
An Adaptive Attack on 2-SIDH

Samuel Dobson1, Steven D. Galbraith1, Jason Legrow2, Yan Bo Ti1, and Lukas Zobernig1

1 Department of Mathematics, University of Auckland, NZ
samuel.dobson.nz@gmail.com, s.galbraith@auckland.ac.nz, yanbo.ti@gmail.com,

lukas.zobernig@auckland.ac.nz
2 Department of Combinatorics and Optimization, University of Waterloo, Canada

jlegrow@waterloo.ca

Abstract. We present a polynomial-time adaptive attack on the 2-SIDH protocol. The 2-SIDH proto-
col is a special instance of the countermeasure proposed by Azarderakhsh, Jao and Leonardi to perform
isogeny-based key exchange with static keys in the presence of an adaptive attack. This countermeasure
has also been recently explicitly proposed by Kayacan.
Our attack extends the adaptive attack by Galbraith, Petit, Shani and Ti (GPST) to recover a static
secret key using malformed points. The extension of GPST is non-trivial and requires learning additional
information. In particular, the attack needs to recover intermediate elliptic curves in the isogeny path,
and points on them. We also discuss how to extend the attack to k-SIDH when k > 2 and explain that
the attack complexity is exponential in k.

1 Introduction

The Supersingular Isogeny Diffie–Hellman (SIDH) protocol was introduced in 2011 by Jao and de Feo
[JF11,FJP14] as a post-quantum key exchange scheme. The adaptive attack on SIDH due to Galbraith,
Petit, Shani and Ti [GPST16] (GPST) shows that SIDH cannot be used for non-interactive key exchange.
Similarly if SIDH is being used for ElGamal then one needs to use a padding scheme to check correctness of
the ciphertexts (in other words, SIDH-KEM can only be safely used with CCA2 protection). On the other
hand, CSIDH can be used for non-interactive key exchange or CCA1-secure encryption.

Azarderakhsh, Jao and Leonardi [AJL17] give a solution to this problem. By running k instances in
parallel (e.g. for k = 60) they prove that the scheme is classically secure. In the non-interactive key exchange
setting this requires Alice and Bob to compute about k2 isogenies to obtain the shared key, which is inefficient.
Hence, a natural question is whether k = 2 is sufficient for secure non-interactive key exchange. If it were
the case that k = 2 was secure for non-interactive key exchange then the SIDH approach would be faster
than CSIDH [CLM+18].

The aim of this work is to give an attack on the scheme with k = 2. Our methods clearly extend to
k > 2 and we discuss how the complexity of the attack grows with k in Section 7.1. Unlike the original
GPST attack, we cannot just “read off” the bits of the secret directly by engaging in key exchange sessions.
Instead, it seems to be necessary to gradually recover the intermediate elliptic curves and certain points on
them. This is because at various stages we need to compute “random” branches in the isogeny graph.

We now sketch the basic idea in the ElGamal setting, where a user Alice has k = 2 secret keys and Bob
sends a single curve. Fix SIDH parameters E/Fp with 2n3m dividing |E(Fp)|. Let P,Q ∈ E be a basis for
E[2n]. Alice has two private keys α(1) and α(2) and her public key is the pair

E
(1)
A = E/〈P + [α(1)]Q〉, E

(2)
A = E/〈P + [α(2)]Q〉.

Figure 1 shows the isogeny paths for Alice’s two keys. There is also a pair of points on E that generate

E[3m] and Alice sends the images of those points on E
(1)
A and E

(2)
A under her isogenies. In encryption, Bob

computes a random 3m-isogeny φ : E → EB and sends EB , φ(P) and φ(Q). Alice and Bob compute the
shared key

Hash
(
j
(
EB/〈φ(P) + [α(1)]φ(Q)〉

)
, j
(
EB/〈φ(P) + [α(2)]φ(Q)〉

))
.

A malicious Bob will try to learn Alice’s secrets α(1) and α(2) by sending (E,U, V) for carefully and adaptively

chosen points U, V ∈ E[2n]. The attacker will gradually learn the sequence of curves E
(1)
i and E

(2)
i in Figure 1.

Knowledge of the secret key α(k) is equivalent to knowledge of the kernel of the isogeny from E to E
(k)
A , and

we incrementally determine this by computing the kernels of the isogenies φ
(k)
i : E

(k)
i → E

(k)
i−1.

The astute reader has already noticed that this model of 2-SIDH is not the same as that presented in
[AJL17,Kay19]. In Section 4.1 we show the equivalence of these two models. We now give an outline of this
work. Section 2 will introduce some notation and definitions. Section 3 then recalls the GPST attack. We
present the k = 2 protocol in Section 4. Section 5 explains the attack, which we have implemented in MAGMA.
Code is available at the following URL

https://github.com/kiwi-crypto/2SIDH-Extended-Adaptive-Attack

Section 6 gives a few implementation details and Section 7.1 elaborates on the case k > 2.

2 Notation and Definitions

We begin with some important definitions and notation which we will use throughout this work. The notation
is summarised in Figure 1. As shown in the figure, we have two isogenies from E, so we will use superscripts
to denote which isogeny we are on. Subscripts will be used to denote bit numbers. We will use the convention
that the 0-th bit is the parity bit, thus α0 refers to the first (least significant) bit of a key α. We will often
use that a key α can be written in the form α = Ki +α′2i for some α′. Here the i-th partial key Ki of a key
α is defined as

Ki =

i−1∑
k=0

αk2k.

We denote point halving with [12]P = {Q | [2]Q = P}, i.e. the set of all points Q such that P = [2]Q.
The 2-neighbours of an elliptic curve E are the codomains of all possible 2-isogenies emanating from E, and
similarly the 4-neighbours are those curves which are two 2-isogeny (non-backtracking) “steps” from E.

The φ
(k)
i are 2-isogenies from E

(k)
i → E

(k)
i−1, while the ψ

(k)
i are compositions of φ(k)s, such that ψ

(k)
i :

E → E
(k)
i and ψ

(k)
0 is the secret 2n-isogeny generated by the chosen secret keys in the protocol.

We will use A(k) to denote the kernel generators P + [α(k)]Q. We define A
(k)
i = ψ

(k)
i (A(k)), and Q

(k)
i =

ψ
(k)
i (Q).

E = En

E
(1)
i

E
(1)
i−1

E
(1)
0 = E

(1)
A

φ
(1)
i

ψ
(1)
i−1

ψ
(1)
i

E = En

E
(2)
i

E
(2)
i−1

E
(2)
0 = E

(2)
A

φ
(2)
i

ψ
(2)
i−1

ψ
(2)
i

Fig. 1. Isogeny paths for the two instances.

2

https://github.com/kiwi-crypto/2SIDH-Extended-Adaptive-Attack

3 Adaptive Attack on SIDH

First we recall the SIDH scheme itself. Setup of the scheme involves the choice of a prime of the form
p = `nA · `mB · f ± 1, where `A, `B are small primes, `nA ≈ `mB , and f is a small cofactor. Typically, `A = 2 and
`B = 3, so we will assume this case in the following discussion, although the same shall always apply to the
general case too. A supersingular elliptic curve E is then constructed over the field Fp2 , and made public
along with chosen bases 〈PA, QA〉 = E[2n], 〈PB , QB〉 = E[3m] (these torsion subgroups have order 22n and
32m respectively).

To perform the key exchange, Alice will select 0 ≤ a1, a2 < 2n not both divisible by 2, and similarly
Bob will select 0 ≤ b1, b2 < 3m not both divisible by 3. These integers allow each party to compute a secret
subgroup each

GA = 〈[a1]PA + [a2]QA〉, GB = 〈[b1]PB + [b2]QB〉.

These subgroups are then used via Vélu’s formulae [Vél71] to construct isogenies φi : E → Ei = E/Gi,
i ∈ {A,B}. Alice will send to Bob the triple

(
EA, φA(PB), φA(QB)

)
and Bob will reciprocate appropriately,

and the exchanged points will allow Bob (and in the same manner Alice) to compute

〈[b1]φA(PB) + [b2]φA(QB)〉 = 〈φA([b1]PB + [b2]QB)〉 = φA(GB).

With these new subgroups, Vélu’s formulae can then be used to compute isogenies EA → EA/φA(GB) '
EB/φB(GA) ' E/〈GA, GB〉. Because the j-invariant j (E/〈GA, GB〉) of these curves is isomorphism-invariant,
it can be used as the shared key. This is summarised in Figure 2.

E E/〈A〉

E/〈B〉 E/〈A,B〉

φA

φB

φ′A

φ′B

Fig. 2. The SIDH key exchange.

As is now standard (see for example Lemma 1 of [GPST16]) any choice of secret integers (a1, a2) is
equivalent to either (1, α) or (α′, 1). It thus suffices to consider only these cases. For the rest of this work we
use keys of the form (1, α).

The adaptive GPST attack is an active attack, in which one party (we shall assume Alice) uses a fixed
key for each exchange. This could, for example, be a webserver using a static key when deriving secrets with
each visitor to the site. The other party uses the key exchange protocol to slowly leak secret information and
eventually reveal Alice’s static secret key. The adaptive attack works in the two attack models defined, each
in terms of access to a different oracle:

1. O(E,R, S) = E/〈R+ [α]S〉.
2. O(E,R, S,E′) = 1 if j (E/〈R+ [α]S〉) = j (E′) and 0 otherwise.

The second is weaker so the attack is described in this model for illustration of its potency.
The first step of the attack simultaneously reveals which of these two cases we are in as well as the first bit

of α. This is done by honestly generating the ephemeral key (EB , R = φB(PA), S = φB(QA)), and querying
the oracle on (EB , R, S + [2n−1]R,EAB). A result of 1 from the oracle informs the attacker that

EAB ' EB/〈R+ [α](S + [2n−1]R)〉

3

so 〈R + [α](S + [2n−1]R)〉 = 〈R + [α]S〉. Hence, the key is of the first form, and α is even, by the following
lemma ([GPST16], Lemma 2).

Lemma 1. Let R,S ∈ E[2n] be linearly independent points of order 2n and let α ∈ Z. Then

〈R+ [α](S + [2n−1]R)〉 = 〈R+ [α]S〉

if and only if α is even.

Otherwise, the attacker learns that α is odd.
We now describe the remainder of the attack. Suppose we have learnt the first i bits of α. We can write

α in the form α = Ki + αi2
i + α′2i+1, Ki is the i-th partial key defined above, αi ∈ {0, 1} is the next bit of

α we hope to learn, and α′ is unknown. The attacker will honestly generate (EB , R = φB(PA), S = φB(QA))
and EAB as before, according to the protocol. He will then query the oracle with(

EB , [θ](R− [2n−i−1Ki]S), [θ]([1 + 2n−i−1]S), EAB

)
where θ is a scaling parameter included to avoid detection of the attack with Weil pairing validation (this
will not be discussed further here, please see [GPST16] for full details). Both points sent to the oracle have
the correct order so the attack is not detectable by order validation. If the response of the oracle is 1, then
αi = 0, otherwise αi = 1, because

〈R− [2n−i−1Ki]S + [α][1 + 2n−i−1]S〉
= 〈R+ [α]S + [−2n−i−1Ki + 2n−i−1(Ki + 2iαi + 2i+1α′)]S〉
= 〈R+ [α]S + [αi2

n−1]S〉

=

{
〈R+ [α]S〉 if αi = 0 ,

〈R+ [α]S + [2n−1]S〉 if αi = 1 .

The last two bits αn−2, αn−1 should be brute-forced because for these last two bits, there may not exist a
suitable scaling θ, making the attack detectable otherwise.

4 2-SIDH

The usual way to secure SIDH when one party is using static keys is the Fujisaki–Okamoto transform, which
allows to detect malicious behaviour. But this cannot be used in the static-static setting.

A different countermeasure proposed by Azarderakhsh, Jao and Leonardi [AJL17] circumvents the attack
by having each party generate multiple instances of the SIDH protocol. This is known as the k-SIDH key
agreement protocol. In their work, they proposed the use of k = 60 if the static-key user is working in 2n-
torsion group to achieve 128-bits of classical security, and k = 113 to achieve 128-bits of quantum security. If
the static-key user is working in the 3m-torsion group, they proposed k = 50 and k = 94 to achieve 128-bits of
classical and quantum security respectively. More recently, Kayacan [Kay19] proposed two countermeasures
to thwart the adaptive attack. The first protocol proposed is simply the 2-SIDH key agreement protocol.

The 2-SIDH protocol has the same set-up as the SIDH protocol with an addition of a preimage resistant
hash function H. A prime number p = 2n · 3m · f ± 1 is chosen, and a supersingular elliptic curve E/Fp2 and
four points PA, QA, PB , QB ∈ E(Fp2) are chosen such that 〈PA, QA〉 = E[2n] and 〈PB , QB〉 = E[3m].

Alice chooses secrets α(1) ←R Z/2nZ and α(2) ←R Z/2nZ uniformly random, which she would use to
compute the isogenies

φ
(k)
A : E → E

(k)
A = E/〈PA + [α(k)]QA〉

for k = 1, 2, and the points R(k) = φ
(k)
A (PB) and S(k) = φ

(k)
A (QB). She then sends Bob her public key(

(E
(1)
A , R(1), S(1)), (E

(2)
A , R(2), S(2))

)
.

4

Bob will perform a similar procedure with points in E[3m]. He chooses secrets β(1) ←R Z/3mZ and β(2) ←R

Z/3mZ and computes

φ
(k)
B : E → E

(k)
B = E/〈PB + [β(k)]QB〉

for k = 1, 2, and the points U (k) = φ
(k)
B (PA) and V (k) = φ

(k)
B (QA). He then sends Alice his public key(

(E
(1)
B , U (1), V (1)), (E

(2)
B , U (2), V (2))

)
.

To obtain the shared secret, Alice takes Bob’s public key and computes

zk,l = j
(
E

(k)
B /〈U (k) + [α(l)]V (k)〉

)
and the hash

h = Hash (z1,1, z1,2, z2,1, z2,2) .

She will use the hash as the shared secret with Bob.

4.1 Attack Models

We will frame our attack by the use of oracle models that will model the information learned by an attacker
against a user with a static secret key. In the following, we will assume that Alice is the user with a static
secret key and the attacker is playing the role of Bob. This is the same as the oracle models of the original
adaptive attack which will serve as the basis for the oracle model that we will use here. We will see that
the oracle model used later will differ slightly from the 2-SIDH protocol as presented in §4, however we will
show that this simpler model is equivalent to the original 2-SIDH protocol.

Adapting the oracle model found in [GPST16], we see that in our case, we have the following two oracle
models:

1. O(E(1), E(2), R(1), S(1), R(2), S(2)) = Hash (z1,1, z1,2, z2,1, z2,2), where

zk,l = j
(
E(k)/〈R(k) + [α(l)]S(k)〉

)
.

2. O(E(1), E(2), R(1), S(1), R(2), S(2), h) which returns 1 if

h = Hash (z1,1, z1,2, z2,1, z2,2) ,

where zk,l is as above, and 0 otherwise.

We will focus on the second model. Furthermore, we can simplify this oracle model by having Bob send
Alice a specific form of public key in the attack. Rather than generating two secret keys β(1), β(2) and
sending Alice his public key as described above, his behaviour can be modelled by selecting a single β(1) and
duplicating the curves and points he sends in his public key(

(E
(1)
B , U (1), V (1)), (E

(1)
B , U (1), V (1))

)
.

Note that it would also suffice for Bob to hold his second secret key constant and vary only the first between
queries. Upon receipt of this key, Alice will compute

Hash

j (E(1)
B /〈U (1) + [α(1)]V (1)〉

)
, j
(
E

(1)
B /〈U (1) + [α(2)]V (1)〉

)
,

j
(
E

(1)
B /〈U (1) + [α(1)]V (1)〉

)
, j
(
E

(1)
B /〈U (1) + [α(2)]V (1)〉

)
= Hash(z1,1, z1,2, z1,1, z1,2)

If we consider a tweaked hash function

H ′(m1,m2) = Hash(m1,m2,m1,m2)

it becomes obvious that we define a third oracle model in the following way:

5

3. O(E(1), R(1), S(1), h) which returns 1 if h = H ′ (z1,1, z1,2), where zk,l is as above, and 0 otherwise.

Making this simplification, we can assume that the 2-SIDH protocol during the attack has the following
description. Without loss of generality, we continue assuming that Alice is using a normalised static key
(α(1), α(2)), and that Bob is dishonest and is trying to recover the long-term secret (α(1), α(2)). The discussion
to come will assume that the points are in the 2n-torsion, but it can be shown that the following methods
and arguments will carry over to other torsion points.

Let p be a prime such that p = 2n · 3m · f ± 1, where f is small and 2n ≈ 3m. More generally, we allow
p = `nA ·`mB ·f±1 where `A, `B are small primes, but for ease of exposition, we will let `A = 2 and `B = 3.
Fix the field k = Fp2 , and let E be a supersingular elliptic curve over k. We fix generators PA, QA for
the torsion subgroup E[2n], and PB , QB for E[3m].
Alice picks two random integers 0 ≤ α(k) < 2n, where k = 1, 2. Alice will then compute

G
(k)
A = 〈PA + [α(k)]QA〉,

for k = 1, 2. At this step, we will use the normalised kernels (see [GPST16, Lemma 1]), and represent

G
(k)
A = 〈PA + [α(k)]QA〉. She will use Vélu’s formula to compute φ

(k)
A : E → E

(k)
A , where kerφ

(k)
A = G

(k)
A .

She will compute and send to Bob the following tuple:(
E

(1)
A , E

(2)
A , φ

(1)
A (PB), φ

(1)
A (QB), φ

(2)
A (PB), φ

(2)
A (QB)

)
.

Bob would perform a similar computation but only select a single pair of random integers, and output
the tuple: (

E
(1)
B , E

(1)
B , φ

(1)
B (PA), φ

(1)
B (QA), φ

(1)
B (PA), φ

(1)
B (QA)

)
.

Upon receiving of Bob’s message, to derive the shared key, Alice would compute the two subgroups

H
(k)
A = 〈φ(1)B (PA) + [α(k)]φ

(1)
B (QA)〉 = φ

(1)
B (G

(k)
A).

and the isogenies from E
(1)
B , with kernel equal to these subgroups. Call the codomain of these isogenies

E
(k)
AB , then Alice uses

H ′
(
j
(
E

(1)
AB

)
, j
(
E

(2)
AB

))
as the shared key.

From the attacker’s point of view, we have the following setup: Let E be a supersingular elliptic curve
with 〈P,Q〉 = E[2n]. Now let (α(1), α(2)) ∈ {1, . . . , 2n}2 be the secrets unknown to the attacker, and let
E(1) = E/〈P + [α(1)]Q〉 and E(2) = E/〈P + [α(2)]Q〉. The attacker’s goal is to recover secrets equivalent to
α(1) and α(2).

5 The Extended Adaptive Attack

At a high level, the attack follows the same methodology as the GPST attack. However there is one major
difficulty that needs to be overcome. Suppose at step i we have computed the first i bits of α(1) and α(2), so
that we have

α(1) = K
(1)
i + α

(1)
i 2i + α′(1)2i+1 and α(2) = K

(2)
i + α

(2)
i 2i + α′(2)2i+1.

To learn the next bit of α(1) we will make an oracle query on points U = R − [2n−i−1K
(1)
i]S and V =

[1 + 2n−i−1]S and get back a hash value h = H ′(j(E/〈U + [α(1)]V 〉), j(E/〈U + [α(2)]V 〉)). To learn the next

bit we need to check whether or not j(E/〈U + [α(1)]V 〉) = j(E
(1)
A). But we do not see this j-invariant, we

6

only see the hash value h. Since H ′ is a hash function, the only way to check equality of the j invariant is

to compute H ′(j(E
(1)
A , ?) for some appropriate j-invariant ?. The difficulty is that j(E/〈U + [α(2)]V 〉) is not

necessarily close in the isogeny graph to j(E
(2)
A). The solution is to use the available partial knowledge of α(2)

to compute a small list of candidate j-invariants, so that we can compute a few hash values and determine

whether or not j(E/〈U + [α(1)]V 〉) = j(E
(1)
A).

To do this we need to compute what we call the “intermediate images” of the kernel and the point Q.

More precisely we compute candidates for A
(k)
i+1 and [2n−(i+1)]Q

(k)
i+1 (these points were defined in Section 2).

Hence, the extended adaptive attack we will present in this section has two stages: one to recover the bits of
the secret scalar, and another to recover the intermediate images.

The first stage for the recovery of bits is almost identical to the adaptive attack presented in [GPST16].
The difference from the GPST adaptive attack arises from the way one instance interferes with the other.
This results in the necessity of making more guesses (but bounded at each step) to recover the bit. The
guesses are generated by intermediate images which we recover in the second stage.

In the second stage, the goal is to recover the intermediate images required for the first stage of the next
step. At this stage, we will use the bits recovered from the first stage to pull back the intermediate images
used in the first stage. Not all the points in the pull back are suitable for use in the next step, so we will need
to remove those points using queries to the oracle. We will show that the number of intermediate images
remains constant at each step.

We now give some basic facts that will help us determine these points.

Lemma 2. Consider the intermediate 2-isogeny φ
(k)
i : E

(k)
i → E

(k)
i−1. Then it holds that

1. kerφ
(k)
i = 〈[2i−1]A

(k)
i 〉, and

2. ker φ̂
(k)
i = 〈[2n−1]Q

(k)
i−1〉.

Proof. The first part (1) is apparent from the fact that A(k) has order 2n so A
(k)
i has order 2i, and by

inspecting Figure 1.

For the second part (2), note that Q 6∈ 〈P + [α]Q〉 for any α and so all points Q
(k)
i have order 2n and

Q
(k)
i /∈ kerφ

(k)
i . Since [2n−1]Q

(k)
i−1 is a point of order 2, it will generate a 2-isogeny θ. One can then check

that composing φ
(k)
i with θ annihilates the two-torsion in E

(k)
i , hence by the uniqueness of the dual isogeny,

θ must be the dual of φ
(k)
i . ut

We remark that these properties do not uniquely determine the points A
(k)
i+1 and [2n−(i+1)]Q

(k)
i+1. For

example, kerφ
(k)
i = 〈[2i−1][λA

(k)
i 〉 for any odd integer λ. Similarly, ker φ̂

(k)
i = 〈[2n−1][λ]Q

(k)
i−1〉 for any odd

integer λ. So the points we are computing are not uniquely determined.

5.1 Determining the First Bits and Intermediate Curves

The recovery of the first bits will be different from the subsequent bits. In this subsection, we will show how
an attacker can recover the first bits using only the public information sent by Alice. This will provide the
basis for the iterative step to recover the entire secret in the next section.

Recovering the first bit of each secret To recover the first bits, we first send Alice the points P ,
[1 + 2n−1]Q and note that she would compute

P + [α(1)]Q+ [α(1)][2n−1]Q = A(1) + [α
(1)
0][2n−1]Q

=

{
A(1) if α

(1)
0 = 0 ,

A(1) + [2n−1]Q if α
(1)
0 = 1 ,

7

and

P + [α(2)]Q+ [α(2)][2n−1]Q = A(2) + [α
(2)
0][2n−1]Q

=

{
A(2) if α

(2)
0 = 0 ,

A(2) + [2n−1]Q if α
(2)
0 = 1 .

Now, let E′(k) = E/〈A(k) + [2n−1]Q〉. We receive a response from the oracle with which we can recover

the first bit of the two secrets. This is done by computing all the 4-neighbours E
′(k)
` of E

(k)
0 (` = 1..6),

computing the hash of different combinations of the known j(E(k)) and the j-invariants of the 4-neighbours

jk,` = j
(
E
′(k)
`

)
, and using them as oracle queries (see Figure 3). If the oracle returns 1, then we will be able

to recover the bits. For example, if we find a match h = H ′(j(E
(1)
0), j2,4), we know that the α

(1)
0 = 0 and

α
(2)
0 = 1. In the case of α

(k)
0 = 1, we have also recovered the curve E′(k) = E

′(k)
4 in the process.

E
(1)
2

E
(1)
1

E
(1)
0

E′(1)

φ
(1)
2

φ
(1)
1

E
(2)
2

E
(2)
1

E
(2)
0

E′(2)

φ
(2)
2

φ
(2)
1

Fig. 3. Branching at the first bit of the secrets

Recovering the first intermediate curves Having recovered the α
(k)
0 bits, we would like to recover the

curves E′(k). This is done using a branch, as in Figure 3 - if we have E
(k)
0 and E′(k), we can find E

(k)
1 simply

by finding their common neighbour in the isogeny graph. If either of the bits α
(k)
0 = 1, a branch would

already have occurred and we would know E′(k). But if α
(k)
0 = 0, we need to force a branch to happen. This

is done by sending Alice the points P + [2n−1]Q, [1 + 2n−1]Q. One can verify that this indeed produces a

branch, and again finding the common neighbour will reveal E
(k)
1 . Additionally, we can recover E

(k)
2 since

there are only three 2-isogenies from E
(k)
1 , and two are known.

Pulling back A and Q’s We currently know

E
(k)
0 , E

(k)
1 , E

(k)
2 , E′(k).

Given these curves, one computes the kernel subgroups of the 2-isogenies

φ
(k)
2 : E

(k)
2 → E

(k)
1 , φ

(k)
1 : E

(k)
1 → E

(k)
0 .

The kernels of the φ
(k)
1 are generated by A

(k)
1 = ψ

(k)
1 (A(k)) by Lemma 2. Also, we can obtain [2n−1]Q

(k)
1 =

ψ
(k)
1 ([2n−1]Q) as the kernels of the duals φ̂

(k)
2 .

Now we set

A(k)
1 = A

(k)
1 , Q(k)

1 =
{

[2n−1]Q
(k)
1

}
and proceed with A(k)

1 and Q(k)
1 to the main iterative step in §5.2 to recover the remaining bits of the secrets.

8

5.2 The Main Iterative Step

Now that we are set up with the bootstrap information from the previous section, we may proceed to recover
the remaining 2(n − 1) bits of Alice’s secret (α(1), α(2)). The rough outline of the attack is that for each
additional pair of bits we proceed in two stages: A combination of the GPST attack (cf. § 3) to determine

the bits α
(1)
i , α

(2)
i , and an additional step that pulls back generator points between intermediate curves and

filters out invalid preimages.
We will need a few supporting lemmas, which we state now.

Lemma 3. Let T = A
(k)
i−1 and X = Q

(k)
i−1 be the images of the kernel generators under the partial 2n−(i−1)-

isogeny ψ
(k)
i−1 : En → E

(k)
i−1. Then the following holds:

1. The preimage of T under φ
(k)
i is given by

Ti =
{
A

(k)
i , [1 + 2i−1]A

(k)
i

}
.

2. The preimage of X under φ
(k)
i is given by

Xi =
{
Q

(k)
i , Q

(k)
i + [2i−1]A

(k)
i

}
.

Proof. The preimage of T under φ
(k)
i is exactly given by A

(k)
i + kerφ

(k)
i and since kerφ

(k)
i is a 2-torsion, the

result follows from Lemma 2 (1). The same argument holds for the preimage of X under φ
(k)
i . ut

Lemma 4. Using the notation from Lemma 3, 〈T 〉 = 〈[λ]T 〉 if λ is odd. Furthermore, all points in the

pull-back of both A
(k)
i−1 and [λ]A

(k)
i−1 under φ

(k)
i generate the same subgroups.

Proof. The first statement is clear.

From the previous lemma, we have that the preimage of A
(k)
i−1 under φ

(k)
i−1 is A

(k)
i and [1 + 2i−1]A

(k)
i . Hence,

using the first statement, we are done.

Next, the preimage of [λ]A
(k)
i−1, where λ is odd is given by [λ]A

(k)
i and [λ][1 + 2i−1]A

(k)
i , so the statement

follows. ut

Remark 1. For the ease of exposition we will assume that

K
(1)
i −K(2)

i 6∈ 2Z, (1)

i.e. that the difference of the partial keys is odd. This is the case if and only if the first bits of the two secrets

α
(1)
0 6= α

(2)
0 . Special care has to be taken in case Equation (1) does not hold, see Appendix B and the attack

implementation for details.

Theorem 1 (2-SIDH Key Recovery). Let α(1)−α(2) odd. Assuming there exists an oracle O(E1, R1, S1, h)
as in §4.1 (3), then there exists a polynomial-time algorithm that finds Alice’s secrets in the 2-SIDH protocol.

Proof. We are able to recover the first bits using §5.1, so the task is to recover the rest of the bits, which we
will do by induction. The induction step is given by the following two stages and a boundedness argument
showing that the algorithm is polynomial-time. The tuple (a, b) is either (1, 2) or (2, 1), distinguishing the
two instances.

Stage 1 (Recovering Bits) Assume we have recovered the first i bits of each secret, and are attempting
to recover the (i+ 1)-th bits.

Also assume we are given A(b)
i , a valid pull back of A

(b)
i−1, and Q(b)

i a set (of size at most 2) of valid pull

backs for [12][2n−(i−1)]Q
(b)
i−1. Thus A(b)

i and the points in Q(b)
i are on the curve E

(b)
i .

9

First, we set

P ′ = P − [K
(a)
i][2n−(i+1)]Q and Q′ = [1 + 2n−(i+1)]Q.

For each Y ∈ [12]Q(b)
i we compute

E′ = E/〈A(b)
i + [K

(b)
i −K

(a)
i]Y 〉.

For all 2-neighbours E′` of E′ (` = 1, 2, 3) we determine jb,` = j (E′`). Also let ji = j(E
(i)
0) be the j-

invariants of the curves in Alice’s public key. Note that we check the 2-neighbours of E′ because the first

step of the isogeny actually maps into E
(b)
i+1. Hence the isogeny from E

(b)
i , where the points originate

from cannot reach the curve mapped from E. Therefore, we are forced to compute the 2-neighbours of
E′ to bridge that gap.
To recover the bit, we query the oracle on O(E,P ′, Q′, h) with h = H ′(j1,`, j2) (or h = H ′(j1, j2,`), de-
pending on the instance) for all ` = 1, 2, 3. The oracle will have the following intermediate computations:

P + [α(a)]Q− [K
(a)
i][2n−(i+1)]Q+ [K

(a)
i][2n−(i+1)]Q+ [α

(a)
i][2n−1]Q

=A(a) + [α
(a)
i][2n−1]Q

=

{
A(a) if α

(a)
i = 0 ,

A(a) + [2n−1]Q if α
(a)
i = 1 ,

(2)

and
P + [α(b)]Q− [K

(a)
i][2n−(i+1)]Q+ [K

(b)
i][2n−(i+1)]Q+ [α

(b)
i][2n−1]Q

=A(b) + [K
(b)
i −K

(a)
i][2n−(i+1)]Q+ [α

(b)
i][2n−1]Q

=

{
A(b) + [K

(b)
i −K

(a)
i][2n−(i+1)]Q if α

(b)
i = 0 ,

A(b) + [K
(b)
i −K

(a)
i][2n−(i+1)]Q+ [2n−1]Q if α

(b)
i = 1 ,

=

{
φ
(b)
i (A(b)) + [K

(b)
i −K

(a)
i]φ

(b)
i ([2n−(i+1)]Q) if α

(b)
i = 0 ,

φ
(b)
i (A(b)) + [K

(b)
i −K

(a)
i]φ

(b)
i ([2n−(i+1)]Q) + φ

(b)
i ([2n−1]Q) if α

(b)
i = 1 .

(3)

Hence, it can be checked that if any of the oracle outputs is 1, we must have that α
(a)
i = 0 and α

(a)
i = 1

otherwise. This yields the (i+ 1)-th partial keys

K
(a)
i+1 = K

(a)
i + α

(a)
i 2i.

Stage 2 (Pulling Back Generators) Recall that Stage 1 used the point A(b)
i and the set Q(b)

i . In this

stage we determine valid pull backs of A
(b)
i and [12][2n−i]Q

(b)
i which will yield A(b)

i+1 and Q(b)
i+1 for the

next iteration. We note that from Lemma 2 (2), for any Y ∈ Q(b)
i we have that [2i−1]Y = [2n−1]Q

(b)
i

determines the dual intermediate isogeny φ̂
(b)
i+1 : E

(b)
i → E

(b)
i+1 which allows us to compute the pull back.

First, we compute the preimages of A(b)
i and the points Y ∈ [12]Q(b)

i under the intermediate isogeny

φ
(b)
i+1 : E

(b)
i+1 → E

(b)
i and record them as candidates for A

(b)
i+1 and [2n−(i+1)]Q

(b)
i+1, and call those sets Z(b)

i+1

and Y(b)
i+1. The size of Z(b)

i+1 is 2 and the size of Y(b)
i+1 is 16.

We now test the validity of the points in Z(b)
i+1 and in Y(b)

i+1. Similar to Stage 1, we set

P ′ = P − [K
(a)
i+1][2n−(i+1)]Q and Q′ = [1 + 2n−(i+1)]Q.

Note that this time, we use the (i+ 1)-th partial keys K
(a)
i+1,K

(b)
i+1 that we recovered in Stage 1. For each

A ∈ Z(b)
i+1 and for each Y ∈ Y(b)

i+1 we compute

jb = j
(
E/〈A+ [K

(b)
i+1 −K

(a)
i+1]Y 〉

)
(4)

10

and set ja = j
(
E(a)

)
. We then query the oracle on O(E,P ′, Q′, h) with h = H ′(j1, j2).

Using Equations (2) and (3), one can check that if the oracle output is 1, we may keep the tuple (A, Y)
as valid data for the next round.

The following two claims complete the inductive hypothesis:

Claim 1. A valid tuple (A, Y) will be such that A ∈ [λ]Ti+1 and Y ∈ [λ]Xi+1 for some λ ∈ (Z/2i+1Z)∗,
as defined in Lemma 3.

Claim 2. We can select any two (different) tuples (A, Y1), (A, Y2) with a common A, and set A(b)
i+1 = A

and Q(b)
i+1 = {Y1, Y2}.

Boundedness At the beginning of Stage 2 we quadruple the number of points in Q(b)
i by computing [12]Q(b)

i

and then we double this number by determining the preimages of the halved points under the intermediate

isogeny φ
(b)
i+1 : E

(b)
i+1 → E

(b)
i . Hence it is crucial to ensure that we reduce the total amount again.

To be precise, the set of pull backs of [12][λ][2n−i]Q
(b)
i for λ ∈ (Z/2iZ)∗ is given by

[λ][2n−(i+1)]

Q

(2)
i+1, [1 + 2i]Q

(2)
i+1,

Q
(2)
i+1 + [2i−1]A

(2)
i+1, [1 + 2i]Q

(2)
i+1 + [2i−1]A

(2)
i+1,

Q
(2)
i+1 + [2i]A

(2)
i+1, [1 + 2i]Q

(2)
i+1 + [2i]A

(2)
i+1,

Q
(2)
i+1 − [2i−1]A

(2)
i+1, [1 + 2i]Q

(2)
i+1 − [2i−1]A

(2)
i+1,

 , (5)

see Lemma 3.

Proof (Claim 1). Let T = A
(b)
i+1 and X = [2n−(i+1)]Q

(b)
i+1 be the correct images of the kernel generators.

Looking back at Equation (4), we find matching hashes (i.e. the oracle outputs 1) if and only if the
following two subgroups are equal

〈[µ]T + [x]([ν]X + [ξ]T)〉 = 〈T + [x]X〉, (6)

where x = K
(b)
i −K

(a)
i , and µ, ν ∈ (Z/2i+1Z)∗ and ξ ∈ Z/2i+1Z. Here 〈T + [x]X〉 is the correct kernel,

see Equation (3). In particular, ξ is a multiple of 2i−1 since a pullback of [12][2n−i]Q
(b)
i is determined up

to an element of order 4, and so ξ ∈ {0, 2i,±2i−1} (mod 2i+1).

Without loss of generality, we may ignore any common scalar factor λ ∈ (Z/2iZ)∗. By assumption, x is
odd and so Equation (6) implies that

µ+ xξ = ν (mod 2i+1). (7)

Lemma 3 and Equation (5) show that µ, ν ∈ {1, 1+2i}. The only possible solutions to Equation (7) with

µ, ν ∈ {1, 1 + 2i} are when ξ ∈ {0, 2i}. Hence, for every A ∈ Z(b)
i+1 only two tuples (A, Y1) and (A, Y2)

pass Stage 2, where each A corresponds to one choice of ν.

Proof (Claim 2). This follows from Lemma 4 and Claim 1 because each choice of A corresponds to an
odd scalar multiple of T which will generate the same kernel. Thus for a specific choice of A, we select
the two corresponding tuples. These two tuples (A, Y1) and (A, Y2) represent the only two solutions to
Equation (7).

Initially, from §5.1 we have Q(k)
1 for k = 1, 2 constructed with only one Q

(k)
1 , and the corresponding A(k)

1 .

By the inductive hypothesis above, Q(k)
i remains at most size 2, completing the proof. ut

The code referenced at the start of this work contains the implementation of this attack. As such,
implementation details can be found in the code.

11

5.3 Dividing the Work by Three

In this section, we will make an observation about the GPST adaptive attack if more information is recovered
at each step.

For the simplicity of the following exposition, we will assume that the torsion subgroup used by Alice
is of this particular form: E[23n]. The following diagram illustrates the isogeny path corresponding to the
static key:

EB → E3n−1 → E3n−2 → · · · → E2 → E1 → EBA

Note the order of the indices of the intermediate curves between EB and EBA. Also, we let the isogeny
ψi : EB → Ei be the isogeny from EB to Ei, and let P and Q be points such that 〈P,Q〉 = E[23n].

Now, suppose, hypothetically, that such an attacker is also able to learn [23n−i]Qi along with the (i−1)-st
bit of the secret at each stage of the attack. Then, such an attacker will only need to run the adaptive attack
n times. This is because, at the n-th stage of the attack, the attacker would have recovered the following
information:

α (mod 2n), and [23n−i]Qi for 0 ≤ i ≤ n .

Using α (mod 2n), the attacker would be able to compute

EB → E3n−1 → E3n−2 → · · · → E2n+1.

Then, the parent curve of the points [23n−i]Qi for 0 ≤ i ≤ n, would give us the curves (and the isogenies
between them)

En → En−1 → En−2 → · · · → EBA.

Finally, using the point [22n]Qn, we are able to obtain the path

E2n → E2n−1 → E2n−2 → · · · → En.

Indeed, this is because we have taken the convention that the kernel of φ : EB → EBA is of the form P +[α]Q
for some secret α, therefore Q /∈ kerφ.

One can see that this exposition clearly applies to the extended adaptive attack described in the earlier
parts of this section. Hence, an attack would be able to recover the entire secret with just a partial recovery.

6 Implementation

We have implemented the attack in MAGMA and code is available to reviewers upon request. Assuming a fixed
value of k, for example k = 2 in this attack, the algorithm performs O(n) isogeny computations, where
n is the bitlength of the secrets. We can reduce the number of isogeny computations to O(n/3) by using
the observation in Section 5.3. Most of the overhead in the implementation is due to the computation of
isogenies, which can be optimised further (see [FJP14]).

7 Extensions

In this section we briefly discuss extensions of our attack: When k ≥ 3 and the case of attacking Bob or
other participants with primes not equal to 2.

7.1 Towards k-SIDH for k ≥ 3

We have successfully demonstrated an attack on 2-SIDH, but we are now interested in generalising this attack
to higher k, and finding the complexity w.r.t. k. First we observe the brute-force of the first bit of each secret.

For each instance (i) we have to fix j(E
(i)
0) and iterate over all combinations of the six 4-neighbours for the

other k − 1 instances H ′(..., j(E
(i)
0), ji+1,k, ...) where H ′ is further generalised to k parameters. This gives

12

a complexity just for the first bit of O(k · 6k−1) - exponential in k. With this complexity, we suggest even
k = 49 would give sufficient security against this attack, a lower bound than that suggested by [AJL17].

The complexity of the main iterative step is more interesting, though, because the first bit brute force is
a naive attack and we expect it to scale worse. The best case for the attacker is when one of the secrets has a
different parity to all of the other secrets (this corresponds to the “easier” case for k = 2). WLOG assume that
it is α(1) which has a diffent parity than all the α(2), ..., α(k). The attacker will send P ′ = P−[K(1)][2n−i−1]Q,
Q′ = [1 + 2n−i−1]Q. Alice will compute, for each y = 1, ..., k{

A(y) + [K
(y)
i −K(1)

i][2n−(i+1)]Q if α
(y)
i = 0 ,

A(y) + [K
(y)
i −K(1)

i][2n−(i+1)]Q+ [2n−1]Q if α
(y)
i = 1 ,

=

{
φ
(y)
i (A(y)) + [K

(y)
i −K(1)

i]φ
(y)
i ([2n−(i+1)]Q) if α

(y)
i = 0 ,

φ
(y)
i (A(y)) + [K

(y)
i −K(1)

i]φ
(y)
i ([2n−(i+1)]Q) + φ

(y)
i ([2n−1]Q) if α

(y)
i = 1 .

(8)

Now for each y, as before, we will have to pull back candidates A(y)
i and Q(y)

i , and use oracle queries

to test each combination of j-invariants from each of the candidates. As before, for each Y (y) ∈ [12]Q(y)
i we

compute

E(y)′ = E/〈A(y) + [K
(y)
i −K(1)

i]Y (y)〉.

Using the j-invariants of these curves, we calculate

H ′(j(E
(1)
0), j(E(2)′), ..., j(E(k)′)).

Because |Q(y)
i | = 16 (all preimages of division points of the two candidates), this will result in 16k−1 different

combinations in the hash function, meaning the attack uses O(16k) oracle queries.
Of course, the number of oracle queries required is greatly reduced if we instead operate in attack model

(1) of Section 4.1. With access to an oracle which returns the hash value directly to the attacker, the hash
comparisons can be done locally without further queries. Thus the number of oracle queries in this model is
O(n) (or O(n/3) by using the observation in Section 5.3), but the work required locally by the attacker still
grows exponentially in k.

7.2 Attacking Bob

The attack can be generalised to odd primes. Several attack parameters and the complexity analysis will
have to be adjusted. For example, the number of 3-neighbours is 12 in the case of ` = 3, compared to the
six 2-neighbours in the case of ` = 2. In the intermediate stages of the key recovery we will also need to deal
with a larger number of possible pull-back points as the `-torsion subgroups grow in number of elements.

References

AJL17. Reza Azarderakhsh, David Jao, and Christopher Leonardi, Post-quantum static-static key agreement using
multiple protocol instances, SAC 2017, Springer, 2017, pp. 45–63.

CLM+18. Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes, CSIDH: An efficient
post-quantum commutative group action, ASIACRYPT 2018, Springer, 2018, pp. 395–427.

FJP14. Luca De Feo, David Jao, and Jérôme Plût, Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies, J. Mathematical Cryptology 8 (2014), no. 3, 209–247.

GPST16. Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti, On the security of supersingular
isogeny cryptosystems, ASIACRYPT 2016, Springer, 2016, pp. 63–91.

JF11. David Jao and Luca De Feo, Towards quantum-resistant cryptosystems from supersingular elliptic curve
isogenies, PQCrypto 2011, Springer, 2011, pp. 19–34.

Kay19. Selçuk Kayacan, A note on the static-static key agreement protocol from supersingular isogenies, Cryptology
ePrint Archive, Report 2019/815, 2019, https://eprint.iacr.org/2019/815.

Vél71. Jacques Vélu, Isogénies entre courbes elliptiques, C. R. Acad. Sci. Paris Sér. A-B 273 (1971), A238–A241.

13

https://eprint.iacr.org/2019/815

A Adaptive Attack with Points of Small Order

In this section, we show an attack that works, but can be foiled by a simple check on the order of the points.
Again, we will suppose that Alice’s secret is (α(1), α(2)), and our strategy in this section is to recover the

secrets by sending points P and [2k]Q.
To recover the first bits, we do the following: First, we send points P, [2n−1]Q to the oracle and receive

a response. Notice that the oracle would compute the following values:

P + [α(1)][2n−1]Q =

{
P if α

(1)
0 = 0 ,

P + [2n−1]Q if α
(1)
0 = 1 ,

P + [α(2)][2n−1]Q =

{
P if α

(2)
0 = 0 ,

P + [2n−1]Q if α
(2)
0 = 1 .

Since we know E and P and Q, we are able to work out the two points

P, P + [2n−1]Q

and the elliptic curves E′ and E′′, which are the codomain for isogenies whose kernels are generated by
the two points. We are also able to compute the four hash values given by h(E′, E′), h(E′, E′′), h(E′′, E′),
h(E′′, E′′). By comparing the response from the oracle and the four values, we are able to determine the first
bits of α(1), α(2).

Now, suppose we would like to recover the (i− 1)-st bit of each secret (i.e. α
(1)
i , α

(2)
i). We send the points

P and [2n−i−1]Q to the oracle and receive the response. The oracle would compute

P + [α(1)][2n−i−1]Q =

{
P + [K1]Q if α

(1)
i = 0 ,

P + [K1]Q+ [2n−1]Q if α
(1)
i = 1 ,

P + [α(2)][2n−i−1]Q =

{
P + [K2]Q if α

(2)
i = 0 ,

P + [K2]Q+ [2n−1]Q if α
(2)
i = 1 .

Since we have P , Q and K1,K2, we are able to compute all four points and obtain the elliptic curve mapped
by the isogeny whose kernel is generated by these points. We compare the four values with the value obtained

from the oracle and conclude the two bits α
(1)
i , α

(2)
i .

B Forcing a Branch

In this section we will deal with the case when α(2) − α(1) is arbitrary, and in particular even.

Theorem 2 (2-SIDH Key Recovery). Assuming there exists an oracle O(E1, R1, S1, h) as in §4.1 (3),
then there exists a polynomial-time algorithm that finds Alice’s secrets in the 2-SIDH protocol.

Proof (Sketch of proof). Suppose that we are in the situation given by Stage 1 of Theorem 1, and so the aim
is to recover the i-th bit of α(1) and α(2).

Stage 1 As in Stage 1 of Theorem 1, the attacker sets

P ′ = P − [K
(1)
i][2n−i]Q and Q′ = [1 + 2n−i]Q.

Hence the attacker can determine the bits by querying the oracle with the information in Stage 1. In the
case where α(2) − α(1) is even, we do not need to check the 2-neighbours of E′ since the first isogeny no

longer maps into E
(k)
i+1. However, the guesses that the attacker makes must align with Equations (2) and

(3).

14

Stage 2 The aim at this stage is the same as before: to find suitable images of points to use in the recovery
of the next bit. The complication with having an even parity in α(2)−α(1) is that the ambiguities in the
pull-back of Q∗∗ are killed by the even parity of the scalar. The solution is to query the oracle with the
following points

P ′ = P − [K
(a)
i+1 + y][2n−i]Q and Q′ = [1 + 2n−i]Q.

for some odd y, and noting that we are using information from the previous stage. This results in the
following intermediate computations:

A
(1)
i + [x][2n−i]Qi and A

(2)
i + [x+K

(2)
i+1 −K

(1)
i+1][2n−i−1]Qi.

We can then recover the candidates using the same procedure as before.
Boundedness The boundedness argument from Theorem 1 carries over verbatim to this case, by adding

on odd scalar y to x.
ut

Note that this is the slower case. This is due to the fact that the implementation has to test the two
branches simultaneously instead of testing each branch at a time. Refer to implementation for details.

15

	An Adaptive Attack on 2-SIDH

