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Abstract

In this work we consider executions of smart contracts on forking blockchains (e.g.,
Ethereum), and study security and delay issues due to forks. As security notion for mod-
eling executions of smart contracts, we focus on secure multi-party computation (MPC).
In particular we consider on-chain MPC executions with the aid of smart contracts. The
classical double-spending problem tells us that messages of the MPC protocol should be
confirmed on-chain before playing the next ones, thus slowing down the entire execution.

In this work we show how to design smart contracts on forking blockchains reducing
the number of confirmations, still maintaining security and fairness. Our contributions are
twofold:

• We design a compiler that takes any “digital and universally composable” MPC proto-
col (with or without honest majority) and transforms it into another one (for the same
task and same setup) where all messages are played on-chain without delays and still
security is maintained. The special requirements on the starting protocol mean that
messages consists only of bits (e.g., no hardware token is sent) and security holds also
in the presence of other protocols. Then we show that our compiler satisfies fairness
with penalties as long as honest players only wait once.

• For the concrete case of fairly tossing multiple coins with penalties, we notice that
the lottery protocol of Andrychowicz et al. (S&P ’14) becomes insecure if players
do not wait for the confirmations of several transactions. In addition, we present a
smart contract that instead retains security even when all honest players immediately
answer to transactions appearing on-chain. This second result improves what our
generic compiler achieves for this specific functionality. We analyze the performance
using Ethereum as testbed.

By reducing the number of confirmations, both of our protocols offer a significant speed-up
in terms of completion time.
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1 Introduction

The rise of blockchains1 is progressively changing the way transactions are executed over the
Internet. Indeed, the traditional client-server paradigm turns out to be insufficient when many
parties want to perform a distributed computation, especially in cases where features like public
verifiability and automatic punishment are desired. Blockchains through the execution of smart
contracts naturally allow many players to perform a joint computation, even when they are not
simultaneously online; moreover, they allow to publicly check the actions of all players2 and
enforce a proper behavior through financial punishments.

1.1 Forks, Finality and Double Spending

Typical blockchains experience some delays before a transaction can be considered confirmed.
Indeed, a large part of the most used blockchains consists of a list of blocks that can temporary
fork. In such cases, fork-resolution mechanisms decide which branch is eventually part of the
list of blocks and which one is discarded, at the price of cutting off some transactions that
for some time have appeared on the blockchain. This finality limitations generate delays and
uncertainty and a significant effort has been made recently to obtain blockchains with better
finality [MMNT19, BG17, PS17, PS18, GHM+17, CPS18].

The existence of transactions that appear and then disappear from a blockchain is the source
of the (in)famous double-spending attack. In such attack, the adversary performs a payment
thorough a transaction on the blockchain in order to receive a service off-chain. If subsequently,
due to a fork, the transaction related to the payment disappears from the blockchain, then the
attacker gets the money back and can spend it for something else. Therefore, at the end of
the day, the off-chain service was received for free and the same coins can be successfully spent
twice. The crucial point of the double spending attack is that, while the payment transaction
disappears, the obtained service is not canceled since it is not linked to the payment transaction
happening on chain.

The solution to the double spending problem is pretty harsh: the receiver of a payment will
have to wait long time—i.e., until the transaction is confirmed and becomes irreversible—before
taking future actions. Obviously, this can be problematic when an entire process consists of
many sequential transactions and the confirmation time is long.

Interestingly, the double spending problem seems to disappear when instead the service
consists of another on-chain transaction that is connected to the payment transaction. Indeed,
in this case, if as consequence of a fork the payment transaction disappears, then the service
transaction disappears too. This chaining of transactions related to the same process can be
easily implemented through smart contracts. Indeed, a smart contract can have an initial
state s1 that is updated transaction by transaction obtaining s2, s3, and so on. Let ti be the
transaction that changes the state from si to si+1. If because of a fork the state goes back to
si from a state sj , only ti is again applicable to si, while instead all transactions ti+1, . . . , tj−1

are not applicable to state si. Therefore, by invalidating ti (similarly to the double spending
problem where money is used in a new transaction making ti invalid), then ti+1, . . . , tj−1 will
be invalidated too.

This motivates the possibility of running smart contracts efficiently, without waiting that
every single transaction is confirmed before broadcasting the next one.

1Throughout the paper, we use the terms “blockchain” and “distributed ledger” interchangeably.
2We will often use the two terms “party” and “player” as synonyms.
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1.2 Attacks to Smart Contracts

Since transactions take long time to be confirmed in a forking blockchain, the full execution
of a smart contract with multiple sequential transactions might take too long. It would thus
be natural to speed up the execution of smart contracts by rushing and playing messages
immediately. Indeed, as mentioned above, by appropriately chaining the transactions of a
smart contract, attacks consisting in exploiting the cancellation of a transaction like the double-
spending attack are not effective,3 and therefore rushing could be a valid option.

However, we notice that forks can help an adversary to mount more subtle attacks. For
example, an honest player could answer to some transaction A by sending another transaction
B as soon as A appears on the blockchain. Obviously, in case of forks, the transaction A could
appear on the blockchain in different branches, and then multiple copies of B would follow A.
While at first sight this seems to be fine, an adversary computing A can exploit his view of B in
a branch of a fork to play adaptively a message different than A in another branch, invalidating
some expected security property of the smart contract. Indeed, different transactions A1 and
A2 could be played by the adversary in the two branches of a fork, and (potentially different)
transactions B1 and B2 sent by a honest player might be required and played as answers.
Notice that the honest player could become aware of the fork only after the fact, i.e., after A1
and B1 have been played already. Indeed, because of a fork, transactions A1 and B1 could
disappear, and only now that a transaction A2 appears instead of A1 the honest players realizes
that existence of a fork. The honest player therefore will have to compute B2 to continue the
execution of the smart contract. The fact that the adversary can play A2 adaptively after having
seen B1 can produce a deviation from the expected behavior of the smart contract, therefore
compromising the appealing transparency and robustness guarantees of this technology. The
above scenario can be a serious threat for confidential data of honest players.

1.3 Why MPC on Blockchains?

Blockchains offer the public verifiability of an entire distributed computation so that in case
of dispute everyone can verify what happened and when. Moreover smart contracts can au-
tomatically punish whoever violates some a-priori established rules during the execution of
the process. Clearly the above advantages are useful also when players are interested in run-
ning a computation preserving privacy, therefore using MPC. A popular example of MPC that
can benefit from a blockchain is e-voting since several schemes rely on a bulletin board (i.e.,
a blockchain) to get a public verifiability property named universal verifiability. In addition
in [ADMM14, ADMM16], Andrychowicz et al. have shown how to use blockchains to add fair-
ness through penalties to MPC protocols with dishonest majority, somehow circumventing the
impossibility results of Cleve [Cle86] that holds without setup. Notice that playing on-chain
adds the interesting benefit of running a protocol without requiring players to be online at the
same time. Moreover, differently from an MPC protocol running on a WAN using TCP/IP,
where players have to know each other’s IP addresses beforehand, with the aid of a ledger any
player can join an MPC execution by just reading a transaction containing useful informations
needed to participate4 (e.g. the functionality, the minimum number of parties, any other iden-
tification information).

The above interesting features and the dilemma about playing immediately risking security

3Recall that we are focusing on smart contract that during the intermediate state updates do not have off-chain
impact.

4Note that blockchain identifiers are usually public pseudonyms not necessary correlated with the real user
identities. This gives to each player another layer of privacy w.r.t. IP address identification.
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or waiting for confirmation making the entire process very slow motivate our work aiming at
obtaining smart contracts for fast/fair/secure/publicly-verifiable MPC on forking blockchains.

1.4 Our Contributions

Our main contributions are outlined below.

Insecurity of smart contracts with quick players. Consider a simple smart contract
executed by two players, Alice and Bob, willing to establish jointly a random string:

1. Alice starts the protocol by sending to the smart contract a commitment to a random
string r1;

2. Bob sends a random string r2 to the smart contract;
3. Alice then opens the commitment, and if the opening is valid the common string is defined

to be r = r1 ⊕ r2.
For concreteness, say that Alice is honest and Bob is corrupted, and assume that a fork happens
after Alice already sent the commitment. If Bob runs the protocol honestly on the first branch,
he gets to see Alice’s opening, and thus he can completely bias the output on the other branch
by just sending r′2 = r′⊕r1 to the smart contract, for any value r′ of his choice. This motivating
example clearly shows that, unless one has proven some kind of resilience to forks, it is certainly
preferable to always wait that transactions are confirmed, at the price of having very slow
executions of the smart contract. Such slowness could be unacceptable in some applications.

Defining on-chain MPC with quick players. The execution of a smart contract through
transactions sent by different players is a computation involving multiple parties, and therefore
when considering “security” of such computations we naturally refer to secure MPC. As our
first conceptual contribution, we formalize different ways how to execute an MPC protocol
in the presence of a blockchain. Our definition builds on the model of blockchain protocols,
introduced in [PSS17, GG17]. Intuitively, a blockchain protocol allows the players to keep
a consistent record of transactions satisfying: (i) consistency (i.e., the view of the blockchain
obtained by different players is identical up to pruning k blocks from the chain); and (ii) liveness
(i.e., if all honest parties attempt to broadcast a message, then after w rounds, an honest party
will see that message at depth k in the ledger).

Hence, running an MPC protocol π with the aid of a blockchain protocol simply means that
the players exchange messages using the blockchain. Intuitively, a player is called non-quick
if she always waits that the previous messages are confirmed on the blockchain before sending
the next one. On the other hand, a quick player sends its next message by just looking at its
current view of the blockchain (without pruning blocks). Apart from these changes, security is
defined similarly as in the standard real-ideal world paradigm.

General-purpose MPC with quick players. Having motivated the problem of running
MPC protocols on forking blockchains, we show a general compiler to obtain smart contracts
that implement ideal multi-party functionalities retaining security in the presence of forks and
allowing players to rush.5 Our compiler starts from the observation that a stand-alone MPC
protocol could be insecure when executed on a blockchain. To be concrete, a rewinding simulator
of the MPC protocol can not be used to prove the security of the on-chain MPC protocol, since

5In this work all our positive result consist of on-chain protocols for secure computation that are stand-alone
secure, with security preserved under sequential composition. The reason why we do not try to obtain universal
composability is that existing notions of universal composability with a ledger [CGJ19] rely on non-forking ledger
functionalities and therefore on non-quick players.
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rewinding would have the unclear meaning of rewinding the blockchain. Moreover, we do not
want to give control of the blockchain to the simulator (i.e., no control of the majority of the
stake, of the computational power, and so on) since our result aims at being generic w.r.t. the
type of blockchain used. Essentially, the simulator is going to incarnate just the honest players
of the MPC protocol during the simulation. In order perform a simulation in the presence of
a concurrently played blockchain protocol, (i.e., rewinding is not possible and the blockchain is
generic and therefore not controlled by the simulator), we therefore require the initial protocol
π received in input by the compiler to be universally composable secure. This guarantees
the existence of a straight-line simulator and allows us to avoid simulators that “control” the
blockchain6, therefore allowing our results to be applicable to generic blockchains. Additionally,
we require π to have only “digital” communication. The reason is that players when running
the protocol on chain must produce messages that consists of bits only. Therefore an exchange
of hardware (e.g., tamper-proof tokens, PUFs) in π can not be accepted.

In order to preserve security with respect to fork attacks, our compiler makes sure that,
whenever an execution of the MPC protocol is repeated in multiple branches, each honest player
protects herself from a fork attack by refusing to play again a message of the same execution of
the protocol in case the blockchain shows a different prefix in the transcript of the execution.
Specifically, if on one branch B2 there is a player that changes the message already played in
a different branch B1, then each honest player that played already in B1 and is asked to play
again on input a different prefix in B2 will abort the execution in B2. Clearly, this strategy
forces a unique execution regardless of forks, and therefore security holds even in the presence
of fully quick players.

Finally, notice that the original protocol might require private and authenticated channels.
Since the entire traffic of our protocol will be redirected to the blockchain, we will use public-key
encryption and digital signatures to emulate the private and authenticated channels. The first
message of each player in the compiled protocol will therefore consist of a pair of public keys,
one to receive encrypted messages and one to allow others to verify signatures of messages.

Fairness through penalties. In Andrychowicz et al. [ADMM14, ADMM16] and in Ku-
maresan et al. [BK14, KB14] it was shown how to add fairness (i.e., the adversary should be
discouraged from learning the output before others to then decide whether the honest players
should receive the output) through penalties. The idea is that a player should deposit some
coins of the underlying cryptocurrency and the smart contract should return the coins back
only in case the player completes correctly the execution of the protocol defined by the smart
contract. Fairness is a very useful property and we want to upgrade our previous result ob-
taining fairness through penalties. Recall that we are planning to do so still admitting that
the blockchain could fork and trying to obtain fast executions avoiding as much as possible to
wait for confirmations of transactions. Our first idea to obtain fairness consists of running the
underlying UC protocol π for a different functionality. For the aim of simplicity we are consid-
ering a single output, but it can be easily generalized to multiple outputs. Let π be the input
protocol and πbc be the protocol obtained by applying our generic compiler to π. The easier
way that one can think to obtain fairness with penalties is to add a deposit in the first round of
πbc and wait that this first round is confirmed. Each player that behaves honestly will take back
the deposit, meanwhile when adversarial parties send an incorrect message or they abort the
execution by sending no messages at all, they will be penalized. We call πf this protocol that
tries to achieve fairness with penalties. In πf each party generating an abort in the execution is
considered adversarial and will be penalized. πf does not achieve fairness with penalties for the

6Typically a simulator that controls the blockchain requires some specific assumptions on the blockchain like
in [GG17] where only some restricted proof-of-stake blockchains were compatible with the simulation.
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following reason: if an honest party Pi is forced to abort the execution in the case the adversary
send him an incorrect message, Pi will be penalized, differently from what is stated in fairness
with penalties. To obtain a fair with penalties protocol πfair, we use the following technique,
borrowed from [KB14, BK14]. Let’s consider a protocol π′ running with parties P1, . . . ,Pn for a
functionality f ′ that, where each Pi holds input xi, given the output y ← f(x1, . . . , xn), secret
shares y into (σ1, . . . , σn) with full threshold, generates a set of commitments C = (γ1, . . . , γn)
such that γi is the commitment of σi. Each player Pi obtains as an output the pair (C, σi)

7.
(i) We compile π′ with our generic compiler, obtaining π′bc. (ii) In our protocol πfair, parties
P1, . . . ,Pn first engage in π′bc. After π′bc ends, each Pi obtains the output (C, σi). Now, each Pi
has a limited time t1 to send his tuple C to a smart contract together with a payment of some
deposit. (iv) If everyone sent the correct tuple C, each player Pi has another time shift t2 to
send their share σi of γi to receive back their deposit. Else, if after t2, (σ1, . . . , σn) are posted
to the smart contract, each Pi can reconstruct the output by using all the collected shares.
Else, players that have not opened their share within t2, will be penalized since their coins will
remain deposited forever.
We prove that fairness can be achieved if honest parties playing πfair wait for confirmation only
of step (ii). The reason why the above construction requires the confirmation of phase (ii) is
that otherwise the adversary can try to generate an abort during the execution of π′bc after
learning the output of the entire protocol πfair on a different branch.
Now, let’s say that t is the time needed for transaction confirmation in the blockchain, and
r the number of rounds of π′bc, πfair requires around r + 2t blocks to complete the on-chain
execution. This is due to the fact that confirmation is required only for the phase in which
commitments are posted in the blockchain and for confirming the final reconstructed output.
To maintain security of Kumaresan et al. protocols by blindly posting messages on-chain, the
overall execution requires around r · t blocks to be successfully terminated.

Fair lottery with penalties and fully quick players. We analyze a variant of the generic
attack described earlier to the well-known smart contract8 of Andrychowicz et al. [ADMM14,
ADMM16], for securely realizing multi-party lotteries. The main difference with the toy example
from above is that in their work each player commits to a random value ri between 1 and n
(where n is the total number of participants to the lottery), and then, after all the commitments
have been opened, the winner of the lottery is defined to be the player w = r1 + . . . + rn
(mod n) + 1. An appealing feature of this protocol is that it achieves fairness with penalties: If
a malicious player aborts the protocol (e.g., it does not open the commitment before a certain
time bound), then a previously deposited amount of coins is automatically transferred to the
honest players (i.e., to those that correctly opened the commitment on time). Such a feature
is particularly important in light of the negative result by Cleve [Cle86] on achieving fairness
without honest majority.

We note that in the protocol of Andrychowicz et al. it is vital that players are non-quick
and therefore post new transactions only after the previous ones are already confirmed on the
blockchain. Indeed, in the presence of quick players, a simple variant of the attack described
above would allow a malicious party to commit to a value ri such that

∑
i ri (mod n) + 1 = i,

assuming that all players already opened the commitments on a minor branch of a fork.
As our second contribution, we go beyond the limits of the protocol of [ADMM14, ADMM16],

and present a smart contract that implements the lottery functionality efficiently, indeed it
remains secure even in the presence of quick players. Fairness with penalties can be added
without affecting the efficiency of the protocol. In fact, the smart contract we design is more

7Pi implicitly receives also any decommitment information of γi.
8The protocol of [ADMM14, ADMM16] is based on Bitcoin, but this makes no difference for our attack.
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general, in that it allows the players to establish a common, uniformly random, string (which
in turn allows to run a lottery).

The main idea in our construction consists of combining unique signatures [Lys02] and
random oracles as follows: first of all, players compute unique signatures on input the concate-
nation of the ordered sequence of their public keys. Notice that as long as at least one player
is honest, we have a long string that no PPT player could predict when selecting his public
key. Then this long string is given in input to a random oracle that therefore gives in output
a uniformly distributed string. The simulator will program the random oracle therefore forcing
in the simulation the same random string obtained in the ideal-world execution.

There is still an attack that can be mounted. Assume that in the presence of a fork the
entire protocol is executed in a branch. The adversary could take advantage of the output
in one branch to decide to play the same first round or a different first round in the other
branch biasing successfully the distribution of the output. To circumvent this problem, we
make executions in different branches completely independent by also passing a branch id as
input to the unique signature evaluation procedure. As branch id we take the hash of the block
containing the last deposit. Therefore, when a protocol is entirely run in a branch, we have
that the two branch ids are different and thus there is no point in adaptively choosing the same
or a different message in another branch. Indeed, in any case, the outputs in different branches
will be completely independent. In order to deal with multiple executions of the real-world
protocol in different branches, we will also have a simulator that will play multiple times in the
ideal world. Since the output of the protocol is a random string, it can be then used in many
applications, not only to run a multi-party lottery. Note that our protocol is around 50% more
efficient the lottery of Andrychowicz et al.. Let’s say that t is the number of blocks needed for
transaction confirmation, then our coin tossing protocol can be run by using only t+ 1 blocks,
whereas Andrychowicz et al. requires 2 · t blocks to be completed.

Notice that this result makes no use of finality of transactions on a blockchain (i.e., no player
needs to know after how many blocks a transaction can be considered permanent). The protocol
therefore can be run in the presence of fully quick players, and is therefore very efficient.

We stress that we consider the adversary as a player that tries to exploit the existence of
forks in order to bias the output of the smart contract. We are not modelling the adversary of
the smart contract as a player that has control over forks, deciding which branch will eventually
be discarded and which one will become permanently part of the blockchain. Obviously, a
powerful adversary that has control over the forks can always play the protocol on each branch
to then select the one that produced the output that she likes the most. This is unavoidable
when there is no use of finality of transactions. Nevertheless, notice that in many cases this is
not a problem. Indeed think of the need of establishing a random string to then use it as first
round of a statistically hiding commitment scheme or as common reference string for a non-
interactive zero-knowledge proof. In such scenarios the adversary can freely select a random
string from any polynomially large set of randomly sampled strings without compromising any
security. In other cases like playing bingo, the fact that the adversary can decide the string out
of several candidates can be an issue.

1.5 Related Work

Following [ADMM14, ADMM16], several other works focus on achieving fairness with penalties
for different applications of interest, including lotteries [BK14], decentralized poker [KMB15,
BKM17], and general-purpose computation [BK14, KMS+16, KB16, KVV16]. In particular,
the line of works by Kumaresan et al. relies on an elegant paradigm working in two phases:
During the first phase, the players run an MPC protocol to obtain the output in hidden form
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(e.g., a secret sharing of the output); since the output is hidden, such a protocol can be executed
off chain, as malicious aborts do not violate fairness. During the second phase, the output is
then reconstructed in a fair manner on chain.

Unfortunately, the security of this paradigm in the presence of quick players is difficult
to assess, as it relies on intermediate ideal functionalities (such as the “claim-or-refund” and
“multi-lock” functionality [BK14, KB14]) that, while they can be implemented using Bitcoin or
Ethereum, offer a-priori no security guarantee in the presence of blockchain forks. Moreover,
known results about designing protocols in a hybrid model that allows to make calls to a
functionality are applicable only to the classical setting where multiple executions of the same
instance of the protocol due to forks are not possible. Also note that performing a large part of
the computation off chain hinders one of the main advantages of blockchain-aided MPC (i.e.,
public verifiability of the entire process). Our results, in contrast, consider MPC protocols run
completely on-chain through smart contracts.

A different line of works, shows how to perform MPC in the presence of an abstract trans-
action ledger [KZZ16, GG17, BMTZ17, SSV19, CGJ19], of which Bitcoin and Ethereum are
possible implementations. However, such an idealized ledger does not account for the possibility
of forks, thus (implicitly) meaning that the players using it are modeled as non-quick.

Our second contribution is a protocol to generate a randomness. it is known that there
exist protocols suited for blockchains generating random values. A well known implementation
is RANDAO [RT]. The smart contract introduced in RANDAO is similar to what we describe
in Fig. 7 as a smart contract implementation of the Andrychowicz et al. lottery protocol
[ADMM16]. The smart contract is divided in three phases: (i) the first phase collects valid
hashes calculated as sha3(si) and a fixed deposit d, where si is the secret value belonging to
party Pi, (ii) the second phase collects valid si for each party Pi thus refunding back d, where
an si is valid if only if sha3(si) is equal to the value sent by Pi in the first phase, (iii) if each
Pi provided the correct si the third phase computes a random number from all the values
(s1, s2, . . .), otherwise the deposit d of each Pj who did not provided his sj is confiscated and
redistributed among the other players. The function used to compute the random number can
be customized and can be chosen by the initializer of the smart contract. As we show in Sec. 5.2
even this smart contract is subject to attacks if the parties does not wait for the confirmation
of at least the first phase of the protocol. On the contrary, our parallel coin tossing protocol
described in Sec. 5.3 is secure even if the parties does not wait and block confirmation.

2 Preliminaries

2.1 Notation

Given an integer n, we let [n] = {1, . . . , n}. If x is a string, we denote its length by |x|; if X is
a set, |X | is the number of elements in X . When x is chosen randomly in X , we write x←$ X .
When A is an algorithm, we write y←$ A(x) to denote a run of A on input x and output y; if
A is randomized, then y is a random variable and A(x;ω) denotes a run of A on input x and
random coins ω ∈ {0, 1}∗.

Throughout the paper, we denote the security parameter by λ ∈ N. A function ν(λ) is
negligible in λ (or just negligible) if it decreases faster than the inverse of every polynomial in
λ, i.e. ν(λ) ∈ O(1/p(λ)) for every positive polynomial p(·). A machine is said to be probabilistic
polynomial time (PPT) if it is randomized, and its number of steps is polynomial in the security
parameter.

For a random variable X, we write P [X = x] for the probability that X takes a particular
value x in its domain. A distribution ensemble X = {X(λ)}λ∈N is an infinite sequence of random
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variables indexed security parameter λ ∈ N. Two distribution ensembles X = {X(λ)}λ∈N and
Y = {Y(λ)}λ∈N are said to be computationally indistinguishable, denoted X ≈c Y if for every
non-uniform PPT algorithm D there exists a negligible function ν(·) such that:

|P [D(X(λ)) = 1]− P [D(Y(λ)) = 1]| ≤ ν(λ).

When the above equation holds for all (even unbounded) distinguishers D, we say that X and
Y are statistically close, denoted X ≈s Y.

2.2 Standard Primitives

Public-key encryption. A public-key encryption (PKE) scheme is a tuple of polynomial-
time algorithms (Gen,Enc,Dec) specified as follows. (i) The randomized algorithm Gen takes as
input the security parameter, and outputs a pair of keys (pk , sk); (ii) The randomized algorithm
Enc takes as input a public key pk and a message m ∈ M, and outputs a ciphertext c; (iii)
The deterministic algorithm Dec takes as input a secret key sk and a ciphertext c, and outputs
a value in M∪ {⊥} (where ⊥ denotes decryption error). Correctness says that for every key
λ ∈ N, every (pk , sk) in the support of Gen(1λ), and every message m ∈ M, it holds that
Dec(sk ,Enc(pk ,m)) = m with probability one over the randomness of Enc.

Definition 1 (Semantic security). We say that (Gen,Enc,Dec) satisfies semantic security if for
all PPT attackers A := (A0,A1) there exists a negligible function ν(·) such that:∣∣∣∣P [b′ = b :

(pk , sk)←$ Gen(1λ); (m0,m1, z)←$ A0(pk)
b←$ {0, 1}; c←$ Enc(pk ,mb); b

′←$ A1(z, c)

]
− 1

2

∣∣∣∣ ≤ ν(λ).

Signature schemes. A signature scheme is a tuple of polynomial-time algorithms (Gen, Sign,
Verify) specified as follows. (i) The randomized algorithm Gen takes as input the security
parameter and outputs a secret key sk together with a public verification key pk ; (ii) The
deterministic algorithm Sign takes as input the secret key sk and a message x ∈ {0, 1}∗ and
outputs a signature y; (iii) The randomized algorithm Verify takes as an input the verification
key pk , a message/signature pair (x, y) and outputs a decision bit.

Correctness says that for all λ ∈ N, for all (pk , sk) ∈ Gen(1λ), and for all x ∈ {0, 1}∗ it holds
that Verify(pk , x,Sign(sk , x)) = 1 (with probability one over the coin tosses of Verify).

We will need so called unique signature schemes, which satisfy two properties known as
uniqueness and unforgeability as defined below.

Definition 2 (Uniqueness). For every pk , x, y0, y1 with y0 6= y1 there exists a negligible function
ν(·) such that the following holds for either i = 0 or i = 1:

P [Verify(pk , x, yi) = 1] ≤ ν(λ).

In words, for every string pk and every x, there exists at most one value y that is a accepting
signature of x.

Definition 3 (Unforgeability). For all PPT valid attackers A there exists a negligible function
ν(·) such that:

P
[
Sign(sk , x) = y :

(pk , sk)←$ Gen(1λ)

(x, y)←$ ASign(sk ,·)(pk)

]
≤ ν(λ),

where A is called valid if it never queries m to its oracle.

Unique signatures are sometimes also known under the name of verifiable unpredictable
functions, and exist based on a variety of assumptions [BR96, MRV99, Lys02, DY05].
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Commitment schemes. A non-interactive commitment Commit is a PPT algorithm taking
as input a message m ∈ {0, 1}`, and outputting a commitment γ = Commit(m; δ), where
δ ∈ {0, 1}∗ is the randomness used to generate the commitment. The pair (m, δ) is called the
opening.

Intuitively, a secure commitment satisfies two properties called binding and hiding. The first
property says that it is hard to open a commitment in two different ways. The second property
says that a commitment hides the underlying message.

Definition 4 (Binding). We say that a non-interactive commitment Commit is perfectly binding
if pairs (m0, δ0), (m1, δ1) such that m0 6= m1 and Commit(m0; δ0) = Commit(m1; δ1) do not exist.

Definition 5 (Hiding). We say that a non-interactive commitment Commit is computationally
hiding if for all non-uniform PPT adversaries A the following quantity is negligible∣∣∣P [ALR(0,·,·)(1λ) = 1

]
− P

[
ALR(1,·,·)(1λ) = 1

]∣∣∣ ,
where the oracle LR(b, ·, ·) with hard-wired b ∈ {0, 1} takes as input pairs of messages m0,m1 ∈
{0, 1}`, and outputs Commit(mb).

Secret Sharing Schemes. An n-party secret sharing scheme (Share,Recon) is a pair of poly-
time algorithms specified as follows. (i) The randomized algorithm Share takes as input a
message m ∈ M and outputs n shares σ = (σ1, . . . , σn) ∈ S1 × · · · × Sn; (ii) The deterministic
algorithm Recon takes as input a subset of the shares, say σI with I ⊆ [n], and outputs a value
in M∪ {⊥}.

Definition 6 (Threshold secret sharing). Let n ∈ N. For any t ≤ n, we say that (Share,Recon)
is an (t, n)-secret sharing scheme if it satisfies the following properties.

• Correctness: For any message m ∈ M, and for any I ⊆ [n] such that |I| ≥ t, we have
that Recon(Share(m)I) = m with probability one over the randomness of Share.

• Privacy: For any pair of messages m0,m1 ∈ M, and for any U ⊂ [n] such that |U| < t,
we have that

{Share(1λ,m0)U}λ∈N ≈c {Share(1λ,m1)U}λ∈N.

2.3 Multi-Party Computation

We recall standard notion of UC-security for multi-party computation (MPC). Let f : ({0, 1}∗)n
→ ({0, 1}∗)n be a function, and consider n players P1, . . . ,Pn executing a protocol π for com-
puting f . Our default network model consists of the players interacting in synchronous rounds
via private and authenticated point-to-point channels.

Intuitively, the security of π is formalized by comparing its execution in the real world (where
an attacker may corrupt a subset of the players) with the ideal execution in which a trusted
party computes the function f on behalf of the players.

The real model. In the real world, the protocol π is run in the presence of an adversary A
coordinated by a non-uniform environment Z = {Zλ}λ∈N. At the outset, Z chooses the inputs
(1λ, xi) for each player Pi, and gives I, {xi}i∈I and z to A, where I ⊆ [n] represents the
set of corrupted players and z is some auxiliary input. For simplicity, we only consider static
corruptions (i.e., the environment decides who is corrupt at the beginning of the protocol). The
parties then start running π, with the honest players Pi behaving as prescribed in the protocol
(using input xi), and with malicious parties behaving arbitrarily (directed by A). The attacker
may delay sending the messages of the corrupted parties in any given round until after the
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honest parties send their messages in that round; thus, for every r, the round-r messages of the
corrupted parties may depend on the round-r messages of the honest parties.

At some point, A gives to Z an arbitrary function of its view, and Z additionally receives the
outputs of the honest parties and must output a bit. We denote by REALπ,A,Z(λ) the random
variable corresponding to Z’s guess.

The ideal model. In the ideal world, a trusted third party evaluates the function f on behalf
of a set of dummy players (Pi)i∈[n]. As in the real setting, Z chooses the inputs (1λ, xi) for each
honest player Pi, and gives I, {xi}i∈I and z to the ideal adversary S, corrupting the dummy
parties (Pi)i∈I . Hence, honest parties send their input x′i = xi to the trusted party, whereas
the parties controlled by S might send an arbitrary input x′i. The trusted party computes
(y1, . . . , yn) = f(x′1, . . . , x

′
n), and sends yi to Pi. Finally, S gives to Z an arbitrary function of

its view, and Z additionally receives the outputs of the honest parties and must output a bit.
We denote by IDEALf,S,Z(λ) the random variable corresponding to Z’s guess.

The above specification of the ideal model automatically implies fairness (i.e., corrupted
parties get the output if and only if honest parties do as well). Unfortunately, as shown by
Cleve [Cle86], such a strong guarantee is impossible to achieve for some functionalities without
assuming honest majority. For this reason, we also consider a weaker flavor of the ideal model
yielding a middle-ground notion known as security with aborts, which is possible to achieve
even in the presence of honest minority. Let H := [n] \ I. The only difference with the above
specification is that the trusted party at first forwards only the outputs {yi}i∈I to the ideal
adversary S. Hence, S might send either a message (continue,H′) or abort to the trusted
party. In the former case, all the honest parties in H′ are given their output yi whereas the
honest parties in H\H′ receive an abort symbol ⊥. In the latter case, all honest parties receive
⊥. We denote by IDEALf⊥,S,Z(λ) the random variable corresponding to Z’s final guess.

The definition. We are now ready to define security.

Definition 7 (UC-Secure MPC). Let π be an n-party protocol for computing a function f :
({0, 1}∗)n → ({0, 1}∗)n. We say that π t-securely UC-realizes f in the presence of malicious
adversaries if such that for every PPT adversary A there exists a PPT simulator S such that
for every non-uniform PPT environment Z corrupting at most t parties the following holds:

{REALπ,A,Z(λ)}λ∈N ≈c {IDEALf,S,Z(λ)}λ∈N .

When replacing IDEALf,S,Z(λ) with IDEALf⊥,S,Z(λ) we say that π t-securely computes f with
aborts in the presence of malicious adversaries.

2.4 A Blockchain Model

Below, we describe verbatim the blockchain model of [GG17] (which in turn builds on [PSS17,
GKL15]). A blockchain protocol Γ consists of the following algorithms:

• UpdateState(1λ): It is a stateful algorithm that take as input a security parameter λ ∈ N,
and maintains a local state st ∈ {0, 1}∗ which essentially consists of the entire blockchain
(i.e., the sequence of minted blocks).

• GetRecords(1λ, st): It takes as input the security parameter and a state st ∈ {0, 1}∗. It
outputs the longest ordered sequence of valid blocks (or simply blockchain) B = (β1, β2, . . .)
contained in the state variable, where each block β in the chain itself contains an unordered
sequence of records/messages (m1,m2, . . .).
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• Broadcast(1λ,m): It takes as input the security parameter and a message m ∈ {0, 1}∗, and
broadcasts the message over the network to all nodes executing the blockchain protocol.
It does not give any output.

The blockchain protocol is also parameterized by a validity predicate V that captures the seman-
tics of any particular blockchain application. The validity predicate takes as input a sequence
of blocks B and outputs a bit, where the value 1 certifies the validity of the blockchain B. Since
V is immaterial for our purposes, in what follows we simply omit it.

Blockchain execution. Each participant in the protocol runs UpdateState to keep track of
the latest blockchain state. This corresponds to listening on the broadcast network for messages
from other nodes. GetRecords is used to extract an ordered sequence of blocks encoded in the
blockchain state variable, which is considered as the common public ledger among all the nodes.
Finally, Broadcast is used by a party when it wants to post a new message on the blockchain;
such messages are accepted by the blockchain protocol only if they satisfy the validity predicate
given the current state.

The execution of a blockchain protocol Γ = (UpdateState,GetRecords,Broadcast) is directed
by an environment Z(1λ) which activates the parties as either honest or corrupt, and is also
responsible for providing inputs/records to all parties in each round. All the corrupted parties
are controlled by the adversary A, which is also responsible for delivery of all network messages.
Honest parties start by executing UpdateState on input 1λ, with an empty local state st = ε.
Then, the protocol execution proceeds in rounds that model times steps, as detailed below.

• In round r ∈ N, each honest player Pi potentially receives messages from Z, and incoming
network messages (delivered by A). It may then perform any computation, broadcast a
message to all other players (which will be delivered by the adversary as explained below),
and update its local state st i. It could also attempt to add a new block to its chain i.e.,
run the mining procedure.

• The attacker A is responsible to deliver all messages sent by parties (honest or corrupted)
to all other parties. The adversary cannot modify the content of messages broadcast
by honest players, but it may delay or reorder the delivery of a message as long as it
eventually delivers all messages within a certain time limit.

• At any point, Z can communicate with A or access GetRecords(1λ, st i) where st i is the
local state of player Pi.

With the notation B � B′, we denote that the blockchain B is a prefix of B′. We also let Bdk
be the chain resulting from pruning the last k blocks in B. Let EXECΓ,A,Z(λ) be the random
variable denoting the joint view of all parties in the execution of protocol Γ with adversary A,
and environment Z. Note that this view fully determines the execution.

Blockchain properties. We now define two natural guarantees that are respected by an ideal
ledger. The first property, called consistency, intuitively states that the view of the blockchain
obtained by different players is identical up to pruning a certain number of blocks from the top
of the chain. Let Consistentk(·) be the predicate that returns 1 iff for all rounds r ≤ r̃, and all
parties Pi,Pj (potentially the same) such that Pi is honest at round r with blockchain B and
player Pj is honest at round r̃ with blockchain B̃, we have that Bdk � B̃.

Definition 8 (Chain consistency). A blockchain protocol Γ satisfies k(·)-consistency with ad-
versary A and environment Z, if there exists a negligible function ν(·) such that for every
k̄ > k(λ), the following holds:

P
[
Consistentk̄(view) = 1 : view ←$ EXECΓ,A,Z(λ)

]
≥ 1− ν(λ).
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We note that previous work considered an even stronger property, called persistence, stip-
ulating that if some honest player reports a message m at depth k in its local ledger, then m
will be always reported in the same position and equal or more depth by all honest parties. We
omit a formal definition, as this property is not required for our purposes.

The second property, called liveness, intuitively says that if all honest parties attempt to
broadcast a message m, then after w rounds, an honest party will see m at depth k in the ledger.
Let Livek(·, w) be the predicate that returns 1 iff for any w consecutive rounds r, . . . , r+w there
exists some round r′ ∈ [r, r + w] and index i ∈ [n] such that: (1) Pi is honest and received a
message m at round r, and (2) for every player Pj that is honest at r + w with blockchain B,
it holds that m ∈ Bdk.

Definition 9 (Liveness). A blockchain protocol Γ satisfies (w(·), k(·))-liveness with adversary
A and environment Z, if there exists a negligible function ν(·) such that for every w̄ ≥ w(λ) the
following holds:

P
[
Livek(view , w̄) = 1 : view ←$ EXECΓ,A,Z(λ)

]
≥ 1− ν(λ).

2.5 Threat Model

We assume that the adversary is computationally bounded, and when there is a fork in the
blockchain, we pragmatically assume that the adversary has no power to choose which branch
will be confirmed. We point out that if one would like to consider a very strong adversary with
even 49% of the computational power of the network, then clearly our assumption does not
hold. However, we stress that with such an adversary even the 6-block rule in Bitcoin does
not make much sense. To guarantee that a delicate transaction (i.e., the coinbase transaction)
is confirmed with a strong enough adversary, up to 144 blocks are necessary in Bitcoin [BW],
meaning 1 day to communicate even a single protocol message. Therefore if one would like
to consider such strong adversaries even a protocol requiring only one confirmation becomes
totally impractical.

Our proposed protocols work in the dishonest majority setting.
Since the overall protocol execution is run on-chain, in our scenarios is not clear what means

to fix the identity of the parties “before” the execution of the protocol. We say that a party Pi
participates to a protocol execution only after he publishes the first protocol message.

Therefore, each protocol we are going to present in this paper falls in the following class:
at the beginning each player Pi sends the first protocol message to “register” himself to the
protocol, and waits until a fixed time t that the other players post the first message. If,
after time t has passed, all parties sent the first message, the protocol continues as expected;
Otherwise, we have two cases:

• (i) If the protocol is suited to run also with less the n parties, the registered parties
continue a normal execution.

• (ii) If the protocol works only with n parties (or more), the execution is aborted by the
registered parties.

We notice that our PCT protocol can be executed even if only two parties decide to par-
ticipate in the protocol. This means that n does not need to be fixed beforehand. Moreover,
registered parties are not incentivized to abort the protocol by not sending the second message
in PCT due to financial compensation (parties must send a collateral deposit together with the
first message). This makes DoS attacks in which the attacker aborts the protocol multiple times
(making honest parties waste time and money) economically infeasible.
Our generic compiler, instead, depends on the class of protocols it is applied to. Firstly, the
underlying protocol could need n or more parties to be correctly executed. This issue is not
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directly solvable on the financial side, since our compiler outputs a protocol achieving fair out-
put delivery with penalties, meaning that abort is still possible during the computation phase,
but a financial penalty is given to the parties aborting in the output phase (i.e. when not every
honest party receives the output). In fact, differently from the compiler, PCT achieves fair
computation with penalties, meaning that an aborting player can be penalized at each step of
computation.
Fair computation is not easily achievable for a generic compiler: as it can be seen in Section 4,
even taking as an input a protocol achieving identifiable abort, it cannot be compiled to a pro-
tocol achieving fair computation with penalties that is secure in the presence of quick players.
This is due to the fact that the compiler will abort when an attacker against quick players ex-
ploits fork to send different messages, thus provoking an abort during the computation phase.
In this case, financial compensation can be performed only by waiting for the block confirma-
tion of each message, thus boiling down to the abort identifiability of the underlying protocol.
Unfortunately, this removes the main advantage of our compiler, that is, being quick.

3 Running MPC on Forking Blockchains

In this section, we formalize different ways how to run an MPC protocol with the aid of a
blockchain. In §3.1 we specify what it means to run an MPC protocol on the blockchain both
in the presence of quick and non-quick players. The security definition appears in §3.2.

3.1 Blockchain-Aided MPC

Next, we define what it means to run an n-party protocol π for securely computing some function
f : ({0, 1}∗)n → ({0, 1}∗)n over a blockchain protocol Γ.

Intuitively, running π on Γ simply means that the players write the protocol’s messages on
the blockchain instead of using point-to-point connections. However, since the blockchain may
fork, the protocol’s participants have to choose how to manage possibly unconfirmed blocks
that are part of the current chain. Looking ahead, this choice will have impact both on the
efficiency and on the security of the protocol execution. In particular, we distinguish between
quick and non-quick players as formalized below.

Non-quick execution. Roughly speaking, a player is said to be non-quick if it always decides
its next message by looking at the transcript of the protocol that is obtained by pruning the
last k blocks of the blockchain, where k is the parameter for the consistency property of the
underlying blockchain.

Definition 10 (Non-quick player). Let Γ = (UpdateState,GetRecords,Broadcast) be a blockchain
protocol with k-consistency. A player Pi is said to be non-quick if it behaves as follows:

• Initialize τ
(0)
i := ε, st i := ε and ri := 0.

• Run the following loop:
– Update the state st i by running UpdateState(1λ), and retrieve Bi←$ GetRecords(st i)

until the partial transcript τ (ri) is contained in Bdki .
– If the protocol is over (i.e., the transcript τ (ri) is sufficient for determining the output),

output the value yi as a function of τ
(ri)
i and terminate.

– Else, compute the next protocol message m
(ri+1)
i , invoke Broadcast(m

(ri+1)
i ), and set

ri := ri + 1.
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Quick execution. On the other hand, a player is quick if it decides and broadcasts its next
message by looking at the latest version of the blockchain (i.e., without pruning blocks). Since
the consistency property does not hold for the last k blocks, quick players may retrieve different
protocol’s transcripts as the protocol proceeds. In particular, it may happen that at a given
time step party Pi reads from the blockchain a partial transcript τ (r̃), whereas at a later time
step the same player reads τ (r̃′) for some r̃′ < r̃. This is due to the fact that some of the
messages contained in τ (r̃) may end up in unconfirmed blocks, and thus be discarded.

Definition 11 (Quick execution). Let Γ = (UpdateState,GetRecords,Broadcast) be a blockchain
protocol with k-consistency. A player Pi is said to be quick if it behaves as follows:

• Initialize τ
(0)
i := ε and st i := ε.

• Run the following loop:
– Update the state st i by running UpdateState(1λ), and let Bi←$ GetRecords(st i).
– Let r̃ ≥ 0 be the maximum value such that the partial transcript τ (r̃) ∈ Bi.
– If the protocol is over (i.e., the transcript τ (r̃) is sufficient for determining the output),

output the value yi as a function of τ (r̃) and terminate.

– Else, compute the next protocol message m
(r̃+1)
i and invoke Broadcast(m

(r̃+1)
i ).

More generally, we call ϕ-quick a player that is non-quick until a partial transcript τ (ϕ) is
at least k blocks deep in the blockchain, and afterwards it starts being quick. We sometimes
call ϕ the finality parameter. Note that a 0-quick player is identical to a quick player, whereas
an ∞-quick player is identical to a non-quick player. We call (χ, ϕ)-quick a player that is quick
for the first χ rounds, and then behaves like a ϕ-quick player.

3.2 Security in the Presence of Quick Players

We can now define security of MPC protocols running on the blockchain. As in the standard
setting, the definition compares a protocol execution in the real world with one in the ideal
setting where a trusted party is made available. The main difference with the standard definition
is that the attacker A is given black-box access to the algorithms in Γ, which it can use arbitrarily.
The simulator is not allowed to control the blockchain (i.e. it must simulate the view of the
adversary while invoking the algorithms in Γ on behalf of the honest players).
The real model: This is the execution of π on Γ, where the honest players are ϕ-quick. As

usual, the adversary A is coordinated by a non-uniform distinguisher D. At the outset, D
chooses the inputs (1λ, xi) for each player Pi, and gives I, {xi}i∈I and z to A, where I ⊆ [n]
represents the set of corrupted players and z is some auxiliary input. The parties then
start running π on Γ, with the honest players Pi being ϕ-quick and behaving as prescribed
in π (using input xi), and with malicious parties behaving arbitrarily (directed by A). At
some point, A gives to D an arbitrary function of its view; note that the latter includes
the view generated via EXECΓ,A,D(λ) in the blockchain protocol. Finally, D receives the

outputs of the honest parties and must output a bit. We denote by REALΓ,ϕ
π,A,D(λ) the

random variable corresponding to D’s guess.
The ideal model: This is identical to the ideal model for standard MPC (App. 2.3), with the

only difference that the simulator S is also responsible for simulating the attacker’s view
corresponding to the interaction of the honest players with the blockchain. The latter
is achieved using the algorithms of the underlying blockchain protocol Γ. We denote by
IDEALΓ

f,S,D(λ) and IDEALΓ
f⊥,S,D

(λ) the random variable corresponding to D’s guess in
the ideal world, where the latter is for the case of security with aborts.

Definition 12 (Secure MPC in the presence of quick players). Let π be an n-party protocol run
over a blockchain protocol Γ. We say that π t-securely computes f in the presence of ϕ-quick
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players and malicious adversaries if for every PPT adversary A there exists a PPT simulator S
such that for every non-uniform PPT distinguisher D corrupting at most t parties the following
holds: {

REALΓ,ϕ
π,A,D(λ)

}
λ∈N
≈c
{
IDEALΓ

f,S,D(λ)
}
λ∈N .

When replacing IDEALΓ
f,S,D(λ) with IDEALΓ

f⊥,S,D
(λ) we say that π t-securely computes f

with aborts in the presence of ϕ-quick players and malicious adversaries.

Remark 1 (On ϕ =∞). One may think that every protocol π that t-securely computes f (with
or without aborts) in the presence of malicious adversaries, must t-securely compute f (with or
without aborts) in the presence of ∞-quick (i.e., non-quick) players and malicious adversaries.

Remark 2 (On ϕ = 0). Note that when the players are fully quick (i.e., ϕ = 0), the adversary’s
view in the real world may include multiple executions of the original protocol π (upon the same
inputs chosen by the distinguisher). This view may not be possible to simulate in the ideal world,
where the simulator can invoke the ideal functionality f only once.

For this reason, whenever ϕ = 0, we implicitly assume that the simulator is allowed to
query the ideal functionality f multiple times. Note that this yields a meaningful security guar-
antee only for certain functionalities f , similarly to the setting of resettably secure computa-
tion [GS09].

Remark 3 (On the power of the adversary). We stress that we assume that the adversary of
the MPC protocol has no impact on the execution of the consensus protocol of the underlying
blockchain. Note that if we would instead assume that the adversary of the MPC protocol
also creates new branches and/or contributes in deciding which branch of a fork is eventually
confirmed on the blockchain then he can have an unfair advantage. Indeed the adversary can
start more branches when he does not like the output computed in a branch, and/or can decide
which output among the various outputs appearing in different branches should be confirmed
on the blockchain. Obviously the above unfair advantages are unavoidable and our protocol is
still secure by introducing the unavoidable real-world attack into the ideal world, similarly to the
classical fairness issue resolved through aborts in the ideal world.

Remark 4 (On public verifiability). We notice that any on-chain MPC protocol with quick
players admits the case where a honest player complete her execution computing an output that
does not necessarily correspond to the transcript that others later on will see on the blockchain.
In other words, the local output computed by players could not match the publicly verifiable
execution that remains visible on the blockchain. The reason why public verifiability could fail
is that an execution of the protocol could be entirely contained in a branch of a fork that will
not become permanent in the blockchain. The above issue is intrinsic in all protocols played
on-chain in the presence of forks and quick players. An obvious solution for a honest player
consists of waiting that the last message of the protocol is confirmed on the blockchain and only
after that the computation ends returning the computed output.

Random oracle model. Our result in §5.3 are secure in the random oracle model (ROM).
The definition remains the same, except that each player in the real world has now access to a
truly random hash function Hash chosen at the beginning of the experiment. The simulator of
the ideal world can program the random oracle.

4 A Simple Compiler

In this section, we propose and analyze a simple transformation that allows to run any MPC
protocol safely on the blockchain, even when the players are quick. The description of our
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compiler appears in §4.1, while in §4.2 we analyze its security. Finally, in §4.3, we discuss how
to extend our generic transformation in order to achieve fairness with penalties, as long as the
players start being quick after the confirmation of the first round.

4.1 Compiler Description

Intuitively our transformation proceeds as follows. Our starting point is any MPC protocol π
UC-securely computing an n-party functionality f : ({0, 1}∗)n → ({0, 1}∗)n in the presence of
malicious players (with aborts). Hence, the honest players fix the random tape for running π
and simply execute protocol π by broadcasting their messages on the blockchain. Furthermore,
each honest player Pi keeps track of the longest protocol transcript αi generated so far and, in
the presence of a fork, aborts the execution in case the view on a given branch is not consistent
with αi. This intuitively ensures that the underlying protocol π is run only once, even in the
presence of forks.

Since the initial protocol π may require private channels between the players, we need to
augment the above transformation in such a way that subsets of honest parties can exchange

messages in a confidential and authenticated manner. Let m
(r)
i,j be the message that Pi sends to

Pj at the generic round r. The latter is achieved by having Pi encrypting m
(r)
i,j using the public

encryption key ek j of Pj , and then signing the resulting ciphertext c
(r)
i,j with its own private

signing key sk i, which is the standard way of building a secure channel.

Generic Compiler π∗

Let π be an n-party ρ-round protocol, and Γ = (UpdateState,GetRecords,Broadcast) be a blockchain protocol.
Further, let (Gen,Enc,Dec) be a PKE scheme and (Gen′, Sign,Verify) be a signature scheme, both with domain
{0, 1}∗ (see App. 2.2 for the formal definitions). The protocol π∗ proceeds as follows:

• For i ∈ [n], each player Pi initializes st i := ε, samples (ek i, dk i)←$ Gen(1λ), (vk i, sk i)←$ Gen′(1λ),
and ωi←$ {0, 1}∗, and invokes Broadcast(ek i||vk i||i).

• For i ∈ [n], each player Pi keeps running st i←$ UpdateState(1λ) and Bi←$ GetRecords(st i) until all
the messages (ek j , vk j)j∈[n] ∈ Bi.

• For i ∈ [n], each player Pi sets τ (0) := (ek j , vk j)j∈[n] and αi := τ (0), and then runs the following loop:
1. Update the state st i by running UpdateState(1λ), and let Bi←$ GetRecords(st i).
2. Let r̃ ≥ 0 be the maximum value such that the partial transcript τ (r̃) ∈ Bi. Then:

– If the ciphertexts in τ (r̃) are not consistent with those in αi, output ⊥ and terminate.
– Else if r̃ = ρ, output the value yi as a function of τ (ρ) and terminate.
– Else, go to the next step and if αi is a prefix of τ (r̃) let αi := τ (r̃).

3. For each j ∈ [n], with j 6= i, and for each r ≤ r̃, decrypt the ciphertexts c
(r)
j,i and use the

corresponding values m
(r)
j,i to compute the messages m

(r̃+1)
i,j to be sent at round r̃+ 1 (using the

corresponding portion of the random tape ωi).

4. Finally, let c
(r̃+1)
i,j ←$ Enc(ek j ,m

(r̃+1)
i,j ) (using again random coins coming from ωi) and σ

(r̃+1)
i,j =

Sign(sk i, c
(r̃+1)
i,j ), and invoke Broadcast((c

(r̃+1)
i,j ||σ(r̃+1)

i,j )j∈[n]\{i}).

Figure 1: Generic compiler for obtaining blockchain-aided MPC with quick players.

We refer the reader to Fig. 1 for a formal description. Note that wlog. we assume that
for each round of the underlying protocol π every Pi sends a single message to each Pj 6=i over
a private and authenticated channel. Moreover, Pi picks a sufficiently long random tape ωi
that is then used to run π over Γ. Observe that ωi includes both the randomness required to
compute the messages in π and the random coins used to encrypt them. In particular, in the
presence of forks, an honest Pi that does not abort broadcasts on the blockchain exactly the
same ciphertexts on multiple branches.
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4.2 Security Analysis

The theorem below establishes the security of our generic compiler.

Theorem 1. Let (Gen,Enc,Dec) be a semantically secure PKE scheme, and (Gen′,Sign,Verify)
be a (deterministic) unforgeable signature scheme. Furthermore, let π be an n-party ρ-round
protocol that t-securely UC-realizes a functionality f with aborts in the presence of malicious
adversaries. Then, the protocol π∗ of Fig. 1 t-securely computes f with aborts in the presence
of quick players and malicious adversaries.

UC security is needed due to the fact that the attacker in the real world may interact
with the blockchain by posting messages and reading its state. As shown in [CGJ19], such
blockchain-active adversaries render standard simulation techniques (e.g., black-box rewinding)
moot. Note also that Remark 2 does not hold for our protocol. If the adversary tries to furnish
two different inputs in two different branches it can be spotted by some honest player, leading
to an abort. Therefore only one possible input can be given to the functionality.

We need to show that for every PPT adversary A∗, there exists a PPT simulator S∗ such
that no non-uniform PPT distinguisher D∗ can tell apart the experiments REALΓ,0

π,A∗,D∗(λ) and

IDEALΓ
f⊥,S∗,D∗

(λ). In particular, the simulator S∗ needs to simulate the interaction of the
honest players with the blockchain protocol Γ as it happens in the real experiment. Intuitively,
S∗ relies on the simulator S guaranteed by the underlying protocol π as follows. At the beginning,
S∗ samples the public/secret keys for encryption/signatures for the honest players. Then, S∗

runs A∗ reading its messages from the emulated execution of the blockchain protocol Γ, and

simulates its view as follows: (i) The round-r messages m
(r)
j,i sent by the honest players Pj to

the malicious players Pi are obtained from the simulator S; (ii) The round-r messages m
(r)
j,j′ that

are exchanged by the honest players Pj ,Pj′ are replaced with the all-zero string. Of course,
S∗ does additional bookkeeping in order to simulate a real execution of the protocol using the
blockchain; in particular, S∗ needs to check that the attacker plays consistently on different
branches of a fork, and simulate an abort whenever the latter does not happen. Moreover,
when S extracts the inputs for the malicious parties, the simulator S∗ forwards the same inputs
to the trusted party, obtains the outputs for the malicious parties, and sends it to S. Finally,
S∗ completes the simulation consistently with the choice of S of aborting or not.

Very roughly, the security of the PKE scheme and of the signature scheme imply that the
view of the attacker is identical to that in a real execution of protocol π, so that security of π∗

follows by that of π.

Proof. We begin by describing the simulator S∗. Let S be the PPT simulator guaranteed by the
malicious security of π. Upon input the set of corrupted parties I, inputs (xi)i∈I , and auxiliary
input z, the simulator S∗ proceeds as follows:

1. Initialize S upon input (I, (xi)i∈I , z), with uniformly chosen random tape ωsim←$ {0, 1}∗.
2. For each j 6∈ I, sample (ek j , dk j)←$ Gen(1λ), (vk j , sk j)←$ Gen′(1λ), ωj ←$ {0, 1}∗, and

invoke Broadcast(ek j ||vk j ||j).
3. For each j 6∈ I, keep running st j ←$ UpdateState(1λ) and Bj ←$ GetRecords(st j) until all

the messages (ek i, vk i)i∈[n] ∈ Bj . Set τ
(0)
j := (ek i, vk i)i∈[n] and αj := τ (0).

4. For each j 6∈ I, emulate the behavior of party Pj as follows:
(a) Update the state st j by running UpdateState(1λ), and let Bj ←$ GetRecords(st j).
(b) Let r̃ ≥ 0 be the maximum value such that the partial transcript τ (r̃) ∈ Bj . Then:

• If the ciphertexts in τ (r̃) are not consistent with those in αj , send abort to the
trusted party, simulate A∗ aborting in the real protocol, and terminate.

• Else, go to the next step and if αj is a prefix of τ (r̃) let αj := τ (r̃).
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(c) Extract from τ
(r̃)
j the ciphertexts (c

(r̃)
i,j )i∈I and the signatures (σ

(r̃)
i,j )i∈I that A∗ (on

behalf of each corrupted player Pi) forwards to Pj . If there exists i ∈ I such

that Verify(vk i, σ
(r̃)
i,j ) = 0, send abort to the trusted party, simulate A∗ abort-

ing in the real protocol, and terminate. Else, for each r ≤ r̃, decrypt the ci-

phertexts c
(r)
i,j using the decryption key dk j , and pass the corresponding messages

((m
(1)
i,j )i∈I,j∈H, . . . , (m

(r̃)
i,j )i∈I,j∈H) to S. Hence:

• Upon receiving abort from S, send abort to the trusted party, simulate A∗

aborting in the real protocol, and terminate.
• Upon receiving (xi)i∈I from S, send (xi)i∈I to the trusted party, obtain the

outputs (yi)i∈I , and forward (yi)i∈I to S. In case S replies with (continue,H′),
send (continue,H′) to the trusted party and terminate.

• Upon receiving a set of messages (m
(r̃+1)
j,i )j∈H,i∈I—corresponding to the simu-

lated messages that each honest player Pj sends to the corrupted party Pi— for

each j ∈ H and i ∈ I compute c
(r̃+1)
j,i ←$ Enc(ek i,m

(r̃+1)
j,i ) (using coins from ωj)

and σ
(r̃+1)
j,i = Sign(sk j , c

(r̃+1)
j,i ). Then, for each j, j′ ∈ H, let c

(r̃+1)
j,j′ ←$ Enc(ek j′ ,

0
|m(r̃+1)

j,j′ |) (using coins from ωj) and σ
(r̃+1)
j,j′ ←$ Sign(sk j , c

(r̃+1)
j,j′ ), and finally invoke

Broadcast((c
(r̃+1)
j,i ||σ(r̃+1)

j,i )i∈[n]\{j}).
To conclude the proof, we consider a sequence of hybrid experiments (ending with the real
experiment) and argue that each pair of hybrids is computationally close thanks to the properties
of the underlying cryptographic primitives.
Hybrid H3(λ): This experiment is identical to IDEALΓ

f⊥,S∗,D∗
(λ).

Hybrid H2(λ): Identical to H3(λ) except that we replace the ciphertexts (c
(r)
j,j′)j∈H,j′∈H\{j}

that each honest party Pj sends to the other honest players Pj′ with an encryption of the

real messages (m
(r)
j,j′)j∈H,j′∈H\{j} that the same parties would send in a real execution of

π. Note that the other ciphertexts (c
(r)
j,i )j∈H,i∈I are still emulated using the simulator,

and the output of the experiment is determined by the trusted party.
The inputs for the honest parties are chosen to be the values (xi)i∈H chosen by the
distinguisher D∗ at the beginning of the experiment, and the random tape of each player
is chosen uniformly once and for all as in the real world.

Hybrid H1(λ): Identical to H2(λ) except that we artificially abort if A∗ modifies one of the

ciphertexts (c
(r)
j,i )j∈H,i∈[n]\{j} corresponding to the messages that each honest player sends

in a given round. Note that these ciphertexts correspond to both the real messages

(m
(r)
j,j′)j∈H,j′∈H\{j} and the simulated messages (m

(r)
j,i )j∈H,i∈I .

Hybrid H0(λ): This experiment is identical to REALΓ,0
π∗,A∗,D∗(λ).

Lemma 1. {H3(λ)}λ∈N ≈c {H2(λ)}λ∈N.

Proof. We reduce to semantic security of (Gen,Enc,Dec). Let h = |H|. For k ∈ [0, h], consider

the hybrid experiment H3,k(λ) in which the distribution of the ciphertexts (c
(r+1)
j,j′ )j∈H,j′∈H\{j}

is modified as in H2(λ) only for the first h honest parties. Clearly, {H3,0(λ)}λ∈N ≡ {H3(λ)}λ∈N
and {H3,h(λ)}λ∈N ≡ {H2(λ)}λ∈N.

Next, we prove that for every k ∈ [0, h] it holds that {H3,k(λ)}λ∈N ≈c {H3,k+1(λ)}λ∈N which
concludes the proof of the lemma. By contradiction, assume that there exists an index k ∈
[0, h], and a pair of PPT algorithms (D∗,A∗) such that D∗ can distinguish the two experiments
H3,k(λ) and H3,k+1(λ) with non-negligible probability. We construct a PPT attacker B breaking
semantic security of (Gen,Enc,Dec) as follows:
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• Receive the target public encryption key ek∗ from the challenger.
• Run D∗, receiving the set of corrupted parties I, the inputs (xi)i∈[n], and the auxiliary

input z, then pass (I, (xi)i∈I , z) to A∗.
• Interact with A∗ as described in the ideal experiment, except that:

– The public encryption key for player Pk+1 is set to be the target public key ek∗.

– For each j ≤ k, when it comes to simulating the ciphertexts (c
(r)
j,j′)j′∈H\{j}, use the real

messages (m
(r)
j,j′)j′∈H\{j}, encrypt them using the public encryption key ek j′ of Pj′ ,

and sign the ciphertexts with the secret key sk j (which is known to the reduction).

– When it comes to simulating the ciphertexts (c
(r)
k+1,j′)j′∈H\{j}, forward the pair of

plaintexts (m
(r)
k+1,j′ , 0

|m(r)

k+1,j′ |)j′∈H\{k+1} to the left-or-right encryption oracle and sign
the corresponding ciphertexts using the secret signing key skk+1 of Pk+1 (which is
known to the reduction).

– For each j > k + 1, when it comes to simulating the ciphertexts (c
(r)
j,j′)j′∈H\{j}, use

the dummy messages (0
|m(r)

j,j′ |)j′∈H\{j}, encrypt them using the public encryption key
ek j′ of Pj′ , and sign the ciphertexts with the secret key sk j (which is known to the
reduction).

• Finally, run D∗ upon the final output generated by A∗, and return whatever D∗ outputs.
Note that the reduction can indeed simulate the interaction with the blockchain protocol Γ as
in the ideal experiment, and moreover it can generate the real messages (mr

j,j′)j∈H,j′∈H\{j} as
it knows the parties’ inputs (xi)i∈[n]. By inspection, the simulation performed by B is perfect

in the sense that when the challenger encrypts the messages m
(r)
k+1,j′ the view of (D∗,A∗) is

identical to that in H3,k+1(λ). Similarly, when the challenger encrypts the dummy messages

0
|m(r)

k+1,j′ | the view of (D∗,A∗) is identical to that in H3,k(λ). Hence, B breaks semantic security
of (Gen,Enc,Dec) with non-negligible probability, concluding the proof.

Lemma 2. {H2(λ)}λ∈N ≈c {H1(λ)}λ∈N.

Proof. Let BAD be the event that an artificial abort happens in H1(λ). Note that this means

that, for some j ∈ H, the attacker A∗ replaces one of the ciphertexts c
(r)
j,i that Pj would send

to Pi in the real protocol with a different ciphertext c̃
(r)
j,i , in such a way that the correspond-

ing signature σ̃
(r)
j,i is still accepting. Clearly, the experiments H2(λ) and H1(λ) are identical

conditioning on BAD not happening, and does it suffices to show that P [BAD] is negligible.
Given a PPT distinguisher D∗ and a PPT attacker A∗ such that A∗ provokes event BAD

in a run of H2(λ) with non-negligible probability, we can construct a PPT attacker B breaking
security of the signature scheme (Gen′, Sign,Verify). The reduction works as follows:

• Receive the target public verification key vk∗ from the challenger.
• Choose a random j∗ as a guess for the index corresponding to the honest party for which
A∗ provokes the bad event.

• Run D∗, receiving the set of corrupted parties I, the inputs (xi)i∈[n], and the auxiliary
input z, then pass (I, (xi)i∈I , z) to A∗.

• Interact with A∗ as described in H2(λ), except that:
– The public verification key for player Pj∗ is set to be the target public key vk∗.
– When it comes to simulating the round-r messages from party Pj∗ , generate the

ciphertexts (c
(r)
j∗,i)i∈[n]\{j∗} as done in H2(λ), and then forward each of c

(r)
j∗,i to the

challenger, obtaining the corresponding signature σ
(r)
j∗,i that is needed in order to

complete the simulation.
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– Keep updating the local state of Pj∗ until an index i ∈ [n]\{j∗} is found such that the

partial transcript αj∗ contains a pair (c̃
(r)
j∗,i, σ̃

(r)
j∗,i) such that Verify(vk j∗ , c̃

(r)
j∗,i, σ̃

(r)
j∗,i) = 1

and c̃
(r)
j∗,i is different from the original ciphertext c

(r)
j∗,i previously sent on behalf of Pj∗ .

• If no such pair is found, abort the simulation. Else, return (c̃
(r)
j∗,i, σ̃

(r)
j∗,i).

Note that the simulation performed by B is perfect, in that the view of (D∗,A∗) is identical
to that in a run of H2(λ). Moreover, conditioning on B guessing the index j∗ correctly, the
reduction is successful in breaking security of the signature scheme exactly with probability at
least P [BAD], which is non-negligible. Since the former event also happens with non-negligible
probability, this concludes the proof.

Lemma 3. {H1(λ)}λ∈N ≈c {H0(λ)}λ∈N.

Proof. The proof is by reduction to UC-security of the underlying protocol π. By contradiction,
assume that there exists a PPT adversary A∗ and a non-uniform PPT distinguisher D∗ that can
distinguish between H1(λ) and H0(λ) with non-negligible probability. Consider the following
PPT attacker A, initialized with a set of corrupted parties I, inputs (xi)i∈I for the malicious
players, and auxiliary input z = (z∗, (ek i, dk i)i∈[n], (vk i, sk i)i∈[n]) which will be specified later:

• Pass (I, (xi)i∈I , z∗) to A∗.

• For each i ∈ I, upon receiving the round-r messages (m
(r)
j,i )j∈H from the honest players

to the malicious players, let c
(r)
j,i ←$ Enc(ek i,m

(r)
j,i ) and σ

(r)
j,i = Sign(sk j , c

(r)
j,i ), and emulate

broadcasting (c
(r)
j,i , σ

(r)
j,i )j∈H,i∈I via the blockchain protocol.

• For each j ∈ H, upon receiving the round-r messages (m
(r)
i,j )i∈I that A∗ wants to send

to the honest parties, let c
(r)
i,j ←$ Enc(ek j ,m

(r)
i,j ) and σ

(r)
i,j = Sign(sk i, c

(r)
i,j ), and emulate

broadcasting (c
(r)
i,j , σ

(r)
i,j )i∈I,j∈H via the blockchain protocol.

• For each j ∈ H, compute the messages (m
(r)
j,j′)j′∈H\{j} exchanged between honest parties as

done in H0 (which is the same in H1(λ)), let c
(r)
j,j′ ←$ Enc(ek j′ ,m

(r)
j,j′) and σ

(r)
j,j′ = Sign(sk j ,

c
(r)
j,j′), and emulate broadcasting (c

(r)
j,j′ , σ

(r)
j,j′)j∈H,j′∈H\{j} via the blockchain protocol.

• In case a fork appears during the simulation of the underlying blockchain protocol, repli-
cate the messages from the honest players as done in the other branches (using exactly
the same randomness). On the other hand, if the messages from A∗ differ from those sent
on the simulation of a previous branch, simulate A∗ aborting and terminate.

• Output whatever A∗ outputs.
Additionally, let Z be the following PPT distinguisher:

• Run D∗, receiving the set of corrupted parties I, the inputs (xi)i∈[n], and the auxiliary
input z∗, then sample (ek i, dk i) and (vk i, sk i) for all i ∈ [n], and pass (I, (xi)i∈I , z) to the
above defined attacker A, where z = (z∗, (ek i, dk i)i∈[n], (vk i, sk i)i∈[n]).

• Upon receiving the final output from A, pass it to D∗ and output whatever D∗ outputs.
By inspection, in case the attacker A is playing in a real execution of protocol π, the view
of D∗ is identical to that in an execution of H0(λ) with A∗ controlling the malicious parties.
Similarly, in case the view of A is emulated using the simulator S (corrupting the dummy parties
controlled by A) of protocol π, the view of D∗ is identical to that in an execution of H1(λ) with
A∗ controlling the malicious parties. It follows that Z can distinguish between REALπ,A,Z(λ)
and IDEALf⊥,S,Z(λ) with non-negligible probability, a contradiction.

The theorem now follows directly by combining the above lemmas.
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4.3 On Fairness with Penalties

In their work, Andrychowicz et al. [ADMM14, ADMM16] proposed a different notion of fairness
for MPC protocols that run on blockchain: fairness with penalties. This notion states that if
an adversary in an MPC protocol decides to abort the execution of the protocol it will be
financially penalized. To obtain the penalization in the lottery protocol, Andrychowicz et al.
added a deposit step in the protocol.

Our compiler described in §4 does not have suffer we discuss here how to obtain fairness
with penalties following in part the outline of [KB14, BK14].

Let’s now assume the existence of an (n, n)-secret sharing scheme (Share,Recon), non-
interactive commitment schemes (see App. 2.2 for the formal definitions), and consider a func-
tionality f ′ that first calculates y ← f(x1, . . . , xn), where each party Pi holds xi, and then
calculates the shares of the output (σ1, . . . , σn)←$ Share(y), the commitments C = (γ1, . . . , γn),
where γi←$ Commit(σi), and outputs (C, σi) to each player Pi. Let’s call π′ the protocol realiz-
ing f ′, we can apply our generic compiler to π′ to obtain a protocol π′bc that can be run in the
blockchain. Our protocol πfair, running with players P1 . . . ,Pn works as follows

(i) Protocol execution: All the players engage in the protocol π′bc. A party Pi aborts the
execution if π′bc aborts. Otherwise, obtains (C, σi) in the last round.

(ii) Smart contract : P1 publishes the smart contract depicted in Fig. 2.
(iii) Commitment phase: For each i ∈ [n], Pi triggers deposit(Ci) together with d coins, where

d is a fixed deposit. If some player does not publish his commitments with the deposit or
there is a disagreement on the commitments within time1 (i.e., a player Pj sends Cj 6= Ci
for some Pi 6=j , or deposits a value di < d, Pi abort the execution. Recall that abort in
this phase is still fine, since no information about the output y is released. Otherwise, if
time1 has passed, go to the Opening Phase.

(iv) Opening phase: For each i ∈ [n], Pi opens his commitment by sending openCom(i, σi),
thus receiving back his d coins, wait that all the openings are published in the smart
contract (within time2) and calculates y ← Recon(σ1, . . . , σn). If, after time2, some share
is missing, Pi aborts the execution.

During the last phase, if some player did not open the commitment or sent an incorrect
value, the smart contract will penalize him by freezing his deposit. Thus, the adversary is not
incentivized to send an incorrect share.

This attempt to add fairness with penalties, however, introduces an attack. Given an n-
party protocol πΓ

f ′ obtained by the compiler described in §4 applied to πf ′ , with the addition of
the smart contract, commit and opening phases described above, we have the following scenario:

• For all i ∈ [n], party Pi runs πfair obtaining (C, σi).
• For all i ∈ [n], party Pi triggers deposit(C) together with d coins to the smart contract.
• For all i ∈ [n− 1], party Pi opens his commitment by triggering openCom(σi).
• Wlog., we say that Pn is an adversary. Pn compute the output y. If Pn does not like y in

the current branch, Pn can try to exploit a fork happening during the execution of πfair
to change the in a different branch to obtain a new couple (C ′, σ′n).

• The honest parties P1, . . . ,Pn−1 notice that there is a message published by Pn that differs
from the value previously received always by Pn. Since the transcript obtained from the
blockchain differs from the transcript stored in their local state, they will abort.

The protocol described is not fair, since we can construct a counterexample that prove that
the unfair party Pn can obtain the output without being penalized.

P1, . . . ,Pn will play πΓ
f ′ to obtain (C, σi). As the smart contract is published, Pn will trigger

deposit(C) together with d coins. At this point, Pn waits that all Pi, with i ∈ [n] publish the
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The General Compiler Smart Contract runs with players P1, . . . ,Pn and consists of
two main functions deposit and openCom and two fixed timestamps time1,time2.

Commitment Phase: In round t1, when deposit(Ci) together with d coins is triggered
from a party Pi, store (i, Ci). Then, if ∀i, j : Ci = Cj proceed to the Opening Phase.
Otherwise, for all i, if the message (i, Ci) has been stored, send message d coins to Pi
and terminate.

Opening Phase: In round t2, when openCom(i, σi) is triggered from Pi, check if
Commit(σi) = γi, where γi is obtained from parsing Ci = (γ1, . . . , γn) (recall that
all the Ci are the same), and send d coins back to Pi.

Figure 2: General compiler smart contract.

opening σi.
When Pn sees σ1, . . . , σn−1 on the blockchain, computes the output. If Pn dislikes the

output, then he tries to exploit a branch created before the end of the execution of πfair to
change messages in that branch to obtain an advantage. Since Pn publishes different messages
on different branches of the blockchain, there exist some party Pi, with i ∈ [n] that will notice
it, causing an abort in the protocol.

Let’s call b1 the branch where Pn learned the output and b2 the branch exploited to change
the execution of πfair. We have two cases:

• If b1 is the branch that will be confirmed on the blockchain, Pn will be penalized.
• If b2 is the branch that will be confirmed on the blockchain, Pn will cause an abort in the

protocol before that the commitment phase starts. In this case he does not get penalized
for learning the output.

With this counterexample we show that the proposed solution is not enough to obtain
fairness with penalties, since Pn has the possibility to learn the output without incurring in
any punishment. It is possible to obtain fairness with penalties with our general compiler,
and waiting that the commitment phase is confirmed on the ledger. Since in this case the
commitment phase is finalized, an adversary A cannot learn y unless she decides to lose the d
coins deposited in the commitment phase. Since the commitment phase is confirmed on the
ledger, A cannot find a fork to exploit the execution of the protocol on another branch. Yet, A
can cause an abort in the protocol, but if it happens before the commitment phase she will not
learn the output y. If the abort happens after the commitment phase, A will learn the output
but will be penalized.

Theorem 2. Let’s assume the existence of non-interactive commitment schemes and (n, n)-
secret sharing schemes. Let π′bc be an n-party ρ-round protocol realizing f ′ in the presence of
quick players. Then, the protocol πfair described above securely realizes f satisfying fairness with
penalties in the presence of (ρ, 1)-quick players.

Proof Sketch. We can claim security of the the compiled protocol π′bc obtained by applying the
general compiler to π′, by referring to the same proof of Theorem. 1. Now, we argue that
the overall protocol πfair achieves fairness with penalties. As mentioned before, aborts during
the execution of π′bc are acceptable, since the adversary cannot learn any information about
the output. After the committing phase, that is finalized, the adversary could try to exploit
different branches to send different openings of his commitments. We have the following time-
line: The execution started in a branch b1 and a forks happens right after the committing phase,
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generating a branch b2. Wlog. of generality we can extend this argument to multiple parallel
executions in different branches. We have the following scenarios:
Scenario 1: A corrupted player abort in both branches. Since the commitments are finalized,

fairness with penalties follows in a straightforward manner, since he did not open his
commitments in each branch, and so also in the confirmed one.

Scenario 2: A corrupted player opens his share in b1 and aborts the execution in b2 (after the
commitment phase). If b1 gets confirmed, the honest parties will learn the output. If b2
gets confirmed, it automatically boils down to Scenario 1.

Scenario 3: A corrupted player Pi opens his share in b1 and tries to open on a different share
in b2. Since the commitment is always confirmed, the adversary cannot try to change his
commitment by exploiting forks. If A is able to open the commitment by providing two
different shares, then we can define an adversary Acom breaking the binding property of
the underlying commitment scheme with non-negligible probability. That means that at
least in one of the two branches Pi gets penalized, and if he provides the correct opening
in one of the branches and it gets confirmed, honest players will learn the output.

5 Parallel Coin Tossing

Motivated by the shortcoming of our compiler when considering fairness with penalties in the
presence of quick players (cf. §4.3), in this section we explore an alternative solution for the case
of parallel coin tossing. Recall that coin tossing allows a set of players to agree on a uniformly
random string, and has many important applications (as it, e.g., allows to easily implement a
distributed lottery). Importantly, our protocol is compatible with the standard techniques to
achieve fairness with penalties, but does not exploit finality (thus allowing the players to being
fully quick).

In order to build some intuition on the design of our solution, we begin by recalling the
protocol by Andrychowicz et al. [ADMM16] in §5.1. Hence, in §5.2, we show that their protocol
becomes completely insecure in the presence of quick players. This naturally leads to our new
protocol, which we describe and analyze in §5.3.

5.1 The Protocol of Andrychowicz et al.

Recall that in the Bitcoin ledger, each account is associated to a pair of keys (pk , sk), where pk
is the verification key of a signature scheme—representing the address of an account—while sk
is the corresponding secret key used to sign (the body of) the transactions. Each block on the
ledger contains a list of transactions, and new blocks are issued by an entity called miner. The
blockchain is maintained via a consensus mechanism based on the proof of work; users willing
to add a transaction to the ledger forward it to the miners, which will try to include it in the
next minted block.

In the description below, we say that a transaction is valid if it is computed correctly (i.e.,
the signature is valid, the coins have not been spent already, and so on), and that it is confirmed
if it appears in the common-prefix of all the miners (i.e., it is at least k-blocks deep in the ledger).
Each transaction Tx contains the following information:

• A set of input transactions Tx1,Tx2, · · · from which the coins needed for the actual trans-
action Tx are taken;

• A set of input scripts containing the input for the output scripts of Tx1,Tx2, · · · ;
• An output script defining in which condition Tx can be claimed;
• The number of coins taken from the redeemed transactions;
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• A time lock t specifying when Tx becomes valid (i.e., a time-locked transaction won’t be
accepted by the miners before time t has passed).

The construction by [ADMM14, ADMM16] relies on a primitive called time-locked commit-
ment. Let n denote the number of parties. Each party Pj creates n− 1 Commitji 6=j transactions
containing a commitment to its lottery value. In particular, the output script of such a trans-
action ensures that it can be claimed either by Pj via an Openji transaction exhibiting a valid
opening for the commitment, or by another transaction that is signed by both Pj and Pi. Before

posting these transactions on the ledger, Pj creates a time-locked transaction PayDepositji re-

deeming Commitji , sends it off-chain to each Pi 6=j , and finally posts all the Commitji transactions
on the ledger. In case Pj does not open the commitment before time τ , then each recipient of a

PayDepositji transaction can sign it and post it on the ledger; since time τ has passed, the miners

will now accept the transaction as a valid transaction redeeming Commitji . More in details:
Deposit phase: Each player Pj computes a commitment yj = Hash(xj ||δj), where δj is some

randomness, sends off-chain the PayDepositji transactions (with time-lock τ) to each Pi 6=j ,

and posts the Commitji transactions.
Betting phase: Pj bets one coin in the form of a transaction PutMoneyj (redeeming a previous

transaction held by Pj , and with Pj ’s signature as output script). All the players agree and
sign off-chain a Compute transaction taking as input all the (PutMoneyj)j∈[n] transactions,
and then the last player that receives the Compute transaction posts it on the ledger. In
order to claim this transaction, a player Pw′ must exhibit the openings of the commitments
of all participants: The script checks that the openings are valid, computes the index of
the winner w (as a function of the values x1, . . . , xn), and checks that w′ = w (i.e., the
only participant that can claim the Compute transaction is the winner of the lottery).

Compensation phase: After time τ , in case some player Pj did not send all of its {Openji}i∈[n],i 6=j
transactions, all the other players Pi 6=j can post the PayDepositji transaction, thus obtain-
ing a compensation.

5.2 A Simple Attack

The main idea behind our attack is that, in the presence of quick players, the protocol’s messages
can end-up on unconfirmed blocks. By looking at different branches of a fork, an attacker can
try to change an old unconfirmed transaction by re-posting it, with the hope that it will end-up
on a different branch and become part of the common prefix. This essentially corresponds to a
reset attack on the protocol.

The construction described in §5.1 relies on the (implicit) assumption that the players are
non-quick. In particular, each player Pj should wait to post its PutMoneyji transaction only

after all the Commitji transactions are confirmed on the ledger, in such a way that all players

are aligned on the same branch (and so the miners have the {Commitji}i∈[n],j 6=i transactions in
their common prefix). In the case of quick players, when a fork occurs, an attacker can take
advantage of the openings of the other parties played in a faster branch in order to bias the
result of the lottery on a slower branch. If eventually the slower branch remains permanently
in the blockchain, then clearly the attack is successful.

For concreteness, let us focus on Blum’s coin tossing, in which the winner is defined to be
w = x1 + . . .+ xn mod n+ 1. Consider the following scenario:

• The (quick) players P1, . . . ,Pn run a full instance of the protocol; note that this requires
at least 3 blocks.

• The attacker Pn hopes to see a fork containing all the {Commitij} transactions of the other
n− 1 players.

26



• Since the attacker Pn now knows the openings x1, . . . , xn−1, it can post a new set of
{Commit′

i
n}i∈[n],i 6=n transactions containing a commitment to a value x′n such that x1 +

. . .+ xn−1 + x′n mod n+ 1 = n.
In case the new set of transactions ends up on a different branch which is finally included in the
common prefix, Pn wins the lottery. In the next section, we propose a new protocol that does
not suffer from this problem.

5.3 Our New Lottery Protocol

We now present a parallel coin-tossing (PCT) protocol on blockchain that is secure in the
presence of quick players. The main challenge that we face is that the protocol must prevent an
adversary from choosing adaptively her contribution to the coin tossing in a branch of a fork,
after possibly seeing the contributions of the other players in different branches.

We tackle this problem by requiring that each honest party computes his contribution by
evaluating a unique signature (see App. 2.2 for the formal definition) upon input the public
keys of all players. Notice that if the adversary A sees some signatures in a branch, and changes
her public key in another branch, then A cannot predict the signatures of the honest players
on this other branch by the unforgeability property of the signature scheme, and thus A will
not manage to bias the final output. Hence, we hash the concatenation of all the signatures in
order to determine the final output. Assuming that the hash function is modelled as a random
oracle, we would like to argue that the output of the protocol looks uniform.

However, the following subtlety arises. Wlog., assume that only Pn is corrupt and that
the protocol proceeds until the end on a given branch of the blockchain. Denote by pkn the
public key chosen by the attacker. Further, assume that A notices another branch where all
honest players have already sent their public keys. Now, the adversary can either: (i) publish a
different public key pk ′n, or (ii) publish the same public key pkn as in the other branch. In case
A “likes” the outcome of the protocol on the first branch, she will choose option (ii) and thus
can bias the protocol output.

To avoid the above attack, we identify each branch with a string bid that is uniquely asso-
ciated to it, and include bid as part of the message to sign. Intuitively, this solves the previous
problem as, even if all the public keys stay the same on two different branches, the value bid will
change thus ensuring that the protocol output will also be different (and uniformly random).
We proceed with a more detailed description of our protocol (see also Fig. 3).9

• One of the players chooses a random value sid that represents the identifier of the current
protocol execution, and publishes sid on the blockchain.

• Each player Pi willing to participate generates the public and private keys for the unique
signature (pk i, sk i)←$ Gen(1λ), and publishes pk i on the blockchain.

• Each player Pi lets yi = Sign(sk i, pk1|| · · · ||pkn||sid ||bid), where bid is the hash of the
blockchain10 up to the block that contains the last public key, and publishes yi on the
blockchain.

• Each player Pi checks that Verify(pk j , x, yj) = 1 for all j 6= i, where x = pk1|| · · · ||pkn||
sid ||bid , and outputs Hash(y1|| · · · ||yn).

We stress that thanks to the value bid , the protocol execution becomes branch dependent.
In particular, the chances of success of a corrupted Pj to bias the output are not affected by

9Note that our protocol can be run on generic blockchains. In 6.2 , we provide an implementation using
Ethereum smart contracts, but the protocol can also be implemented in Bitcoin using the opcode OP RETURN
in case players do not need to get fairness with penalties.

10For efficiency the hash can be more simply applied to the block containing pkn. Nevertheless, for the sake of
simplicity of the protocol description and of the security analysis we will stick with hashing the entire blockchain.
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the potential use of different public keys in branches of a fork corresponding to a protocol run
with a given sid .

Parallel Coin Tossing Protocol π∗pct

Let (Gen,Sign,Verify) be a signature scheme with message space M = {0, 1}∗, and Hash : {0, 1}∗ → {0, 1}λ
be a hash function.

• P1 picks sid ←$ {0, 1}λ, and runs Broadcast(sid).
• For each i ∈ [n], Pi generates (pk i, sk i)←$ Gen(1λ) and runs Broadcast(pk i).
• For each i ∈ [n], Pi executes Bi←$ GetRecords(1λ,UpdateState(1λ)) until all public keys pk1, . . . , pkn

are contained in Bi, and then defines bid := Hash(Bi).
• For each i ∈ [n], Pi computes yi = Sign(sk i, x), where x = pk1|| . . . ||pkn||sid ||bid and runs

Broadcast(yi).
• For each i, j ∈ [n], with i 6= j, Pi checks that Verify(pk i, x, yi) = 1, and, if so, it outputs

Hash(y1|| · · · ||yn) and else it aborts.

Figure 3: Our new protocol for parallel coin tossing.

Security analysis. Let fpct be the n-party functionality that picks a uniformly random string
ω and sends it to all the n parties. The theorem below establishes the security of our coin-
tossing protocol in the (programmable) random oracle model. We note that the security of the
original protocol by Andrychowicz et al. [ADMM14, ADMM16] also relies on the random oracle
heuristic, as do all currently known analysis of blockchain protocols [GKL15, PSS17].

Theorem 3. Assuming that (Gen,Sign,Verify) is a unique signature scheme, the protocol of
Fig. 3 securely implements the functionality fpct in the presence of quick players and malicious
adversaries with aborts, in the programmable random oracle model.

We need to show that for every PPT adversary A, there exists a PPT simulator S such
that no non-uniform PPT distinguisher D can tell apart the experiments REALΓ,0

π,A,D(λ) and

IDEALΓ
fpct⊥ ,S,D

(λ). In particular, the simulator needs to simulate the interaction of the honest

players with the blockchain protocol Γ as it happens in the real experiment.
Recall that the ideal coin-tossing functionality does not take any input, and returns a random

string ω to all parties. Intuitively, the simulator S will just emulate a real execution of the
protocol by reading the attacker’s messages from the blockchain. Furthermore, after querying
the ideal functionality, S will program the random oracle upon input ω. At the same time, S
needs to simulate the answer to A’s random oracle queries q, which is done as follows:

• If A already queried the random oracle upon q, obtaining answer ω̃, then S returns the
same value ω̃;

• Else, if pk1, . . . , pkn are not all available on the blockchain, S answers the query q with a
fresh random value ω̃;

• Otherwise, S parses q as ỹ1|| . . . ||ỹn, and checks that Verify(pk i, x, ỹi) = 1 for all i ∈ [n],
where x = pk1|| . . . ||pkn||sid ||bid and bid is derived by hashing the blockchain up to the
block containing the last public key. If the check passes, S programs Hash(q) to the value
ω obtained by fpct⊥ , else it answers with a fresh random value ω̃.

The above strategy does not consider the fact that the real protocol may be run multiple
times on different branches. However, since each execution has associated a different bid ′ 6= bid ,
the simulator can simply query again the functionality in order to obtain a new random value
ω′, and program the random oracle on ω′ in the execution corresponding to bid ′. Roughly
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speaking, the attacker A can potentially take advantage from the following three actions: (i) A
can refuse to publish her signed message; (ii) A can try to change the public keys of corrupted
parties over different branches; (iii) A can try to choose the signature that produces the best
possible output. Action (i) is equivalent to aborting the protocol, and can be easily handled by
the simulator, since we achieve security with aborts. Action (ii) is tackled by the use effect of
the of bid : regardless of A using the same or another public key, the outcome of the protocol
in different branches are always independent. Finally, as for action (iii), note that this attack
is prevented by the uniqueness property of the signature scheme that ensures that for every
(possibly malicious) public key pk and every input x, there exists at most one valid signature y
that is not rejected by the verification algorithm.

Proof of Theorem 3. We begin by describing the simulator. Upon input the set of corrupted
parties I, and auxiliary input z, the simulator S proceeds as follows:11

1. Initialize an empty array L. Sample a random value sid ←$ {0, 1}λ, and run Broadcast(sid).
2. Generate (pk i, sk i)←$ Gen(1λ) and run Broadcast(pk i) for each i 6∈ I.
3. Keep running GetRecords(UpdateState(1λ)) until all public keys pk1, . . . , pkn are published

on the blockchain; when that happens define bid to be the hash of the blockchain up to
the block containing the last public key.

4. If L does not already contain the value bid , query the ideal functionality fpct⊥ , obtaining
a random value ω, and store (bid , ω) in L. Then complete the simulation for branch bid
as follows:
(a) For each i 6∈ I, let yi = Sign(sk i, x) where x = pk1|| · · · ||pkn||sid ||bid . Then run

Broadcast(yi).
(b) Keep running GetRecords(UpdateState(1λ)) until all values y1, . . . , yn are published

on the blockchain; when that happens check that Verify(pk i, x, yi) = 1 for all i ∈ [n].
If any of these checks fails, send abort to fpct⊥ , simulate A aborting, and terminate.
Else, in case Hash(y1|| · · · ||yn) was already set to ω′ 6= ω, abort the simulation and
terminate. In this last case, we say that the simulator fails to program the random
oracle.

5. Upon input a random oracle query q from A, answer as follows:
(a) If there exists a pair (bid , ω) ∈ L for which it is possible to parse q := y1|| · · · ||yn so

that Verify(pk i, x, yi) = 1 for all i ∈ [n]—where x =
pk1|| · · · ||pkn||sid ||bid for the values sid , (pk1, . . . , pkn) that appear in the simulation
of branch bid—program Hash(q) := ω and answer query q with ω. If ω was already
given as output for a different query then we say that the simulator fails creating a
collision when programming the random oracle.

(b) Else, return a random value (maintaining consistency among repeated queries).
Notice that S simulates perfectly the messages written on the blockchain by the honest

players in a real execution of π∗pct, including their interaction with the blockchain protocol Γ.
Moreover, in each branch bid , the simulator perfectly emulates an abort of the protocol due
to the fact that A sends invalid signatures. Hence, the only difference between the real and
ideal experiment is that in the latter, for each branch bid , the simulator forces the protocol
output to be a fresh random value received from the ideal coin-tossing functionality. Consider
the following events:
Event BAD1: The event becomes true in case the simulator fails to program the random

oracle in step 4b of the simulation.

11For simplicity, we assume that the player P1 initiating the protocol is honest; if not, it is easy to adapt the
simulation by having S using the value sid written by A on the blockchain.
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Event BAD2: The event becomes true in case, the simulator fails creating a collision as de-
scribed in step 5a. This is possible when for a given branch bid , there exists an index
i ∈ I such that the attacker produces two outputs yi and y′i such that yi 6= y′i and
Verify(pk i, x, yi) = Verify(pk i, x, y

′
i) = 1, and queries the random oracle first using y′i

therefore obtaining ω, and then querying yi therefore obtain again ω.
Event BAD3: The event becomes true in case there exist two branches with different public

keys, but for which the value bid is the same.
Let BAD = BAD1∪BAD2∪BAD3. We claim that conditioning on BAD, the experiments

REALΓ,0
π,A,D(λ) and IDEALΓ

fpct⊥ ,S,D
(λ) are identical. This is because conditioning on BAD1

not happening, the attacker never queries the random oracle on pk1|| · · · ||pkn||sid ||bid before
the protocol execution on branch bid terminates, and thus the final output ω on that branch
is uniformly distributed from the point of view of A (as it happens to be in the ideal world).
Furthermore, conditioning on BAD2 and BAD3 not happening, the simulator correctly assigns
a single random value ω to each branch identified by bid .

Next, we show that each of the above events happens at most with negligible probabil-
ity. By a standard argument, this concludes the proof as the computational distance between
REALΓ,0

π,A,D(λ) and IDEALΓ
fpct⊥ ,S,D

(λ) is at most equal to the probability of event BAD.

Lemma 4. For all PPT A, there exists a negligible function ν1(·) such that P [BAD1] ≤ ν1(λ).

Proof. Notice that event BAD1 happens if and only if there exists a protocol execution cor-
responding to a branch bid for which the attacker A queries the random oracle upon input
y1|| · · · ||yn before these values appear on the blockchain. Intuitively, this requires that A forges
a signature for one of the public keys corresponding to one of the honest players, and thus
P [BAD1] must be negligible. The reduction is straightforward: Given a PPT attacker provok-
ing event BAD1 with non-negligible probability, we can construct a PPT attacker A′ as follows.
Initially, A′ tries to guess the index i 6∈ I and the branch index j ∈ poly(λ) corresponding to
the protocol execution in which A will provoke event BAD1. Hence, A′ simulates the execution
of protocol π∗pct with A as done in the real experiment, except that on the j-th branch it sets
pk i to be the public key pk∗ received from the challenger.

Finally, A′ waits that A makes a random oracle query y1|| · · · ||yn such that Verify(pk i, x, yi) =
1, where x = pk1|| · · · ||pkn||sid ||bid ; if the latter does not happen, A′ aborts, else it forwards
(x, yi) to the challenger. The proof follows by observing that, with non-negligible probability,
A′ does not abort, and thus it breaks unforgeability with non-negligible probability.

Lemma 5. For all PPT A, there exists a negligible function ν2(·) such that P [BAD2] ≤ ν2(λ).

Proof. Notice that event BAD2 directly contradicts uniqueness of the signature scheme (Gen,
Sign,Verify). Hence, P [BAD2] must be negligible. The reduction is straightforward: Given
a PPT attacker provoking event BAD2 with non-negligible probability, we can construct a
PPT attacker A′ as follows. Initially, A′ tries to guess the index i ∈ I and the branch index
j ∈ poly(λ) corresponding to the protocol execution in which A will provoke event BAD2.
Hence, A′ simulates the execution of protocol π∗pct with A as done in the real experiment.

Finally, A′ waits that A publishes on the j-th branch the two values yi, y
′
i which make the

event BAD2 become true; if the latter does not happen, A′ aborts, else it forwards (pk i, yi, y
′
i)

to the challenger where the public key pk i is the public key corresponding to the i-th player on
the j-th branch. The proof follows by observing that, with non-negligible probability, A′ does
not abort, and thus it breaks uniqueness with non-negligible probability.

Lemma 6. For all PPT A, there exists a negligible function ν3(·) such that P [BAD3] ≤ ν3(λ).
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Proof. Notice that event BAD3 directly contradicts collision resistance of the hash function
Hash. Hence, P [BAD3] must be negligible. The reduction is straightforward: Given a PPT
attacker provoking event BAD3 with non-negligible probability, we can construct a PPT at-
tacker A′ that simply emulates a protocol execution with A as in the real experiment. The
values bid , as well as the answers to A’s random oracle queries, are obtained by querying the
target random oracle. Hence, whenever A′ finds a fork with two different branches B and B′
such that Hash(B) = Hash(B′), it outputs (B,B′) and stops. Since A provokes event BAD3 with
non-negligible probability, A′ wins with the same probability. This concludes the proof.

Putting the above lemmas together, by a union bound, there exists a negligible function ν(·)
such that P [BAD] ≤ ν(λ), as desired.

Fairness with penalties. We now discuss how to augment the protocol π∗pct in order to
achieve fairness with penalties. First of all, each party should publish also a deposit along with
her public key on the blockchain. The deposit can be redeemed by showing a valid signature
on the value x = pk1|| · · · ||pkn||sid ||bid .

Assume that Pn is corrupted. The adversary can wait that the honest parties publish their
value y1, . . . , yn−1 on a given branch, and thus locally compute the output Hash(y1|| · · · ||yn),
where yn is Pn’s signatures on x corresponding to public key pkn. Now, if Pn does not like the
output it can either: (i) publish yn in any case , or (ii) decide not to publish yn. In case (i),
Pn plays honestly, takes back his deposit and every player obtains the output. In case (ii), Pn
aborts the protocol, but loses her deposit.

Note that the penalties mechanism for our protocol is too sophisticated for the scripting
language used in Bitcoin. Instead in Ethereum we can design a smart contract to define the PCT
protocol, having fairness with penalties and without penalizing the efficiency. In Appendix 6.2
we give details about how the smart contract works.

We call π̃∗pct the fair (with penalties) version of protocol π∗pct.
The informal description of the smart contract used in π̃∗pct is given in Fig. 4 and the protocol

is described below:
(i) Setup phase: At the beginning, one of the players creates the smart contract. When the

contract is posted on the blockchain, the constructor automatically generates a unique
session identifier sid .

(ii) Deposit phase: For each i ∈ [n], Pi can decide to participate to the PCT protocol by
triggering the function deposit to send a safety deposit and his public key pk i of an
unique signature scheme. After time1 blocks have passed, if (pk1, . . . , pkn) are collected
by the smart contract, it computes bid as Hash(B), where B is the blockchain that contains
(pk1, . . . , pkn). The deposit phase ends and parties can start to redeem their deposit.

(iii) Claim phase: For each i ∈ [n], Pi can claim his deposit back by triggering the function
claim of the smart contract and sending a value yi such that Verify(pk i, x, yi) = 1, where
x = pk1|| · · · ||pkn||sid ||bid , and pk i is the public key of Pi. After time2 blocks have
passed, the claim phase ends and the smart contract computes and publishes the output
as Hash(y1|| · · · ||yn).

Theorem 4. Assuming that (Gen, Sign,Verify) is a unique signature scheme, the protocol π̃∗pct
described in Fig. 4 securely realize fpct and satisfies fairness with penalties in the presence of
quick players and malicious adversaries, in the programmable random oracle model.

Proof Sketch. The privacy of of the protocol is proven by following the same outline of Theo-
rem. 3.

We have to prove that π̃∗pct is fair (with penalties).

31



The Parallel Coin Tossing Smart Contract runs with players P1, . . . ,Pn and consists
of two main functions deposit and claim and two fixed timestamps time1,time2 and a
session id sid .

Deposit Phase: In round t1, when deposit(pk i) together with d coins is triggered from a
party Pi, store (i, pk i). Then, if (pk1, . . . , pkn) are stored, compute and store bid :=
Hash(B) and proceed to the Claim Phase. Otherwise, for all i, if the message (i, pk i)
has been stored, send back d coins to Pi and terminate.

Claim Phase: In round t2, when claim(i, yi) is triggered from Pi, check if
Verify(pk i, x, yi) = 1, where x = pk1|| · · · ||pkn||sid ||bid . If the check is correct send d
coins back to Pi.

Compute Phase: If, after time2, all the yi are correctly claimed, compute and publish
Hash(y1, . . . , yn).

Figure 4: Smart contract for parallel coin tossing.

There are four possible scenarios that can happen and in each of them either all parties
learn the output or the adversary A loses her deposit. An output out of π̃∗pct is considered valid
if it is confirmed on the blockchain. The three scenarios are described below.
Scenario 1: A does not exploit branches to play different public keys on different execution of

π̃∗pct. Fairness follows from the smart contract execution (i.e., if A does not provide the
signature of x, A will lose her deposit).

Scenario 2: There is the following time-line: there is a fork with two branches b1 and b2 and
the Setup Phase is published before the the fork, but the Deposit Phase is executed after
the fork. A aborts (i.e., A does not provide the signature of x) the execution of π̃∗pct in b1
and exploits b2 in the following way: in b2 a corrupted player Pi double spends (for any
kind of transaction) the coins deposited in b1. In this case, either b1 gets confirmed, thus,
boiling down to Scenario 1, or b2 get confirmed and all the transactions sent to the smart
contract of π̃∗pct in branch b1 are not valid b2 since the deposit of Pi is previously spent in
another transaction. It guarantees fairness since in b1 the adversary is punished, and in
b2 there’s no execution, and so no valid output

Scenario 3: This scenario follows the same time-line of Scenario 2. A aborts (i.e., A does not
provide the signature of x) the execution of π̃∗pct in b1 and exploits b2 in the following way:
a corrupted player Pi publishes a different public key pk i in b2 (wlog., we analyze the
case with two executions but it can be extended to multiple executions). In this case, the
execution of π̃∗pct is restarted from the beginning of the Deposit Phase in b2 and the output
that A learned on b1 is not valid anymore. If b1 gets confirmed it boils down to Scenario 1,
otherwise the honest players learn the valid output computed in b2. It guarantees fairness
because in b1 the adversary is punished, while in b2 all parties will learn the output.

Scenario 4: There is the following time-line: there is a fork with two branches b1 and b2 and the
Deposit Phase is published before the the fork, but the Claim Phase is executed after the
fork. A corrupted party Pi sends yi = Sign(sk i, x) in the Claim Phase in b1 and disliking
the output out of the execution of π̃∗pct in b1, Pi exploits b2 to send y′i 6= yi. We note that
if y′i is a valid signature for x under secret key sk i we can create an adversary A′ breaking
the uniqueness of the signature scheme. It means that y′i cannot be a valid signature. If
b1 gets confirmed Pi is not penalized and every player will learn out, otherwise if b2 gets
confirmed Pi is penalized and no party will learn the output.
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Experimental Evaluation. We also provide in App. 6 some experiments to show noticeable
improvements of our PCT protocol with respect to the lottery protocol of Andrychowicz et al..
in terms of number of blocks needed for completion of the protocol and gas consumption of the
smart contracts.

6 Experimental Evaluation

We evaluate the efficiency of a generic protocol π∗ obtained compiling an UC-secure n-party
ρ-round MPC protocol π both in the case of MPC with aborts and fairness with penalties. More-
over, we evaluate the efficiency of π∗pct compared with the protocol from [ADMM14, ADMM16].

To evaluate the efficiency in the best case we consider the following assumptions:
• Transactions in the last k blocks are considered not confirmed yet.
• All parties send the message at round i of the protocol as soon as they read all messages

form round i− 1 on Bdki , where k is 0 in case of quick executions.
• Whenever a player broadcasts a transaction, it appears in the next block.
• All messages in a round of the MPC protocol fit in a single block.
In case of non-quick executions if we have a ρ-round MPC protocol π running on the

blockchain, the number of blocks needed to complete the execution with the previous assumption
is ρ · k.

6.1 Analysis

We now describe the cost of our naive compiler, and give a comparison between our coin tossing
protocol and the one of Andrychowicz et al. In particular we will interpret the execution time
as the number of blocks needed to complete the steps of each protocol. In the next section,
we will describe our smart contract implementation. To allow for a fair comparison between
our coin tossing protocol and the one presented in [ADMM14, ADMM16], we implemented
both of protocols in Solidity using Ethereum smart contracts.12 See Fig. 6 and Fig. 7 for the
corresponding code.

Generic compiler. Given an n-party ρ-round UC-secure MPC protocol π, we evaluate the
efficiency of a protocol π∗ obtained compiling π with the compiler described in Fig. 1. Our
compiler adds only one round to the execution of the protocol, in which the parties publish
their encryption keys of the underlying encryption scheme and signature keys of the signature
scheme. We analyze the number of block needed to end π∗ in case of standard MPC with aborts
and in case of fairness with penalties. As we noted in §4.3, to obtain fairness with penalties in
π∗, the players of the protocol have to wait that the first round (the deposit) became final on
the blockchain before continuing to run the protocol with a quick execution.

Let us consider the case of MPC with aborts first. Since in this setting the protocol can be
run a full-quick mode, if the underlying protocol π has ρ rounds, then π∗ will have ρ+ 1 rounds
and the number of blocks needed to end the computation is ρ+ 1.

In case of fairness with penalties, the execution time will be ρ + w blocks, where w ≥ k is
the liveness parameter. Since we assume that in the ideal conditions all the players broadcast
the deposit message at the same time, their deposit will be posted and confirmed after at most
w blocks.

12Notice that the average time for a new block to appear is around 15 seconds[eth].
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Lottery and parallel coin tossing. For both the protocols, in the deposit phase, a timeout
t̄ must be provided by the contract creator, so that players have time to send their deposits
together with the corresponding additional information required by the protocol. In the ideal
conditions described above, we are allowed to stretch this timeout to only one block. The same
argument applies to the opening phase of [ADMM14, ADMM16]. A comparison is described
below:

• Lottery: Due to the expressiveness of smart contracts, our implementation of [ADMM14,
ADMM16] requires one step less than the original implementation using in bitcoin. Specif-
ically, we can embed the betting phase in the commit/deposit phase, by just requiring
that the players deposit 1 more coin. Since in their setting block confirmation is required
at each step, the overall execution takes exactly 3 · w blocks (including one round for
posting the smart contract).

• Our PCT: As proven in §5.3, our coin tossing protocol can be executed in full-quick mode.
The entire execution lasts 3 blocks in total (including 1 block for posting the contract).
We point out that in the most pessimistic setting, where all the messages will appear to
the state of the honest player after w blocks for each step, the overall execution takes 3 ·w,
as much as [ADMM16].

6.2 Smart Contracts

We now describe our smart contract implementations in details, and comment on the relative
gas consumption.13

Lottery protocol by [ADMM16]. The smart contract execution is described as follows:
• Setup phase: A player publishes the smart contract in Fig. 7 on page 37, indicating in the

constructor the addresses of the players’ wallet, and the committing phase timeout time1

and opening phase timeout time2.
• Committing phase: The players trigger the commit function upon input the commitment

to some value and a deposit of minDep = n(n−1)+1, where n(n−1) coins are used for the
penalty mechanism and 1 coin is used to put money for the lottery. After time1 blocks,
the n commitments are collected and the committing phase ends.

• Opening phase: All the participants open their commitment by triggering the openCom

function, and the winner can then claim his bet by triggering the claimWinner function of
the smart contract (if all the parties have opened).

• Compensation phase: If, after time2 blocks, some player did not open his commitment,
the function payDeposit can be triggered, so that all player that hasn’t open before time2

will be penalized and the players who had opened receive their deposit back together with
a fraction of the adversaries’ deposit.

Our coin tossing protocol. The description the smart contract execution of π∗pct on Fig. 6
works as follows:

• Setup phase: At the beginning, one of the players creates the smart contract specify-
ing a deposit amount minDep and timeout time1. When the contract is posted on the
blockchain, the constructor automatically generates a unique session identifier sid by trig-
gering generateSid.

• Deposit phase: For each i ∈ [n], Pi can decide to participate to the PCT protocol by
triggering the function deposit to send a safety deposit and his public key pk i for an
unique signature scheme. After that (pk1, . . . , pkn) are collected by the smart contract

13For our purposes we are not concentrating on optimizing the code.
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and time1 blocks are passed, the deposit phase ends parties can start to redeem their
deposit. 14

• Claim phase: During this phase, each player Pi can claim his deposit back by triggering the
function claim of the smart contract and sending a value yi such that Verify(pk i, x, yi) = 1,
where x = pk1|| · · · ||pkn||sid ||bid , pk i is the public key of Pi. For the signature verification,
we can use a unique signature scheme with fast verification like BLS Signatures [BLS01],
invoked with BLSVerify in the code, or RSA-FDH [BR96].15

GAS consumption. As it can be seen in Fig. 5, PCT is more expensive in terms of GAS
consumption than Lottery. It is well motivated by the fact that Lottery uses only hash function
to compute the commitments and no other expensive computations. Our PCT protocol needs
also unique signatures. It can be seen anyway as an affordable cost to pay to achieve efficiency
still maintaining the same security guarantees.
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Figure 5: GAS consumption comparison between our smart contract implementation of PCT
(§5.3) protocol and Lottery (§5.1).
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1 pragma sol id ity ˆ 0 . 4 . 0 ;

2
3 contract ParallelCoinTossing {
4 struct Player {
5 bool i sP l ay ing ;

6 bool hasClaimed ;

7 string pk ;

8 uint d ; // P l a y e r ’ s d e p o s i t

9 uint c ; // P l a y e r ’ s c l a i m

10 }
11 address [ ] playersAddr ;

12 mapping( address => Player ) p l aye r s ;

13 uint s id , time1 , time2 ;

14 bytes32 bid ;

15
16 // f l a g s

17 bool claimPhase = fa l se ; // t r u e if the c l a i m P h a s e s t a r t s

18
19 // c o m m o n m e s s a g e to be s i g n e d

20 uint x ;

21
22 constructor (uint time1 , uint t ime2 ) public {
23 s i d = generateSid ( ) ; // s e s s i o n id

24 time1 = time1 ; // f i r s t t i m e l o c k

25 time2 = time2 ; // s e c o n d t i m e l o c k

26 }
27 function deposit ( string pubKey) public payable {
28 require (msg . sender . balance >= minDep && msg . value >= minDep && playe r s [msg . sender ] . d == 0 && now

< time1 ) ;

29 playersAddr .push(msg . sender ) ; // add the p u b l i c key of the c u r r e n t s e n d e r

30 Player p = p laye r s [msg . sender ] ;

31 p . i sP l ay ing = true ;

32 p . pk = pubKey ;

33 p . d = msg . value ; // msg . v a l u e is the d e p o s i t v a l u e of the p l a y e r

34 bid = block . blockhash (now) ; // E v e r y t i m e he r e c e i v e s a p u b l i c key , it u p d a t e s the b l o c k h a s h , so

t h a t the c o r r e c t bid is the b l o c k c h a i n s t a t e of the l a s t p u b l i c key d e p o s i t e d .

35 }
36 function claim (uint y ) public {
37 require ( claimPhase && now < time2 && playe r s [msg . sender ] . i sP l ay ing && ! p l aye r s [msg . sender ] .

hasClaimed && BLSVerify ( p l aye r s [msg . sender ] . pk , x , y ) ) ;

38 Player p = p laye r s [msg . sender ] ;

39 p . c = y ;

40 p . hasClaimed = true ;

41 msg . sender . transfer (p . d) ;

42 }
43
44 // a u t o m a t i c c h e c k f u n c t i o n s run a f t e r a c e r t a i n t i m e

45 function checkDeposit ( ) public {
46 require ( ! claimPhase && now >= time1 ) ;

47 uint n = playersAddr . length ;

48 x = sha3 ( p layer [ playersAddr [ 0 ] ] . pk | | . . . | | p laye r s [ playersAddr [ n−1 ] ] . pk | | s i d | | bid ) ;

49 claimPhase = true ;

50 }
51 }

Figure 6: Pseudocode implementation of our smart contract for realizing parallel coin tossing.
For simplicity, we omit an explicit definition of the concatenation function in the computation
of x.
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1 pragma sol id ity >=0.4.21 <0.6 .0 ;

2
3 contract FairLottery {
4 struct Player {
5 address addr ;

6 bool hasCommitted , hasOpened , i sP l ay ing ;

7 uint balance , index ;

8 bytes32 com ;

9 int opn ;

10 }
11 uint public n , time1 , time2 ;

12 address [ ] addre s s e s ;

13 mapping ( address => Player ) p l aye r s ;

14
15 constructor ( address [ ] addre s s e s , uint time1 , uint t ime2 ) public { // c r e a t e s a new i n s t a n c e of the

l o t t e r y for a set of p r e s c r i b e d p l a y e r s

16 addre s s e s = addr e s s e s ;

17 for (uint i = 0 ; i < addre s s e s . length ; i++) {
18 Player p = p laye r s [ addre s s e s [ i ] ] ;

19 p . i sP l ay ing = true ;

20 p . index = i ;

21 }
22 n = addre s s e s . length ;

23 time1 = time1 ;

24 time2 = time2 ;

25 }
26 function commit(bytes32 com ) public payable { // s h a 3 v a l u e c o m m i t ( n *( n -1) c o i n s + 1 c o i n for bet )

27 require (msg . value >= (n∗(n−1)+1) ) && p laye r s [msg . sender ] . i sP l ay ing && ! p l aye r s [msg . sender ] .
hasCommitted ) ;

28 Player p = p laye r s [msg . sender ] ;

29 p . com = com ;

30 p . hasCommitted = true ;

31 p . balance = msg . value ;

32 }
33 function openCom( int openVar ) public { // o p e n i n g of the c o m m i t m e n t

34 require ( p l aye r s [msg . sender ] . hasCommitted && now > time1 && now < time2 && ! p laye r s [msg . sender ] .
hasOpened && sha3 ( openVar ) == p laye r s [msg . sender ] . com) ;

35 Player p = p laye r s [msg . sender ] ;

36 p . hasOpened = true ;

37 msg . sender . transfer (n∗(n−1) ) ; // p a y s the s e n d e r b a c k

38 }
39 function payDeposit ( ) public { // c o m p e n s a t i o n f u n c t i o n

40 require ( p l aye r s [msg . sender ] . i sP l ay ing && now >= time2 ) ;

41 uint index = p laye r s [msg . sender ] . index ;

42 for (uint i = 0 ; i < n ; i++)

43 i f ( i != index && ! p l aye r s [ addre s s e s [ i ] ] . hasOpened ) msg . sender . transfer ( p l aye r s [msg . sender ] .
balance/n) ; // the p l a y e r msg . s e n d e r get is c o m p e n s a t i o n of n c o i n s

44 }
45 function claimWinner (uint [ ] s e c r e t s ) public { // f u n c t i o n t r i g g e r e d by the w i n n e r

46 require ( s e c r e t s . length == n && checkWinner( s e c r e t s ,msg . sender ) ) ;

47 msg . sender . transfer (n) ; // r e d e e m the won c o i n s

48 }
49 // p r i v a t e l o c a l f u n c t i o n s

50 function checkWinner(uint [ ] s e c r e t s , address s ender ) private returns (bool ) {
51 int sum = 0 ;

52 for (uint i = 0 ; i < s e c r e t s . length ; i++) {
53 i f ( sha3 ( s e c r e t s [ i ] != p laye r s [ addre s s e s [ i ] ] . com) return fa l se ;

54 sum += s e c r e t s [ i ] ;

55 }
56 i f ( ( sum%n != p laye r s [ s ender ] . index ) )

57 return fa l se ;

58 return true ;

59 }
60 }

Figure 7: Pseudocode implementation of the lottery protocol by Andrychowicz et al. [ADMM16],
when using smart contracts.
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