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Abstract In this paper, the efficient software imple-

mentation and side-channel resistance of the LS-Design

construction is studied through a series of software im-

plementations of the Fantomas block cipher, one of its

most prominent instantiations. Target platforms include

resource-constrained ARM devices like the Cortex-M3

and M4, and more powerful processors such as the ARM

Cortex-A15 and modern Intel platforms. The imple-

mentations span a broad range of characteristics: 32-

bit and 64-bit versions, unprotected and side-channel

resistant, and vectorized code for NEON and SSE in-

struction sets. Our results improve the state of the art

substantially, both in terms of efficiency and compact-

ness, by making use of novel algorithmic techniques and

features specific to the target platform. We finish by

proposing and prototyping instruction set extensions

to reduce by half the performance penalty of the intro-

duced side-channel countermeasures.

Keywords LS-Design · Fantomas · side-channel

resistance · vectorization · instruction set extension.

1 Introduction

Efficient cryptography for embedded systems has been

a very active field of research for a few decades, and it

recently gained renewed interest with the emergence of

the Internet of Things, under the moniker lightweight
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cryptography. Applications of cryptography can indeed

solve problems faced by connected devices collecting

and exchanging sensitive information through an open

network. Typical solutions involve authenticated en-

cryption for data protection in transit or at rest, and

code signing for secure firmware updates.

Significant interest has been dedicated to the de-

sign and implementation of block ciphers, since they

represent a fundamental primitive from which many se-

curity properties in the symmetric setting can be pro-

vided. In that direction, many innovative block ciphers

were proposed to maximize performance in resource-

constrained devices and to provide lighter but secure

alternatives to AES [DR02]. Remarkable examples are

PRESENT [BKL+07], PRINCE [BCG+12], and more

recently SPARX [DPU+16]. These lightweight designs

follow and combine multiple constructions, such as Feis-

tel, Substitution-Permutation and ARX networks, pos-

ing distinct trade-offs in terms of efficiency, compact-

ness and resistance against different types of attacks.

Even when cryptographic algorithms can be consid-

ered secure according to the latest theoretical cryptana-

lytic results, their corresponding implementations may

be susceptible to attacks based on information leak-

age. Side-channel analysis is a growing and important

issue for cryptographic security, especially in embed-

ded systems where devices are physically accessible to

an attacker. These attacks are based on information

leaked during computation through side channels such

as execution time [Koc96], power consumption [KJJ99],

acoustic and electromagnetic emanations. When suc-

cessful, they help the adversary to identify and recover

secret data from observations captured during execu-

tion, overcoming the much higher computational cost of

cryptanalysis or exhaustive search in the key space. Se-

cret data may be a long-term private key, an ephemeral
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session key or partial information about the internal

state of a primitive, including bits of the plaintext or

round keys. The attacks may be based on a small num-

ber of observations, such as Branch Prediction [AKS07]

or Simple Power Attacks (SPA); or require traces from

many consecutive observations, as in the case of Dif-

ferential Power Attacks (DPA) [KJJ99]. Resistance to

side-channel attacks has been considered as a strong se-

curity requirement for modern ciphers, and algorithms

which facilitate addition of side-channel countermea-

sures have been thus favored in the scientific literature,

bringing attention to ciphers like PICARO [PRC12] and

Fantomas [GLSV14].

The LS-Design paradigm [GLSV14] was created with

side-channel resistance in mind, because it allows the

designer to construct lightweight algorithms friendly to

implementation of side-channel countermeasures. LS-

Design ciphers typically combine a bitsliced substitu-

tion layer with a linear diffusion layer implemented with

precomputed tables, both amenable to masking schemes.

Masking was initially proposed in 2003 [ISW03] in the

context of protecting circuits against probing, but the

technique has been later extended to much more com-

plex operations, achieving provable security guarantees

[RP10]. Masked implementations have the interesting

property that the entire computation is performed over

shared secrets, decorrelating any potential side-channel

leakages from the actual data being encrypted or the

real cryptographic keys. From this point of view, mask-

ing can be seen as a collection of data perturbation

techniques to introduce external noise in the encryp-

tion or decryption processes, acting as countermeasure

against several types of side-channel attacks.

Our contributions. This work extends our previ-

ous work [CA16] and presents several efficient, compact,

portable and secure (in the sense of side-channel resis-

tant) implementations of the Fantomas block cipher:

– In terms of performance, a number of implementa-

tion techniques are described to save execution time

or code, several of them easily adaptable to other

LS-Designs, such as the CAESAR second-round can-

didate SCREAMv3 [GLS+15b]. The techniques in-

clude a simple and efficient representation of the in-

ternal state, an efficient way to organize state in vec-

torized implementations, and strategies for exploit-

ing parallelism in the CTR mode of operation. Our

unprotected 32-bit implementation achieves perfor-

mance improvements ranging from 3.9% to 62.6%

in the ARM Cortex-M architecture, while consum-

ing considerably less code. The vector implemen-

tations naturally provide much higher throughput,

especially if 16 blocks can be processed simultane-

ously.

– In terms of security, timing attacks on LS-Designs

are discussed together with cache protection heuris-

tics, constant time execution (isochronicity), and

masking as countermeasures. Cache protection

heuristics attempt to reduce effectiveness of cache-

timing attacks [Ber04,BM06]; isochronous implemen-

tation avoids vulnerable precomputed tables to pro-

tect execution against timing attacks; and mask-

ing protects against generic side-channel attacks but

with a significant performance penalty, illustrating

several challenges to future research. The constant

time property of the isochronous implementation

was validated by hand at the source code level and

through static and dynamic analysis tools.

– Instruction set extensions for flexible parity com-

putation are proposed to reduce the performance

penalty of the isochronous implementation, while

preserving resistance against timing attacks. The

extensions were prototyped in an Altera NIOS II

platform synthesized on an FPGA and reduced the

performance penalty by half.

This paper is organized as follows. Section 2 intro-

duces LS-Designs and the Fantomas block cipher. Sec-

tion 3 discusses cache-timing attacks and countermea-

sures for LS-Designs. Section 4 summarizes some char-

acteristics of the target platforms and discusses multi-

ple implementations of Fantomas, targeting ARM and

Intel instruction sets. Section 5 presents experimental

results and Section 6 details instruction set extensions

to reduce the performance impact of side-channel coun-

termeasures. Section 7 concludes the paper.

2 LS-Designs and Fantomas

The LS-Design construction is a framework for design-

ing lightweight block ciphers while addressing threats

posed by side-channel attacks. Instances of an LS-Design

cipher are characterized by the choice of bitsliced S-

boxes S, an L-box matrix L acting as the diffusion

layer, a number of rounds Nr and corresponding round

constants Const. A particular feature of LS-Designs is

the lack of a complex or even any key schedule, sav-

ing on storage for temporary variables. In the original

LS-Design paper, two algorithms were instantiated and

analyzed: Robin, a faster involutive instance that later

succumbed to invariant subspace attacks [LMR15]; and

the non-involutive cipher Fantomas. Algorithm 1 shows

a generic specification for an LS-Design, illustrating its

simplicity and regularity. For Fantomas, parameters are

s = 8 and l = 16, resulting in a cipher with a 128-bit

key length and 128-bit block size.
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Algorithm 1 LS-Design construction encrypting

plaintext block P with key K to generate a ciphertext

block C.
1: X ← P ⊕K . State X represents an s× l-bit matrix
2: for 0 ≤ r < Nr do

3: for 0 ≤ i < l do . S-box layer with bitslicing
4: X[i, ?] = S[X[i, ?]]
5: end for

6: for 0 ≤ j < s do . L-box layer with table lookups
7: X[?, j] = L[X[?, j]]
8: end for
9: X ← X ⊕K . Key addition

10: X ← X ⊕ Const(r) . Addition of round constants
11: end for
12: C ← X

13: return C

Fantomas employs 3-round 3/5-bit S-boxes with sim-

ilar structure to the MISTY cipher [CDL15], as pre-

sented in detail on Algorithm 2. An important consid-

eration taken by the designers of the cipher is the num-

ber of nonlinear operations in the choice of S-boxes. Be-

cause Fantomas employs 8-bit S-boxes, they must con-

tain at least 8 nonlinear operations to not be weak from

a cryptanalytic point of view. There is some security

margin in this design decision because Fantomas em-

ploys 11 AND operations between elements of the cipher

state. However, the additional ANDs penalize the mask-

ing countermeasure, as later discussed in Section 3. The

L-box presented in Figure 1 provides diffusion and its

computation can be seen as a sequence of vector-matrix

products in F2, as illustrated in the picture.

Algorithm 2 MISTY-like 3/5 bits S-boxes operating

over state x = {X0, X1, . . . , X7}.

1: . S5
2: X2 ← X2 ⊕ (X0 ∧X1)
3: X1 ← X1 ⊕X2

4: X3 ← X3 ⊕ (X0 ∧X4)
5: X2 ← X2 ⊕X3

6: X0 ← X0 ⊕ (X1 ∧X3)
7: X4 ← X4 ⊕X1

8: X1 ← X1 ⊕ (X2 ∧X4)
9: X1 ← X1 ⊕X0

10: . Extend-Xor
11: X0 ← X0 ⊕X5

12: X1 ← X1 ⊕X6

13: X2 ← X2 ⊕X7

14: . Key
15: X3 ← ¬X3

16: X4 ← ¬X4

17: . S3: 3-bit Keccak S-box
18: t0 ← X5

19: t1 ← X6

20: t2 ← X7

21: X5 ← X5 ⊕ ((¬t1) ∧ t2)
22: X6 ← X6 ⊕ ((¬t2) ∧ t0)
23: X7 ← X7 ⊕ ((¬t0) ∧ t1)
24: . Truncate-Xor
25: X5 ← X5 ⊕X0

26: X6 ← X6 ⊕X1

27: X7 ← X7 ⊕X2

28: . S5
29: X2 ← X2 ⊕ (X0 ∧X1)
30: X1 ← X1 ⊕X2

31: X3 ← X3 ⊕ (X0 ∧X4)
32: X2 ← X2 ⊕X3

33: X0 ← X0 ⊕ (X1 ∧X3)
34: X4 ← X4 ⊕X1

35: X1 ← X1 ⊕ (X2 ∧X4)
36: X1 ← X1 ⊕X0

3 Side-channel security

In this section, we discuss the concept of masking for

protecting implementations against side-channel attacks

and how to implement this countermeasure for differ-

ent types of operations recurrent in block ciphers. We

also discuss a cache-timing attack against LS-Designs

to motivate the countermeasures we later propose.

3.1 Masking scheme

Masking is one of the most investigated countermea-

sures against side-channel cryptanalysis, in particular

against different variants of power analysis. In the con-

text of block ciphers, masking aims to protect sensi-

tive data, such as plaintext during encryption or inter-

mediate values during decryption. Because information

computed in these processes will be later transformed

into the algorithm outputs, intermediary states must

be protected at all times. The masked state of m with

d + 1 shared secrets is given by m0 ⊕m1 ⊕ . . .⊕md =
d⊕

i=0

mi = m, where each mi is a shared secret and all

shared secrets form together a masked secret. From this

definition, we can collect some observations that allow

any cryptographic algorithm to be implemented in a

masked way.

1. Applying a linear operation over a masked secret m

is equivalent to applying the same operation over

shared secrets of m:

L(m) ≡ L(m0 ⊕m1 ⊕ . . .⊕md)

≡ L(m0)⊕ L(m1)⊕ . . .⊕ L(md)

2. A NOT operation over a masked secret m can be

computed as:

¬m ≡ ¬m0 ⊕m1 ⊕ . . .⊕md.

3. A XOR operation between masked secrets a =
d⊕

i=0

ai

and b =
d⊕

i=0

bi can be seen as:

a⊕ b ≡
d⊕

i=0

ai ⊕
d⊕

i=0

bi ≡
d⊕

i=0

(ai ⊕ bi).

4. An AND operation between two masked secrets a =
d⊕

i=0

ai and b =
d⊕

i=0

bi is more complicated and can be

computed with the help of Algorithm 3.
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Fig. 1: Linear layer of Fantomas, with gray cells representing 1 and white cells 0 values in the L-box matrix. The

L-box computation can be seen as a matrix multiplication over F2, where each row of the cipher state is multiplied

by a column of the matrix and the resulting bit is the parity of their bitwise product.

Algorithm 3 Nonlinear AND operation performed on

two masked secrets a and b [ISW03].

Require: Shares (ai) and (bi) satisfying ⊕d
i=0 ai =

a and ⊕d
i=0 bi = b.

Ensure: Shares (ci) satisfying ⊕d
i=0 ci = a ∧ b

1: for i from 0 to d do

2: ri,i ← 0;
3: for j from i + 1 to d do
4: ri,j ← random();
5: rj,i ← (ri,j ⊕ (ai ∧ bj))⊕ (aj ∧ bi);
6: end for
7: end for

8: for i from 0 to d do
9: ci ← ai ∧ bi;

10: for j from 0 to d do

11: ci ← ci ⊕ ri,j ;
12: end for

13: end for

Line 4 of Algorithm 3 presents an important chal-

lenge in terms of performance, since fresh random num-

bers must be generated for each distinct computation

to achieve provable security guarantees. By considering

that every share ai of a represents a unity, every masked

AND computation requires (d + 1)2 − d+1
2 units of ran-

dom data and additional space of (d+1)2 to store a ma-

trix containing all possible combinations of shares. In

practice, randomness recycling and other heuristics are

often used to reduce the performance penalty incurred

by masking strategies, with potential impact on secu-

rity [BGG+14]. A recent work reduced the time com-

plexity, allowing masking to scale efficiently to higher

orders [JS17].

3.2 Attacks and countermeasures on LS-Designs

The L-boxes in the LS-Design construction present an

obstacle for their secure implementation. Because ma-

trix multiplication in F2 involves many individual bit

operations which turn out to be computationally expen-

sive in software, computation of the diffusion layer may

become critical to performance, and the L-box compu-

tation is thus commonly implemented through cheaper

table lookups. However, table lookups using secret in-

dexes are vulnerable to cache-timing attacks [Ber04,

BM06], more recently through Flush+Reload attacks

and variants [YF14].

Cache-timing attacks allow an attacker to recover

critical data in form of plaintext/key bits or portions of

the internal state. While the S-boxes in LS-Designs can

be secured against cache-timing attacks when imple-

mented with bitslicing, this attack methodology can be

easily extended to the L-Boxes implemented with table

lookups. In Line 7 of Algorithm 1, values of the inter-

nal state are used to index the L-box. If an adversary is

able to monitor the latency of each individual memory

access, for instance by means of a Flush+Reload attack,

the complete internal state X of the cipher at a given

round can be recovered. A successful strategy consists

in recovering the internal state just before the last key

addition in the last round of encryption, or after the

first key addition in the first round of decryption. If

this happens for a ciphertext block C later transmit-

ted and captured over the network, the key K can be

directly computed with K = x⊕ C ⊕ Const(Nr − 1).

There are several possibilities for countermeasures

to protect the L-box computation: isochronicity, cache

protection heuristics and masking. Implementing the L-

box computation as an explicit matrix product by re-

moving secret indexes and precomputed tables results

in an isochronous implementation with uniform mem-

ory access pattern and response latency. However, the

performance impact is substantial, since all the bitwise

computations in the L-box must now be performed on-
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line. Another possibility involves heuristics to guaran-

tee that the entire L-box table is always in cache, by

either employing smaller tables or visiting all cache lines

at every L-box access. Conventional masking schemes

can also be applied to introduce noise to make cache-

timing attacks more difficult, but if the L-box is com-

puted over all shares of x and key addition is only per-

formed in the first share, the attacker only needs to

recover the first share of the internal state to compute

the key K. Thus the key K must also be decomposed in

a set of additive shares as an improved countermeasure,

forcing the attacker to recover all shares of the internal

state to derive the key K. While this is not sufficient

to fully overcome the threat of cache-timing attacks, at

least the effort dedicated by the attacker is closer to

what is expected in the threat model for masking. Al-

gorithm 4 formalizes the masking scheme, by replacing

the S-boxes with a masked version and computing the

remaining steps over shares of the internal state and

key. The next section explores the implementation of

these countermeasures in detail.

Algorithm 4 LS-Design implemented with masking to

encrypt d + 1 shares of plaintext P := {p0, . . . , pd} and

key K := {k0, . . . , kd} resulting in the ciphertext c.

1: for 0 ≤ ` ≤ d do . Initialize the internal state
2: x` = p` ⊕ k`
3: end for
4: for 0 ≤ r < Nr do

5: x = MaskedS(x) . Masked S-box layer
6: for 0 ≤ ` ≤ d do . L-box layer
7: for 0 ≤ j < s do

8: x`[?, j] = L[x`[?, j]]
9: end for

10: end for
11: for 0 ≤ ` ≤ d do . Add masked key to shares
12: x` = x` ⊕ k`
13: end for

14: x0 = x0 ⊕Const(r) . Add round constants
15: end for

16: c←
d⊕

`=0

x`

17: return c

4 Implementation

In this section, we present the multiple implementations

of Fantomas, aiming at performance and side-channel

security targets. We discuss portable implementations

for 32-bit and 64-bit processors implemented in the C

programming language, mostly targeting ARM plat-

forms, and additional code vectorized for SSE/NEON

instructions. Strategies for masked implementation are

discussed last, before experimental results are presented

in the next section.

4.1 The target platforms

The ARM Cortex-M is a set of 32-bit ARM proces-

sor cores intended for microcontroller use, composed of

the Cortex-M0, M0+, M1, M3, M4, and M7. These mi-

crocontrollers implement load-store architectures opti-

mized for embedded systems in low-power applications.

The Cortex-M processors implement slightly different

subsets of the more restricted Thumb and Thumb-2 in-

struction sets, tailored to small code size. With the ex-

ception of the M7, Cortex-M microcontrollers do not

have internal cache memory, but it is possible to in-

tegrate a system-level cache. The Cortex-A family of

processors is tailored for more time-consuming applica-

tions and provide sophisticated out-of-order execution

and NEON vector instruction sets. Cortex-A processors

typically have large amounts of cache memory, which

can be disabled only in privileged mode. The register

file has 16 general purpose registers (r0-r15), although

pointer arithmetic is restricted to the lower half. A dis-

tinctive feature of ARM processors is the possibility

to apply a bitwise operation to a second operand of

an arithmetic instruction by means of a built-in barrel

shifter.

The Intel platform is well-known for its aggressive

out-of-order execution and rich vector instruction set.

The Streaming SIMD Extensions (SSE) support many

vector operations over integers or floating point val-

ues, many of them useful for fast cryptography, such

as the byte shuffle instruction PSHUFB, also available

in ARM NEON under the VTBL mnemonic. Byte shuf-

fling instructions take 128-bit registers filled with bytes

ra = a0, a1, . . . , a16 and rb = b0, b1, . . . , b15 and replace

ra with the permutation ab0 , ab1 , . . . , ab15 . A powerful

use of this instruction is to perform 16 simultaneous

lookups in a 16-byte lookup table, computing a map-

ping from 4-bit sets to 8-bit values. This can be easily

done by storing the lookup table in ra and the lookup

indexes in rb.

4.2 Unprotected 32/64-bit implementations

The description starts from the unprotected 32-bit im-

plementation, realized exclusively in the C program-

ming language. Fantomas requires S/L-boxes which op-

erate over 16-bit chunks and other operations over 32-

bit data, such as key addition. Therefore, a portable

and efficient implementation must simultaneously sup-

port the two data types in one concise structure to rep-
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resent the internal state. Following the C99 standard,

breaking strict aliasing pointer rules can be prevented

by representing the internal state as a union combin-

ing pointers to the data types, as in Listing 1. This

allows the compiler to have sufficient information to op-

timize arithmetic and memory accesses for both 16- and

32-bit chunks without introducing explicit type conver-

sions and the risk of interference with neighboring data

chunks. In 32-bit mode, the internal state is represented

as a vector of 4 objects of this type. The interface of

the encryption and decryption functions do not have to

be modified and still take word-aligned byte vectors as

input and conveniently convert them to 32-bit pointers

when needed.

Listing 1: Internal state is represented using a vector of

unions to respect strict aliasing, such that two different

pointers cannot reference the same memory address.

typedef union {

uint32_t u32;

uint16_t u16 [2];

} U32_t;

The substitution layer is computed using the union

structure. Some operations over 16-bit chunks in the

bitsliced S-boxes could be combined in 32-bit opera-

tions to increase arithmetic density, but this was avoided

to prevent unaligned loads and stores which cause per-

formance degradation. For the linear diffusion layer,

the unprotected variable-time version employs two 256-

position half-word precomputed tables. A small code

portion illustrating the unprotected L-box can be found

in Listing 2, where st stores the 128-bit state, LBoxH

transforms the 8 most significant bits and LboxL trans-

forms the 8 less significant bits for all j ∈ {0, 1, 2, 3}.

Listing 2: Unprotected L-Box using the 16-bit values of

the internal state. LBoxH maps the higher 8 bits of the

linear transformation and LBoxL the lower 8 bits.

st[j].u16 [0] = LBoxH[st[j].u16[0]>>8] ^

LBoxL[st[j].u16[0] & 0xff];

st[j].u16 [1] = LBoxH[st[j].u16[1]>>8] ^

LBoxL[st[j].u16[1] & 0xff];

To improve performance slightly, the key addition

works by accumulating the key in the internal state

using 32-bit XOR operations, as in Listing 3.

Listing 3: Key addition of Fantomas using the 32-bit

state of the union.

for(j=0; j<4; j++) {

st[j].u32 ^= key_32[j];

}

The portable 64-bit implementations are a general-

ization of the 32-bit implementations and mostly follow

the same structure. The internal state is represented us-

ing a different union, to allow simultaneous operations

over 16-bit and 64-bit data chunks without violating

strict aliasing rules, as specified in Listing 4. The S-

boxes must again be implemented over the union with-

out breaking alignment and causing performance penal-

ties. The unprotected L-box follows the same structure

as the corresponding 32-bit implementation.

Listing 4: Union type representing part of the internal

state for 64-bit platforms.

typedef union {

uint64_t u64;

uint16_t u16 [4];

} U64_t;

4.3 Cache protection heuristics

Two versions were implemented with mitigations against

cache-timing attacks: a compact one storing the entire

L-box in a single cache line and a cache-filling imple-

mentation that visits all L-box cache lines at every ac-

cess.

Compact implementation

In this version the S-boxes still need to follow the im-

plementation of the union without breaking alignment.

The L-box is represented in four small tables, so the

mapping of the L-box changes from 16 bits to 4 bits.
This way, each table will contain 32 bytes, fitting a sin-

gle cache line in modern processors (ARM and Intel),

given that the compiler is instructed to align the base

address properly. Because every table is used only once

in the L-box computation, memory access patterns do

not reveal critical information.

A piece of code illustrating the idea can be seen in

Listing 5, where state stores the 128-bit state, LBHH

maps the highest 4 bits of the linear transformation,

LBHL maps the 4 least significant bits of the most sig-

nificant byte, LBLH maps the 4 most significant bits of

the least significant byte and LBLL the remaining least

significant 4 bits, for all j ∈ {0, 2, 4, 6, 8, 10, 12, 14}.

Cache-filling implementation

This version is similar to the cache-protected versions,

but it always brings to cache memory the two entire

256-position half-word precomputed tables by visiting

multiple cache lines.
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Listing 5: Compact implementation using four small tables to store the entire L-box in a single cache line.

uint8_t *b = (uint8_t *)st;
...
for (j=0, k=0; j<4; j+=2, k+=2) {

st[ j ].u16 [0] = LBLH[b[k]>>4] ^ LBLL[b[k] & 0xf] ^ LBHH[b[k+1]>>4] ^ LBHL[b[k+1] & 0xf];
k+=2;

st[ j ].u16 [1] = LBLH[b[k]>>4] ^ LBLL[b[k] & 0xf] ^ LBHH[b[k+1]>>4] ^ LBHL[b[k+1] & 0xf];
k+=2;

st[j+1]. u16[0] = LBLH[b[k]>>4] ^ LBLL[b[k] & 0xf] ^ LBHH[b[k+1]>>4] ^ LBHL[b[k+1] & 0xf];
k+=2;

st[j+1]. u16[1] = LBLH[b[k]>>4] ^ LBLL[b[k] & 0xf] ^ LBHH[b[k+1]>>4] ^ LBHL[b[k+1] & 0xf];
}

Listing 6: LBoxH contains the upper part of the linear transformation and LBoxL contains the lower part, CPU CACHELINE

contains the cache line size (default is 64). The loop traverses all the cache lines where the table will be stored.

uint16_t LBoxH [256] __attribute__ (( aligned (CPU_CACHELINE))) = { ... };
uint16_t LBoxL [256] __attribute__ (( aligned (CPU_CACHELINE))) = { ... };
uint16_t tmp;
...
for(j=0; j <(256/ CPU_CACHELINE); j++) {

tmp ^= LBoxL[j*CPU_CACHELINE ];
tmp ^= LBoxH[j*CPU_CACHELINE ];

}
...
st[0]. u16 [0] ^= tmp;
...
st[0]. u16 [0] ^= tmp;

It is necessary to explicitly force that precomputed

tables start at a cache-line boundary, which may not

be compatible with compiler defaults. The code to ac-

cess the whole table can be seen in the Listing 6. In

the code, CPU CACHELINE contains the size of the cache

line and the tables are aligned according to the size of

the cache line, by default CPU CACHELINE = 64 as com-

monly found in ARM and Intel processors. The loop

scans the table by shifting in cache lines to bring the

entire table to cache memory before performing the lin-

ear transformation.

4.4 Isochronous 32/64-bit implementation

The isochronous implementations are a little more in-

volved. The S-box layer implemented through bitslicing

fortunately provides isochronicity already, so no addi-

tional countermeasures are needed. The diffusion layer

is performance-critical and presents more obstacles to

side-channel resistance, since it is usually implemented

through table lookups on the L-box. The protected ver-

sion implements the operation online by performing

vector-matrix binary multiplications, where two 16-bit

chunks are processed at the same time. The code por-

tion in Listing 7 illustrates part of it, where x stores the

32 bits to be transformed by the L-box in 16-bit pairs

and y contains the l-th duplicate line of the binary ma-

trix representing the linear transformation. This func-

tion computes the dot product of the two 32-bit vectors

in F2, and calculates the parity of each 16-bit result,

processing two transformations at the same time. Func-

tion ProdLBox was transformed to operate over 64 bits

with simple modifications to the input and output types

and a repeated bit mask 0x0001000100010001 in the

last operation, allowing computation of 4 simultaneous

evaluations of the L-box (Listing 8).
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Listing 7: Multiply the s-th row of the matrix L con-

taining the value y = (ys, ys) by the value x = (xa, xb)

where the result is the s-th value of (x · L)s = (xa ·
ys, xb · ys).

static inline uint32_t ProdLBox(uint32_t x,

uint32_t y, uint8_t s) {

x &= y;

x ^= x >> 8;

x ^= x >> 4;

x ^= x >> 2;

x ^= x >> 1;

return (x & 0x00010001) << s;

}

Listing 8: Explicit L-box computation, adapted to 64-

bit platforms.

static inline uint64_t ProdLBox(uint64_t x,

uint64_t y, uint8_t s) {

x &= y;

x ^= x >> 8;

x ^= x >> 4;

x ^= x >> 2;

x ^= x >> 1;

return (x & 0x0001000100010001) << s;

}

Platform-specific 64-bit implementation

As a possibly faster alternate option for Intel platforms,

we also implemented a 64-bit version using the POPCNT

instruction for population counting. This instruction is

part of SSE4 extension and counts the number of 1 bits

over a 64-bit register, storing the parity in the least

significant bit. Because the instruction takes 3 cycles

to complete [Fog16] and only a single bit of the result

is useful for our computation, this version performed

much less efficiently. For reference, it can be found in

Listing 9 below.

Listing 9: L-box evaluation with parity computation

computed through the least significant bit of the result

from Intel POPCNT instruction.

static inline uint64_t ProdLBox(U64_t x,

uint64_t y, uint8_t s) {

x.u64 &= y;

return (( _mm_popcnt_u16(x.u16 [0])&0x1) ^

(( _mm_popcnt_u16(x.u16 [1]) & 0x1) <<16) ^

(( _mm_popcnt_u16(x.u16 [2]) & 0x1) <<32) ^

(( _mm_popcnt_u16(x.u16 [3]) & 0x1) <<48))

<< s;

}

4.5 Masked implementation

The masked implementation needs large modifications

in the S-boxes, because every operation computed in

Algorithm 2 must now be replaced by the operations

specified in Section 3.1. Others modifications in the al-

gorithm are described in Algorithm 4.

Countermeasures in the linear layer are still needed

during encryption and decryption to protect against the

cache-timing attack discussed in Section 3.2, because

the linear layer comes immediately before the last key

addition in the encryption and immediately after the

first key addition in the decryption. If successful, the

cache-timing attack would disclose the internal state in

these positions and, with knowledge of the ciphertext,

an attacker could mount a critical key recovery attack.

Two functions are essential for preprocessing the

blocks before masked encryption and decryption can be

performed. These functions convert a plaintext block to

a masked block and the converse, respectively. The first

function must generate d randomized blocks and com-

bine these blocks with the original by means of XOR op-

erations to generate the last block. The second function

must combine all masked blocks with XOR operations af-

ter encryption and decryption are processed.

A substantial amount of random bits is required to

generate the masked blocks and to compute the masked

AND described in Algorithm 3. Random number genera-

tion was implemented through the standardized

Hash DRBG [BK12] algorithm instantiated with the

SHA-256 hash function. This choice proved to be faster

than reading bytes from /dev/urandom by a 10-factor

in the Linux-enabled platforms. Even with this faster

option, generating random bits still imposes a massive

performance penalty and dominates the execution time

in our masked implementation. Because this is highly

platform-specific, we take two approaches: follow re-

lated work and exclude the random generation time

from the experimental results, and also measure the

time for random number generation for comparison.

4.6 Further exploiting parallelism

Although the S-box implementation already extracts

some internal parallelism inside Fantomas, we further

note that there is much more room for exploiting par-

allelism. Under a mode of operation amenable to par-

allelization of both encryption and decryption such as

CTR, Fantomas can be implemented quite efficiently at

the cost of flexibility and code size by processing multi-

ple blocks simultaneously. In particular, the 32-bit im-

plementation can be adapted to process 2 blocks at the
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same time, by sharing each 32-bit word in the inter-

nal state among two 16-bit chunks of two consecutive

blocks; and the 64-bit implementation can be adapted

in a similar way to process 4 consecutive blocks. This

optimization also has the effect of accelerating the S-

box computation, because internal horizontal depen-

dencies between 16-bit chunks from the same block are

now eliminated and the S-boxes can be computed with

32-bit operations alone, without introducing unaligned

memory accesses or other performance penalties. Be-

cause the CBC mode imposes a serialization of encryp-

tion, vectorized implementations should stick to the

CTR mode processing multiple blocks simultaneously,

where only the counters are encrypted/decrypted and

later added to the plaintext/ciphertext, respectively.

For comparison, we also implemented a single-block

vectorized Fantomas in CBC mode.

Vectorized implementation

Our implementations target the ARM and Intel plat-

forms equipped with modern vector instruction sets ca-

pable of computing high-throughput bitwise operations

over full vector registers, and performing fast lookups

over small precomputed tables. LS-Designs become very

friendly to vectorization under these conditions.

Recall that the internal state of Fantomas is repre-

sented as 8 pieces of 16 bits each, hereby called lanes to

follow vectorization terminology. The S-boxes are com-

puted in a bitsliced way, facilitating vectorization as

long as the S-layer can compute over at least 8 blocks

simultaneously, applying the same operation over each

16-bit lane from the same block. The L-box presents

a higher obstacle, because memory accesses should be

reduced to increase arithmetic density. There are two

clear ways of implementing the L-box with higher arith-

metic density: the first one is to perform an explicit

vector-matrix multiplication over F2 as in the constant-

time 32/64-bit implementation; or employing byte shuf-

fling instructions for table lookups inside vector reg-

isters. In the latter, registers are sliced in byte-sized

chunks, processing 16 blocks simultaneously, where the

individual bytes can be stored and transposed in a ma-

trix to guarantee that every vector register has the same

i-th byte of each block. These two approaches were

implemented and the latter was clearly faster due to

higher occupancy of the vector registers. For portabil-

ity over Intel and ARM, the table lookups were imple-

mented using the GCC intrinsic builtin shuffle()

for byte shuffling, which translates to the instructions

PSHUFB and VTBL discussed on Section 4.1.

Since the L-box is a linear transformation, the 16

bits can be broken in smaller pieces. The L-box in Fig-

ure 2 can be split in 4-bit lanes and the table reduced to

4 tables of 16 positions storing 16-bit values. To make

use of the table lookup instructions mapping 4-bit val-

ues to 8 bits, the splitting must divide the most sig-

nificant bytes from the least significant bytes and the

entire table is stored in 8 vector registers of 128 bits.

Listing 10 presents part of the vectorized linear layer.

The single-block CBC version operates separately

in the most significant bytes and least significant bytes,

and combines them together at the end. The 16-block

CTR version is a little more complex and follows the

organization adopted by the vectorized implementation

of SCREAMv3 [GLS+15b]. First, it is necessary to ex-

pand the CTR counter for the 16 simultaneous blocks.

After expansion, the counters must be transposed and

stored in a different order. Counter updates can be done

by propagating carries using vector comparisons. The

expanded counter is computed from the original counter

as in Figure 2a, and the state must be partially trans-

posed and stored as in Figure 2b. Partial transposition

is not too computationally expensive, because the orga-

nization required is an intermediate step of the trans-

position algorithm.

The organization in Figure 2 must be kept through

the whole process, because then the substitution layer

can be performed in the first 8 blocks and then on the

final 8 blocks. The linear layer is similar to the single-

block version and the splitting is not required, since the

least significant bytes are stored in the first 8 blocks in

Figure 2b and the most significant bytes in the remain-

ing 8 blocks in the same Figure. The key must also be

transformed in a similar way as in Figure 2c to facilitate

the key addition step. A total of 16 copies of the key

are stored in a set of registers and partially transposed

to match the organization used for the counter, such

that the correct operands are used for all the additions.

Our SSE-vectorized implementations of Fantomas are

publicly available for independent benchmarking and

reproducibility1.

5 Experimental results

Our implementations were benchmarked in seven dif-

ferent ARM and Intel platforms. The compiler used for

the Cortex-M platforms was GCC 4.8.4 provided by the

Arduino Development Kit with flags -O3 -nostdlib

-fno-schedule-insns -mcpu=cpu -mthumb, for values

of cpu matching the processor (cortex-m0plus/m3/m4).

For the higher-end platforms, GCC 6.3.1 provided by

the operating system was used instead with common

flags -O3 -fno-schedule-insns -march=native.

1 https://github.com/rafajunio/fantomas-x86
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Listing 10: Linear layer vectorized to simultaneously process 16 blocks.

static inline void LLayer(v16qu *X) {
static const v16qu tables [8] = // Store L-box in register tables
{{0x00 ,0xFF ,0x90 ,0x6F ,0x37 ,0xC8 ,0xA7 ,0x58 ,0x48 ,0xB7 ,0xD8 ,0x27 ,0x7F ,0x80 ,0xEF ,0x10},
{0x00 ,0xBF ,0x6E ,0xD1 ,0x41 ,0xFE ,0x2F ,0x90 ,0xD5 ,0x6A ,0xBB ,0x04 ,0x94 ,0x2B ,0xFA ,0x45},
...

};
for(int i=0; i<8; i+=2) { // Process 2 blocks in parallel

//X[i] contains the less significant byte of the i-th block
//X[i+8] contains the most significant byte of the i-th block
v16qu t[4] = {X[i], X[i+8], X[i+1], X[i+9]};
// Replace the 4 less significant bits of t[0]/t[2]
X[i] = __builtin_shuffle(tables [0], t[0]);
X[i+1] = __builtin_shuffle(tables [0], t[2]);
X[i+8] = __builtin_shuffle(tables [1], t[0]);
X[i+9] = __builtin_shuffle(tables [1], t[2]);

// Replace the 4 most significant bits of t[0]/t[2]
t[0] >>= 4; t[2] >>= 4;
X[i] ^= __builtin_shuffle(tables [2], t[0]);
X[i+1] ^= __builtin_shuffle(tables [2], t[2]);
X[i+8] ^= __builtin_shuffle(tables [3], t[0]);
X[i+9] ^= __builtin_shuffle(tables [3], t[2]);
...

}
}

Fig. 2: Counter and key transformation for the vectorized CTR implementation. In the initial state in (a), each row
represents a different counter (block bi) and each column represents bytes in the same position in all counters. The
final state is computed through a partial transposition of the initial state, reaching the intermediate state in (b). The
key is transformed analogously in (c). An alternative figure depicting the state organization can be found in [CA16].

(a) Initial state of the counter.
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(b) Final state of the counter.
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More details about the platforms can be found below:

– Cortex-M0+: Arduino Zero powered by an Atmel

SAMD21 ARM Cortex-M0+ 48MHz CPU. Execu-

tion time was measured through the native SysTick

cycle counter.

– Cortex-M3: Arduino Due powered by an Atmel

SAM3X8E ARM Cortex-M3 84MHz CPU. Execu-

tion time was measured by converting the output of

the micros() function in Arduino for measuring mi-

croseconds to cycles through simple multiplication

by the nominal frequency.

– Cortex-M4: Teensy 3.2 board containing a Cortex-

M4 MK20DX256VLH7 72MHz processor. Execution

time was measured through the native cycle count-

ing register and some Assembly code.

– Cortex-A15: ODROID-XU4 board containing a

Samsung Exynos5422 Cortex-A15 2GHz and Cortex-

A7 8-core CPUs. We installed the official distri-

bution of Arch Linux for the board, which comes

equipped with GCC 6.3.1 for ARM, using the ad-

ditional flags -mfpu=neon -mcpu=cortex-a15. Ex-

ecution time was measured by enabling reading from

the Cycle CouNT register (CCNT) from the Perfor-

mance Monitor Unit (PMU) in user level.

– Cortex-A53: ODROID-C2 board containing an Am-

logic ARM Cortex-A53(ARMv8) 2GHz 4-core CPUs.

We installed Arch Linux with GCC 6.3.1 for ARM

using flags -mfpu=neon -mcpu=cortex-a53.

Execution time was also measured through the PMU

enabled by loading a special kernel module.

– Core i7 Ivy Bridge: Intel Core i7-3632Q 2.20GHz

CPU. GCC 6.3.1 was again used with flags -mssse3

-msse. The RDTSC register was used for cycle count-

ing and Turbo Boost was disabled.

– Core i7 Haswell: Intel Core i7-4770 3.40GHz CPU.

GCC 6.3.1 was again used with flags -mssse3 -msse.

The RDTSC register was used for cycle counting

and Turbo Boost was disabled.

Tables 1 and 2 in the next pages present results

for the 32- and 64-bit portable implementations; and

the NEON and SSE vectorized implementations of Fan-

tomas. All measurements take into account the time to

encrypt and decrypt using the operating modes CBC

and CTR. The isochronous/constant-time implemen-

tations receive the CT abbreviation suffix. The vector

implementations are intrinsically isochronous by oper-

ating over registers only. Cycle counts were computed

by encrypting or decrypting the same message of length

1024 bytes a 100 times. The final result represents the

average time to encrypt or decrypt a single byte using

a specific implementation. Because Fantomas does not

have a key schedule and encryption/decryption algo-

rithms are very similar performance-wise, results can

be easily converted to a cycles per byte (CPB) metric.

The isochronicity property of the constant time im-

plementations was validated using the FlowTracker tool

for static analysis [RPA16] and dudect for dynamic

analysis [RBV17] in the Intel platforms. FlowTracker

performs information flow analysis from function inputs

marked as secret to branch instructions and memory

addresses at the LLVM IR level, effectively detecting

and thwarting timing attacks in compiled code. The

tool dudect performs statistical testing of execution

times. All timings for Cortex-M processors were repro-

duced to a reasonable degree in the ARM Cortex-M

Prototyping System (MPS2), an FPGA-based board

with support to microcontrollers ranging from Cortex-

M0 to M7. However, we only report timings collected in

the widely available platforms to simplify comparisons

with future competing implementation efforts. Our im-

plementations were tailored for ARM processors and

enjoy the benefits of the second-operand barrel shifter.

5.1 Discussion

The tables contain several interesting results to be dis-

cussed. We omit cases when there is a mismatch be-

tween the word size in the implementation and the pro-

cessor word, because the compiler may degrade perfor-

mance substantially. This effect was very clear when

compiling the 64-bit constant-time implementations on

the 32-bit processors, for example.

Cache protection heuristics have a low impact of

performance, with the cache-filling implementation be-

ing faster than the compact small-table one. These im-

plementations do not have formal side-channel resis-

tance guarantees and rely on compiler alignment and

other runtime characteristics, hence they should be used

only when some side-channel resistance is desired and

the performance overhead of isochronicity is prohibitive.

Constant-time implementations with uniform access

to memory receive a massive performance penalty. In

the Cortex-M, the 32-bit CBC/CTR constant time im-

plementation of Fantomas proved to be almost twice

as compact due to the lack of precomputed tables, al-

though more than 3 times slower than the unprotected

version. Similar ratios can be found in the 32-bit Cortex-

A15, but performance degradation is lower in the 64-bit

Cortex-A53. If the main objective is to obtain a smaller

code fingerprint and/or resistance against timing-based

side-channel attacks, this implementation can however

still be a good choice. Observe that Cortex-A processors

and even some Cortex-M microcontrollers may have

cache memory, so it is important to measure the perfor-

mance impact of protecting the implementations against

cache-timing leakage.
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It was surprising that the 64-bit implementation in

the Cortex-A53 was slower than the 32-bit implemen-

tation in the Cortex-A15, but the Cortex-A53 is at the

low-end of the 64-bit ARM processors, so better perfor-

mance for the 64-bit implementation might be expected

from higher-end processors.

Code sizes generally grow from the Cortex-M0+ to

the Ivy Bridge. The code size for the 16-block NEON

(CTR) implementation in the Cortex-A53 was also sur-

prising, producing almost twice more compact binaries

than the same NEON version in the Cortex-A15 and

SSE version in the Core i7. There is a clear space-

time trade-off in the multi-block CTR implementations.

They are the largest implementations in terms of code

size, but also almost always the fastest in a given plat-

form, specially in those supporting vector instructions.

For the masked implementations of Fantomas, cy-

cle counts for encrypting one block with different num-

bers of shares are presented in Figure 3, where a clear

quadratic trend for the performance degradation can

be observed, as expected [GLSV14]. The figure also il-

lustrates the impact of random number generation, as

generating random bytes for the masked AND operations

in the S-boxes can consume 97% of the execution time.

Three versions were actually implemented: table-based

L-box, isochronous and NEON. All versions can be seen

in Figure 4 and Table 3. Table 3 presents the timings

required to encrypt a single block with d shares using

all three versions without random number generation.

Values for d = 1 represent the time to encrypt a single

block in Fantomas without masking.

Fig. 3: Cycle counts for encrypting one 128-bit block

with the masked implementation of Fantomas in the

Cortex-A15 platform as a function of the number of

shares. The black dots take into account the time to

generate random numbers with the Hash DRBG using

SHA256, while the red dots disregard random number

generation. Both red and black points use the table-

based L-Box.
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Fig. 4: Cycle counts for encrypting one 128-bit block

with the masked implementation of Fantomas in the

Cortex-A15 platform as a function of the number of

shares. The black dots refer to the table-based L-box,

red dots to the isochronous and the blue dots to the

NEON version.
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Table 3: Cycle counts for encrypting one 128-bit block

with the masked implementation of Fantomas using

masked 32 bits, 32-bit isochronous (CT) and NEON

in the Cortex-A15 platform.

Shares (d)
32 bits

(cycles)

32 bits CT

(cycles)

NEON

(cycles)

1 789 6854 990

2 17285 31382 11411

3 19534 36743 18727

4 29543 53191 31844

5 38074 68424 41754

6 46664 82970 53925

7 59015 101782 66189

8 73739 125908 81523

9 91238 148323 97799

10 108276 169223 126548

5.2 Comparison with related work

There are two main related works that established the

previous state of the art in the context of this paper.

The most recent is the massive implementation effort

from the FELICS framework [DCK+15] to compare

lightweight block ciphers performance-wise in represen-

tative 8/16/32-bit platforms. The project website2 also

contains results for some stream ciphers and block ci-

phers underlying MAC constructions. The target 32-bit

2 https://www.cryptolux.org/index.php/FELICS
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platform considered in their work is the same Cortex-

M3 present in the Arduino Due and two scenarios are

taken into consideration. Scenario 1 considers consec-

utive encryption and decryption of 128 bytes in CBC

mode, simulating a communication protocol. In the web-

site, the best implementation according to their Figure

of Merit (FOM) takes for encryption 44,047 cycles us-

ing 1484 bytes of ROM (or 344.12 CPB in Table 1)

and for decryption 44,319 cycles using 2148 bytes of

ROM (or 346.24 CPB in Table 2). Even in compari-

son with the fastest and most compact implementation

from the website our implementation is still compet-

itive, being 25.6% to 60.5% more efficient in encryp-

tion and 3.9% to 62.6% in decryption than their imple-

mentations, and competitive in terms of code size with

their more compact implementation. These speedups

decreased in comparison to our previous work [CA16]

due to performance improvements from FELICS. In

Scenario 2, FELICS reports a range of figures for un-

protected Fantomas when encrypting 128 bits in CTR

mode, ranging from most compact implementation to

best execution time. The most compact takes 6,997 cy-

cles and 1428 bytes of ROM (437.31 CPB), the most

efficient takes 3,797 cycles and 3,092 bytes of ROM

(237.31 CPB) and a good trade-off is found at 5,505

cycles and 1524 bytes of code size (344.06 CPB). After

the proper conversions, our implementation improves

these figures by 60.8%, 27.8% and 50.2%, respectively,

by spending only 1834 bytes of ROM.

Our compact small-table implementation takes 288.3

CPB for encryption with only 954 bytes of ROM and

286.2 CPB for decryption with only 938 bytes of ROM,

both in Scenario 1; and 289.07 CPB with 1170 bytes

of ROM in Scenario 2. The compact version is 33.3%

and 41.2% faster in Scenario 1 and 33.9% in Scenario 2

than the compact version of FELICS, respectively, us-

ing only 1170 bytes in CTR mode. An even more com-

pact version with only 870 bytes of ROM in CTR mode

was also implemented but the speed degrades to 426.46

CPB, although still faster than FELICS. The same ver-

sion is competitive in CBC mode with only 1262 bytes

of ROM adding encryption and decryption. As a refer-

ence point, FELICS reports much higher latencies for

standardized block ciphers such as AES under different

operating modes (30,613 cycles or 239.16 CPB for en-

crypting and 42,114 cyles or 329.017 CPB for decrypt-

ing in CBC mode in the Cortex-M3, for example).

The second related work is the presentation for the

SCREAMv3 candidate in the CAESAR competition

[GLS+15a]. In the slides, numbers for a 16-block vec-

tor implementation of Fantomas are also reported. We

could not reproduce the numbers presented in the ta-

ble due to unavailability of the Fantomas code, and

benchmarking the publicly-available SCREAMv3 code

gave rather different results. In private contact with the

authors, we discovered that their benchmarking code

takes the outputs of the gettimeofday() function for

time measurement, a less precise approach than using

cycle counts measured directly. Additionally, it is not

clear if their numbers were taken in a machine with

Turbo Boost enabled, as it is well known to distort

benchmarking data [BL16]. Due to the different bench-

marking strategies, we only report the numbers for ref-

erence, without attempting an explicit comparison.

5.3 Comparison with Fantomas*

After the LS-Design block cipher Robin was successfully

attacked through invariant-subspace attacks [LMR15],

the algorithm was tweaked to include larger tables of

round constants spanning the entire internal state. This

modification was called Robin*. Although Fantomas

was not affected by the same attack, the same coun-

termeasure was applied to the algorithm in a follow-up

work [JSV17], leading to the version called Fantomas*.

We have implemented and benchmarked Fantomas*

in some representatives target architectures, more specif-

ically the Cortex-M4 and Cortex-A15, and observed

small performance penalties due to the extra additions

of round constants. The largest performance difference

was 10.3% in the execution of insecure table-based im-

plementations, since addition of round constants re-

sponds to a higher part of overall performance. Constant-

time versions suffered penalties of at most 2%. The least

affected versions were the vectorized NEON implemen-

tations, in which performance became only 0.1% worse.

We could not compare our masked implementation

with timings from [JS17] in the Cortex-M4, because

their implementation employs very different techniques:

the masking technique is novel and more efficient, and

implemented in Assembly at a much higher order. There

are also differences in the target platform configuration

and how random number generation is implemented.

From the point of view of security, it is worth not-

ing that our portable code written in C may suffer

from further order reduction exacerbated by the com-

piler [BGG+14].

6 Instruction Set Extension

The previous sections studied software-based counter-

measures for side-channel resistance. This section adopts

a different approach and presents a hardware exten-

sion built to enable more secure and efficient imple-

mentations of Fantomas. Although our software solu-
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tions could already be sufficiently effective on mitigat-

ing the side-channel vulnerabilities, an extended hard-

ware support allows the implementations to achieve the

same security property while reducing the performance

penalty.

For this experiment, we built a system using Intel

Platform Designer [Int17] (formerly Altera Qsys) and

instantiated an Altera NIOS II processor [Alt16], along

with other Altera IP components and our hardware ex-

tension. Table 4 lists all the instantiated components

and their configurations.

Our hardware modifications were guided by two goals:

to improve the performance of the online L-box evalu-

ation and to mitigate the side-channel vulnerability in

the L-box table lookups. This way, two different secure

versions were produced to explore hardware features

and trade-offs. We achieve the first goal by introducing

a new specialized instruction for parity check, which

enabled a great performance improvement in the on-

line parity calculation. The second goal, in turn, was

achieved by simply activating NIOS’ cache bypass mech-

anism, which allowed the L-box table accesses to be

performed in constant time.

Table 4: System components and configurations.

Component Configuration

Clock Source Known frequency - 50 MHz

NIOS II Processor - Gen 2

NIOS II/f

Cache configured according to the experiment.

All other configurations to default.

JTAG UART Default

On-Chip Memory RAM - Size: 159.744 bytes

Performance Counter 4 simultaneously-measured sections

System ID Default

Interval Timer Default

Custom Instruction Type Extended (Combinational)

6.1 Cache bypass mechanism

The NIOS processor has a built-in mechanism for cache

bypass that can be activated through its configuration

interface. The mechanism works by checking the value

of the most significant bit of a memory address before

looking up to it in the cache: If the bit is set, the cache

is ignored and a direct access is performed to the main

memory. Otherwise, the ordinary cache look-up process

continues.

It should be noted that, despite being a 32-bit pro-

cessor, NIOS is capable of addressing only 31-bit ad-

dresses, once the most-significant bit is reserved for the

cache bypass feature. Listing 11 shows the macro used

for setting the most significant bit.

6.2 Parity check instruction

NIOS also has an interface for extending its instruction

set. It can communicate with the processor using up to

15 signals defined by standardized templates. For the

parity instruction, we used the simplest one, designed

for combinational instructions. It offers two 32-bit in-

puts as instruction operands and one 32-bit output as

instruction result. We also added the n input, which re-

ceives a 3-bit value representing an opcode offset. The

implementation logic is similar to the one presented in

Listing 7. We synthesized our system to a Cyclone V

SoC 5CSEMA4U23C6N FPGA device, where the in-

struction took 25 Adaptive Look-Up Tables (ALUTs).

For comparison, the entire system we built took 2734

ALUTs.

The instruction behaves as follows:

1. It receives two operands, dataa and datab and cal-

culates a logical AND between them.

2. Depending on the value of the opcode offset n ∈
0, 1, 2, 3, the instructions performs 24−n parity check

computations on 2n+1 chunks; otherwise, the in-

struction performs one parity check calculation on

the entire register.

3. The result is presented in the least-significant bit of

each chunk.

The first step was conveniently chosen to help the

implementation of Fantomas, but it does not affect the

instruction generality. The parity chunk size, imple-
mented using the opcode offset, is also not necessary

for Fantomas, since we only use n = 3. Nonetheless, we

have decided to implement this feature once it brings

more flexibility to the instruction at almost zero hard-

ware cost.

Listing 12 defines the macro ALT CI PARITY 0 used

in the C code for inserting the parity check custom in-

struction. The macro receives the operands A and B, the

opcode offset n, and returns the result. A built-in com-

piler function is used to perform the insertion of the

instruction.

6.3 Experiments using the NIOS II processor

Using the system described in Table 4, we executed the

following experiments:

– Baseline: Non-modified versions for performance

comparison.
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– Parity Instruction: Implementations using our spe-

cialized custom instruction to perform the online

parity check calculation.

– Cache Bypass: Implementations using the cache

bypass mechanism for the L-box access.

– No-Cache: Implementations executed with the pro-

cessor’s cache disabled.

Table 5 shows the results of each experiment. The

first column indicates the versions in which the L-box

is either evaluated Online or when it is queried from

a Table. For the Baseline experiment, Table versions

are non-constant time. Analyzing the results, it can be

noted that the Online versions had a 62% gain on aver-

age when using the specialized instruction rather than

the C implementation for the parity calculation. Con-

sidering the Table versions, we had a 25% slowdown

when using the cache bypass mechanism to mitigate the

side-channel vulnerability. From these results, the best

approach to take still seems to be using precomputed

L-boxes. The Table versions are 47% faster than the

Online ones when using the cache bypass mechanism

and 18% faster with the entire cache disabled.

It should be mentioned, though, that NIOS has a

relatively small cost for memory accesses due to its low

frequency. Thus, the conclusions obtained in this sec-

tion could be different for other architectures.

Listing 11: Cache bypass macro.

#define DONT_CACHE(A) \

uint16_t *A##_t = A; \

uint16_t *A = (uint16_t *)(( uint32_t)A##_t \

| (uint32_t) ALT_CPU_DCACHE_BYPASS_MASK);

Listing 12: Custom instruction macro.

#define ALT_CI_PARITY_0_N 0x0

#define ALT_CI_PARITY_0_N_MASK ((1<<3) -1)

#define ALT_CI_PARITY_0(n,A,B) \

__builtin_custom_inii(ALT_CI_PARITY_0_N + \

(n&ALT_CI_PARITY_0_N_MASK) ,(A) ,(B))

7 Conclusion

We presented several serial and vectorized software im-

plementations of the Fantomas block cipher, produc-

ing more efficient and compact implementations in the

ARM and Intel target platforms. Four approaches for

side-channel resistance were implemented: constant time,

cache protection heuristics, masking and hardware ex-

tensions. The constant time approach for implement-

ing the L-box is of independent interest, as it can also

be easily extended to other LS-Design ciphers. A sim-

ple instruction set extension for parity computation re-

duced the performance penalty of the constant time

countermeasures by more than half. The cache protec-

tion heuristics have a lower performance impact, but

lose security guarantees compared to the isochronous

implementation. Masking illustrates the computational

cost of powerful side-channel countermeasures. Even if

Fantomas was conceived to be easily masked in a pro-

tected implementation, the performance penalty can be

as high as a factor of 27x with 10 shares, when com-

pared to a constant time implementation. We have also

observe that efficient random number generation is an

important research target to enable masked software

implementations to perform well in a realistic setting.

As future work, we leave the task of evaluating what

countermeasures are more effective against different kinds

of side-channel attacks.
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Xavier Standaert, Kerem Varici, François Dur-
vaux, Lubos Gaspar, and Stéphanie Kerckhof.
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