
One Bit is All It Takes: A Devastating Timing
Attack on BLISS’s Non-Constant Time Sign

Flips

Mehdi Tibouchi and Alexandre Wallet

Secure Platform Laboratories, NTT Corporation, Japan
mehdi.tibouchi.br@hco.ntt.co.jp, alexandre.wallet.th@hco.ntt.co.jp

Abstract. As one of the most efficient lattice-based signature schemes,
and one of the only ones to have seen deployment beyond an academic
setting (e.g., as part of the VPN software suite strongSwan), BLISS has
attracted a significant amount of attention in terms of its implementation
security, and side-channel vulnerabilities of several parts of its signing al-
gorithm have been identified in previous works. In this paper, we present
an even simpler timing attack against it. The bimodal Gaussian distri-
bution that BLISS is named after is achieved using a random sign flip
during signature generation, and neither the original implementation of
BLISS nor strongSwan ensure that this sign flip is carried out in constant
time. It is therefore possible to recover the corresponding sign through
side-channel leakage (using, e.g., cache attacks or branch tracing). We
show that obtaining this single bit of leakage (for a moderate number of
signatures) is in fact sufficient for a full key recovery attack. The recov-
ery is carried out using a maximum likelihood estimation on the space
of parameters, which can be seen as a statistical manifold. The analysis
of the attack thus reduces to the computation of the Fisher information
metric.

1 Introduction

While lattice-based cryptography is a mature research area from a theo-
retical standpoint, the study of implementation issues related to lattice-
based schemes is more recent. In particular, implementation attacks against
such schemes and their countermeasures have only emerged as a sub-
ject of active research in the past few years, motivated in large part by
the push towards postquantum cryptography standardization and deploy-
ment epitomized by the NIST competition.

As far as signatures are concerned, the BLISS scheme of Ducas et
al. [DDLL13] has proved a particularly interesting target. BLISS is pos-
sibly the most efficient lattice-based signature scheme so far, comes with
a public implementation [DL13], and has seen deployment in the wild

as part of the open source VPN software suite strongSwan [S+17]. With
reasonably small key sizes, fast signatures and strong theoretical security
guarantees, it appeared as an especially attractive candidate for practical
postquantum signing — until side-channel analysts started poking at it.

It turns out that the various technical ideas that form the basis of
BLISS’s efficiency and security all present new challenges with respect to
secure implementations. The reliance on discrete Gaussian sampling, in
particular, has led to multiple side-channel attacks [BHLY16,PBY17], and
so has the rejection sampling in signature generation [EFGT17,BDE+18],
which is essential for security. The latter has recently been broken even
in the presence of certain heuristic countermeasures [BBE+19].

One other original aspect of BLISS that hasn’t been specifically tar-
geted in previous attacks is the use of bimodal Gaussians,1 which mani-
fests itself in the signature algorithm through a random sign flip. In this
paper, we analyze to what extent the leakage of that sign flip also leads
to a recovery attack on BLISS.

Like most of the attacks cited above, this attack simply takes advan-
tage of the fact that neither the original implementation of BLISS nor
the one included in strongSwan are constant-time: these implementations
have conditional branches and memory accesses that depend on sensitive
variables. In particular, the bit indicating whether or not the sign flip
should be carried out during signature generation is sensitive, and these
implementations branch on the value of that bit. Doing so reveals the bit
in the timing leakage model (which can be concretely achieved through
various attack techniques such as instruction cache timing attacks, simple
power analysis, branch tracing, etc.), and hence lets us carry our attack.
It leads to the full exposure of the signing key given that single bit of
leakage for a relatively limited number of signatures: on the order of a
few tens of thousands (which is comparable to [BBE+19] and [BDE+18],
despite the fact that those attacks rely on a significantly larger amount
of leakage per signature).

The actual recovery of the secret key s is carried out using parametric
inference techniques, and specifically a maximum likelihood estimation.
One challenge, however, is that the likelihood does not have a maximum
if the parameter s is regarded as unconstrained. To find an actual s,
we restrict the parameter space to a compact submanifold of Rn, and

1 Technically, the fact that the attacks of [BDE+18,BBE+19] on the hyperbolic cosine
part of the rejection sampling exist is also related the bimodal shape of the distri-
bution of z (since that hyperbolic cosine rejection would not be needed otherwise),
but this is a rather indirect relationship.

2

specifically a sphere, which we can do since the Euclidean norm of s is a
public constant. The likelihood function is a smooth, strictly log-concave
function on that manifold, and hence the maximum likelihood estimator
ŝ is well-defined. Furthermore, the rate of convergence of ŝ is given by
the Fisher information metric on the manifold, which we can compute to
derive an estimate on the number of signatures required for recovery.

The countermeasure against this attack is well-known: simply carry
out the sign flip in constant-time, using for example constant-time swaps.
This is done correctly in the very recent constant-time implementation of
BLISS described in [BBE+19].

2 Preliminaries

2.1 Notation

Vectors are written in bold letters. The zero vector is denoted by 0, and
the identity matrix of dimension is In. The transpose of a matrix A is
A>. We let ‖v‖, resp. ‖v‖∞ be the Euclidean, resp. `∞ norm of a vector
v. The set of n-dimensional vectors with entries in {0, 1} and hamming
weight κ is denoted by Bnκ. For any set S contained in the domain of a
function f , we write f(S) =

∑
x∈S f(s).

For a random variable X, we let EX[X] be its expectation and V[X] its
variance. If X follows a distribution µ, we write X ∼ µ. A sample x for a
random variable X ∼ µ is denoted by x← µ. If µ is a distribution over a
set S and f : S → R is any function, we let EX[f(X)] =

∑
x∈S f(x)µ(x).

Lastly, the gradient of a differentiable function f : Rn → R is denoted
by grad f .

2.2 Mathematical background

Gaussian measures. The (spherical) Gaussian function centered at c ∈ Rn
and standard deviation σ > 0 is defined for all x ∈ Rn as ρσ,c(x) =
exp

(
−‖x− c‖2/(2σ2)

)
. When the center is 0, it is usually omitted. The

discrete Gaussian over the lattice coset c+Zn with “standard deviation”
σ is then

∀x ∈ c + Zn, Dn
σ,c(x) =

ρσ(x)

ρσ(c + Zn)
.

The continuous Gaussian function restricted to Zn can have a different
behavior than its discrete counterpart for small values of the standard

3

deviation σ. In our work, σ is always large enough so that the two dis-
tribution have essentially identical behavior (it exceeds the smoothing
parameter of Z), so that we do not need to make distinction.

Gaussian random variables are known to satisfy strong tail bounds.
The following formulation is borrowed from [BDE+18, Lemma 4.4].

Theorem 2.1. Let x be a Gaussian vector over Rn with standard devi-
ation σ. For any t > 0, we have Prx[‖x‖∞ > t] ≤ 2n exp(− t2

2σ2).

Parametric statistics. Let µs be a family of probability distributions
parametrized by an element s of some parameter space S. In our con-
text, the mass function µs will typically be the distribution of the output
of a cryptographic algorithm depending on a secret data s.

The probability µs(x) that a random variable X ∼ µs takes the value
x can be seen as a function of s, called the likelihood function associated
with the sample x. It is customary to consider instead its logarithm, the
log-likelihood, denoted by ˆ̀

x:

ˆ̀
x(s) = log µs(x).

More generally, if x1, . . . ,xm are samples from independent, identically
distributed random variables X1, . . . ,Xm ∼ µs, then the probability
Pr[∀i, Xi = xi] is simply the product

∏
i µs(xi). We can thus define

the log-likelihood function associated with these m samples as:

ˆ̀
x1,...,xm(s) =

m∑
i=1

logµs(xi).

When the context is clear, we may omit the corresponding indices.

The log-likelihood can also be seen as a random variable on the same
space of outcomes as the random variable X (resp. the random vari-
ables X1, . . . ,Xm). In that case, we denote it without a hat, as `X (resp.
`X1,...,Xm).

Given samples x1, . . . ,xm from i.i.d.r. variables X1, . . . ,Xm ∼ µs,
a maximum likelihood is a point s on the parameter space where the
(log-)likelihood function reaches its maximum (if it exists). A maximum
likelihood estimator associated with X1, . . . ,Xm ∼ µs is a statistic ŝm de-
pending on those random variables, taking values in the parameter space
S, such that for all samples x1, . . . ,xm, ŝm(x1, . . . ,xm) is a maximum
likelihood:

ŝm(x1, . . . ,xm) = argmaxs
ˆ̀
x1,...,xm(s).

4

Note that a maximum likelihood estimator is in particular a random
variable itself, with values in S.

In case the parameter space S is an open subset of Rn, and the log-
likelihood function satisfies suitable regularity conditions, we can define
the Fisher information matrix as the negative expectation of the Hessian
matrix of the log-likelihood associated with a single X ∼ µs:

I(s) = −EX

[
∂2

∂si∂sj
`X(s)

]
.

Then, again under suitable regularity conditions, I(s) is symmetric posi-
tive definite, and the following standard theorem holds.

Theorem 2.2 ([HMC18, Th. 6.4.1]). Consider a sequence (Xi)i≥1 of
i.i.d. random variables Xi ∼ µs. There exists a sequence (ŝm)m≥1 such
that ŝm is a maximum likelihood estimator associated with X1, . . . ,Xm

for each m, and that ŝm converges to s almost surely. Moreover, for any
such sequence, the random variable

√
m(ŝm− s) converges in distribution

to N (0, I(s)−1).

We refer to [HMC18] and [LC98, Ch. 6] for more precise statements in-
cluding all the regularity conditions. In this work, it is easy to check that
the regularity conditions are always satisfied. Another interpretation of
the above theorem states that maximum likelihood estimators are asymp-
totically efficient (in the sense that they reach the so-called Cramér-Rao
bound, see again [LC98, Ch. 6]). In other words, they are estimators that
requires the less amount of samples to estimate the real result.

One way in which our setting differs, however, is that in our case,
the parameter space S is not an open subset of Rn, but instead a closed
submanifold—specifically a sphere. The definition of the Fisher informa-
tion matrix and Theorem 2.2 generalize naturally to that setting as well.
Roughly speaking, the Fisher information matrix becomes a metric tensor
on the manifold (which can be seen as a positive definite matrix in the
local coordinates in each tangent space). We refer to [AJLS17, Ch. 5] for a
detailed discussion. In our setting, the log-likelihood function on S is the
restriction to S of a smooth function defined over all of Rn, so its gradient
and Hessian are simply obtained as the projection on the tangent space
(resp. the restriction to the tangent space) of the gradient and Hessian of
the function on all of Rn.

Representation of ring elements. BLISS is described over cyclotomic rings
such as R = Z[x]/(xn + 1), where n = 2λ for some λ ≥ 1. There are sev-
eral known representations for elements, and we will make no distinction

5

between them. An element u =
∑

i uix
i ∈ R can be seen as the inte-

ger vector (u0, . . . , un−1). This allows to identify R as the lattice Zn in
the ambient inner-product space (Rn, 〈 , 〉). Elements can also be repre-
sented by their matrix of multiplication in the basis 1, x, . . . , xn−1. This
allows to see that uv corresponds to the vector whose i-th coordinate
is 〈xiu,v〉. The adjoint v? of v is the ring element whose multiplication
matrix is the transpose of the matrix of multiplication by v. It is given
by v? = v0 − vn−1x− · · · − v1xn−1, and satisfies 〈u,vw〉 = 〈uv?,w〉.

2.3 The BLISS scheme

BLISS [DDLL13] is a lattice-based signature scheme based on the Ring-
LWE assumption. The signature generation (Algorithm 2.1) involves re-
jection sampling, which is fundamental toward security. Indeed, it is used
to guarantee that the distribution of the signatures does not depend on
that of the secret key S = (s1, s2). More precisely, a candidate signature
Z = (z1, z2) for a message µ is kept only with probability

1

M exp
(
−‖Sc‖

2

2σ2

)
cosh (〈Z,Sc〉/σ2)

. (1)

The above probability must be computed at each try to perform the
rejection, providing leakage on S if not done in constant-time.

Algorithm 2.1 Sign(µ, pk = (v1, q − 2), sk = S = (s1, s2))
1: y1,y2 ← Dn

σ ;
2: u← ζ · v1 · y1 + y2 mod 2q;
3: c← H(ducd mod p, µ);
4: Choose a random bit b;
5: z1 ← y1 + (−1)bs1c, and z2 ← y2 + (−1)bs2c;
6: continue with probability 1/(M exp(−‖Sc‖2/(2σ2)) cosh(〈Z,Sc〉/σ2);

else restart;
7: z†2 ← (ducd − du− z2cd) mod p;
8: return (z1, z

†
2, c);

During the key generation algorithm, s1 and s2 are sampled uniformly
among the set of n-dimensional vectors with dδ1nc entries in {±1} and
dδ2nc entries in {±2} for some small densities δ1, δ2 ∈ (0, 1). The rest of
the entries are zero. The first component of the public key is defined as
v1 = (2s2 + 1)s−11 mod q. The element ζ satisfies ζ · (q − 2) = 1 mod 2q.

6

The authors of [DDLL13] model the hash function H of Step 3 as a
random oracle with output in Bnκ, for some small parameter2 κ > 0.
After rejection, it can be shown that, without additional information, the
distribution of z1 is indistinguishable from that of a bimodal Gaussian
distribution with standard deviation parameter σ.

3 One bit is all it takes

Observe that to break the scheme, it is enough to recover the s1 part of
the signature, as s2 can be directly obtained from the knowledge of s1
and the public key. Hence, we write s = s1 and focus on this component
for the rest of this section. Accordingly, we also write z = z1. BLISS key-
generation and signature consider only spherical Gaussians distribution
for their sampling. In particular, all the coordinates of the generated
samples are independent. This allows to rewrite the rejection probability
in term of any target subset of coordinates for S and Z, so we can focus
on s and z by considering accordingly their rejection probability.

Then, our attack boils down to the fact that knowing b allows to
express the log-likelihood functions for m samples of the distribution of
the output of Algorithm 2.1. We start by calculating it explicitly and
deduce that, on a n-dimensional sphere of radius ‖s‖ = dδ1nc + 4dδ2nc
(which is known), it admits a unique maximum likelihood estimator.

This calculation also enables us to express the Fisher information ma-
trix I(s). We then assess the number of needed traces to recover (almost
all of) s with high probability, relying first on a heuristic analysis of the
behavior of I(s) for the sake of clarity. In Appendix A, we give more rig-
orous justifications for our heuristic arguments. The final result is then
obtained combining Theorem 2.2 and the Gaussian tail bound. Algorith-
mic and practical aspects of the attack are dealt with in Section 4.

3.1 Existence of the maximum likelihood estimator

Let A be the distribution of (b, z, c) outputted by Algorithm 2.1, and
consider (b, z, c)← A as well. From Step 5 it is clear that before rejection
sampling, z is distributed as

Dn
σ,(−1)bsc(z) =

1

ρσ(Zn)
· exp

(
− ‖z + (−1)bsc‖2

2σ2

)
.

2 For example, the parameter set for BLISS–I where n = 512 suggests δ1 = 0.3, δ2 = 0
and κ = 23.

7

Combining with the rejection probability (1), we readily see that the
probability to get a specific output (b, z, c) is

µs(b, z, c) =
2 exp

(
−‖z‖2
2σ2

)
ρσ(Zn)

·
exp

(
(−1)b〈z,sc〉

σ2

)
exp

(
〈z,sc〉
σ2

)
+ exp

(
− 〈z,sc〉

σ2

) . (2)

The log-likelihood function associated to one sample (b, z, c) can then be
written as ˆ̀

(b,z,c)(s) = K − log
(
1 + exp(−2〈z, sc〉/σ2)

)
, where K is con-

stant with respect to s. Similarly, the log-likelihood function associated
to m samples (b(i), z(i), c(i))← A is:

ˆ̀
(b(i),z(i),c(i))i

(s) := K ′ −
m∑
i=1

log
(

1 + exp
(
− 2

σ2
〈(−1)bz(i)(c(i))?, s〉

))
,

where again, K ′ is a constant independent of s. As ‖s‖ is known from the
description of the scheme, a natural set where to maximize ˆ̀

(b(i),z(i),c(i))i

is the sphere S of radius ‖s‖ in Rn. Since ˆ̀
(b(i),z(i),c(i))i

is clearly contin-
uous on this compact set, it is bounded and reaches its maximum on S.
We can see moreover that the point at which this maximum is neces-
sarily unique, and therefore determines a unique, well-defined maximum
likelihood estimator ŝ.

Indeed, let ϕ(t) = − log
(
1 + exp

(
− 2t
σ2

))
. Straightforward computa-

tions give:

ϕ′(t) =
−2

σ2(1 + exp(2t/σ2))
and ϕ′′(t) =

−1

σ4 cosh(t/σ2)2
.

This implies that for any w ∈ Rn, ϕ(〈w, s〉) is a strictly concave function
of s, and therefore so is ˆ̀

(b(i),z(i),c(i))i
. It follows that the maximum of ˆ̀ is

reached at a unique point of S as stated.

3.2 Determining the number of required traces

For any fixed w ∈ Rn, we readily compute ∂2

∂sj∂sk
ˆ̀= ϕ′′(〈w, s〉) ·wjwk for

any j, k ∈ [n], where wj is the j-th coordinate of w. Let now (b, z, c) ∼ A
and define w = (−1)bzc?. We can express the Fisher information matrix
as

I(s) = −Ew

[(
ϕ′′(〈w, s〉) ·wjwk

)
j,k

]
,

where w follows a distribution to be fully described later. Nevertheless,
it is checked from its definition that all coordinates of w are mutually

8

independent variables. Now let w be the vector expected for w. Using
the independence of the coordinates of w, we have

I(s)j,k =

{
Ew

[
− ϕ′′(〈w, s〉)

]
·wjwk if j 6= k,

Ew

[
− ϕ′′(〈w, s〉)

]
· (w2

j + V[wj]) if j = k.

Since (−1)bz ∼ Dn
σ,sc and since c? has exactly κ non zero entries, we see

that V[wj] = κσ2 for all j. We deduce that

I(s) = Ew

[
cosh

(〈w, s〉
σ2

)−2] · 1

σ4
(
κσ2In + w ·w>).

Heuristic analysis of I(s) Our goal is now to argue that I(s)−1 essentially
behaves like a scalar matrix (σ2/κ)In. In order to do this, we need to
know the distribution of w. We show in Appendix A that it is close to
N (κ · s, σ

√
κ). For the rest of the current section, we therefore assume

that w follows that particular normal law.
Under this assumption, we can write 〈w, s〉 = κ‖s‖2 + 〈h, s〉. As the

non-zero coordinates of s are sampled uniformly in centered sets, we ex-
pect that is has essentially the same number of positive and negative
coordinates. More precisely, potentially ”problematic” s’s (with an imbal-
anced number of positive or negative coordinates) exist only in negligible
proportion. As the coordinates of h are at most σ

√
κ with overwhelming

probability, we expect |〈h, s〉| to be within a small factor from σ
√
κ.

Combined with a look at usual BLISS parameters, this suggests that
〈w, s〉/σ2 is likely to be close to 0 for most of w’s and a fixed s. Hence,
we deduce that

I(s) ≈ κ

σ2
(
In +

1

κσ2
ww>).

The rank-1 matrix ww> has a unique non-zero eigenvalue given by
w>w = κ2‖s‖2. This means that 1

κσ2ww> has operator norm smaller
than 1, which shows that I(s) is invertible. As σ2 is at least an order
of magnitude larger than κ‖s‖2 for BLISS parameters, this is enough to
argue that I(s)−1 is close to (σ2/κ)In.

Recall that ŝ is the maximum likelihood estimator associated to m
samples from A. From Theorem 2.2, we infer that for m large enough, ŝ−s
is a centered Gaussian vector of covariance (σ2/κm)In. We do not consider
the speed of convergence and assume that the result is “valid enough” for
the ranges of m that we are interested in. Then, Theorem 2.1 states
that ‖ŝ− s‖∞ ≤ 1/2 except with probability less than 2n exp(−κm/8σ2).
Therefore, taking m ≥ 16 log(2n)σ2/κ gives that ‖ŝ − s‖∞ ≤ 1/2 except

9

with probability at most 1/2n. As ŝ is essentially an optimal estimator, we
remark that it should not be possible to improve the number of required
samples more than marginally.

4 Implementation of the attack

In this section, we describe how to mount the attack in practice from
an algorithmic standpoint given the required leakage, and provide some
experimental results. We also discuss to what extent the publicly available
implementations of BLISS are vulnerable to this attack. The code for the
attack can be found at https://github.com/awallet/OneBitBliss.

4.1 Algorithmic considerations

Given m signatures together with the corresponding leakage bits samples(
b(i), z(i), c(i)

)
, we can form the vectors w(i) = (−1)bz(i)(c(i))?. As seen in

Section 3, the log-likelihood function ˆ̀ and its gradient are expressed as

ˆ̀(s) =
m∑
i=1

ϕ
(
〈w(i), s〉

)
and grad ˆ̀(s) =

m∑
i=1

ϕ′
(
〈w(i), s〉

)
w(i),

when they are seen as functions on Rn. It is therefore straightforward
in principle to evaluate them numerically given the available data, and
hence use an algorithmic such as gradient descent (or rather, gradient
ascent) to search for the corresponding maximum likelihood estimator ŝ.

Recall however that we are doing maximization on the sphere centered
at 0 and of radius ‖s‖. Hence, the gradient ascent should also be carried
out on the sphere, along geodesic paths. Concretely, each iteration of the
gradient ascent is carried out as follows.

1. Starting from a point v on the sphere, we compute ˆ̀(v) as well as the
gradient g = grad ˆ̀(v) at v as above. We then compute the projection

h of g on the tangent plane v⊥ at v as h = g − 〈g,v〉‖s‖2 v.

2. The vector h gives the direction of steepest ascent for ˆ̀ on the sphere,
and the geodesic through v in the direction of h is parametrized by
v′(θ) = cos θ · v + sin θ · h. We take a step along that geodesic using
backtracking line search as described in the next steps. Note that the
first order Taylor expansion around θ = 0 gives:

ˆ̀
(
v′(θ)

)
= ˆ̀
(

cos θ · v + sin θ · h
)

= ˆ̀
(
v + θh + o(θ)

)
= ˆ̀(v) + θ〈g,h〉+ o(θ) = ˆ̀(v) + ‖h‖2 · θ + o(θ).

10

3. Initialize θ to θ0 and compute `0 = ˆ̀
(
v′(θ0)

)
. If the “Armijo condi-

tion” `0 ≥ ˆ̀(v) + ‖h‖2 · θ/2 is satisfied (which, by the above, must
happen for θ small enough), keep v′ = v′(θ0) as the result for this
iteration of the gradient ascent. Otherwise, update θ ← νθ for some
constant ν < 1 and try again.

This gradient ascent procedure is then repeated for a certain number
of iterations or until ‖h‖ becomes sufficiently small. It is standard that
the concavity of ˆ̀ ensures the convergence to the maximum.

We also need to specify an initial vector v to initialize the gradient
ascent. For this, we use the fact that the maximum likelihood ŝ for a
single sample w is exactly λw, where λ is the positive normalization
factor needed to obtain a point on the sphere. This is because ϕ is an
increasing function, and hence the maximum likelihood is obtained by
maximizing the inner product 〈w, ŝ〉. Thus, as a first approximation for
the maximum likelihood of m samples w(i), we simply pick the vector
v = λ

∑
iw

(i), where λ is again chosen so that v in on the sphere. We
find that this choice gives good results (although in principle, convergence
could be achieved from any starting point on the sphere anyway).

4.2 Experimental results

We implemented the algorithm of the previous section and ran it on
samples generated by the original implementation of BLISS, together with
the leakage of the bit b. The source code of the attack is attached to this
submission as supplementary material.

For each of the BLISS parameters BLISS–I to BLISS–IV, we generated
100 fresh key pairs, together with corresponding samples in batches of
20,000, and counted for each key pair how many batches where needed
for the attack of the previous section to succeed and fully recover the
secret key. The lower quartile (LQ), median, and upper quartile (UQ)
numbers of signatures m are all reported in Table 1. We also counted
how many batches allowed to recover n′ = 504 out of the 512 secret key
coefficients, since such a recovery can then be combined with a simple
meet-in-the-middle attack of low complexity (namely n ·

(n/2
n′/2

)
≈ 236 time

and
(n/2
n′/2

)
≈ 227 space) to deduce the exact secret key.

As we can see from the table, our analysis predicts the right order of
magnitude for m, even though our gradient ascent only gives an approx-
imation of the maximum likelihood, and despite the various heuristics
involved (in particular, ignoring the fact that the maximum likelihood is

11

Table 1: Results of our experiments.

BLISS– I II III IV

Theoretical m for success: 16 log(2n)σ2/κ 223,000 55,000 231,000 209,000

Experimental m for full recovery (LQ) 120,000 60,000 160,000 170,000
Experimental m for full recovery (median) 130,000 70,000 180,000 200,000
Experimental m for full recovery (UQ) 150,000 80,000 200,000 230,000

Experimental m for n′/n recovery (LQ) 70,000 40,000 90,000 110,000
Experimental m for n′/n recovery (median) 70,000 40,000 100,000 110,000
Experimental m for n′/n recovery (UQ) 80,000 40,000 110,000 120,000

only unbiased in the limit and not necessarily for a bounded number of
samples). In addition, combining our approach with a meet-in-the-middle
attack does significantly reduce the number of required signatures for suc-
cessful recovery.

Finally, we note that these results all consider the attack on the first
component z1 of the signature. In principle, the attack on the z2 com-
ponent should be more efficient, due to the fact that the coefficients of
s2 (except possibly the first one) are all in 2Z, and hence obtaining an
estimator ŝ2 with ‖ŝ2 − s2‖∞ < 1 (instead of 1/2) suffices for recovery,
which reduces the required number of signatures by a factor of 4. In prac-
tice, however, this is impractical, due to the fact that in actual BLISS
signatures, the second component z2 is not given out in full, but only
in compressed form z†2, and the compression is lossy—it only allows to
recover an approximation of the corresponding samples w. For most pa-
rameter sets, the approximation is rather loose, and this makes the attack
on the second component significantly worse than the attack on z1. For
BLISS–IV, however, the compression is not so lossy, and it turns out that
the attack on z2 is in fact measurably better despite the compression
(with full recovery possible given 40,000 to 50,000 signatures).

4.3 Vulnerability of concrete implementations

The part of the signing algorithm corresponding to the sign flip is im-
plemented as shown in Fig. 2 in the various available implementations
of BLISS, namely the original one by Ducas and Lepoint [DL13], the
implementation in strongSwan [S+17] and the recent constant-time im-
plementation described in [BBE+19].

Both the original BLISS implementation (as shown in Fig. 1a) and
strongSwan (Fig. 1b) share the same structure, and essentially branch

12

if (random ->getRandomBit ()) {

for (i=0; i<N; i++) {

signOutput.z1[i]-=sc1[i];

signOutput.z2[i]-=sc2[i];

}

} else {

for (i=0; i<N; i++) {

signOutput.z1[i]+=sc1[i];

signOutput.z2[i]+=sc2[i];

}

}

Original BLISS (Sign.cpp:150–159)

for (i = 0; i < n; i++)

{

if (positive)

{

z1[i] = y1[i] + s1c[i];

z2[i] = y2[i] + s2c[i];

}

else

{

z1[i] = y1[i] - s1c[i];

z2[i] = y2[i] - s2c[i];

}

}

strongSwan (bliss private key.c:422–
434)

void poly_sign_flip(

polysmall_t *a,

unsigned char sign)

{

unsigned int i;

for(i = 0; i < N; i++)

a->coeffs[i] =

CFLIP(a->coeffs[i], sign);

}

GALACTICS (poly.c:80–86)

Fig. 2: Existing implementations of the sign flip in BLISS.

on the bit b indicating the sign flip. On most platforms, additions and
subtractions have the same running time, and thus the running time of
the corresponding computation is the same regardless of the bit b. Nev-
ertheless, these implementations do not qualify as constant-time, because
they contain a conditional branch on the sensitive value b. This can be
exploited in practice using side-channels such as a cache timing attack
on the instruction cache (provided that the instructions corresponding to
the two branches end up in different cache lines) or the branch tracing
attack described in [EFGT17]. Branch tracing breaks both implementa-
tion equally easily; cache timing attacks should be easier to mount on
strongSwan, however, since the branch is taken in every iteration of the
for loop instead of just once in Fig. 1a (although compiler optimizations
might affect this distinction in practice).

In contrast, the implementation of Fig. 1c, described in [BBE+19],
is unaffected by this attack, since the sign flip is carried out using a
constant-time expression. More precisely, The CFLIP(x,b) macro essen-
tially expands to (x&(-!b))^((-x)&(-b)), and hence is computed using
only bitwise operations, without any conditional branches.

References

[AJLS17] Nihat Ay, Jürgen Jost, Hông Vân Lê, and Lorenz Schwachhöfer. Information
Geometry. Springer, 2017.

[BBE+19] Gilles Barthe, Sonia Beläıd, Thomas Espitau, Pierre-Alain Fouque, Mélissa
Rossi, and Mehdi Tibouchi. GALACTICS: Gaussian sampling for lattice-
based constant-time implementation of cryptographic signatures, revisited.
Cryptology ePrint Archive, Report 2019/511, 2019. https://eprint.iacr.
org/2019/511.

13

[BDE+18] Jonathan Bootle, Claire Delaplace, Thomas Espitau, Pierre-Alain Fouque,
and Mehdi Tibouchi. LWE without modular reduction and improved side-
channel attacks against BLISS. pages 494–524, 2018.

[BHLY16] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom.
Flush, gauss, and reload - A cache attack on the BLISS lattice-based signa-
ture scheme. pages 323–345, 2016.

[DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky.
Lattice signatures and bimodal Gaussians. pages 40–56, 2013.

[DL13] Léo Ducas and Tancrède Lepoint. BLISS: Bimodal lattice signature schemes,
June 2013. http://bliss.di.ens.fr/bliss-06-13-2013.zip (proof-of-
concept implementation).

[EFGT17] Thomas Espitau, Pierre-Alain Fouque, Benôıt Gérard, and Mehdi Tibouchi.
Side-channel attacks on BLISS lattice-based signatures: Exploiting branch
tracing against strongSwan and electromagnetic emanations in microcon-
trollers. pages 1857–1874, 2017.

[HMC18] Robert V. Hogg, Joseph W. McKean, and Allen T. Craig. Introduction to
Mathematical Satistics (8th edition). Pearson, 2018.

[LC98] Erich L. Lehmann and George Casella. Theory of Point Estimation.
Springer, 1998.

[PBY17] Peter Pessl, Leon Groot Bruinderink, and Yuval Yarom. To BLISS-B or not
to be: Attacking strongSwan’s implementation of post-quantum signatures.
pages 1843–1855, 2017.

[S+17] Andreas Steffen et al. strongSwan: the open source IPsec-based VPN solu-
tion (version 5.5.2), March 2017.

A Analyzing the distribution of w

Recall that we defined the random variable w = (−1)bzc? from the ran-
dom vector (b, z, c) ← A, where A is the distribution of the output of
Algorithm 2.1. If there was no rejection sampling, one could read the dis-
tribution of y from Step 5, as y = (−1)bz+ sc. Since y is large compared
to sc, the rejection step makes y a centered Gaussian with covariance
σ2, so that yc? should have covariance σ2κ. This suggests that w should
be centered at scc?, with the same covariance. We make this heuristic
argument rigorous in the following.

From Equation (2), we can write

Eb,z
[
(−1)bz | c

]
=

1

ρσ(Zn)

∑
z∈Zn

z · µs(0, z, c)− 1

ρσ(Zn)

∑
z∈Zn

z · µs(1, z, c)

=
1

ρσ(Zn)

∑
z∈Zn

z · exp
(
− ‖z‖

2

2σ2
)
·

exp(〈z,sc〉
σ2)− exp(− 〈z,sc〉

σ2)

exp(〈z,sc〉
σ2) + exp(− 〈z,sc〉

σ2)

= Ez

[
z tanh

(〈z, sc〉
σ2

)
| c
]
,

where z← Dn
σ,Z on the last line.

14

We now claim that this expected vector is essentially sc. For the sake
of clarity, we consider that z follows a normal law of standard deviation
σ. Using the change of variables z = σu, we can write

Eb,z
[
(−1)bz | c

]
=

σ

(
√

2π)n

∫
Rn

u · exp
(
− ‖u‖

2

2

)
tanh(〈σ−1u, sc〉)du. (3)

Take any orthonormal basis of Rn whose first vector is v = sc/‖sc‖, and
call Ei the i-th coordinate of Eb,z[(−1)bz | c] in this basis. Fubini’s theorem
gives

E1 =
σ

(
√

2π)n

∫
R
u · exp

(−u2
2

)
tanh(u

‖sc‖
σ

)du ·
(∫

R
exp(

−t2

2
)dt

)n−1
=
‖sc‖√

2π

∫
R

exp(−u
2

2)

cosh(u‖sc‖σ)2
du,

where the second line uses an integration by parts. Letting ε = ‖sc‖
σ and

using that 1 ≤ cosh(t) ≤ exp(t2/2) for all t, a straightforward computa-
tion shows that E1 ∈ ‖sc‖ · [(1 + 2ε2)−1, 1].

Fubini’s theorem also allows to see that each other coordinates in-
volves a factor

∫
R tanh(u‖sc‖/σ) exp(−u2/2)du. Observe that the func-

tion to be integrated in this factor is odd, so that Ei = 0 for all i ≥ 2. For
BLISS parameters, σ is an order of magnitude larger than ‖sc‖; in other
words, ε is small. This gives the claim.

For a fixed s, we deduce that Ew[w] = sEc[cc?]. Our next goal is
to show that the random vector cc? has a center close to the vector
(κ, 0, . . . , 0) ∈ Rn. We observe immediately that (cc?)1 = ‖c‖2 = κ. For
a fixed c ∈ Bnκ, let χ the indicator function of its support. By standard
algebraic manipulations, we find in general

(cc?)i+1 = 〈xic, c〉 = −
i−1∑
k=0

χ(n+ k − i)χ(k) +

n−1∑
k=i

χ(k − i)χ(k).

Assuming that the coordinates of c are mutually independent3, taking the
expectation for i ≥ 1 yields Ec[cc?]i+1 = −iκ2

n2 + (n− i)κ2
n2 = κ2

n2 (n− 2i).
This shows that ‖Ec[cc?] − (κ, 0, . . . , 0)‖∞ ≤ κ2/n, which is practically
small for any proposed parameters for BLISS. This confirms that the
center of w is close to κs.

3 This is technically not true, but the experimental behaviour suggest that this as-
sumption has no impact.

15

Finally, we show that the covariance matrix of w is essentially σ2κ In.
We readily see that the (i, j)-th entry in the covariance matrix of (−1)bz
is

Vij := Eb,zi [zizj | c]− (sc)i(sc)j .

Rejection sampling makes an output z a centered discrete Gaussian of
standard deviation σ. As z’s coordinates are mutually independent, we
get Vij = (sc)i(sc)j if i 6= j and Vii = σ2 − (sc)i(sc)j . Recall that the
coordinates of sc have magnitude at most κ, which is already a very pes-
simistic estimation. Hence V[(−1)bz] is essentially a scalar matrix σ2In.
As c? has exactly κ non-zero entries, we get the desired result on V[w].

16

