
Multi-client Secure Encrypted Search Using
Searching Adversarial Networks

Kai Chen1, Zhongrui Lin2, Jian Wan2, Lei Xu1, and Chungen Xu1(�)

1 School of Science, Nanjing University of Science and Technology, Nanjing, CHN
2 School of Computer Science and Engineering, NJUST, Nanjing, CHN

{kaichen,xuchung}@njust.edu.cn

Abstract. With the rapid development of cloud computing, searchable
encryption for multiple data owners model (multi-owner model) draws
much attention as it enables data users to perform searches on encrypted
cloud data outsourced by multiple data owners. However, there are still
some issues yet to be solved nowadays, such as precise query, fast query,
dimension disaster and flexible system dynamic maintenance. To target
these issues, this paper proposes a secure and efficient multi-keyword
ranked search over encrypted cloud data for multi-owner model based
on searching adversarial networks (MRSM SAN). Specifically, we exploit
searching adversarial networks to achieve optimal pseudo-keyword filling,
and obtains the optimal game equilibrium for query precision and privacy
protection strength. In order to achieve fast query, maximum likelihood
search balanced tree is proposed, which brings the query complexity clos-
er to O(logN). we reduce data dimension with fast index clustering, and
enable low-overhead system maintenance based on balanced index forest.
In addition, attribute based encryption is used to achieve more secure and
convenient key management as well as authorized access control. Com-
pared with previous work, our solution maintains query precision above
95% while ensuring adequate privacy protection, significantly improving
search efficiency, enabling more flexible system dynamic maintenance,
and reducing the overhead on computation and storage.

Keywords: Searchable Encryption·Multi-keyword Ranked Search·Multi-
owner Model· Searching Adversarial Networks·Maximum Likelihood Search
Balanced Tree· Balanced Index Forest

1 Introduction

Background and Motivation: The rapid development of cloud computing
has brought great convenience to the scientific allocation and efficient use of
computing resources, creating more possibilities for the internet industry. Cloud
storage is an important part of cloud computing, not only reduces the burden of
local storage resources, but also provides the cloud data management platform
for many information technology services, which significantly improves the effi-
ciency of system operation and maintenance. Currently, cloud storage services

are increasingly attracting individuals and enterprises to outsource data into
cloud servers. But traditional data outsourcing has the potential to leak pri-
vate information to the “honest but curious” cloud servers [29,34], which poses
a serious threat to privacy protection. In order to solve the privacy protection
problem of outsourced data and improve cloud security, academia and industry
have been working hard [19].

Previous Works and Challenges: Searchable encryption technology is recog-
nized as the effective mean to solve this problem because it can perform searches
on encrypted cloud data outsourced by data owners [17]. Song et al. [26] proposed
the first searchable symmetric encryption scheme, and advanced security defini-
tions and improvements were given by Goh [10], Chang et al. [6], and Curtmola
et al. [7]. Boneh et al. proposed public key encryption with keyword search [2].
Until now, more feature-rich solutions were proposed: Boolean search [1,3], s-
ingle keyword ranked search [28], multi-keyword ranked search [5,22,27], fuzzy
search [9,21], authorized search [20], verifiable search [16], personalized search [8]
and dynamic search [31]. However, the above solutions only support search-
able encryption for single data owner model. Due to the diverse demand of
the application scenario, such as emerging authorised searchable technology for
multi-client (authority) encrypted medical databases that focuses on privacy pro-
tection [32,33], research on searchable encryption technology for multiple data
owners model (multi-owner model) is increasingly active, and effective search-
able encryption schemes for the multi-owner model were proposed [14,20,23,35].
Currently, in secure cloud storage, searchable encryption technology for single
owner model is relatively mature, but multi-owner model still face some urgent
and unresolved problems: (1) a large amount of different data from data owners
make data characteristics to be sparse, which is likely to bring “dimension disas-
ter”; (2) when accessing and querying encrypted cloud data, query precision and
query speed are difficult to satisfy the user experience; (3) frequent updates of
data challenge the dynamic maintenance and scalability of the system. To meet
these challenges, we first analyze the root cause of the problem: limited com-
puting power and rationality of system design will affect the performance of the
system, but the most critical factor is that the dimension of data to be processed
is too large. If we can significantly reduce the dimension of data processing, the
system will become stronger and have higher performance.

Existing Solutions and Their Shortcomings: Cao et al. [5] first proposed
privacy-preserving multi-keyword ranked search over encrypted cloud data for
single owner model (MRSE), and established strict privacy requirements. They
first used asymmetric scalar-product preserving encryption (ASPE) approach [30]
to obtain the similarity scores of the query vector and the index vector, so that
the cloud server can return the top-k documents. However, they did not provide
the optimal balance of query precision and privacy protection. For better query
precision, Sun et al. [27] proposed MTS with the TF × IDF keyword weight
model. The keyword weight depends on the frequency of the keyword in the
document and the ratio of the documents containing this keyword to the total

documents, which means that this method cannot handle the differences be-
tween data from different owners in multi-owner model. Since each owner’s data
is different, there is no uniform standard to measure keyword weights. Based
on MRSE, Li et al. [22] proposed a better solution (MKQE), where a new in-
dex construction algorithm and trapdoor generation algorithm are designed to
realize the dynamic expansion of the keyword dictionary and improve the sys-
tem performance. However, there is still no major breakthrough in improving
search efficiency. For flexible dynamic search, Xia et al. [31] provided EDMRS
to support dynamic operation in multi-keyword ranked search. For tree-based
index structures, search efficiency is improved by the greedy depth-first search
(GDFS) algorithm and parallel computing. However, when migrating to multi-
owner model, ordinary balanced binary tree they employed is not optimistic [14].
Zhang et al. [35] firstly implemented secure multi-keyword ranked search over
encrypted cloud data scheme for multi-owner model. They utilized the modular
exponentiation to encrypt the keywords of documents and queries, so that all
owners can use their own keys to encrypt the index without having to generate
multiple trapdoors for the query, but this produces significant computational
overhead and communication costs. Guo et al. [14] designed a heuristic weight
generation algorithm based on the relationships among keywords, documents
and owners (KDO). They considered the correlation among documents and the
impact of documents’ quality on search results, their scheme (MKRS MO) is bet-
ter than the schemes using traditional TF × IDF keyword weight model [27].
Last but not least, the trapdoor unlinkability cannot be completely protected in
their scheme, and they did not provide a secure solution in known background
model [5] (see Section 2.3), therefore, the security of their scheme is insufficient.

Our Contributions: This paper first proposes a secure and efficient multi-
keyword ranked search over encrypted cloud data for multi-owner model based
on searching adversarial networks (MRSM SAN). Specifically, including the fol-
lowing four core techniques. (1) Optimal pseudo-keyword filling based on
searching adversarial networks. To improve the privacy protection strength
of encrypted cloud data is a top priority. The current popular method is to fill
random noise into the data (filling the pseudo-keyword into the index vector and
the query vector) to interfere with the analysis and evaluation that are from the
cloud server, which protects the document content and keyword information bet-
ter. However, such an operation will reduce the query precision [5]. In response
to this problem, we creatively use the searching adversarial networks to obtain
the optimal game equilibrium for the query precision and the privacy protection
strength, and obtain the optimal probability distribution function for control-
ling pseudo-keyword filling, so that the query precision exceeds 95%, is higher
than MRSE [5] while ensuring adequate privacy protection. (2) Fast query
based on maximum likelihood search balanced tree. The construction of
the index tree is the biggest factor affecting the search time. If the index tree
is ordered in the signification of maximum probability (the ranking of the in-
dex vectors from high to low depends on the probability of being searched), the
searching algorithm complexity will be very close to O(logN) [18]. Our method

is to perform 10000 random searches, get the sum of the matching scores of each
index vector and all random query vectors, and then sort the index vectors ac-
cording to the score from high to low. Follow the bottom-up strategy and build
the balanced index tree based on the “greedy” method. We named it as the
maximum likelihood search balanced tree. The experiments based on real-world
data prove that by executing the greedy depth-first search (GDFS) algorithm,
our query speed is faster and more stable than the related works that use tree-
based index for searching (MKRS MO [14],EDMRS [31]). (3) Data dimension
reduction method based on fast index clustering. “Dimension disaster”
exacerbates the computational burden of the system. In multi-owner model, data
from different data owners can be vary widely. As the amount of data increases,
the data characteristics become very sparse, which makes the keyword dictionary
for index construction very large (in our experiments on the real-world data set,
the keyword dictionary contains about 80,000 different keywords), which may
lead to “dimension disaster” in computing. For all index vectors from different
owners, we group them into different categories according to whether they con-
tain the same keyword, and then group index vectors of 20,000 documents into
80 categories, and divide the total keyword dictionary into 80 sub-dictionaries
accordingly. Moreover, each sub-dictionary contains only 1000 keywords on av-
erage, which significantly improves the effective utilization of storage space, and
the calculation efficiency is 80 times higher than the original, and the search effi-
ciency will increase by more than 100 times. In our experiments, the dimensions
of sub-dictionaries are almost different, which makes it easier to perform differen-
tiated query, improves query efficiency and query precision. (4) Low-overhead
system maintenance based on balanced index forest. Using fast index
clustering, all index vectors are classified into multiple index partitions, and a
corresponding balanced index tree is constructed for each index partition and
then the balanced index forest is obtained. Since our index is distributed, in the
dynamic maintenance of the system, we only need to maintain the corresponding
index partition without touching all indexes, which greatly improves the efficien-
cy of the index “add, delete, change and investigate” operations, reduces system
maintenance overhead and enhances the strength of privacy protection (better
than MKQE [22] and EDMRS [31]). Because of the index partition is relatively
independent, even if the cloud server obtains part of the private information
of any one index partition by evaluation, it cannot directly obtain the private
information of other index partitions.

Our main contributions are summarized as follows:

1. Searching adversarial networks (SAN) is proposed to find the optimal bal-
ance of query precision and privacy protection strength.

2. Maximum likelihood search balanced tree (MLSB-Tree) is proposed to im-
prove the search efficiency significantly.

3. Fast index clustering method is employed to reduce the dimension of data
processing greatly.

4. Balanced index forest (BIF) is proposed to significantly improve the flexibil-
ity of system dynamic maintenance.

Table 1. Comparison of related works.

Item MRSE[5] MKQE[22] MTS[27] EDMRS[31] MKRS MO[14] Ours
privacy-preserving query

√ √ √ √
×

√

high-precision query
√ √ √ √ √ √

differentiated query × × × × ×
√

efficient search × ×
√ √ √ √

dynamic search
√ √ √ √ √ √

high-quality ranked search ×
√ √ √ √ √

flexible system maintenance × × × × ×
√

authorized access control ×
√

× × ×
√

The remainder of this paper is organized as follows: Section 2 describes the
problem formulation. Section 3 describes the details of our solution. In Section
4, we conduct a comprehensive analysis of the performance of MRSM SAN.
Section 5 discusses our solution and its implications.

2 Problem Formulation

2.1 Notations

– Fi : the plaintext document collection that belongs to DOi (the data owners
collection DO = {DO1,. . . ,DOm}), denoted as Fi = {Fi,1,. . . ,Fi,ni

}, which
contains ni documents.

– Ci : the ciphertext document corresponding to the plaintext document Fi

that stored in the cloud server, denoted as Ci = {Ci,1,. . . ,Ci,ni
}.

– D : the dictionary consisting of p keyword, that contains all keywords extract-
ed from documents outsourced by all owners, denoted as D = {d1,. . . ,dp},
it is a public ordered list shared by all participants in our scheme.

– Ii,j : the searchable binary index vector of document Fi,j , if the document
Fi,j has keyword dt, Ii,j [t] = 1, otherwise Ii,j [t] = 0.

– Ĩi,j : the searchable weighted index vector of document Fi,j after index clus-
tering and normalized processing.

– Di : the sub-dictionary consisting of li keyword, contains all keywords for
the i-th index partition which extracted from the keyword dictionary D,
denoted as Di ={di,1,. . . ,di,li}, where i ∈ {1, 2, . . . , s}, s is the number of
segmentation of the keyword dictionary D.

– τi : the unencrypted form of weighted balanced index tree for all documents
in the i-th index partition.

– F : the balanced index forest, that denoted as F = {τ1,. . . ,τs}.
– Q : the weighted query vector collection generated based on query request,

denoted as Q = {Q1,. . . ,Qs}.
– T : the trapdoor for the query request, denoted as T = {T1,. . . ,Ts}.

2.2 System Model

The system model proposed in this paper consists of four parties, is depicted in
Fig. 1. Data owners (DO) are responsible for encrypting the data (document and

Fig. 1: The basic architecture of MRSM SAN

index) and sending them to cloud server or trusted proxy; Data users (DU) are
consumers of cloud services. Once the license is granted, they can retrieve the
encrypted cloud data; Trusted proxy (TP) is responsible for index processing,
query and trapdoor generation, user authority authentication; Cloud server (CS)
provides cloud service, including running authorized access controls, performing
searches for encrypted cloud data based on query requests, and returning top-k
documents to data users. In addition, the system protocol is detailed in Section 4.

2.3 Threat Model

In general, CS is considered “honest but curious” in a searchable encryption
system [29,34]. Specifically, CS follows and implements specified processes, al-
gorithms, and protocols in an “honest” manner, but infers and analyzes the flow
of information received during the protocol in a “curious” way (such as collecting
query keywords and information about the index). According to the acquired in-
formation, CS could evaluate the correspondence between the keyword and the
document, deduce/identify the private information of the encrypted cloud data
and carry out an attack. Obviously, the more private information CS knows, the
data security face the greater threat. According to the information CS knows,
we consider two threat models with different attack capabilities as follows [5]:
(1)Known Ciphertext Model. CS only knows encrypted data (outsourced
from DO) and searchable index (from TP). (2)Known Background Model.
CS also knows information other than encrypted data and searchable index,
such as trapdoor statistics, access patterns, and keyword frequencies.

2.4 Design Goals

Data Privacy: the system should support multi-owner model that not only
protects the security of outsourced data from DO, but also allows authorized

DU to legitimately access and easily search for the outsourced data they need.
Index Privacy: CS can not evaluate the correspondence between encrypted
documents and keywords through encrypted indexes, nor can it evaluate the
keyword weight information in the index.
Query Privacy: CS can not collect valid statistics during the query, nor could
it deduce/identify the query keyword information through the trapdoor.
Trapdoor Unlinkability: the same query should be able to generate different
trapdoors randomly, while CS can not distinguish between any two different
trapdoors generated by the same query.
Rank Privacy: it is privacy-preserving, under the guarantee of query preci-
sion Pk, if the difference between the rank of top-k documents returned by CS
(filling pseudo-keyword) and the real rank of these documents (without filling
pseudo-keyword) is greater, the rank privacy protection P ′k is stronger (where
Pk = k′/k, P ′k =

∑
|ri−r′i|/k2, k′ and ri are respectively the number of real top-

k documents and the rank number of document in the retrieved k documents,
and r′i is document’s real rank number in the whole ranked results) [5].
Efficient Search: by constructing a special tree-based index, the query com-
plexity can be close to O(logN) [18].
Ranked Search: it supports multi-keyword ranked search, retrieves high-quality
matching documents related to the query, and returns top-k documents to DU .
Dynamic Search: it supports dynamic operations, easily adding, deleting,
changeing and investigating indexes, expanding keyword dictionaries and keys.

3 Secure and Efficient MRSM SAN

In MRSM SAN, we use secure inner product [13] to quantify the similarity be-
tween the query vector and the index vector, and obtain top-k documents based
on the calculated score. Different from MRSE [5], MKQE [22], EDMRS [31]
and MKRS MO [14], the elements of index vector and query vector are not
binary number, but floating-point number between 0 and 1 (as weights for key-
words). We create the MLSB-Tree as index, whose leaf nodes ordered follow
maximum probability, which significantly improves the search efficiency. We use
the pseudo-keyword filling to achieve privacy-preserving scheme in known back-
ground model [5,4] that has higher privacy protection requirements. SAN is used
to optimize the pseudo-keyword filling, which significantly improves the query
precision when adding random noise. In MRSM SAN, DO grasp the autho-
rization for data access control, but DO only need to outsource the encrypted
documents to CS and send the initial indexes to TP , subsequent processing
is done by TP , so we mainly introduce the work content based on TP in the
following sections.

3.1 MRSM SAN Framework

Setup: based on the results of index clustering (get s index partitions, i-th in-
dex partition corresponds to a keyword sub-dictionary Di), TP determines the

sub-dictionarys Di size li, the number of pseudo-keyword Ui, sets the parameter
Vi = Ui + li, V = {V1,. . . ,Vs}, U = {U1,. . . ,Us}, l = {l1,. . . ,ls}.
KeyGen (V): TP generates secret key SK = {SK1,. . . ,SKs}, where SKi =
{Si, Mi,1, Mi,2}, Mi,1 and Mi,2 are two invertible matrices that with the dimen-
sion Vi × Vi , and Si is a random Vi-length vector.
Extended-KeyGen (SKi, zi): for dynamic search, if zi new keywords are added
into the i-th sub-dictionary, the TP generates a new SK ′i = {S′i, M ′i,1, M ′i,2},
two invertible matrices M ′i,1 and M ′i,2 with the dimension (Vi + zi) × (Vi + zi),
and a new (Vi + zi)-length vector S′i.
BuildIndex (I, SK): for the weighted index vectors with the dimension li that
in the i-th index partition, TP fills them with Ui pseudo-keywords according to
the optimal probability distribution function, and obtains secure index vectors
with high privacy protection strength. Then TP uses secure index vectors to
build the MLSB-Tree τi and encrypts τi to τ̃i using SKi. After generating index
tree τi for all index partitions, TP obtains the BIF F = {τ1,. . . ,τs}. TP sends

the encrypted balanced index forest F̃ = {τ̃1,. . . ,τ̃s} to CS.
Trapdoor (Q,SK): DU sends query request (keywords and their weights) to
TP . TP generates query Q = {Q1,. . . ,Qs} (where Qi is a weighted vector with
dimension Vi) and calculates the trapdoor T = {T1,. . . ,Ts} using an SK and
sends T to the CS.
Query (T, k, I): TP sends the query information to CS and specifies the index
partition to be queried. CS performs searches based on the query, and returns
top-k documents to the DU .

3.2 MRSM SAN Details

Binary Index Vector Generation. Based on vector space model(VSM [25]),
DOi builds the index Ii = {Ii,1,. . . ,Ii,ni

} of the binary form for the documents
Fi = {Fi,1,. . . ,Fi,ni

}, then sends binary index vectors to TP .

Index Clustering. As illustrated in Fig. 2, using the algorithms for clustering
data [15], for all index vectors from DO = {DO1,. . . ,DOm}, TP firstly performs
clustering (local clustering) on each owner’s index vectors to form a plurality of
initial partitions, then performs clustering (global clustering) on all owners’ index
vectors by separation and recombination, form final index partitions. According
to the obtained s index partition, the keyword dictionary is divided into s sub-
dictionaries, and the keywords contained in the sub-dictionary are the same as
the keywords contained in all the documents included in the corresponding index
partition. Therefore, after the index clustering, the index vector has a smaller
dimension and a large number of high similarity index vectors are gathered in
the same index partition, which facilitates the normalization of the weights. This
not only solves “dimension disaster” caused by data sparsity, but also solves the
problem of document quality differences between different data owners.

Weighted Index Generation. (I) Correlativity Matrix Generation: In order
to calculate keyword weights more scientifically and reasonably, it is necessary

Fig. 2: Index clustering and keyword dictionary segmentation

to consider the semantic relationship between keywords, that is, to assess the de-
gree of influence between different keywords. We use the corpus to determine the
semantic relationship between different keywords (keyword relevance). Then we
obtain the correlativity matrix Sli×li (symmetric matrix). (II) Weight Genera-
tion: We use the KDO weight model [14] to generate the raw weight. Specifically,
TP can construct the average keyword popularity (denoted as AKP) about d-
ifferent DO. AKPi (the average keyword popularity of DOi) can be computed

as: AKPi = (Pi · Îi) ⊗ αi (where Îi is the index after index clustering, the
operator ⊗ denotes the product of two vectors corresponding elements, αi =
(αi,1,. . . ,αi,li), if |Li(dt)| 6= 0 (the number of documents containing keyword
dt), αi,t = 1

|Li(dt)| ,otherwise αi,t = 0) Calculate the raw weight information

for DOi, W
raw
i = Sli×li · AKPi, where W raw

i = (W raw
i,1 ,. . . ,W raw

i,li
). (III) Nor-

malized Processing : TP gets the maximum raw weight of every keyword among
different DO, Wmax = (W raw

i,1 ,W raw
i′,2 ,. . .). Based on the Wmax, calculated Wi,t

=
W raw

i,t

Wmax[j] . (VI) The weighted index generation: Ĩi,j = Îi,j ⊗ Wi, where Ĩi,j
denoted as weighted index vector of document Fi,j(j ∈ {1, 2, . . . , ni}).

Balanced Index Tree and Balanced Index Forest Generation. (I) Bal-
anced Index Tree Generation: TP performs 10000 random searches, gets the
sum of the matching scores of each index vector and all random query vectors,
and then sorts the index vectors according to the score from high to low. TP
follows the bottom-up strategy and builds the balanced index tree based on the
“greedy” method, and then obtain the MLSB-Tree. This makes the complexity
of the query vector and index vector matching search process close to O(logN).
(II) Balanced Index Forest Generation: TP builds all balanced index tree τi in
the same way for all index partitions, then obtains the balanced index forest F
= {τ1,. . . ,τs}.

Encrypted Index Tree and Index Forest Generation. (I) Encrypted Index
Tree Generation: TP encrypts weighted index tree τi with the secret key SKi

(SKi = {Si,Mi,1,Mi,2}) to obtain an encrypted index tree τ̃ . The encryption
process is as follows: (a) For each node of τi that denoted ui, TP “splits” the
vector ui.v into two random vectors ui.v1, ui.v2 Specifically, if Si[t] = 0, ui.v1[t]
= ui.v2[t] = ui.v[t] ; else if Si[t] = 1, ui.v1[t] is a random value, set ui.v2[t] =

ui.v[t]− ui.v1[t]. (b) TP encrypts ui.v with reversible matrices Mi,1 and Mi,2 to
obtain two Vi-length vectors ũi.v = {MT

i,1ui.v1,M
T
i,2ui.v2}. (c) After encrypting

the vectors in all tree nodes, TP sends the encrypted index tree τi to the CS,
the operation of encrypted index tree generation is completed. Because of the
index tree is described by a set of nodes and a set of pointers indicating all
parent-child relationships, TP only encrypts the vector ui.v contained in each
node ui and all pointers are unchanged, the structure of the tree is unchanged.
Therefore, the unencrypted index tree τi and the encrypted index tree τ̃i are
isomorphic(τi ∼= τ̃ i). (II) Encrypted Index Forest Generation: TP encrypts all
balanced index tree in the same way for all index partitions, then obtains the
encrypted index forest F̃ = {τ̃1,. . . ,τ̃s}.

Fig. 3: Balanced Index Tree and Balanced Index Forest

Differentiated Query Based on Balanced Index Forest. As illustrated
in Fig. 3, DU sends query request (query keywords and their weights) to TP ,
and TP allocates keywords to different keyword sub-dictionaries based on the
keyword dictionary segmentation and balanced index forest features, so as to
form multiple different query vectors, while determining the index tree that
matches the query. Then, the query vectors are encrypted with different keys to
form a plurality of different trapdoors, trapdoors are sent to the cloud server
and index trees of the query is specified. After the cloud server verifies the
authorization information, it performs a search only on the specified matching
index tree, and finally returns the top-k documents of each partition to the data
consumer. (The number of top-k documents for each valid query partition follows
the drawer principle).

Trapdoor Generation. When DU wants to search the interested documents
in whole encrypted document collection, he/she only need to send query request
to TP . TP generates Q = {Q1,. . . ,Qs} based on query request, then encrypts Q
to get T = {T1,. . . ,Ts}. Specifically, Qi is a (li+Ui)-length weighted vector, then

Qi could be encrypted by SKi like index encryption. The only difference is the
“split” process. Specifically, if Si[t] = 0, Qi,1[t] is a random value, and Qi,2[t] =
Qi[t]−Qi,1[t]; else if Si[t] = 1, Qi,1[t] = Qi,2[t] = Qi[t], where t ∈ {1, 2, . . . , li}.
Finally, TP encrypts Qi as trapdoor Ti = {M−1

i,1 Qi,1,M
−1
i,2 Qi,2} and sends Ti to

the cloud server

Search Process of MRSM SAN. (I) Preparation before Query : DU sends
query keywords and part of the attributes to TP . After verifying the validity of
the query from DU , TP generates trapdoors and submits them with attribute
information to CS. Using this information, CS first determines whether TP can
access the data: if access control passes, CS uses the index tree to search for
the encrypted index vector that matches the query vector, and calculates the
matching score for the authorized document index, CS returns top-k documents
to DU based on the matching score. Otherwise CS will not perform a search.
(II) Calculate Matching Score for Query on the i-th Index Tree τi:

Score(ũi.v, Ti) = {MT
i,1ui.v1,M

T
i,2ui.v2} · {M−1

i,1 Qi,1,M
−1
i,2 Qi,2} = ui.v ·Qi (1)

(III) Search Process for MLSB-Tree: As illustrated in Fig. 4, greedy depth-
first search (GDFS) algorithm is executed to perform the query. When k = 2, it
only need to perform 4 times calculation of the matching score between the query
vector and the vector on the tree node, then return top-k documents (F1,1, F1,2).
When k = 3, it needs to perform 4 times calculation to return top-k documents
(F1,1, F1,2, F1,3). The number of calculation does not exceed the number of index
vectors.

Fig. 4: The search process for MLSB-Tree

3.3 Searching Adversarial Networks (SAN)

As described in [5], when random pseudo-keyword is introduced (in their scheme,
the filling of random pseudo-keyword follows the Gaussian distribution), the

strength of privacy protection increases, but the accuracy of the query is im-
paired. Therefore, it is necessary to optimize the probability distribution function
that controls the pseudo-keyword filling. Although the Gaussian distribution has
good symmetry, different data sets have different feature distributions. There-
fore, we need to customize the pseudo-keyword probability distribution suitable
for the data set. Inspired by the generative adversarial networks (GAN) [11], we
propose searching adversarial networks (SAN), as illustrated in Fig. 5. Searcher
Network S(ε) : The search result is generated by taking the random noise ε
(the object probability distribution p(ε)) as an input and performing a search,
and supplies the search result to the discriminator network D(x). Discrimina-
tor Network D(x): The input has an accurate actual result or search result
and attempts to predict whether the current input is an actual result or a search
result. One of the inputs x is obtained from the real search result distribution
p(x), and then one or two are solved. Classify the problem and generate scalars
ranging from 0 to 1. Finally, in order to reach a balance point which is the best
point of the minimax game(as formula 2). The searcher network S(ε) generates
search results, and the discriminator network D(x) considers the probability that
the searcher network S(ε) produces the accurate real results is 0.5.

Fig. 5: Searching Adversarial Networks

To learn the searcher’s distribution ps over data x, we define a prior on input
noise variables pε(ε), then represent a mapping to data space as S(ε; θs), where S
is a differentiable function represented by a multi-layer perception with param-
eters θg. We also define a second multi-layer perception D(x; θd) that outputs a
single scalar. D(x) represents the probability that x came from the data rather
than ps. We train D to maximize the probability of assigning the correct label to
both training examples and samples from S. We simultaneously train S to min-
imize log(1 −D(S(ε))): In other words, D and S play the following two-player
min-max game with value function V (S,D):

min
S

max
D

V (D,S) = Ex∼pdata(x)[logD(x)] + Ex∼pε(ε)[log(1−D(S(ε)))] (2)

As illustrated in the Fig. 6, similar to GAN [11], SAN is trained by simultane-
ously updating the discriminative distribution (D, blue, dashed line) so that it
discriminates between samples from the real search result set (black, dotted line)
px from those of the searching distribution ps(S) (green, solid line). The lower
horizontal line is the domain from which ε is sampled, in this case uniformly.

Fig. 6: The training process of SAN obtains the optimal probability distribution
function for controlling the pseudo-keyword filling (it is similar to the principle
of GAN [11]).

The horizontal line above is part of the domain of x. The upward arrows show
how the mapping x = S(ε) imposes the non-uniform distribution ps on trans-
formed samples. S contracts in regions of high density and expands in regions
of low density of ps. (a) Consider an adversarial pair near convergence: ps is
similar to pdata and D is a partially accurate classifier. (b) In the inner loop
of the algorithm, D is trained to discriminate samples from data, converging to

D∗(x) = pdata(x)
pdata(x)+ps(x) . (c) After an update to S, gradient of D has guided S(ε)

to flow to regions that are more likely to be classified as data. (d) After several
steps of training, if S and D have enough capacity, they will reach a point at
which both can not improve because ps = pdata. The discriminator is unable to
differentiate between the two distributions, i.e. D(x) = 1

2 .

3.4 Security Analysis

Data Privacy: outsourced data is encrypted using symmetric encryption tech-
niques, such as advanced encryption standard (AES), therefore the privacy of
the data is protected by an encryption key. In our solution, different DO have
their own document encryption keys. For any DOi, even if the attacker cooper-
ates with the other DO, the attacker can not decrypt any encrypted documents
belonging to DOi without the correct key.
Index Privacy : in MRSM SAN, the original index is generated by DO, and
the weighted index vectors and index trees are generated by TP . So, on the one
hand, TP does not disclose any information about the plaintext index and the
encrypted index key SK; on the other hand, in order to get the ciphertext index,
the ASPE method [30] is widely used in many secure keyword search schemes to
protect index privacy and its security has been proven . In addition, according to
the security analysis proposed by Wong et al. [30], the intensity of the 1024-bit
RSA key is roughly equivalent to the 80-bit symmetric key, and with key length
increasing, the system will achieve greater security. According to our actual data
experiments, the size of the dictionary is between 1000 and 80,000, far exceeding
80 (equal to the length of the key), and the security far exceeds the security of
RSA for 2048-bit key encryption. Therefore, index privacy is well protected.

Trapdoor Privacy : we use random pseudo-keywords to fill the query vector,
which improves the randomness of generation for trapdoor, making it impossi-
ble for CS to distinguish the two trapdoors generated by any one query, thus
ensuring the unlinkability of the trapdoor T .
Query Privacy : it is the same as the index privacy. On the one hand, the
plaintext form of the query vector is only known by TP , and TP does not reveal
any information about it; on the other hand, the ASPE method is also used to
encrypt the query vector to generate trapdoors. Therefore, the privacy of the
query and the privacy of the index are protected with the same extent.
Key management : in MRSM SAN, document key management is implement-
ed with attribute-based encryption (ABE) technology [12,24]. DO uses the access
control information to encrypt the document key and then stores the encryption
key in the CS. Access control information is associated with DU ’s attributes.
Under the composite three-party Diffie-Hellman assumption and the bilinear
Diffie-Hellman assumption, the ABE scheme is selectively secure. The CS can
use the partial private key as the attribute information to determine whether the
user can access the document key, but can not decrypt the ciphertext to obtain
the document key. In this way, the security of the key management scheme is
guaranteed.

4 Experiment and Performance Evaluation

Preparation for Real-world Data Experiment. MRSM SAN solution is im-
plemented in the Windows 10 operating system using the Python language and
tested its accuracy and efficiency on real-word data sets. We used the academic
papers provided by IEEE xplore3 to collect the original data set and structure
the data: Itemi,j = (DOi, ID, popularity, keyword), which corresponds to Fi,j .
Specifically, to implement the multi-owner model, we randomly selected 400 a-
cademic conferences (represented as DO) involving multiple domains. Different
academic conferences have different themes, and each paper has it’s ID as a
unique identifier. The popularity of documents includes authority and enthusi-
asm. The authority is represented by the number of times the paper is cited, and
the enthusiasm is represented by the number of times the paper is viewed. The
keywords of the document include the IEEE keyword, the IEEE control index,
and the author keyword. Our experiments consist of: (I) pre-processing collected
raw data; (II) index construction, index tree construction, query vector gener-
ation, trapdoor generation and random query; (III) comparing query accuracy
and search efficiency with MRSE [5], EDMRS [31] and MKRS MO [14] schemes.
The experiment was performed on a PC with the Intel(R)Core(TM)i5-6200U
processor running at 2.40 GHz, 4.00GB RAM (it is notable that our computing
resources are only comparable to ordinary personal computer, but our solution
can still be implemented quickly on this platform). All results represent the
average of 1000 trials.

3 IEEE xplore, https://ieeexplore.ieee.org/. Last accessed 3 May ,2019.

https://ieeexplore.ieee.org/

Search Efficiency of MLSB-Tree. This part of the experiments intend to
reveal the superiority of the MLSB-Tree. Search efficiency is mainly described
by query speed, and our experimental objects are index trees that are structured
with different strategy: EDMRS [31](single owner model, with ordinary balanced
binary tree), MKRS MO [14](multi-owner model, with grouped balanced bina-
ry tree), MRSM SAN(our solution without MLSB-Tree), MRSM SAN MLSB-
Tree(our solution with MLSB-Tree). We first randomly generate 1000 query
vectors, and then perform search operations in each index tree respectively, and
finally take the results of 20 repeated experiments for analysis. As shown in
Table 2 and Fig. 7a, the query speed and query stability based on MLSB-Tree
are better than other index trees. Compared with EDMRS and MKRS MO, the
query speed increased by 21.72% and 17.69% respectively. In terms of stability,
the MLSB-Tree is also significantly better than other index trees.

Table 2. Comparison of related works (search efficiency).

Item EDMRS[31] MKRS MO[14] MRSM SAN MLSB-Tree

highest value/s 4.4720 4.5099 4.0841 3.2922
lowest value/s 3.8318 3.6213 3.5395 2.9950

average value/s 3.9592 3.7655 3.6476 3.0994
variance/s 0.0193 0.0515 0.0159 0.0061

a b

Fig. 7: Time cost of query for 1000 random searches in 500 sizes of data set

Search Efficiency of BIF. This part of the experiments intend to reveal the
superiority of the BIF. As shown in Fig. 7b,the search speed of MRSM SAN
(with MLSB-Tree and BIF) is significantly higher than MRSM SAN (only with
MLSB-Tree), and the search efficiency is improved by 5 times and the stabili-
ty increase too. This is just the experimental result of 500 documents set with
the 4000-dimension keyword dictionary. After the index clustering operation,
the keyword dictionary is divided into four sub-dictionaries with a dimension

of approximately 1000. As the amount of data increases, the dimension of the
keyword dictionary will become extremely large, and the advantages of BIF will
become more apparent. In our analytical experiments, the theoretical efficien-

cy ratio before and after segmentation is: η = s O(log N)
O(log N)−O(log s) ,where s is the

number of index partitions after fast index clustering, and N is the number
of documents included. When the amount of data increases to 20,000, the total
keyword dictionary dimension is as high as 80,000. If the keyword sub-dictionary
dimension is 1000, the number of index partitions after fast index clustering is
80, the search efficiency will increase by more than 100 times (η = 143). This will
bring huge benefits to large information systems, and our solutions can exchange
huge returns with minimal computing resources.

Optimal Pseudo-keyword Filling. The purpose of this part of the experi-
ments is to find the optimal solution for pseudo-keyword filling. After SAN finds
the optimal probability distribution (close to the Gaussian distribution because
the data set is large enough), we adjust the parameters of the control probability
distribution function to find the optimal game equilibrium for query precision
(denoted as x) and rank privacy protection (denoted as y). The definition of
query precision and ranking privacy protection has been given in the system de-
sign goals, see Section 2.4. We choose 95% query precision and 80% rank privacy
protection as benchmarks to get the game equilibrium score calculation formula:
f(x, y) = 1

95x
2 + 1

80y
2 (objective function to be optimized). As illustrated in

Fig. 8, we find the optimal game equilibrium (max f(x, y) = 174) at σ1 = 0.05,
σ2 = 0.08, σ3 = 0.12. And the corresponding query precision are: 98%, 97%,
93%. The corresponding rank privacy protection are: 78%,79%,84%. Based on
the results, we can choose the best value of σ to achieve optimal pseudo-keyword
filling so that it can satisfy our query protection requirement and maximize rank
privacy protection.

Comparison of Search Efficiency (Larger Data Set). The efficiency of
MRSM SAN (without BIF) and related works [5,14,22,31] are show as Fig. 9a,
and the efficiency of MRSM SAN(without BIF) and MRSM SAN(with BIF) are
show as Fig. 9b. In Fig. 9a, experiments on the real-world data set show that our
solution achieves near binary search efficiency and is superior to other existing
comparison schemes. As the amount of data increases, our solution has a greater
advantage. However, it should be noted that this is only based on the perfor-
mance of the MLSB-Tree, and does not employ the BIF. In Fig. 9b, it shows the
charm of BIF. By comparing the experimental results of MRSM SAN with BIF
with MRSM SAN without BIF, we conclude that when the data volume grows
exponentially the data features become more sparse. If all index vectors rely on
only an index tree to complete the search task, the computational complexity
will be getting farther away from O(logN). Due to sparse data features, the
similarity between index vectors is mostly close to zero or even equal to zero,
which brings a lot of trouble to the pairing of index vectors, and the construction
of balanced index tree is not global order, so it is necessary to traverse many
nodes in the search, which proves the limitation of the grouped balanced binary

a b

Fig. 8: With different choice of standard deviation σ for the random variable ε,
(a) query precision(%) and rank privacy protection(%); (b) game equilibrium
(score). explanation for σ ∈ [0.01, 0.2]: When σ is greater than 0.2, the weight
of the pseudo-keyword may be greater than 1, which violates our weight setting
(between 0 and 1), so we only need to find the best game equilibrium point when
σ ∈ [0.01, 0.2].

a b

Fig. 9: Time cost of query for the same query keywords (10 keywords) in different
sizes of data set

tree in MKRS MO [14]. We use the maximum likelihood method to construct
MLSB-Tree. We use random searches to build a tree and in the probabilistic
and statistical sense, the closer the number of random searches is to infinity,
the higher the search efficiency of the obtained index tree. The computational
complexity of search can converge to O(logN), which is the excellence of our
scheme. And it is more notable that the maintenance cost of scheme based on
the BIF is much lower than the cost of scheme only based on a balanced index
tree. When the data owner has added a new document to the cloud server, and
TP needs to insert a new index node in the index tree of the cloud server accord-
ingly. If it is only based on the index tree, it must search for at least O(logN)
times search and at least O(logN) times data updates so that the total cost is
2O(logN) (where N is the number of index vectors that contained by the index
tree). But the BIF is very different, because we group all index vectors into s
different partitions. We assume that the number of index vectors in each parti-

tion is equal so we need to spend the same update operation for each partition,
which makes the overhead is only 2(O(logN) - O(log s)). In addition, the larger
the amount of data and the more sparse the data, the more partitions and the
more significant the efficiency improvement is. In summary, the BIF is derived
from the balanced index tree, but more excellent than the balanced index tree.

5 Discussion

In this paper, we propose secure and efficient multi-keyword ranked search over
encrypted cloud data for multi-owner model based on searching adversarial net-
works (MRSM SAN), introduce our core techniques and conduct in-depth per-
formance analysis. Creatively using game equilibrium theory to find the best
balance between query precision and privacy protection strength, and combin-
ing traditional searchable encryption with optimal control theory, which opens
a door to the research of intelligent methods in searchable encryption. To clas-
sify index vectors from different data owners into multiple index partitions and
correspondingly divide the keyword dictionary into multiple sub-dictionaries, on
the one hand, the problem of document quality differences between different da-
ta owners in multi-owner model can be better solved; on the other hand, the
dimension of the index vector is significantly reduced to avoid “dimension dis-
aster” caused by big data sparsity, which significantly improves the efficiency
of secure inner product calculation based on secure kNN scheme [30]. In addi-
tion, we propose maximum likelihood search balanced tree, which generated by
a sufficient amount of random searches, brings the query complexity closer to
O(logN). It means that in an uncertain system (owner’s data is uncertain, user’s
query is uncertain), using the probability learning method to optimize the query
is effective, and it is also verified in our experimental results. Last but not least,
we implement differentiated query based on balanced index forest and make full
use of the distributed architecture to simplify system construction, which not
only reduces the overhead of system dynamic maintenance, but also improves
the search efficiency and achieves fine-grained search. This is beneficial to im-
prove the availability, flexibility and efficiency of complex and large information
systems.

Acknowledgment

This work was supported by “the Fundamental Research Funds for the Cen-
tral Universities” (No. 30918012204) and “the National Undergraduate Training
Program for Innovation and Entrepreneurship” (Item number: 201810288061).
NJUST graduate Scientific Research Training of ‘Hundred, Thousand and Ten
Thousand’ Project “Research on Intelligent Searchable Encryption Technology”.

References

1. Ballard, L., Kamara, S., Monrose, F.: Achieving efficient conjunctive keyword
searches over encrypted data. In: ICICS 2005. pp. 414–426. Springer (2005)

2. Boneh, D., Crescenzo, G.D., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: EUROCRYPT 2004. pp. 506–522. Springer (2004)

3. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: TCC 2007. pp. 535–554. Springer (2007)

4. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword
ranked search over encrypted cloud data. In: IEEE INFOCOM 2011. pp. 829–837.
IEEE (2011)

5. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword
ranked search over encrypted cloud data. IEEE TPDS 25(1), 222–233 (2014)

6. Chang, Y., Mitzenmacher, M.: Privacy preserving keyword searches on remote
encrypted data. In: ACNS 2005. pp. 442–455. Springer (2005)

7. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric en-
cryption: improved definitions and efficient constructions. In: ACM CCS 2006. pp.
79–88. ACM (2006)

8. Fu, Z., Ren, K., Shu, J., Sun, X., Huang, F.: Enabling personalized search over
encrypted outsourced data with efficiency improvement. IEEE TPDS 27(9), 2546–
2559 (2016)

9. Fu, Z., Wu, X., Guan, C., Sun, X., Ren, K.: Toward efficient multi-keyword fuzzy
search over encrypted outsourced data with accuracy improvement. IEEE TIFS
11(12), 2706–2716 (2016)

10. Goh, E.: Secure indexes. IACR Cryptology ePrint Archive 2003, 216 (2003)

11. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A.C., Bengio, Y.: Generative adversarial networks. CoRR ab-
s/1406.2661 (2014)

12. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM CCS 2006. pp. 89–98. ACM
(2006)

13. Gu, C., Gu, J.: Known-plaintext attack on secure knn computation on encrypted
databases. Security and Communication Networks 7(12), 2432–2441 (2014)

14. Guo, Z., Zhang, H., Sun, C., Wen, Q., Li, W.: Secure multi-keyword ranked search
over encrypted cloud data for multiple data owners. Journal of Systems and Soft-
ware 137(3), 380–395 (2018)

15. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall (1988)

16. Jiang, X., Yu, J., Yan, J., Hao, R.: Enabling efficient and verifiable multi-keyword
ranked search over encrypted cloud data. Inf. Sci. 403, 22–41 (2017)

17. Kamara, S., Lauter, K.E.: Cryptographic cloud storage. In: WLC 2010. pp. 136–
149. Springer (2010)

18. Knuth, D.E.: The art of computer programming, Volume III, 2nd Edition. Addison-
Wesley (1998)

19. Kumar, D.V.N.S., Thilagam, P.S.: Approaches and challenges of privacy preserving
search over encrypted data. Inf. Syst. 81, 63–81 (2019)

20. Li, H., Liu, D., Jia, K., Lin, X.: Achieving authorized and ranked multi-keyword
search over encrypted cloud data. In: IEEE ICC 2015. pp. 7450–7455. IEEE (2015)

21. Li, J., Wang, Q., Wang, C., Cao, N., Ren, K., Lou, W.: Fuzzy keyword search over
encrypted data in cloud computing. In: IEEE INFOCOM 2010. pp. 441–445. IEEE
(2010)

22. Li, R., Xu, Z., Kang, W., Yow, K., Xu, C.: Efficient multi-keyword ranked query
over encrypted data in cloud computing. Future Generation Comp. Syst. 30, 179–
190 (2014)

23. Miao, Y., Ma, J., Liu, X., Jiang, Q., Zhang, J., Shen, L., Liu, Z.: VCKSM: verifi-
able conjunctive keyword search over mobile e-health cloud in shared multi-owner
settings. Pervasive and Mobile Computing 40, 205–219 (2017)

24. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: ACM CCS 2007. pp. 195–203. ACM (2007)

25. Salton, G., Wong, A., Yang, C.: A vector space model for automatic indexing.
Commun. ACM 18(11), 613–620 (1975)

26. Song, D.X., Wagner, D.A., Perrig, A.: Practical techniques for searches on encrypt-
ed data. In: IEEE S&P 2000. pp. 44–55. IEEE Computer Society (2000)

27. Sun, W., Wang, B., Cao, N., Li, M., Lou, W., Hou, Y.T., Li, H.: Verifiable privacy-
preserving multi-keyword text search in the cloud supporting similarity-based rank-
ing. IEEE TPDS 25(11), 3025–3035 (2014)

28. Wang, C., Cao, N., Li, J., Ren, K., Lou, W.: Secure ranked keyword search over
encrypted cloud data. In: ICDCS 2010. pp. 253–262 (2010)

29. Wang, C., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public auditing for
data storage security in cloud computing. In: IEEE INFOCOM 2010. pp. 525–533.
IEEE (2010)

30. Wong, W.K., Cheung, D.W., Kao, B., Mamoulis, N.: Secure knn computation on
encrypted databases. In: ACM SIGMOD 2009. pp. 139–152. ACM (2009)

31. Xia, Z., Wang, X., Sun, X., Wang, Q.: A secure and dynamic multi-keyword ranked
search scheme over encrypted cloud data. IEEE TPDS 27(2), 340–352 (2016)

32. Xu, L., Sun, S., Yuan, X., Liu, J.K., Zuo, C., Xu, C.: Enabling authorized encrypted
search for multi-authority medical databases. IEEE TETC 1(3), 1–1 (2019)

33. Xu, L., Xu, C., Liu, J., Zuo, C., Zhang, P.: Building a dynamic searchable encrypted
medical database for multi-client. Inf. Sci. 1(5), 1–1 (2019)

34. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained
data access control in cloud computing. In: IEEE INFOCOM 2010. pp. 534–542.
IEEE (2010)

35. Zhang, W., Xiao, S., Lin, Y., Ting, Zhou, S.: Secure ranked multi-keyword search
for multiple data owners in cloud computing. In: IEEE/IFIP DSN 2014. pp. 276–
286. IEEE (2014)

	Multi-client Secure Encrypted Search Using Searching Adversarial Networks

