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Abstract.    This paper is focused on an open question regarding the correlation and the power of 
NIST statistical test suite. If we found some correlation between these statistical tests, then we can 
improve the testing strategy by executing only one of the tests that are correlated. Using the Galton-
Pearson “product-moment correlation coefficient”, by simulation, we found a high correlation 
between five couples of these statistical tests. Also we make a conjecture about the power of NIST 
statistical tests suite in the case that these tests are independent. 
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1. INTRODUCTION 

Kerckhoffs's principle states that a cryptographic primitive will be secure if everything about it, except 
the key, is known. To evaluate the security of cryptographic primitives, we have at our disposal analytical 
tools and statistical-probabilistic tools. The latter, unlike the former, are universally valid and can be applied 
to any cryptographic primitive. Statistical tests are an efficient tool for assigning the ownership of a set of 
independent observations, called measurements, to a specific population or probability distribution; they are 
commonly used in the field of randomness testing. Measurements are the first step that leads to control and 
improve the random behaviour of a true random bit generator (and others cryptographic functions). If we do 
not measure the degree of randomness we cannot understand and control the behaviour of the device (or 
algorithm), thus we cannot improve its security. If we analyse the output of the cryptographic primitive and 
find non-uniform patterns, then it can be possible to break it. But if we do not find these non-uniform 
patterns, no one can guarantee that there will be no analytical methods for breaking it. This paper is an 
extension of our previous works, [1] and [2], regarding the independence of statistical test suite NIST SP 
800-22 and it is organized as follows. 

In section 2 of this paper we present statistical requirements for validating the security of cryptographic 
primitives. Validation by statistical methods is prone to errors due to the samples used in testing. In section 3 
we discuss types of errors, sample requirements, and constructions for testing block ciphers. The statistical 
tools and methods used in security evaluation of the block cipher are generally based on the “de facto” 
standard STS SP 800-22 [3], a publication of Computer Security Research Center, a division of NIST, that 
initially described sixteen statistical tests (because of improper evaluation of mean and variance, the Lempel-
Ziv test was dropped from the revised version). Therefore, we discuss about STS SP 800-22 and the 
statistical cryptographic evaluation standard used in AES candidates’ evaluation [4] and provide some 
important aspects regarding the independence of test suite. Also we give an important result regarding the 
power of NIST statistical test (probability to reject a false hypothesis) in the case that these tests are 
independent: the distribution of the sum of all P-values is a normal one! In section 4 we provide 
experimental results regarding evaluation of correlation between statistical tests that were run using three 
different lengths of the string sample (i.e. 1 up to 6 million bits). In fact, when using the Galton-Pearson 
“product-moment correlation coefficient” we found a high correlation between some couples of these 
statistical tests. This fact allows us to improve the testing strategy by executing only the uncorrelated 
statistical tests. Finally, in section 5, we conclude. 
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2. THE RELEVANCE OF STATISTICAL TESTING IN CRIPTO VALIDATION 

As we stated in [1] and [2], when designing cryptographic primitives, such as block/stream ciphers, 
there are several requirements. One of these requirements is that the cryptographic primitive has to satisfy 
several statistical properties: 

- strict avalanche: changing one input bit causes on average about 50% output changes; 
- correlation immunity: correlated input gives an uncorrelated output; 
- predictability: having a sample of n binary observations it is impossible to predict (with a different 

from 0.5 probability) the next bit outcome; 
- balance: every output is produced by the same number of inputs. 

The validation of these criteria is done by analytical methods or statistical tests (in case the first one is 
not available). Also, statistical tests are useful to mount distinguishing attacks that allow an attacker to 
distinguish random data from encrypted data. 

Statistical hypothesis testing is a mathematical technique, based on sample data, used for supporting 
the decision making on the theoretical distribution of a population. In the case of statistical analysis of a 
cryptographic algorithm, the sample is the output of the algorithm from different inputs for the key and plain 
text. Because we deal with sample data from the population, the decision process of the population’s 
probability distribution is prone to errors. To meet this challenge, we model the decision making-process 
with the aid of two statistical hypotheses: the null hypothesis, denoted by H0 - in this case, the sample does 
not indicate any deviation from the theoretical distribution - and the alternative hypothesis HA - when the 
sample indicates a deviation from the theoretical distribution. 

There can be two types of errors: first type error (also known as the level of significance), i.e. the 
probability of rejecting the null hypothesis when it is true: 

  trueis reject Pr 00 HH  (1)

and the second type error, which represents the probability of failing to reject the null hypothesis when it is 
false: 

 false is accept Pr 00 HH  (2)

These two errors, α and β, cannot be minimized simultaneously since the risk β increases as the risk α 
decreases and vice-versa. For this reason, one solution is to have the value of α under control and compute 
the probability β. 

The analysis plan of the statistical test includes decision rules for rejecting the null hypothesis. These 
rules can be described in two ways: 

- decision based on P-value. In this case, we consider f to be the value of the test function and 
compare the P-value, defined as Pr(X < f), with the value α, and decide on the null hypothesis if P-
value is greater than α; 

- the “critical region” of a statistical test is the set which causes the null hypothesis to be rejected; the 
complementary set is called the “acceptance region”. In the acceptance region, we shall find the 
ideal results of the statistical test. 

Because for each statistical test the rejection rate α is a probability, which is “approximated” from the 
sample data, we need to compute the minimum sample size in order to achieve the desired rejection rate α. 
Also, the sample must be independent and governed by the same distribution. 

A way to construct samples for testing block ciphers is to setup the plain text and the key: Xi=E(Pi;ki) 
where E is the encryption function, Pi is the set of plain texts, and ki is the set of keys. For each plain text 
input Pi and each encryption key ki, the output from the encryption function must have a uniform 
distribution. To test this assumption, for AES candidates, Soto [4] constructed the samples with low/high 
density plain text/key (a low density text/key is a text/key with a small number of 1s, in opposition to a high 
density text/key which is a text/key with a small number of 0s). As we can see, when using this type of 
construction, the samples are not independent variables because they are connected by means of the 
encryption function E. Are the results of the statistical tests relevant when this assumption is not true? If the 
statistical test accepts the null hypothesis, then we can say that there is not enough evidence for the non-
uniformity of the sample. 
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If a cryptographic primitive passed a statistical test, it does not mean that the primitive is secure. For 
example, the predictable sequence 01010…01 is “perfect” if we analyzed it with the bit frequency test. This 
is one of the reasons why we should be “suspicious” if we obtained perfect results. To avoid these situations, 
in some cases it is indicated to include the neighbourhood of the ideal result in the critical region. 

NIST SP 800-90A contains the specifications of four cryptographic secure PRBG for use in 
cryptography based on: hash functions, hash-based message authentication code, block ciphers and elliptic 
curve cryptography. Some problems with the later one (Dual_EC_DRBG) were discovered since 2006 [5]: 
the random numbers it produces have a small bias and it raises the question if NSA put a secret backdoor in 
Dual_EC_DRBG. It was proved, in 2013, that (Dual_EC_DRBG) has flows. To restore the confidence on 
encryption standards, NIST reopens the public vetting process for the NIST SP 800-90A.Thus, if the 
algorithm failed to certain tests, then it should not be used in cryptographic applications because an attacker 
might be able to predict the behaviour of the algorithm or, even worse, may indicate the existence of certain 
trapdoors. 

3. THE POWER OF STATISTICAL TEST SUITE SP 800-22 

Because STS SP 800-22 is a standard, we shall focus on it rather than other statistical test suites. STS 
SP 800-22 (the revised version) consists of fifteen statistical tests, which highlight a certain fault type proper 
to randomness deviations. Each test is based on a computed test statistic value f, which is a function of the 
sample. A statistical test is used to compute a P-value=Pr(f|H0) that summarizes the strength of the evidence 
against the null hypothesis. If the P-value is greater, then the null hypothesis is accepted (the sequence 
appears to be random). The tests are not jointly independent, making it difficult to compute an overall 
rejection rate (i.e. the power of the test). Recall that the tests T1,…,T15 will be jointly independent if (3) 

     ikiiki TTTT Pr...Pr,...,Pr 11   (3)

is true for every subset {i1,…,ik} of {1,…,15}. Obviously, jointly independent tests will be pair wise 
independent. The converse is not true. If the statistical tests were independent, then the overall rejection rate 
would be computed using the probability of the complementary event given by (4): 

  14.011 15    (4)

In Table 1 we summarize the reference distribution of NIST statistical tests: 

Table 1. Reference distributions of NIST statistical tests 

Test Reference distribution 
Frequency (Monobit) test half normal 
Frequency Test within a Block 2(N)
Runs Test normal
Test for the Longest Run of Ones in a Block 2(K)
Binary Matrix Rank Test 2(2)
Discrete Fourier Transform (Spectral) Test normal
Non-overlapping Template Matching Test 2(N)
Overlapping Template Matching Test 2(K)
Maurer’s “Universal Statistical” Test normal
Linear Complexity Test 2(K)
Serial Test 2(2m-1)+ 2(2m-2) 
Approximate Entropy Test 2(2m)
Cumulative Sums (Cusum) Test normal
Random Excursions Test 2(5)
Random Excursions Variant Test half normal 
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Thus, we conjecture that if we sum all the P-values of the statistical tests we shall obtain a normal 
distribution. As we can see, there are three types of distributions: normal, half normal and 2.  

It is well known that the sum between two independent variables 2(n) and 2(m) is 2(n + m) variable. 
If we assume that all the 2 distributions are independent and compute the sum of all corresponding P-values 
of these distributions, we shall obtain a 2 distribution with the number of freedom degrees greater then 30, 
which is well approximated by the normal distribution. Also it is known that the sum between two 
independent normal variables it is a normal random variable. 

 Thus, if we assume that the normal and 2 statistical tests are independent, then the sum of all P-values 
of these tests will go after the normal distribution. The result is similar to the interpretation of tomographic 
images which are aggregations of all taken images. Thus we may cumulate almost (except frequency test and 
random excursions test) statistical tests into only one test. 

STS SP 800-22 provides two methods for integrating the results of the tests, namely percentage of 
passed tests and the uniformity of P-values. The experiments revealed that these decision rules were 
insufficient and, therefore, researchers considered their improvement would be useful. Therefore, in [6], new 
integration methods for these tests were introduced: 

- maximum value decision, based on the max value of independent statistical test Ti, i=1,…,n. In this 
case, the maximum value of the random variables was computed; the repartition function of the 
max value, given by (5): 

  xTT n ,...,maxPr 1  (5)

this being the product of the repartition functions of the random variables given by (6): 





n

i
i xT

1
i )Pr(:T  (6)

- sum of square decision, based on the sum of squares S of the results of the tests (which have a 
normal distribution). The distribution of S, in this case, is 2, the freedom degrees given by the 
number of partial results which are being integrated. 

Weak points of STS SP 800-22 are: 
- fixed first order error =0.01; 
- the tests are not evaluating the second order error, which represents the probability to accept a false 

hypothesis. 
In [7], the possibility of extending STS SP 800-22 tests to arbitrary level of significance  (and 
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In [8], there are some comments about NIST statistical testing methodology: ambiguous hypothesis 
(does not specify the family of distribution and/or the alternative), error quantification (NIST does not give 
the size of the category-test decisions), power of the test suite, dependencies of tests, invariant test 
(cryptographically equivalent tests performed on the same sample do not necessary give the same result), and 
inadmissible tests (the existence of better tests). 

After the process of evaluation of AES candidates, several academic studies reported that the test 
setting of Discrete Fourier Transform test (designed to detect periodic features in the tested sequence that 
would indicate a deviation from the assumption of randomness) and Lempel-Ziv test (designed to see if the 
sequence can be compressed and will be considered to be non-random if it can be significantly compressed) 
of the STS SP 800-22 are unsuitable: 

- threshold value and the variance σ2 of theoretical distribution, and 
- the setting of standard distribution, which has no algorithm dependence (SHA-1 for million bit 

sequences) and the re-definition of the uniformity of P-values (based on simulation). 
Because the mean and variance of Lempel-Ziv test were evaluated using samples generated by an 

algorithm, in the revised version of STS SP 800-22 the Lempel-Ziv was dropped. 
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4. EXPERIMENTAL ANALYSIS OF CORRELATION BETWEEN STATISTICAL TESTS 

In [7], we studied the variation of a second order error β, with respect to p1 and a length n of bit stream 
Frequency test within a block, Runs, Discrete Fourier transform (spectral), and Serial test (2 components). 
For the rest of statistical tests, it is difficult to find an analytical formula for the second order error β. For this 
reason, a proposal is the following procedure for checking the independence of tests i and j: 

- implement the NIST SP 800-22 testing suite; 
- use a “good” pseudorandom generator GPA to test N binary samples; 
- for each test i, define the Bernoulli random variable Ti which will give 1 if the sample passes the test, 

otherwise 0; 
- estimate the value of Pr(Ti and Tj)- Pr(Ti) Pr(Tj). If the tests are independent, then this value should 

be close to zero. 
- find the highest value of the above value for i and j. 

 
On the other hand, the result of a statistical test, denoted as P-value, as a measure of randomness, 

ranges between [0,1] and is calculated by a specific formula given for each test by NIST’s specification. 
With a P-value close to 1, we have a high level of randomness. 

Our work improves the results of [9] and [10] and, based on the Galton-Pearson “product-moment 
correlation coefficient” ([11]), evaluates pairs of P-values and produces a result which ranges between [-1, 
1]. A correlation of +1 means that there is a perfect positive linear relationship between variables, or a direct 
proportion, while a correlation of -1 means that there is a perfect negative linear relationship between them, 
or an inverse proportion. With a correlation which is close to the absolute value of 1, we have a strong 
relationship between the variables. In case of a correlation close to 0, the variables are independent. The 
reciprocal is not always true ([11]). 

In order to evaluate any specific correlation between results of statistical tests and to produce 
reliable/effective results and conclusions, this analysis was done by calculating and analyzing 6 sets of 
coefficients obtained by applying NIST statistical tests to 100 binary samples of different ascending length 
(i.e. 1 up to 6 million bits). 

The number of samples was chosen according to NIST’s specifications where the unique value of 
minimum 200, that is, for Linear Complexity Test, was intentionally not accomplished due to the fact that 
this test works with a fixed number of 500 substrings. Hence, the limit in fact was accomplished. 

As requested by NIST’s specifications, a pseudorandom binary string of approximately 1 billion bits 
was generated by using an FPGA loop implementation of the encryption part of a well-known symmetrical 
cryptographic algorithm, AES-128 [13], with a “1h” (i.e. hexadecimal value) unique key. On this loop, every 
encrypted output binary sequence was taken and applied as an input to the subsequent encryption. Knowing 
that for a single encryption simulation, that is, for 128 bits, it took 240 ns, a 1.875 s simulation (or 7,812,500 
iterations) was needed to be run, in order to produce the 1-billion-bits binary string. This simulation was 
done by using Xilinx ISE Design Suite (shareware version 14.7) and one of the authors’ previous hardware 
implementations of AES-128 [14]. 

With the intention to make experiments practical/efficient, the NIST test suite (version 2.1.2) was 
implemented according to NIST’s specifications on five Linux OS (Ubuntu version 18.04.1 Desktop 64-bit) 
virtual machines (4 processors, 4 GB of RAM), all running on a single physical desktop PC (Intel I7 Quad 
Core, 16 GB of RAM). The virtual machines were created with the VMWare Workstation (shareware 
version 12.5.5) software. 

All 15 tests were used, 3 of them being treated like double tests as follows: 
- cumulative Test, denoted as T3, consists of Forward (T3F) and Reverse (T3R) tests; 
- non Periodic Template Matchings Test, denoted as T8, was approached as for 2 binary sequences, 

“000000001” (T8.1) and “111111110” (T8.2), respectively; 
- serial Test, denoted as T14, was treated like 2 tests (T14.1 and T14.2) corresponding to 2 P-values 

produced by this test. 
Therefore, instead of 15, 18 individual tests were considered, being listed by Table 2. 
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Table 2. Used tests list 

Test Number Test Name Test Variants 
T1 Frequency (Monobit)  
T2 Frequency Test within a Block  
T3 Cumulative Sums (Cusums) T3F; T3R 
T4 Runs  
T5 Longest-Run-of-Ones in a Block  
T6 Binary Matrix Rank  
T7 Discrete Fourier Transform (Spectral)  
T8 Non-overlapping Template Matching T8.1; T8.2 
T9 Overlapping Template Matching  

T10 Maurer's “Universal Statistical”  
T11 Approximate Entropy  
T12 Random Excursions  
T13 Random Excursions Variant  
T14 Serial T14.1; T14.2 
T15 Linear Complexity  

 
As mentioned before, the choice was to use samples of 6 different ascending lengths in order to check 

any possible dependence between correlation coefficients and the sample length. Moreover, the option of 
using 100, as a unique number of samples, was motivated by the necessity of having uniform results, such 
that they could be compared. In case this requirement was not complied with, this comparison would not be 
possible. 

In order to relieve certain correlations between the results of statistical tests and to give 
reliable/effective conclusions, only correlation coefficients greater than or equal to 0.5 (similarly to [10]) 
were taken into consideration, avoiding to set too high limits and to neglect any dependencies with lower 
coefficients that might occur. 

For evaluation of correlations between statistical test results, the chosen method was Galton-Pearson 
formula, that is, the correlation coefficient. In order to produce reliable/effective results and conclusions, this 
was done by calculating and analyzing six consecutive sets of correlation coefficients, corresponding to 
applying NIST statistical tests over 100 binary samples of different lengths (i.e. 1 up to 6 million bits). 

The correlation coefficients that resulted from applying NIST statistical tests, showing a strong 
correlation (close to or greater than 0.5) between a test situated on the horizontal and one on the vertical line, 
are contained by Table 3 - 8 shown below (only tests with correlations), with sample length denoted as M 
between 1,000,000 and 6,000,000 bits. 
 

Table 3. Correlation coefficients for M = 1,000,000 bits 

Tests T1 T3F T3R T12 T13 T14.1 T14.2 

T1 1 0.738 0.722 0.287 0.248 0.031 -0.002 

T3F 0.738 1 0.765 0.371 0.313 -0.087 -0.245 

T3R 0.722 0.765 1 0.235 0.180 -0.049 -0.149 

T12 0.287 0.371 0.235 1 0.725 -0.010 -0.037 

T13 0.248 0.313 0.180 0.725 1 -0.011 -0.079 

T14.1 0.031 -0.087 -0.049 -0.010 -0.011 1 0.690 

T14.2 -0.002 -0.245 -0.149 -0.037 -0.079 0.690 1 
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Table 4. Correlation coefficients for M = 2,000,000 bits 

Tests T1 T3F T3R T12 T13 T14.1 T14.2 

T1 1 0.790 0.767 0.286 0.324 0.022 -0.052 

T3F 0.790 1 0.705 0.421 0.348 -0.092 -0.116 

T3R 0.767 0.705 1 0.236 0.201 -0.043 0.033 

T12 0.286 0.421 0.236 1 0.623 0.128 0.036 

T13 0.324 0.348 0.201 0.623 1 0.049 -0.098 

T14.1 0.022 -0.092 -0.043 0.128 0.049 1 0.690 

T14.2 -0.052 -0.116 0.033 0.036 -0.098 0.690 1 

 

Table 5. Correlation coefficients for M = 3,000,000 bits 

Tests T1 T3F T3R T12 T13 T14.1 T14.2 

T1 1 0,775 0,797 0,161 0,144 -0,086 0,042 

T3F 0,775 1 0,793 0,287 0,274 -0,054 -0,010 

T3R 0,797 0,793 1 0,160 0,148 0,071 0,070 

T12 0,161 0,287 0,160 1 0,572 -0,051 0,017 

T13 0,144 0,274 0,148 0,572 1 -0,173 -0,151 

T14.1 -0,086 -0,054 0,071 -0,051 -0,173 1 0,752 

T14.2 0,042 -0,010 0,070 0,017 -0,151 0,752 1 

 

Table 6. Correlation coefficients for M = 4,000,000 bits 

Tests T1 T3F T3R T12 T13 T14.1 T14.2 

T1 1 0,743 0,807 0,213 0,315 0,143 0,202 

T3F 0,743 1 0,775 0,235 0,345 -0,008 0,076 

T3R 0,807 0,775 1 0,212 0,282 0,044 0,167 

T12 0,213 0,235 0,212 1 0,592 0,030 -0,011 

T13 0,315 0,345 0,282 0,592 1 -0,079 -0,060 

T14.1 0,143 -0,008 0,044 0,030 -0,079 1 0,687 

T14.2 0,202 0,076 0,167 -0,011 -0,060 0,687 1 

 

Table 7. Correlation coefficients for M = 5,000,000 bits 

Tests T1 T3F T3R T12 T13 T14.1 T14.2 

T1 1 0.716 0.733 0.199 0.139 -0.123 -0.111 

T3F 0.716 1 0.637 0.267 0.099 -0.107 -0.117 

T3R 0.733 0.637 1 0.086 0.014 -0.164 -0.106 

T12 0.199 0.267 0.086 1 0.498 -0.056 -0.135 

T13 0.139 0.099 0.014 0.498 1 -0.013 -0.023 

T14.1 -0.123 -0.107 -0.164 -0.056 -0.013 1 0.746 

T14.2 -0.111 -0.117 -0.106 -0.135 -0.023 0.746 1 
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Table 8. Correlation coefficients for M = 6,000,000 bits 

Tests T1 T3F T3R T12 T13 T14.1 T14.2 

T1 1 0.745 0.753 0.193 0.372 0.03 -0.018 

T3F 0.745 1 0.711 0.166 0.329 0.089 0.08 

T3R 0.753 0.711 1 0.003 0.226 0.085 0.084 

T12 0.193 0.166 0.003 1 0.474 -0.08 -0.119 

T13 0.372 0.329 0.226 0.474 1 0.03 -0.007 

T14.1 0.03 0.089 0.085 -0.08 0.03 1 0.679 

T14.2 -0.018 0.08 0.084 -0.119 -0.007 0.679 1 

 
where: T1 - Frequency (Monobit), T3F - Cumulative Sums (Forward), T3R - Cumulative Sums (Reverse), 
T12 - Random Excursions, T13 - Random Excursions Variant, T14.1 - Serial 1 (where a P-value1 was 
evaluated for K1 = 2m-1 degrees of freedom, with m being the number of bits in a pattern that appears in the n-
bit stream), and T14.2 - Serial 2 (where a P-value2 was evaluated for K2= 2m-2 degrees of freedom); the 
values that are close to or greater than 0.5 were filled with grey color. 

We found a high correlation between five couples of these statistical tests: (frequency, cumulative 
sums Forward), (frequency, cumulative sums reverse), (cumulative sums forward, cumulative sums reverse), 
(random excursions, random excursions variant) and (serial 1, serial 2). This allows us to improve the testing 
strategy by “dropping” one of the correlated tests. 

Looking at the correlation coefficients, concerning only presumed dependencies (correlations), we 
found different patterns of variation (depending on the sample length), as follows: 

T1-T3F: 0.738 ↗ 0.790 ↘ 0,775 ↘ 0,743 ↘ 0.716 ↗ 0.745 - Large Oscillation pattern 
T1-T3R: 0.722 ↗ 0.767 ↗ 0,797 ↗ 0,807 ↘ 0.733 ↗ 0.753 - Large Oscillation pattern 
T3F-T3R: 0.765 ↗ 0.705 ↗ 0,793 ↘ 0,775 ↘ 0.637 ↗ 0.711 - Small Oscillation Pattern 
T12-T13: 0.725 ↘ 0.623 ↘ 0,572 ↗ 0,592 ↘ 0.498 ↘ 0.474 - Small Oscillation Pattern 
T14.1-T14.2: 0.690 ↗ 0.690 ↗0,752 ↘ 0,687 ↗ 0.746 ↘ 0.679 - Small Oscillation Pattern 
These patterns will be object of our future work in order to mathematically describe the variance of 

correlation coefficients with the length of string sample. 
 
 

5. CONCLUSIONS 

In this article we focused on an open question regarding the correlation of the NIST statistical test suite 
and improved the results obtained in [7], [9], and [10]. Using the Galton-Pearson “product-moment 
correlation coefficient” we found a high correlation between five couples of these statistical tests. This 
allowed us to improve the testing strategy. Also we make a conjecture about the power of NIST statistical 
teste suite in the case that these tests are independent. 
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