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Abstract. In this paper, we present a practicable chosen ciphertext timing at-
tack retrieving the secret key of HQC. The attack exploits a correlation between

the weight of the error to be decoded and the running time of the decoding al-
gorithm of BCH codes. For the 128-bit security parameters of HQC, the attack

runs in less than a minute on a desktop computer using 5441 decoding requests

and has a success probability of approximately 93 percent. To prevent this at-
tack, we propose a constant time algorithm for the decoding of BCH codes.

Our implementation of the countermeasure achieves a constant time execution

of the decoding process without a significant performance penalty.

1. Introduction

HQC [1, 3] is a code-based IND-CCA2-secure public key encryption scheme,
whose security is based on the hardness of the quasi-cyclic syndrome decoding
problem. It is one of the candidate algorithms that has advanced to the round 2
of the NIST post-quantum standardization project. In particular, HQC relies on
tensor product codes (BCH codes tensored with repetition codes) in its decryption
algorithm. BCH codes are algebraic codes introduced in two independent works by
Bose, Chaudhuri [7] and Hocquenghem [11]. Algorithms to decode BCH codes use
Galois field arithmetic operations and basically consists in three steps: syndromes
computation; error-locator polynomial computation and roots computation.

So far, BCH codes have been used to mitigate the decryption failure in various
public key encryption schemes based on hard problems of either coding theory [1,3]
or lattices [15]. However, due to side channel timing leakage, a straightforward use
of BCH codes would introduce a security weakness in the underlying cryptographic
schemes when implemented in software. In fact, D’Anvers et al. [8] showed that the
security of LAC, a lattice-based cryptosystem [15], could be significantly reduced if
there is a side channel leakage during the error correction of BCH codes.
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2 TIMING ATTACK ON HQC AND COUNTERMEASURE

Furthermore, HQC shares the same framework as the RQC [2, 3] cryptosystem.
It has been shown in [4] that this framework is vulnerable to a timing attack in
the rank metric setting if the decoding of the underlying Gabidulin codes [9] is
implemented in a non constant time fashion.

Achieving a constant time implementation of the decoding of BCH codes is chal-
lenging. In a recent work, Walters and Sinha Roy [16] proposed such a constant
time BCH decoding implementation. However, the algorithms used for syndromes
computation and roots computation are not the most efficient known in the litter-
ature.

Contributions. In this paper, we present a practicable timing attack against HQC
that completes under the minute. As countermeasure, we give two variants of a
constant time algorithm for BCH codes.

Paper organisation. In section 2, we give some preliminaries on code-based cryptog-
raphy, decoding BCH codes as well as the HQC cryptosystem. Next, in section 3,
we present a correlation between the weight of the error to be decoded and the
decoding time of BCH codes. This observation is the cornerstone of the timing
attack detailed in section 4. In section 5, we introduce a constant time implementa-
tion that constitutes a countermeasure to this attack as well as some experimental
results. Finally, we conclude this work in section 6.

2. Preliminaries

In this section, we give some preliminaries regarding the Hamming metric, error-
correcting codes and the HQC cryptosystem.

2.1. Coding theory. Let F2 be the binary finite field and Fn2 the vector space of
dimension n over F2 for some positive integer n. Elements of Fn2 are considered as
vectors or polynomials in F2[X]/(Xn − 1).

Definition 2.1 (Support). Let x ∈ Fn2 . The support of x is the set of indices
i ∈ [[0, n− 1]] such that xi = 1.

Definition 2.2 (Hamming weight). Let x ∈ Fn2 . The Hamming weight of x, de-
noted by w(x), is the cardinal of its support, i.e. the number of its non-zero coor-
dinates.

Definition 2.3 (Hamming distance). Let x,y ∈ Fn2 . The Hamming distance from
x to y, denoted by d(x,y), is defined as w(x−y), i.e. the number of coordinates x
and y differ on.

Definition 2.4 (Linear code). A linear [n, k]-code C of length n and dimension k
is a linear subspace of Fn2 of dimension k.

Definition 2.5 (Generator matrix). A matrix G ∈ Fk×n2 is a generator matrix for
the [n, k]-code C if C =

{
mG

∣∣ m ∈ Fk2
}

.

Definition 2.6 (Parity-check matrix). A matrix H ∈ F(n−k)×n
2 is a parity-check

matrix for the [n, k]-code C if C =
{
x ∈ Fn2

∣∣ Hx> = 0
}

.

Definition 2.7 (Correction capacity). Let C be a linear [n, k]-code. The correction
capacity of C is the largest δ ∈ N such that for all x ∈ Fn2 , there is at most one
c ∈ C such that d(x, c) ≤ δ. The code C is called a [n, k, δ]-code.
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Definition 2.8 (Cyclic code [14]). A code C is said to be cyclic if every cyclic
shift of a codeword in C is also a codeword. That is, (c0, c1, . . . , cn−1) ∈ C implies
(cn−1, c0, . . . , cn−2) ∈ C.

Theorem 2.9 (Generator polynomial [14]). Let C be a cyclic code over F2. There
exists a unique polynomial g(x) in C of minimal positive degree. Moreover, a poly-
nomial c(x) is a codeword of C if and only if g(x) divides c(x). The polynomial g(x)
is called the generator polynomial of the cyclic code C.

HQC uses a tensor product code obtained as the combination of a BCH code
with a repetition code.

Definition 2.10 (Tensor product code [1]). Let C1 (resp. C2) be a [n1, k1] (resp.
[n2, k2]) linear code over F2. The tensor product code of C1 and C2 denoted C1⊗C2
is defined as the set of all n2 × n1 matrices whose rows are codewords of C1 and
whose columns are codewords of C2. More formally, if C1 (resp. C2) is generated by
G1 (resp. G2), then

C1 ⊗ C2 =
{

G>2 XG1

∣∣∣ X ∈ Fk2×k12

}
Theorem 2.11 (BCH code [14]). For any positive integers m ≥ 3 and t < 2m−1,
there exists a binary cyclic BCH [n, k, δ]-code with the following properties:
n = 2m − 1; n− k ≤ mt; δ ≥ t. Let α be a primitive element in F2m , and let φi(x)
be the minimal polynomial of αi for 1 ≤ i ≤ 2δ. The generator polynomial g(x) of
the BCH [n, k, δ]-code is the least common multiple of φ1(x), φ2(x), . . . , φ2δ(x), that
is,

g(x) = LCM {φ1(x), φ2(x), . . . , φ2δ(x)} .

BCH codes encoding. Given the generator polynomial g(x) and a message u(x) =
u0 + u1x+ . . .+ uk−1x

k−1, the encoding of BCH codes consists of three steps:

(1) Compute a(x) = xn−ku(x).
(2) Compute b(x) = a(x) mod g(x).
(3) Form the codeword c(x) = a(x) + b(x).

BCH codes decoding. The decoding of BCH codes also consists of three steps:

(1) Compute the 2δ syndromes from the received polynomial r(x).
Let c(x) denote the sent codeword and e(x) the error word, one has:

r(x) = c(x) + e(x)

For 1 ≤ i ≤ 2δ, the syndromes Si are defined as:

Si = r(αi) = e(αi)

(2) Compute the Error Locator Polynomial (ELP) σ(x) using the syndromes
(Si)1≤i≤2δ.

Let v be the number of errors and let j1, j2, . . . , jv be the error positions.
Then:

e(x) = xj1 + xj2 + . . .+ xjv

So:

Si = (αi)j1 + (αi)j2 + . . .+ (αi)jv (1 ≤ i ≤ 2δ)
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Introducing the error locators βs = αjs , with s = 1, 2, . . . , v, one can write
the syndromes more explicitely:

S1 = β1 + β2 + . . .+ βv

S2 = β2
1 + β2

2 + . . .+ β2
v

...

S2δ = β2δ
1 + β2δ

2 + . . .+ β2δ
v

These are known as power sum symmetric functions. They lead to the
definition of the error locator polynomial:

σ(x) =

v∏
r=1

(1 + βrx) =

v∑
r=0

σrx
r

(σi)1≤i≤v and (Si)1≤i≤2δ are then related by Newton’s identities:

S1 + σ1 = 0

...

Sδ + σ1Sδ−1 + . . .+ σδ−1S1 + δσδ = 0

Sδ+1 + σ1Sδ + . . .+ σδ−1S2 + δσδS1 = 0

...

S2δ + σ1S2δ−1 + . . .+ δσδS1 = 0

(1)

(3) Compute the roots of the error locator polynomial σ(x).
These roots β−11 , β−12 , . . . , β−1v are the inverses of the error locators. Once

found, one can retrieve error positions j1, j2, . . . , jv and correct r(x).

Definition 2.12 (Repetition code). The binary repetition code 1n of length n is
the set of two codewords 1n (the all ones) and 0n (the all zeros). It has dimension
1 and correction capacity bn−12 c.

The 1n code is an error-correcting code where encoding is done by repeating the
message bit n times. Decoding is done by majority decision; it outputs 1 if there is
a majority of 1 and 0 otherwise.

2.2. The HQC public key encryption scheme. Hamming Quasi-Cyclic [1,3] is
a code-based IND-CCA2 secure encryption scheme whose security relies on the syn-
drome decoding problem. It is obtained by applying the HHK transformation [12]
on the IND-CPA construction denoted HQC.PKE (depicted in Figure 1). HQC
uses two types of codes: a tensor code C of generator matrix G and a random
double-circulant [2n, n]-code with a parity check matrix (1,h).

The correctness of HQC relies on the decoding capability of the code C. In-
deed, Decrypt(sk, Encrypt(pk,m)) = m when C.Decode correctly decodes v−u · y,
namely whenever w (x · r2 − r1 · y + e) ≤ δ.

The tensor product code C is defined by C = B ⊗R, where B is a [n1, k, δ] BCH
code andR is the [n2, 1, bn2−1

2 c] repetition code 1n2 . Encoding a given message m ∈
Fk12 is done in two steps. Firstly, it is encoded into b ∈ Fn1

2 using the aforementioned
BCH code B. Secondly, each coordinate bi of b is re-encoded into ci ∈ Fn2

2 , for
0 ≤ i ≤ n1 − 1, with the repetition code R = 1n2 . This yields the codeword
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(c0 c1 . . . cn1−1). Similarly, decoding a = (a0 a1 . . . an1−1) with ai ∈ Fn2
2 for

0 ≤ i ≤ n1−1 is also done in two steps. Firstly, the repetition code R decodes each
ai into a bit bi. Secondly the BCH code B decodes the word b = (bi)0≤i≤n1−1 into
the message.

• Setup(1λ): Generate and return parameters param = (n, k, δ,G, ω, ωr, ωe)
• KeyGen(param):

– sk = (x,y)
$← (Fn2 )2 such that ω(x) = ω(y) = ω

– h
$← Fn2

– pk = (h, s = x + h · y)
– Return (pk, sk)

• Encrypt(pk,m):

– r = (r1, r2)
$← (Fn2 )2 such that ω(r1) = ω(r2) = ωr

– u = r1 + h · r2
– e

$← Fn2 such that ω(e) = ωe

– v = mG + s · r2 + e
– Return c = (u,v)

• Decrypt(sk = (x,y), c = (u,v)):
– a = v − u · y
– b = (R.Decode(a0),R.Decode(a1), . . . ,R.Decode(an1−1))
– m = B.Decode(b)
– Return m

Figure 1. Description of HQC.PKE [1].

3. Correlation between decoding time and error weight

In this section, we show that there exists a correlation between the weight of the
error to be decoded and the running time of the BCH codes decoding algorithm,
assuming Berlekamp’s simplified algorithm [14] (see appendix A) is used for the
second step of decoding. We next describe an oracle distinguishing BCH codewords
without errors from those with one error exactly using the running time of the
HQC.Decrypt algorithm (see Figure 1).

Berlekamp’s simplified algorithm (see appendix A) is an iterative algorithm solv-
ing the set of equations (1). It completes in δ iterations. It starts with σ(x) = 1. At
iteration µ, it computes a quantity dµ, called discrepancy, whose value is 0 if the µth
equation from system (1) holds. If not, it corrects σ(x) such that equation µ holds.
The loop invariant is that after µ iterations, the first µ equations of system (1) are
verified. Looking at the pseudocode from appendix A, one can see that:

• For a codeword without error, all discrepancies are zero and the algorithm
completes without corrections.
• For a codeword with one error, the first syndrome is αj1 where j1 is the

error position and one correction is needed.

Assuming constant running time for the other steps of B.Decode (syndromes com-
putation and roots search) as well as the other parts of the HQC.Decrypt subrou-
tine (multiplication and repetition code decoding), one can build the aforemen-

tioned oracle. Let OHQCTime denote a timing oracle returning the running time of the
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HQC.Decrypt algorithm. We now explain how to construct an oracle, denoted by

OHQC01 , returning the weight (0 or 1) of the error corrected by the BCH code, using

OHQCTime . The oracle OHQC01 takes as input an HQC public key pk (which implicitely
defines a BCH code B) and a ciphertext c = (u,v).

The oracle features an initialization step Init (see Algorithm 1) and an evaluation
step Eval (see Algorithm 2). The Init step computes the expected running times T0
and T1 when the BCH code corrects 0 and 1 error respectively. To obtain these

times T0 and T1, the proper requests have to be submitted to OHQCTime . In order to
construct them, one has to account for the additionnal layers of multiplication and
R decodings on top of BCH decoding. The repetition code layer sees its input a, of
length n = n1n2, as n1 blocks of n2 bits:

a = (a0,a1, . . . ,an1−1) ai ∈ Fn2
2

Each block ai gives a bit bi of the output vector b (fed to the BCH decoder)
where bi = 1 if the block contains a majority of 1 and bi = 0 otherwise. To compute

T0 and T1 we simply query the timing oracle OHQCTime and measure its response time
with u = 0n and v = 0n to get an estimation of T0 and u = 0n and v = (1n2

0n−n2
)

to get an estimation of T1 as b = (1 0n1−1).
As described in Algorithm 1, for T1 we make a sample of p requests and retain

their mean as the estimate. The complexity of this initialization step is that of 1+p
decodings which will be negligible with respect to the rest of the attack.

The Eval step takes a word c as input and guesses whether or not the BCH code

corrects an error during the HQC decryption of c. To this end, it calls OHQCTime (pk, c),
yielding the running time t, and outputs the error weight i such that | t − Ti | is
minimal.

The complexity of a OHQC01 request (i.e. an Eval step) is equal to the complexity
of an HQC decryption, namely O(n

√
n) operations in Fqm (under the assumption

δ = O(
√
n) as is the case in HQC, see section 4.2).

Algorithm 1: Init step of OHQC01

Input: A public key pk
A precision parameter p

Output: A couple (T0, T1) of expected running times

T0 ←− OHQCTime (pk,02n)

T1 ←− 0

for i ∈ (0, 1, . . . , p− 1) do

b
$←−− {1, 2, . . . , n1}

c←− (0(b−1)∗n2
1n2

0n−b∗n2
)

T1 ←− T1 +OHQCTime (pk, c)

T1 ←− T1/p

return (T0, T1)
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Algorithm 2: Eval step of OHQC01

Input: A public key pk and a ciphertext c
Expected running times T0 and T1

Output: The error weight 0 or 1 that the BCH code B corrected during
HQC.Decrypt(sk, c)

t←− OHQCTime (pk, c)

return i such that | t− Ti | is minimal

4. Practicable timing attack against HQC

In this section, we present a side-channel chosen ciphertext attack against HQC.
This attack is a real threat as it has a polynomial complexity and requires a rea-
sonable amount of requests. It proceeds by iterations until the key y is recovered.
We first give a brief overview of the attack in section 4.1. We follow by describ-
ing its first two iterations in sections 4.2 and 4.3. Finally, we estimate its success
probability in section 4.4 and discuss the attack complexity and bandwidth cost in
section 4.5.

4.1. Attack overview. The key y has a Hamming weight of ω, meaning it contains
ω bits 1 and n − ω bits 0. The objective of the attack is to recover the support
of y, i.e. (the positions of) all 1’s. Consider secret key y as n1 blocks of n2 bits.

After initializing the oracle OHQC01 , the attack proceeds by iterations. At iteration
i, the attack searches block by block, finding out all 1’s from each block containing
exactly i. This is done by querying the oracle with appropriate requests. For all
requests, the vector u is chosen as

u = ū := (1 0n−1)

such that u · y = y and a = v⊕ y. The input a isn’t fed directly to the BCH code
decoder but needs to go through the repetition code decoder first. So one wants
to pick v such that v ⊕ y establishes a majority of 1’s in the block that v alone
wouldn’t have. This naturally leads us to consider vectors v having a 1 in bn2

2 c
positions of a block vi. Doing so,

• either block yi has a 1 in one of the remaining positions which leads (v⊕y)i

to have a majority of 1’s, and the oracle returns 1;
• or block yi has no 1’s in the remaining positions, (v⊕ y)i has no majority

of 1’s, and the oracle returns 0.

Either way the oracle response leaks information on block yi’s content. Neverthe-
less, this strategy does not always work as y can have multiple 1’s per block. When
it does, these 1’s could cancel those we set in v and break our majority, preventing
us to gain information. This complexifies our task and is the reason why we split
the attack in different iterations, each designed to search within y’s blocks for a
certain number of 1’s. For the sake of clarity and simplicity, we only describe the
first two iterations.

4.2. First iteration. During the first iteration, we aim to recover all 1’s of y alone
in their block. Let’s consider the (i+1)-th block yi of y (0 ≤ i ≤ n1− 1) and vi the
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corresponding block of v. In order to determine the position of an eventual lone 1
in yi, we start querying the oracle with (ū,v) such that:

• vj = 0n2 if j 6= i
• vi = (1bn2

2 c
0dn2

2 e
)

If the oracle response is 1, it means B corrected an error, thus yi has a 1 in one of
its last dn2

2 e positions. Proceeding by dichotomy, we can then submit to the oracle
the query (ū,v) with:

• vj = 0n2 if j 6= i
• vi = (0⌊ dn2

2
e

2

⌋ 1bn2
2 c

0⌈ dn2
2
e

2

⌉)
For example, if n2 = 31, our first request would be with vi = (115 016). Assuming
a response 1 we would identify a 1 in one of the last 16 positions and follow with
a second request where vi = (08 115 08), reducing by half the set of remaining
candidates for the position of the 1. This allows us to pinpoint the position in
blog2 n2c+ 1 requests.

If we get a response 0 to our first request, the same amount of requests is enough
to either find the position of the lone 1 or know there aren’t any. However, since
there are many more blocks without 1 than blocks with any, one can reduce the
number of requests. Instead the second request is (ū,v) with:

• vj = 0n2
if j 6= i

• vi = (0dn2
2 e

1bn2
2 c

)

This way, if the oracle returns 0, one can immediately dismiss the block with this
second request as it does not have exactly one 1. This implies to perform an extra
request if it turns out there’s a 1 to find but saves us blog2 n2c − 1 requests most
of the time. Since there are a total of n1 blocks, and that y has at most ω blocks
containing a single 1, the first iteration requires at most 2(n1−ω)+ω(blog2 n2c+1)
requests. Let’s examine the complexity of this iteration. A request amounts to:

• the computation of v − u · y. The product complexity is 2ωn + (ω − 1)n
(rotating ω arrays of size n and summing the resulting vectors). With the
final addition, this iteration’s complexity is 3ωn.
• n1 R-decodings of complexity n1((n2−1)+1) = n (for each of the n1 blocks,

its n2 bits are summed and a comparison is done).
• a B-decoding of complexity O(n21) under the HQC hypothesis δ = O(

√
n).

Under the assumption ω = O(
√
n), we get a request complexity of O(n

√
n) and

an overall complexity in O(n
5
2 ) for the first iteration.

The probability that the attack is successful after this first iteration is low enough
(see section 4.4) that it calls for a second iteration.

4.3. Second iteration. The first iteration of the attack identified all 1’s alone in
their blocks. We now look for blocks of y containing exactly two 1’s. In order to
do so, we need to analyze what happens when one encounters such a block during
the first iteration. There are two kinds of situations:

• case a: both 1’s are in the same half of the block (including the middle
position if n2 is odd). If they’re in the upper half, our first request gets
a response 1 and we end up identifying the position of the 1 closer to the
middle of the block. If they’re in the lower half, our first request gets a
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response 0 but our second request gets a response 1 and we again end up
identifying the position of the 1 closer to the middle of the block.
• case b: both halves have a 1 (note that the case where n2 is odd and there

is a 1 in the middle would have been detected already). In that case the
first two requests return 0 and the block is discarded.

The second iteration will be divided in two phases treating blocks falling in each
case. One can remark that there should be roughly the same amount of blocks
falling in each case, simply because if one fixes a position in a block and randomly
picks another position of the block, there’s almost as many positions left in the
same half as in the other half.

4.3.1. Phase 1. Here the search is focused on blocks in which a 1 has already been
identified. Clearly this situation is very similar to the first iteration. We can just
ignore the 1 we know of, consider the block is of length n2 − 1 and assume we
need one less to achieve majority. This can be done using dichotomy as in the
first iteration except each time we pick bn2

2 c − 1 positions out of these n2 − 1.
This phase can be performed efficiently as at most bω2 c blocks have to be looked
into. This makes a maximum of bω2 c(blog2 n2c+ 2) requests. Under the hypothesis
ω = O(

√
n), this phase complexity is:

bω
2
c(blog2 n2c+ 2)O(n

√
n) = O(n2 log2 n)

4.3.2. Phase 2. Now we turn to the remaining blocks. We want to catch those
containing precisely two 1’s. Let’s recall that in the event of such a block, it has a
1 in each block half (and none in the middle if n2 is odd). We can generalize the
same strategy applied in the first iteration; we can distinguish if the block contains
or not a pair of 1’s in four requests (ū,v) with vj = 0 if j 6= i and:

• vi = (1⌊ bn2
2
c−1

2

⌋ 0⌈ dn2
2
e+1

2

⌉ 1⌈ bn2
2
c−1

2

⌉ 0⌊ dn2
2
e+1

2

⌋)
• vi = (0⌈ dn2

2
e+1

2

⌉ 1⌊ bn2
2
c−1

2

⌋ 0⌊ dn2
2
e+1

2

⌋ 1⌈ bn2
2
c−1

2

⌉)
• vi = (1⌊ bn2

2
c−1

2

⌋ 0⌈ dn2
2
e+1

2

⌉ 0⌊ dn2
2
e+1

2

⌋ 1⌈ bn2
2
c−1

2

⌉)
• vi = (0⌈ dn2

2
e+1

2

⌉ 1⌊ bn2
2
c−1

2

⌋ 1⌈ bn2
2
c−1

2

⌉ 0⌊ dn2
2
e+1

2

⌋)
Since one knows the 1’s are in different halves of the block, there are only four

different pairs of quarters they can be in. Each of the aforementioned requests
tests one such pair. Therefore, if the oracle returns 0 to these four requests, the
block contains either no 1’s or more than two. If the oracle answers 1 to one
of these requests, one retrieves two ranges of indices, both containing a 1. Then
proceeding by dichotomy for each range, one can narrow it down to a singleton

in

⌊
log2

⌈ dn2
2 e+1

2

⌉⌋
+ 1 requests. In the worst case scenario, we have bω2 c blocks

containing two 1’s, none of which have been detected yet. This takes⌊
ω

2

⌋(
4 + 2

⌊
log2

⌈dn2

2 e+ 1

2

⌉⌋
+ 2

)
+ 4

(
n1 −

⌊
ω

2

⌋)
requests to find them all, from which we derive the second iteration complexity of:[

2

⌊
ω

2

⌋(⌊
log2

⌈dn2

2 e+ 1

2

⌉⌋
+ 1

)
+ 4n1

]
O(n
√
n) = O(n

5
2 )
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4.4. Success probability estimation. Let’s calculate the probabilities that y has
been retrieved after each iteration. Let the following events be for 0 ≤ i ≤ bn1

2 c:
Ai : “y has exactly i blocks with two 1’s and no block with more.”

A : “y has at most two 1’s per block.”

The event A0 can also be described as the attack being successful after the first
iteration. This means y has ω blocks containing a single 1 for which we have n2
positions to choose from and n1 − ω blocks containing none. Therefore:

P(A0) =

(
n1
ω

)(
n2
1

)ω

With HQC-128-1 [1] parameters n1 = 796, n2 = 31 and ω = 67, one has
P(A0) ' 0.0625. One recover 6.25 percent of potential keys y after the first it-
eration.

Let’s now compute the probability P(A) that the attack is successful after at
most two iterations. A is the disjoint union of the Ai:

P(A) =

bn1/2c∑
i=0

P(Ai)

P(A) =

(
n

ω

)−1 bn1/2c∑
i=0

(
n1
i

)(
n2
2

)i(
n1 − i
ω − 2i

)(
n2
1

)ω−2i
With n1 = 796, n2 = 31 and ω = 67, one finds P(A) ' 0.9344. 93 percent of

potential keys have been retrieved after the second iteration. One could show that
the attack success probability after three iterations is above 99 percent.

4.5. Attack complexity and bandwidth cost. Table 1 presents the attack com-
plexity and the number of required requests with respect to HQC parameters. Since
the multiplication takes most of the decryption workload, we took twice its com-
plexity (i.e. 6ωn) as an upper bound of a request complexity.

We implemented the attack locally for HQC-128-1. Table 1 assumes each oracle
request is done once. However, in a real life scenario, different runs of the same
request usually yield slightly different execution times. This derails the attack if
the real execution time is closer to Ti than T1−i but the measured execution time
is closer to T1−i than Ti for i = 0, 1. To mitigate this effect, we take the standard
approach of repeating each request several times, each time measuring the execution
time, and taking the median of the batch as execution time estimate. The tests were
performed on a machine with 16GB of memory, equipped with an Intel core i7-7820X
CPU@3.60GHz and with Hyper-Threading, Turbo Boost and SpeedStep features
disabled. On this machine, repeating each request nine times, the attack against
HQC-128-1 takes less than a minute to complete. We ran a thousand attacks. As
expected, 7% of them fail because the key y has a block with at least three 1’s. 5%
of them also fail because of the aforementioned random nature of measurements.
This can be lowered by raising the repeat count to the expense of a higher running
time. Overall 88% of attacks succeed.

5. Constant time decoding of BCH codes

A constant time BCH code decoding algorithm naturally thwarts the attack. In
this section we discuss how to construct such an algorithm. We start by precising
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Complexity upper bound Requests

128− 1 192− 2 256− 3 128− 1 192− 2 256− 3

Oracle Init (p = 1) 225 226 227 2 2 2

First iteration 235 236 237 1793 1936 2257

Second iteration -
phase 1

231 234 235 198 350 528

Second iteration -
phase 2

235 237 238 3448 3564 3844

Total 236 238 239 5441 5852 6631

128-1: 128-bit security and a Decoding Failure Rate (DFR) less than 2−64

192-2: 192-bit security and a DFR less than 2−96

256-3: 256-bit security and a DFR less than 2−128

Table 1. Attack complexity and bandwidth cost against HQC

the constant time model we are considering and discuss how one can tranform a non
constant time algorithm into a constant time one (section 5.1). We then apply these
techniques to finite field arithmetic (section 5.2), syndromes and roots computation
(section 5.3) and ELP computation (section 5.4). This allows us to provide two
variants of a constant time algorithm to BCH code decoding. To finish, we provide
the results of our tests and discuss which variant should be considered depending
on the chosen BCH code and the targeted material (section 5.5).

5.1. Constant time implementation. For constant time implementation, two
security models are usually considered: full constant time, where the algorithm
running time is indeed constant; and timing attack resistant, where the algorithm
running time is independant of its secrets (although its running time may vary).
Since an attacker can force the BCH code decoder to use the secret y as its in-
put (with ciphertext (0n,1n2

0n−n2
) for example), we hereafter consider the full

constant time model.
There are three kinds of obstacles to constant time implementation: loops whose

bound is input-dependant, branches whose condition is input-dependant and input-
dependant memory accesses. Natural fixes for each of these obstacles would respec-
tively be [16]:

• To patch loops whose condition depends upon inputs by supplying a con-
stant bound (the maximum number of iterations) and performing dummy
operations once the original bound has been reached.
• To patch branches whose condition depends upon inputs by executing both

branches and using a flag to control which branch is effectively executed.
• To patch array accesses whose index depends upon inputs either by elimi-

nating them or by ensuring the corresponding address is already cached.

Dealing with leaking array accesses can be done in several ways. Walters and
Sinha Roy [16] suggest patching each such access by scanning the whole array to
load it into the cache. For nested array accesses, this operation may induce a huge
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performance penalty. One may scan the array less often, but it requires being careful
about addresses not being evicted from the L1 cache. One also has to be wary of
the compiler with this approach, as compilers tend to identify these kinds of “do
nothing” loops and optimize them out. We will denote the approach of scanning an
array having potential leaking accesses once (and only once) as a cache-dependant
patch as it works only if the cache is big enough or if code parameters are small
enough. Note that even if the access doesn’t leak anymore, it still, stricly speaking,
depends on the inputs. The second approach is a cache-independant patch, which
consists of removing the array access entirely. The idea is to first determine the
range of indices that can potentially be accessed, then loop on all these indices,
each time performing either a dummy operation or the real one as needed.

Now recall from section 2.1 that BCH code decoding has three steps: syndromes
computation, ELP computation and roots computation. To provide a constant time
implementation of BCH code decoding, we need to achieve constant time for Galois
field arithmetic as well as for each of these three steps. We propose two variants: one
with some cache-dependant array accesses and one without any cache-dependant
array access.

5.2. Constant time field arithmetic. All three steps of decoding make abundant
use of field operations (mostly additions and multiplications) that need be constant
time.

Addition. For addition we use coefficient-wise xor.

Multiplication. We propose two implementations for multiplication:

• lookup tables. Given log and antilog tables (relative to a primitive ele-
ment α ∈ F2m), multiplying two elements of F2m is done by taking their
logarithms, adding them modulo 2m − 1, and taking the antilog.
• the CLMUL instruction set. This is an extension to the x86 instruction

set for microprocessors from Intel and AMD. The pclmulqdq instruction
computes the 128-bit carry-less product of two 64-bit values. We then
reduce modulo the primitive polynomial using bitwise operations.

Implementation 2 is constant time but requires support for the CLMUL instruc-
tion set. Note that if one knows of a more efficient multiplication implementation
or if the CLMUL instruction set it not available, one can use any other multiplica-
tion implementation as long as it is constant time. Implementation 1 is faster but
not constant time by itself because it uses three input-dependant array accesses.
However, using the aforementioned cache-dependant patch, that is scanning both
log and antilog tables at the beginning of decoding, we may have implementation 1
run in constant time, depending on cache size and code parameters. These two un-
derlying implementations for field multiplication distinguish our two constant time
implementation variants.

Squaring. For squaring we use bitwise operations with constant shift amounts.

Inversion. For inversion we use fast exponentiation.

5.3. Constant time syndromes computation and roots computation. We
start with steps 1 and 3 of BCH decoding, i.e. computation of syndromes and roots.
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For both we benefit from fast algorithms developped by Bernstein et al. [6], who
built on previous work from Gao and Mateer [10]. They use an additive Fast Fourier
Transform (FFT) algorithm to compute the syndromes and its transpose algorithm
to compute the ELP roots. Both these algorithms are constant time. We refer the
reader to the aforementioned papers for more details on the additive FFT.

We describe a small adjustment to these algorithms. Additive FFT is a recursive
algorithm which calls two copies of itself. At each recursion level, some constants
(called gammas and deltas) are computed using field operations. Bernstein et al.
propose a bitsliced version of the algorithm. Since we use a non bitsliced version
here, field operations are more costly. As a result, recomputing these constants is
more expensive than accessing them from an array (even factoring some L1 cache
misses). Therefore, we compute these constants only once and store them in lookup
tables for our subsequent needs. Note that the array accesses to these tables are
not subject to timing leaks.

5.4. Constant time error locator polynomial computation. Here we start
with Berlekamp’s simplified algorithm [5, 13] (see appendix A). We then use the
standard techniques described in section 5.1 to make it constant time, opting for the
cache-independant approach when we encounter input-dependant array accesses.
Because pseudocode hides implementation details by nature whereas constant time
is an implementation-sensitive property, we give a constant time C implementation
of Berlekamp’s simplified algorithm in appendix B.

5.5. Test results. The benchmarks are performed on a machine which has 16GB
of memory and is equipped with an Intel core i7-7820X CPU @ 3.60GHz. Hyper-
Threading, Turbo Boost and SpeedStep features are disabled. L1 data cache is 32
kilobytes. We pick six BCH codes of various parameters. For each chosen BCH code
[n, k, δ], we conduct two tests (one for each implementation of field multiplication)
as follows. We generate 10 000 erroneous codewords with a distribution of error
weights between 0 and 1.1δ where errors positions are picked randomly. Each code-
word is decoded 100 times. Out of each batch, the minimum execution time is taken
as estimate execution time for decoding that codeword. For each error weight of the
distribution, we also monitor minimum and maximum of these minimum running
times. At the end of the test, for each of the two codewords giving global mini-
mum or maximum, we run another 100 decodings and take the minimum to confirm
whether or not these extremums are circumstantial (these recomputed values don’t
appear on the graphs). For the two BCH codes [796, 256, 60] and [766, 256, 57] used
in HQC, we use some optimizations. Firstly we use hardcoded lookup tables for
both F1024 and the FFT constants. Secondly we use all optimizations suggested
by Bernstein et al. [6] regarding the additive FFT, namely picking an ideal basis
to avoid twisting; dealing with 2-coefficent and 3-coefficient polynomials more effi-
ciently and unrolling both the FFT and its transpose. Note that these codes are
shortened BCH codes. Because it doesn’t fundamentally impact our case, we won’t
discuss it here but we refer the reader to [1] for more details. An implementation
will be made available at pqc-hqc.org.

We give the results in the form of graphs (see figures 2 and 3). Figure 2 features
the decoding of all six codes using lookup tables for field multiplication whereas
figure 3 features these same codes using the pclmulqdq instruction for field mul-
tiplication. Each graph is vertically centered around the mean execution time
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tmean. Vertical axes spread from 0, 95tmean to 1, 05tmean, except for the last code
[32767, 16412, 1315] where it stretches from 0, 85tmean to 1, 15tmean.

As expected, on one hand, the second implemention of multiplication looks per-
fectly constant time (see figure 3). For all six codes, regardless of number of errors,
the relative difference between any extremum and the mean decoding time always
stays under 1%. On the other hand, the first implementation appears to be constant
time only for the first three codes, that is if m ≤ 12, i.e. up to F4096 (see the first
three graphs of figure 2). Above that, the first implementation runs into cache issues.
Indeed, our implementation uses uint16_t to represent field elements, which means
two bytes per element. For F8192, log and antilog tables require 2 ∗ 2 ∗ 8192 = 32767
bytes, which completely fill the L1 data cache of 32 kilobytes for the considered ma-
chine. From there, any computation will lead to addresses being evicted from the
cache, which in turn will cause timing leaks (see the last three graphs of figure 2).
For F4096, the lookup tables take only half the memory, which seems to leave enough
for our decoding needs. However, for the small fields where it is constant time, the
first implementation has better performance than the second (see tables 3 and 4).
For the BCH codes used in HQC, observed decoding times are 30% faster. So our
recommendation would be to use the first multiplication implementation (lookup
tables) for BCH codes on field F4096 or smaller, which is the case of HQC, and to
use the second multiplication implementation (via pclmulqdq) for larger fields.

We integrated the constant time BCH decoding algorithm in the optimized im-
plementation of HQC IND-CCA2 to measure the performance overhead. We restrict
our measurements to the lookup tables variant of the BCH decoding. In table 2
we report CPU cycles counts for the decapsulation step of HQC across the differ-
ent security levels with either the original BCH implementation or the constant
time variant. One can see that our constant time implementation only adds a little
overhead between 3.21% and 11.06%.

Table 2. Running time (CPU cycles) and overhead when original
or constant time BCH decoding is used in the decapsulation step
of HQC

HQC.Decaps
Overhead

Original BCH
Constant time

BCH

HQC-128-1 507285 563414 11.06%

HQC-192-1 947552 995272 5.05%

HQC-192-2 992057 1047054 5.54%

HQC-256-1 1490993 1538824 3.21%

HQC-256-2 1562207 1616673 3.49%

HQC-256-3 1617269 1675195 3.58%
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6. Conclusion

In this work, we have highlighted a correlation between the weight of the error
to be decoded and the running time of decoding BCH codes when Berlekamp’s
simplified algorithm is straightforwardly implemented. Next, we have devised an
efficient chosen ciphertext timing attack against HQC based on that correlation. We
then implemented it in software and carried it out against different security levels
of HQC. The attack is very efficient as it recovers the secret key y often enough
in a couple iterations and its overall complexity is O(n

5
2 ). In order to thwart this

attack, we proposed two variants of a constant-time decoding algorithm for BCH
codes. Furthermore, we integrated our new constant time algorithm in the latest
version of HQC and showed that this countermeasure results in minimal overhead
performance.
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Table 3. Decoding of some BCH codes with multiplication by tables

BCH code [n, k, δ]
Running time (in CPU cycles)

LuT Syndromes ELP Roots Total

[766, 256, 57] 0 34240 30089 26778 91873

[796, 256, 60] 0 34646 33359 27086 95861

[4095, 418, 501] 82491 291827 2145899 187004 2711521

[8191, 7580, 47] 124587 278191 23216 186407 616569

[16383, 14598, 130] 245850 789651 166062 552630 1760773

[32767, 16412, 1315] 503337 2531258 17361393 1786677 22217535

Table 4. Decoding of some BCH codes with multiplication by pclmulqdq

BCH code [n, k, δ]
Running time (in CPU cycles)

LuT Syndromes ELP Roots Total

[766, 256, 57] 0 42799 50735 34017 128226

[796, 256, 60] 0 43560 55562 34404 134157

[4095, 418, 501] 96997 474817 4585893 321102 5482880

[8191, 7580, 47] 134176 443016 61288 311542 953739

[16383, 14598, 130] 260450 1501411 474177 1106680 3352090

[32767, 16412, 1315] 484200 2143567 14832791 1514189 18996691
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Figure 2. Decoding execution times (in CPU cycles) of various
BCH codes for different error weights with field mutliplication im-
plemented by lookup tables (variant 1).
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Figure 3. Decoding execution times (in CPU cycles) of various
BCH codes for different error weights with field multiplication im-
plemented via pclmulqdq instruction (variant 2).
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Appendix A. ELP computation

Algorithm 3: Simplified Berlekamp algorithm [5,13]

Input: A list of syndromes S1, S2, . . . , S2δ

Output: The corresponding error locator polynomial σ(X)

/* Initialize the following array */

µ σ(µ)(X) dµ lµ 2µ− lµ
− 1

2 1 1 0 −1
0 1 S1 0 0

/* Fill the array’s next lines as follows */

repeat
if dµ = 0 then

σ(µ+1)(X) = σ(µ)(X)

lµ+1 = lµ

if dµ 6= 0 then
Find another line ρ, where dρ 6= 0 and 2ρ− lρ is maximal

σ(µ+1)(X) = σ(µ)(X) + dµd
−1
ρ X2(µ−ρ)σ(ρ)(X)

lµ+1 = max(lµ, lρ + 2(µ− ρ))

Compute dµ+1 = S2µ+3 + σ
(µ+1)
1 S2µ+2 + . . .+ σ

(µ+1)
lµ+1

S2µ+3−lµ+1

Increment µ and compute 2µ− lµ
until µ = δ

return σ(δ)(X)
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Appendix B. Constant time ELP computation

The C function below computes the error locator polynomial using a constant
time version of Berlekamp’s simplified algorithm. It has the following features:

• The constant PARAM_DELTA is the correction capacity δ > 1 of the BCH
code.
• Elements of F2m are represented by uint16_t as polynomials (m ≤ 15).
• gf_mul is the Galois field multiplication. It takes two elements and returns

their product.
• gf_inverse computes an element inverse. It returns 0 for input 0.
• syndromes is an array of size 2*PARAM_DELTA storing the 2δ syndromes.
• sigma is an array of size PARAM_DELTA + 1 that will receive the δ + 1 coef-

ficients of the ELP.
• The function returns the degree of σ(X) (and its coefficients in the array
sigma).
• The array X_sigma_p represents the polynomial X2(µ−ρ)σρ(X).

• Instead of maintaining a list of σ(i)(X), we update in place both σ(X)
(array sigma) and the corrective term X2(µ−ρ)σρ(X) (array X_sigma_p).
• We don’t care about σ(X) if its degree exceeds PARAM_DELTA [13]. So we

don’t care about X_sigma_p if its degree exceeds PARAM_DELTA either.
• sigma_copy serves as a temporary save of sigma in case we need it to update
X_sigma_p. We only need to save the first PARAM_DELTA−1 coefficients of
sigma.

s i z e t

compute elp ( u i n t 1 6 t ∗ sigma ,
const u i n t 1 6 t ∗ syndromes )

{
memset ( sigma , 0 , 2∗(PARAM DELTA+1)) ;

sigma [ 0 ] = 1 ;

s i z e t deg sigma = 0 ;
s i z e t deg s igma p = 0 ;

u i n t 1 6 t sigma copy [PARAM DELTA − 1 ] = {0} ;

s i z e t deg s igma copy = 0 ;
u i n t 1 6 t X sigma p [PARAM DELTA + 1 ] = {0 , 1} ;

i n t pp = −1; // 2∗ rho
u i n t 1 6 t d p = 1 ;
u i n t 1 6 t d = syndromes [ 0 ] ;

f o r ( s i z e t mu = 0 ; mu < PARAM DELTA; ++mu) {
// Save sigma in case we need i t to update X sigma p

memcpy( sigma copy , sigma , 2∗(PARAM DELTA−1)) ;
deg s igma copy = deg sigma ;

u i n t 1 6 t dd = gf mul (d , g f i n v e r s e ( d p ) ) ; // 0 i f (d == 0)
f o r ( s i z e t i = 1 ; ( i <= 2∗mu+1) && ( i <= PARAM DELTA) ; ++i )

sigma [ i ] ˆ= gf mul (dd , X sigma p [ i ] ) ;

s i z e t deg X = 2∗mu−pp ; // 2∗(mu−rho )

s i z e t deg X sigma p = deg X + deg sigma p ;

// mask1 = 0 x f f f f i f (d != 0) and 0 otherwi s e
i n t 1 6 t mask1 = −(( u i n t 1 6 t )−d >> 1 5 ) ;
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// mask2 = 0 x f f f f i f ( deg X sigma p > deg sigma ) and 0 otherwi s e

i n t 1 6 t mask2 = −(( u i n t 1 6 t ) ( deg sigma − deg X sigma p ) >> 1 5 ) ;

// mask12 = 0 x f f f f i f the deg sigma i n c r e a s e d and 0 otherwi s e

i n t 1 6 t mask12 = mask1 & mask2 ;

deg sigma = ( mask12 & deg X sigma p ) ˆ (˜ mask12 & deg sigma ) ;

i f (mu == PARAM DELTA−1)

break ;

// Update pp , d p and X sigma p i f needed

pp = ( mask12 & (2∗mu) ) ˆ (˜ mask12 & pp ) ;

d p = ( mask12 & d) ˆ (˜ mask12 & d p ) ;
f o r ( s i z e t i = PARAM DELTA−1; i ; −− i )

X sigma p [ i +1] = ( mask12 & sigma copy [ i −1])

ˆ (˜ mask12 & X sigma p [ i −1 ] ) ;
X sigma p [ 1 ] = 0 ;

X sigma p [ 0 ] = 0 ;

deg s igma p = ( mask12 & deg s igma copy )
ˆ (˜ mask12 & deg s igma p ) ;

// Compute the next d i sc repancy

d = syndromes [2∗mu+2] ;

f o r ( s i z e t i = 1 ; ( i <= 2∗mu+1) && ( i <= PARAM DELTA) ; ++i )
d ˆ= gf mul ( sigma [ i ] , syndromes [2∗mu+2− i ] ) ;

}

r e turn deg sigma ;

}
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