= Open([u]− r · [w])

It is easy to see that if we define a G sharing as the pair obtained by applying Convert on [a], i.e.,
(Convert([a]),Convert([r · a])) then the above check would still work and provide active security for com-
putation over G as well.

4.5 Multiparty ECDSA protocol using the ABB+

We recall the protocol in [33] and show that it can be computed by our extended arithmetic black box
functionality. The main issue with computing ECDSA signatures securely is calculating k−1 such it that
does not reveal information about k. However, the inversion trick by Bar-Ilan and Beaver [9] can be used
here: Suppose each party has a share of two random values γ, k, and their product, i.e., [γ], [k], [δ] where
δ = γ · k. The parties can then open δ and use it locally to compute their share of [k−1] = δ−1[γ]. Thus
the price to pay for the inversion (which is the most expensive part of every threshold ECDSA protocol) is
essentially just generating a random multiplication triple using RandMul. Then, using Convert, the parties
can compute the value R = Open(Convert([k])).

Recall that the other value we need is a sharing of sk/k. Given [k−1] it is straight forward to get [sk/k]
by performing a single secure multiplication.

The full protocol using the ABB+ now follows: We consider a setting with a number of servers S =
{S1, . . . , SN} and a number of users U = {U1, . . . , U`}. Our protocol has 4 phases: Key generation in which
a random secret key is generated using [sk] = Rand(), and then converted into the public key by running
pk = Open(Convert([sk])). (Alternatively, users can pick their own keys and input them to the servers in
S). Next up are two preprocessing phases: One phase is independent of the users and the messages to be
signed, and serves to generate the values [k−1] and R = k ·G that are required for generating any signature;
the other phase depends on the user and computes [skj/k], where skj is the signing key of user Uj . Finally,
generating a signature using the output of the preprocessing and the user’s signing key is just a matter of
performing a linear computation followed by an opening. We show the details of the full protocol in Figure
3.

The security of the full protocol is straightforward in the ABB+ hybrid model, i.e., the threshold ECDSA
protocol will inherit the security properties of the underlying ABB+ (passive or active security, and corruption
threshold).

Optimized SPDZ Opening. Threshold signatures are a very special case of MPC where the correctness
of the output can trivially be determined by observing the output itself (by verifying the signature). This
is a well known trick which has been previously used to optimize many threshold ECDSA protocols in the
literature. We can similarly optimize our protocol by using an “optimistic” version of the Open command
when running Step 3 of the Signing subroutine. This gives us a significant speedup in our SPDZ-based
implementation since we can save the extra round of communication required for checking the correctness
of the MAC, without any effect on the security. The only feasible attack against the optimistic opening in
SPDZ is an additive attack, i.e., the attacker can make the honest parties output s + ε for an error value
ε 6= 0, which results in an invalid signature but does not disclose any information about the secret key.
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Threshold ECDSA in the ABB+ Hybrid Model

Key Generation. To generate a key for user Uj , either Uj supplies the sharing [skj ], or the servers run [skj ] ←
Rand(). The public key is computed as pkj = Open(Convert([skj ]))

User independent preprocessing. The goal is to generate a pair (R, [k−1]) for each signature in the following way.

1. The servers run ([a], [b], [c])← RandMul().
2. Run c← Open([c]).
3. Let [k] = [a] and compute [k−1] = c−1[b].
4. Define 〈k〉 ← Convert([k]).
5. Run R← Open(〈k〉).
6. Output (R, [k−1]).

User dependent preprocessing.

1. Take as input [skj ] (the sharing of the secret key of user Uj) and (R, [k−1]) (an unused tuple from the
previous phase).

2. Compute [sk′j ] = [skj/k]← Mul([k−1], [skj ])
3. Output a final tuple (R, [k−1], [sk′j ]).

Signing. Given a message to be signed M and preprocessed tuple (R, [k−1], [sk′j ]) for Uj .

1. Let (rx, ry)← R.
2. Compute [s] = H(M) · [k−1] + rx · [sk′j ].
3. Open s← Open([s]) and output σ = (rx, s).

Fig. 3: Protocol with preprocessing computing threshold ECDSA signatures using our extended ABB.
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AB (ms) AC (ms) BC (ms)

Colocated 0.07 0.07 0.08
Continent 11.51 16.98 8.2
World 240.0 71.0 181.1

Table 1: Round trip time between the servers used. A is always Ireland, while B is Paris and Seoul in the
“Continent”, respectively “World” setting, and C is London and N.Virginia in the “Continent”, respectively
“World” settings.

5 Evaluation

5.1 Implementation

We have implemented our protocol on top of MP-SPDZ [25] (one of the main frameworks for MPC for
arithmetic circuits) and have used Crypto++ as the library for computation over elliptic curves.

MP-SPDZ provides several protocols for computation in Zp with various security models. Of these, we
have used MASCOT, Semi (i.e., semi-honest, dishonest majority), Shamir (malicious and semi-honest), and
Rep3 (i.e., three-party with replicated secret sharing, malicious and semi-honest). The first two protocols are
based on oblivious transfer and work with a dishonest majority while the latter two use multiplicative secret
sharing and work with an honest majority. Note that we have not used any protocol based on homomorphic
encryption because the MP-SPDZ implementation of homomorphic encryption only supports the primes p
which are incompatible with ECDSA, namely they must be such that 2n divides p− 1 for some n around 15.

5.2 Benchmarks

We have benchmarked our implementation with n = 2 and n = 3, depending on whether the underlying
protocol requires an honest majority or not. In our benchmarking we split the protocol between preprocessing
(including both preprocessing phases in Figure 3) and online signing phase. We measure both the throughput
(based on batches of 10000 signatures), and the time for generating a single signature given a preprocessed
tuple.

We used AWS c5.2xlarge instances in three settings: Colocation: All servers located in the same region.
We used Ireland. Continent : Servers are located in the same continent. We used servers in Ireland, Paris and
London. For two-party protocols, benchmarks are run between Ireland and Paris. World : Servers are located
in different continents. We use a server in Ireland, one in North Virginia and one in Seoul. For two-party
protocols, the servers in Ireland and Seoul were used. Round trip time (RTT) for our setup can be found in
Table 1.

All benchmarks were run with a single thread. Our results, as well as comparisons with previous work, can
be seen in Table 2 and Table 3. We explain our results first before we turn our attention to the comparisons
with previous works. Notably (and unsurprisingly), the time required for one signature increases considerably
with the distance between the parties because the protocols take up to two rounds of communication while
the computation is rather straightforward. In particular, there are no elliptic curve operations because they
only take place during the preprocessing.

The OT-based (MASCOT and Semi) and Rep3 protocols only take one round of communication for
signing if the resulting s is checked instead of using the check in the protocol,9 and this round clearly
dominates the time. In theory, this would mean that time is roughly half the RTT. However, we found the
results varying between RTT and virtually zero most likely because the parties did not act synchronously.
Therefore, we decided to report the maximum over ten executions for the continent and the world setting,
which comes down to the RTT. On the other hand, in the colocated setting, we use the checks offered by

9 This does not apply for rx, which is checked during preprocessing.
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Malicious Full threshold Tuples/s Sig (ms) KGen (ms)

MASCOT 3 3 291.56 0.22 3.84
Mal. Shamir 3 7 742.15 0.26 1.87
Mal. Rep3 3 7 927.61 0.26 1.31

Semi. OT 7 3 1428.15 0.12 1.15
Shamir 7 7 1095.19 0.25 1.23
Rep3 7 7 909.64 0.15 1.26

DKLS [27] 3 3 279.33 3.58 43.73
Unbound [59] 3 3 88.26 11.33 315.96

GG18† [33] 3 3 18.87 53.00 N/A

Lindel17† [45] 3 3 27.17 36.80 2435.00

LNR18† [47] 3 3 3.29 304.00 11 000.00

Table 2: LAN benchmarks for signing and key generation. Values in entries marked † are reported from the
respective paper.

Continent World

Malicious Full threshold Tuples/s Sig (ms) KGen (ms) Tuples/s Sig (ms) KGen (ms)

MASCOT 3 3 226.58 12.80 237.45 18.97 241.21 3031.35
Mal. Shamir 3 7 709.76 34.10 36.01 371.63 479.92 486.27
Mal. Rep3 3 7 890.17 18.70 41.35 577.27 240.64 433.50

Semi. OT 7 3 1202.33 11.20 67.44 201.42 230.48 935.15
Shamir 7 7 1052.99 20.35 35.12 564.80 484.22 486.13
Rep3 7 7 908.37 17.09 29.69 643.67 240.77 354.47

DKLS [27] 3 3 65.23 15.33 109.80 4.27 234.37 1002.97
Unbound [59] 3 3 32.18 31.08 424.02 2.04 490.73 1010.98

Table 3: WAN benchmarks for signing and key generation.

the protocol because it takes about 1 ms to check a signature, and we report averages over ten executions.
For previous work, we always report averages.

It might be surprising that the semi-honest OT-based protocol has the highest throughput during pre-
processing in the colocated and the same-continent settings when dishonest-majority protocols are usually
more expensive than honest-majority protocols. This is explained by the fact that elliptic curve computation
is by far the most costly part of the protocol, and the simple additive secret sharing in Semi is advantageous
because only one share is converted from Zp. Replicated secret sharing uses two shares per value, and Shamir
secret sharing requires relatively expensive operations of Zp on the curve for reconstruction.

Table 4 shows the communication cost per party for the various protocols. As one would expect, dishonest-
majority protocols are significantly more costly than honest-majority protocols, and malicious security is
somewhat more costly than semi-honest security. Note that the minimal communication is exactly the size
of one element of Zp. The figures for semi-honest Shamir are averages over the parties because the imple-
mentation is asymmetric.

Protocols from previous works. We benchmark against protocols from previous works where the imple-
mentation is publicly available (either as an artifact which was released with the paper or in the open-source
codebase of companies): We ran the 2-party protocol from [27] using the code that we found at [28]. We also
ran the protocol implemented by Unbound Tech, whose code we found at [59].10 Note that, as is it usual

10 This protocol is not (to the best of our knowledge) part of some published work. A white-paper describing this
protocol can, however, be found in the repository (see docs directory).
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Preprocessing Message-dependent
Protocol check Offline check

MASCOT 1247.1 0.80 0.26
Semi. OT 198.0 0.26 0.26
Mal. Shamir 9.0 0.51 0.51
Semi. Shamir 2.9 0.34 0.34
Mal. Rep3 3.0 0.77 0.26
Semi. Rep3 1.4 0.26 0.26

Table 4: Communication per signature and party (kbit)

Colocation Continent World

Secret (ms) Public (ms) Secret (ms) Public (ms) Secret (ms) Public (ms)

MASCOT 1.82 2.02 201.83 35.62 2549.33 482.02
Semi. OT 0.59 0.56 49.65 17.79 692.28 242.87
Mal. Shamir 0.34 1.53 17.15 18.86 242.45 243.82
Shamir 0.19 1.04 17.10 18.02 242.50 243.63
Mal. Rep3 0.08 1.23 11.58 29.77 115.42 318.08
Rep3 0.08 1.18 11.55 18.14 111.29 243.18

Table 5: Breakdown of key generation benchmarks into the time it takes to generate the [sk] sharing, and
the time it takes to run Open(Convert([sk])).

the case, these comparisons are not “apples to apples” since we are comparing software written by different
developers in different languages (but on the same network and computing configuration). However, it still
provides an indication of the performances of the underlying protocols.

In addition, we also included some of the numbers reported in previous works (when it was not possible to
replicate their experiments due to non-availability of the code): For the protocol in [33], we use the formula
they provide with a threshold of 2. A similar approach is taken for the protocols of [45] and [47]. The authors
of these works only consider a LAN setting, which is why we have chosen to only include their numbers in
our LAN table. Finally, we chose not to include numbers from [29], as this protocol only becomes interesting
for a large number of parties. For n = 2 or n = 3 (which is the number of parties we are concerned with),
this protocol is just a slightly slower variant of [27].

Comparing our protocol to previous work. A direct comparison between our work and existing protocols
from academy or industry is not possible. Indeed, contrary to existing protocols, ours relies on preprocessing
to achieve the efficient signing.11 However, in Table 2 and Table 3, we provide numbers indicating the number
of signatures each protocol can generate per second. For existing protocols, these numbers were computed
as 1000/x where x is the value in the Sig column, while for ours the column simply denotes the number of
tuples computed per second.

Key Generation. Finally, we also run benchmarks for key generation. For the colocated setting, we report
the average, while for the continent and world settings, the maximum is used. We note that the MASCOT
protocol uses a less than optimal way of generating the shared secret key [sk] (see also Table 5, which shows
the timings for both public and secret key generation). All our protocols are 10x faster than [27] and almost
100x faster than [59] in the colocated setting. Interesting to note is the seemingly huge benefit we get by
switching to an honest majority protocol. In the world setting, our honest majority protocols are at least
twice as [27] and [59].

11 This is not to say that existing protocols could not be adapted to work in the preprocessing model e.g., the protocols
of Doerner et al. [27],[29], which are based on OT extension, could probably be adapted to this model.
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6 Measurements

Since the large DDoS attacks on Dyn [30] or NS1 [11] in 2016, many domains are using more than one
operator to increase the redundancy of the zone so that they do not fall victim to another DDoS attack.
However, no recent work has measured the number of domains that make use of multiple operators. As we
propose to use our multiparty ECDSA protocol for DNSSEC zone signing, we measure the extent to which
multiple operators are used on the Internet. We consider a domain to have more than one operator if the
DNS name servers of the same domain are hosted by an entirely different DNS operator.

6.1 Approach

If a domain name is configured to be served by three DNS name servers, we check whether it is managed
by the same operator. For our purpose, we are interested in nameservers run by different operators and not
necessarily name servers placed at different locations. For instance, some domains might make use of two
operators who are geographically located in close proximity to each other; sometimes, even in the same data
centre. We are interested in the setting with different operators as they do not trust the other with signing
keys and they do not have a business relationship with each other that will allow them to pass on copies of
signing keys. Hence, being geographically close does not eliminate the need to run a secure signing protocol.
Some domains make use of a single operator which has name servers at different locations. In principle, a
multiparty ECDSA protocols can be used in this setting as well because it provides better security than
simply storing a copy of the signing key on each name server.

Our measurements were conducted using the Alexa Global Top 1 million list [2] as the dataset. The
list was downloaded on 12th July, 2019. We ran scans on the same date on all the domains in the dataset
and requested its NS records. For each NS record we also obtain the first associated A record. On obtaining
the NS record, we have the list of authoritative name servers. We compare the sub-domains of country code
TLDs (ccTLDs), country code SLDs (ccSLDs) and generic TLDs (gTLDs). E.g., if the two name servers of
a domain are dns1.p09.nsone.net. and ns1.p43.dynect.net., then we compare nsone and dynect. We
do not only compare the second-level domain (SLD) names. For instance, if there is a third name server for
the same domain at pdns6.ultradns.co.uk., then we compare ultradns with nsone and dynect.

To measure how many domains use multiple operators, we need to know the owners of the authoritative
name servers. Though it is possible to obtain this information from the WHOIS database using the A records
we collected, the information obtained does not have a consistent schema and is heavily rate limited [48].
Hence, we use the WHOIS database to only check information for Alexa Top-1k; for the rest of Alexa Top
1 million, we take an approach similar to [19] and rely on the NS records to indicate the DNS operator.
We made manual checks to make sure that subsidiaries of large corporations are not classified as separate
operators. (For instance, Chinese online shopping website taobao.com is a subsidiary of the Alibaba group,
and we found that one of their name servers is owned by Alibaba and hence, we classified them as the
same operator.) Note that large organizations such as Facebook and Google run dedicated networks which
provides DNS redundancy. However, as it is run by the same organization, we do not account for them in
our list of domains with multiple operators.

6.2 Results

We classified domains as having a single operator (Only 1), multiple operators (More than 1), no response
(NR) and misconfigured (Misconf). An NR classification refers to the case where, during our scans, we did
not receive a response with the name server list within a 15 second timeout. Misconf refers to zones which
are misconfigured due to mistakes and/or typos. More precisely, we first observed whether we received an A

record for the NS record. If we instead receive an error, we then checked the NS record for completeness. If,
during this check, we encouter mistakes or typos, the domain is marked as misconfigured. E.g., just ds0. was
configured as one of the authoritative name servers for the domain oxfordlearnersdictionaries.com. See
Figure 4 for the result of classifying the Alexa Global Top 1 million, as well as its subsets, in this manner.
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Fig. 4: Ratio of domains with multiple operators

We did not receive a response to our queries from 3, 24, 208, 60775 domains in the Top-100, Top-1k,
Top-10k and Top-1m respectively. Although we did not find any misconfigured domains in the Top-1k, we
found 13 misconfigured domains in the Top-10k and 2483 domains in Top-1m. We observe that 40% of the
domains in Alexa Top-100 have more than one operator while the proportion reduces as we move down the
Top-1m list. 20.3%, 9.2% and 3.5% of the domains in the Top-1k, Top-10k and Top-1m have more than one
operator for their domain. Hence, we conclude from our measurements that there are thousands of domains
that use multiple operators and that can easily plug-in our threshold ECDSA protocols.

7 Multiparty zone signing system

We integrate MP-SPDZ with DNS administrative name servers. For DNS name server software, we used
Knot DNS [44] as it has the possibility to perform automated key management and it comes with extensive
documentation. For the setting where the Registrar is the DNS operator, we propose that registrars interact
with other registrars in the zone signing protocol. We describe the multi-operator setting in this section and,
where necessary, we note the difference if the operators are also the registrar.

7.1 Setup

Figure 5 shows the architecture of the proposed DNSSEC signing system at a DNS operator. Each operator
serves a name server, runs a threshold ECDSA module and has two keys stores: one to store the keys for
particular zones and another to store the key material associated with other operators. We do not change
the operation of Knot DNS apart from the parts involved in DNSSEC key generation, key rollover and zone
signing. All communication between the name server and the threshold ECDSA module is performed using
a message queue, which takes on average 31 ms on our non-optimized proof-of-concept implementation. This
timing is independent of the key generation/rollover and zone signing timings presented in Section 5.2.

We consider three name servers operated by independent DNS operators, all of which support ECDSA
with SHA256 message digest. There is an intersection in the domains that they serve as their customers care
about the availability of the name servers. However, either they do not trust each other to share signing keys
for the zones they operate, or they are legally obliged to not share the signing keys. Hence, they resort to
using threshold ECDSA protocol.
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Fig. 5: Setup at DNS operator

7.2 Key generation/rollover

In the key generation/rollover phase, when new keys need to be generated, each operator generates a signing
key sharing [skj ] for the zone and runs the key generation as shown in Figure 3. At the end of this phase,
the public key is added to DNSKEY record of the zone at all the operators and the signing key share [skj ] is
stored in the keystore for the zones. In addition, a tag that indicates the DNS operators associated with this
signing key share is stored. E.g., Operator A would store a tag T (B,C) along with the key shares associated
with Operator B and Operator C. This makes it easy for the threshold ECDSA module to contact the
corresponding DNS operators during the signature generation phase. Note that the key generation for ZSK
and KSK is the same except that in the case of KSK, the domain owner generates the DS record and sends it
to the registrar, who then submits it to the registry. When the registrar is one of the DNS operators of the
zone, then the registrar can directly submit the DS record. This is the only phase where the domain owner
is involved.

7.3 Zone signing

As shown in Figure 3, our signing protocol has three processes: the first is independent of the zone to be
signed, while the second is independent of the RRset, but dependent on the zone to be signed. We show the
three processes and the steps involved in Figure 6.

User independent preprocessing is run between the threshold ECDSA modules to generate a bunch of
tuples. Only the knowledge of the associated DNS operators needs to be known. Lets assume that Operator
A initiates the zone signing process. In Step 1, the threshold ECDSA module receives T (B,C) along with
the request to generate tuples from the name server. In Step 2, the tuples (R, [k−1]) are generated using the
MPC protocol. In Step 3 (3p in Figure 6), the tuples are stored in the keystore for operator keys.

User dependent preprocessing is run between the threshold ECDSA modules to generate a bunch of
signing key shares. In Step 1, For a particular zone j, Operator A sends T (B,C) and (R, [k−1]), [skj ] from
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the key store to the threshold ECDSA module. In Step 2, the signing key shares (R, [k−1], [sk′j ]) are generated
using the MPC protocol. In Step 3 (3p in Figure 6), the signing key shares are stored in the key store. This
step can be run at any time when sufficient signing key shares are not available.

When Operator A wants to sign a RRset in zone j, it sends the RRset along with the signing key share
(R, [k−1], [sk′j ]) and the associated tag T (B,C) to the threshold ECDSA signing module in Step 1. The
threshold ECDSA module runs in the background and periodically polls the name server so that it is always
available to sign. In Step 2, MPC signing protocol is run between the three DNS operators to generate the
signature RRSIG for the RRset. In Step 3 (3s in Figure 6), the RRSIG is sent to the name server to store in
the zone file.

7.4 At DNS resolvers

Proper functioning of the DNSSEC ecosystem requires both the signing part and the validation part to work.
Deploying changes at DNS resolvers is extremely hard as numerous resolver software needs to be changed.
Fortunately, no change is required at the validating resolver to use of our solution. Every time the domain is
queried at the authoritative name server, the signatures for the zone need to be verified at the resolvers for
the chain of trust to be established. Though three operators are involved in the signing process, the signature
can be verified with the same DNSKEY, irrespective of the operator who initiated the signing process. If the
DNS resolver obtains the DNSKEY records from Operator A and stores it in the cache, then it will be able to
authenticate a response from Operator B for the same domain, as the two operators have the same DNSKEY

for the zone. The resolver will be able to verify the chain of trust irrespective of which operator responded
to the query.

8 Related Works

Privacy in DNS. Though DNSSEC provides data integrity, it does not provide confidentiality. In [62]
“range queries” are proposed to be used to hide a query within a set of dummy queries while in [63], private
information retrieval (PIR) [18] is proposed as a solution to hide queries. However, a privacy analysis of
the proposal of [62] by [36] concluded that in the scenario of web-surfing, inter-related DNS queries are
issued by the client and this relation provides much more information than single queries. Another approach,
PageDNS [7] lets TLD registries group together the name server records in their zones into pages; recursive
resolvers retrieve entire pages rather than single records, which provides a first level of privacy protection.
PageDNS makes extensive use of caches so that SLDs are not queried too often. They provide an analysis
to show that SLD name servers are not updated very often and hence, one does not need to query them
regularly. Finally, the Internet Engineering Task Force (IETF) has recently begun considering privacy issues
in DNS and DNSSEC [14,15] and proposed DNS-over-TLS [26] and DNS-over-HTTPS [39].

DNSSEC deployment and measurement. DNSSEC deployment heavily relies on DNS operators and
registrars. A few DNS operators reuse their keys for multiple domains that they manage [19]. It was shown
in [56] that a large fraction of domains are signed using RSA keys that share the moduli with other domains.
Cloudflare, for instance, advocates to use a single global KSK and ZSK with multiple names, i.e., one key
for multiple domains as they believe they anyway need to change all the keys at the same time.12 They
claim that there is no reason to have millions of ZSKs and KSKs as the keys are used/stored/rolled together.
Additionally, a large fraction of domains sign their DNSKEY record twice: once with the KSK (as expected) and
once with the ZSK (which is not used in validation) [19]. This not only increases the DNSKEY packets sizes,
but could lead to fragmentation attacks (if strong RSA keys of size 2048 bits or more are used). This makes
domain resolution inefficient [60], but also makes DNSSEC vulnerable to poisoning attacks when resolvers
do not validate responses [37]. With regards to measurements on the use of multiple operators, [1] measures
the impact of DDoS attacks and how many customers of DyN and NS1 added another operator after the

12 https://www.netnod.se/sites/default/files/2016-12/NETNOD2015_DNS_Martin_Levy_CloudFlare-2.pdf

(Slide 28)
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DDoS attack of 2016. However, they only measure the domains that use DyN and NS1. In our work, we
measure the use of multiple operators, not restricting our measurements to managed DNS providers.

A recent IETF draft [41] proposed deployment models in the multi-operator setting.13 The deployment
models presented include the use of either common KSKs among operators per zone or unique KSK and
ZSK per operator per zone. The domain owner’s participation is required not only to update the DS record,
but also to update the DNSKEY record across the operators. Unless the same DNSKEY record is present at all
operators, signature verification could fail at the resolvers when a DNSKEY of one operator is present in the
cache and it is used to validate a response from another operator. Furthermore, in the case that unique keys
are used, the operators remain in control of the keys. They also remark that the use of a shared KSK and
ZSK scenario is not desirable (from an industry perspective) as the operators have a contract with domain
owner and they do not want to share signing keys with other operators. We recognize this situation as one
where our multi-party ECDSA can be applied.

Threshold signatures for DNSSEC. Threshold RSA signatures for DNSSEC have been considered
in the past. [16] proposed a distributed DNS to avoid single point of failure, which provides fault tolerance
and security in the presence of corrupted servers. They used RSA threshold signature scheme of [55] in their
work. [20] also used [55] to emulate a HSM at an authoritative name server. They report timings on a LAN
which range from tens to hundreds of milliseconds on commodity hardware.

9 Conclusion

We described a simple but powerful transformation that can be applied to a large class of protocols for
secure computation over Zp to obtain protocols for secure computation over an order p subgroup of an
elliptic curve. We demonstrated the appeal of such a transformation by obtaining several very efficient
protocols for threshold ECDSA. Our protocols work in the preprocessing model, which allows us to obtain
schemes for computing 100s to 1000s of signatures per second. Next we performed a series of measurements
to study the extent with which multi-operator solutions for name servers are currently used on the internet.
These measurements reveal that a significant portion of domains utilize multiple distinct operators. Finally,
motivated by the aforementioned measurements, we show that our protocols provide a very efficient solution
to existing issues in DNSSEC; in particular, we demonstrate a system that allows multiple distinct operators
to digitally sign zone (as required in DNSSEC) at essentially no cost compared to regular single-operator
DNSSEC.
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41. Shumon Huque, Pallavi Aras, John Dickinson, Jan Vcělák, and David Blacka. Multi Provider DNSSEC models.

Internet-Draft draft-ietf-dnsop-multi-provider-dnssec-03, Internet Engineering Task Force, March 2019. Work in
Progress.

42. Dan Kaminsky. Black ops 2008: It’s the end of the cache as we know it. Black Hat USA, 2008.
43. Cameron F. Kerry and Patrick D. Gallagher. Fips pub 186-4 federal information processing standards publication

digital signature standard (dss), 2013.
44. Knot. Knot DNS. https://www.knot-dns.cz/.
45. Yehuda Lindell. Fast secure two-party ECDSA signing. In Advances in Cryptology - CRYPTO 2017 - 37th

Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part
II, pages 613–644, 2017.

46. Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practical distributed key generation and
applications to cryptocurrency custody. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages 1837–1854, 2018.

47. Yehuda Lindell, Ariel Nof, and Samuel Ranellucci. Fast secure multiparty ecdsa with practical distributed key
generation and applications to cryptocurrency custody. Cryptology ePrint Archive, Report 2018/987, 2018.
https://eprint.iacr.org/2018/987.

48. Suqi Liu, Ian D. Foster, Stefan Savage, Geoffrey M. Voelker, and Lawrence K. Saul. Who is .com?: Learning to
parse WHOIS records. In Internet Measurement Conference, pages 369–380. ACM, 2015.

49. Philip MacKenzie and Michael K. Reiter. Two-party generation of dsa signatures. In Joe Kilian, editor, Advances
in Cryptology — CRYPTO 2001, pages 137–154, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

50. Paul V. Mockapetris. Domain names - concepts and facilities. RFC, 1034:1–55, 1987.
51. Paul V. Mockapetris. Domain names - implementation and specification. RFC, 1035:1–55, 1987.
52. Michael O. Rabin. How to exchange secrets with oblivious transfer. IACR Cryptology ePrint Archive, 2005:187,

2005.
53. Benjamin Rothenberger, Daniele Enrico Asoni, David Barrera, and Adrian Perrig. Internet kill switches demys-

tified. In EUROSEC, pages 5:1–5:6. ACM, 2017.
54. Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of cryptology, 4(3):161–174, 1991.
55. Victor Shoup. Practical threshold signatures. In Advances in Cryptology - EUROCRYPT 2000, International

Conference on the Theory and Application of Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000,
Proceeding, pages 207–220, 2000.

56. Haya Shulman and Michael Waidner. One key to sign them all considered vulnerable: Evaluation of DNSSEC in
the internet. In NSDI, pages 131–144. USENIX Association, 2017.

57. Nigel P. Smart and Younes Talibi Alaoui. Distributing any elliptic curve based protocol: With an application to
mixnets. Cryptology ePrint Archive, Report 2019/768, 2019. https://eprint.iacr.org/2019/768.

58. Sooel Son and Vitaly Shmatikov. The hitchhiker’s guide to DNS cache poisoning. In SecureComm, volume 50 of
Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering,
pages 466–483. Springer, 2010.

59. Unbound Tech. blockchain-crypto-mpc. https://github.com/unbound-tech/blockchain-crypto-mpc.
60. Gijs Van Den Broek, Roland van Rijswijk-Deij, Anna Sperotto, and Aiko Pras. Dnssec meets real world: dealing

with unreachability caused by fragmentation. IEEE communications magazine, 52(4):154–160, 2014.

23

https://www.knot-dns.cz/
https://eprint.iacr.org/2018/987
https://eprint.iacr.org/2019/768
https://github.com/unbound-tech/blockchain-crypto-mpc


61. Roland van Rijswijk-Deij, Mattijs Jonker, and Anna Sperotto. On the adoption of the elliptic curve digital
signature algorithm (ECDSA) in DNSSEC. In CNSM, pages 258–262. IEEE, 2016.

62. Fangming Zhao, Yoshiaki Hori, and Kouichi Sakurai. Analysis of privacy disclosure in DNS query. In MUE,
pages 952–957. IEEE Computer Society, 2007.

63. Fangming Zhao, Yoshiaki Hori, and Kouichi Sakurai. Two-servers PIR based DNS query scheme with privacy-
preserving. In IPC, pages 299–302. IEEE Computer Society, 2007.

24


	Securing DNSSEC Keys via  Threshold ECDSA From Generic MPC 

