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Abstract. The extremely efficient Rabin-Williams signature scheme relies on decryption of a quadratic 
equation in order to retrieve the original message. Customarily, square roots are found using the Chinese 
Remainder Theorem. This can be done in polynomial time, but generally produces four options for the 
correct message which must be analyzed to determine the correct one.  This paper resolves the problem 
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four roots. We show that the correct root (initial message) is the only one of these four which is in our 
allowed message set (it is in fact the smallest of the four integers) and which satisfies a quadratic 
equation modulo p2q; no additional work is required to eliminate the others. As a result, we propose 
what we believe is now the most efficient version of R-W signature scheme decryption. 
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1. Motivation  

In 1979, Rabin promoted a variation of RSA using the encryption exponent 2, and claimed 
that a signature verification based on his ideas  is ‘several hundred times faster than for the 
general RSA scheme’[17]. He also proved that forging Rabin signatures is equivalent to 
factoring the modulus, which is a product of two prime numbers. In order to verify the 
signature, decryption is required and is achieved by using the Chinese Remainder Theorem 
(CRT) [14; section 2.4.3], which in general results in four possible solutions.  

   Examining Rabin’s scheme, Williams [21] noted that the use of special prime types would 
make the scheme more efficient. In particular, he uses primes p and q congruent to 3 and 7 
modulo 8 respectively, and he restricts the message space to a certain set. While decryption 
still leads to four values, he is able to distinguish from these the ‘correct’ one by means of 
quadratic residue theory. More details are given in our Section 2.  

   Since 1980, the Rabin scheme as adapted by Williams, has become known as the ‘Rabin-
Williams public-key signature scheme’ which is one of the most efficient variations of RSA 
known to date. In fact, in [5; Introduction], Bernstein states: “Variants of the Rabin-Williams 
public-key signature system have, since 1980, held the speed records for signature 
verification.” See also his comments in [3] on ‘The world’s fastest digital signature system’ 
which includes comments about the comparative speeds of signature checking variations 
using 2-adic divisibility. The Rabin-Williams scheme, sometimes referred to as the ‘R-W 
signing technique’ or the ‘modular square root (MSR) technique’ is still used in recent papers 
as a fast method of providing authentication, especially useful in low resourced 
environments. 

   One of the problems in using the CRT to locate square roots is that with a modulus which 
is a product of two primes, four square roots are always located. As mentioned in [6] and 
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[12], the question of how to choose the correct one is an issue. Additional checking to 
determine the correct one is possible, and in fact was done by Williams in 1980 as mentioned 
above, but this leads to less efficiency in using the signature scheme.  

   The authors of [6] give a comprehensive overview of the variations on Rabin’s protocol 
along with their benefits and faults. They explain that their reason for focusing once again 
on the work in [16] is because of the efficiency of a simple squaring for encryption and 
because Rabin proved that its security is equivalent to factoring the modulus n = pq. They 
point out that its major drawback is the four-to-one mapping which necessitates additional 
work to correctly decrypt, particularly when using it as a signature scheme. Their Section 3 
reviews the variants of [16] based on a modulus which is a product of two primes both 
congruent to 3 modulo 4, including R-W. All variants presented in that section rely on the 
Jacobi symbol or on Dedekind sums, use the CRT to generate four potential roots, and use 
additional work to determine the correct root. Section 4 of [6] examines possibilities that 
would extend the Rabin scheme to other types of primes. The case where x2 ≡ m (mod n) 
has no solution is considered in their Section 5.    

   In [12], the authors also attempt to solve the problem of uniquely identifying the correct 
root when using the CRT. They present two ways of doing this, both using the modulus p2q, 
for primes p and q with certain conditions; nevertheless, the second method only shows 
probabilistic uniqueness, as a function on the bounds of p, q and the message used (see Case 
1 of Proposition 3.2 of their paper). In addition, in both scenarios, their algorithms 6 and 9 
need to check all four options, reducing efficiency once again. None-the-less, the use of 
modulus p2q gave the current authors the idea of developing a new variation of R-W which 
results in a deterministic identification of the correct decryption requiring no computation 
additional to the polynomial time required to find four potential solutions using the CRT. 

   In this paper, we resolve the problem of efficient decryption to the correct message modulo 
p2q by establishing conditions on the primes p and q, a bound on any legitimate message and 
then using the CRT modulo pq to find four roots. We show that the correct root (initial 
message) is the only one of these four which is in our allowed message set and is easily 
identified because it is the smallest; no additional work is required to eliminate the others. 
To our knowledge, this is now the most efficient version of R-W signature scheme 
decryption. 

1.1   Our Contribution 

1. We propose a version of an R-W signature scheme, which, compared to all other such 
proposals, has the most efficient decryption method. 

2. We show that breaking our scheme is equivalent to factoring N = p2q, for primes p and q. 

   Section 2 describes the signing protocols of Rabin and of Williams and also a more recent 
take on these by Bernstein. In Section 3, we mention the security of these schemes. Section 
4 reviews other work about signature schemes based on a modulus of the form p2q.   

   Section 5 is the main contribution of this paper in which we prove our claims, culminating 
in Theorem 1 which is followed by an example. Comparison of 5 protocols based on several 
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features is provided in Section 6, while Section 7 discusses the security of our new scheme 
proposal. Section 8 is a brief summary. 

 

2.   The Schemes of Rabin, Williams and Bernstein 

Rabin and Williams use properties of the Jacobi and Legendre symbols, details of which can 
for instance be found in [14; section 2.4.5]. For completeness, we include the definition 
relative to an odd prime p here. 

   For an odd prime p that does not divide an integer a, define the Legendre symbol (a/p) 
by                                                                                                                                                  

             (a/p)=1 if there exists an integer x such that x2≡a (mod p); 

             (a/p)=-1 otherwise. 

   It can be shown that (a/p) ≡ a(p-1)/2 (mod p),  whence, (ab/p)=(a/p)(b/p).         

   RSA tends to be implemented with a large exponent, but Rabin advocated a scheme with 
e=2.  He also introduced the use of hashing as a security measure. 

2.1   Rabin’s protocol 

• Bob produces at random two large odd primes p, q and computes n=pq with 
2L<n<2L+1.  (Rabin suggested L= 1024, 2048, 3072). 

• Bob selects some b, where 0<b<n.  His public key is (n, b). 
• To sign a message M, Bob first selects at random a suffix r (0<r<2B) for a fixed B.  

(Rabin suggested B=60.)  He then computes h=Hash(M||r). 
• If possible, Bob solves the quadratic congruence  

                            x(x+b)≡h (mod n)  
for some s (mod n).  If this is not possible, change r and try again. (The expected 
number of trials is 4.)  He sends his signature (M,s,r) to Alice. 

• Alice verifies Bob’s signature by computing h=Hash(M||r) and testing that 
                            s(s+b)≡h (mod n).  

   Notice that Bob could use 3 other possible candidates for s, each of which is tested in 
Rabin’s scheme. 

Lemma [16] Breaking Rabin’s scheme is essentially equivalent in difficulty to factoring the 
modulus n. 
 
Proof.  Clearly, factoring n will break the scheme.  
To see the converse, put m= h+d2, where d≡((n+1)/2)b (mod n); then x(x+b)≡h (mod n) if 
and only if (x+d)2≡ m (mod n). 
Suppose we have an algorithm A that finds one of the solutions of y2≡m (mod n) in C(n) 
steps whenever (m/p)=(m/q)=1.  We show that A can factor n in expected 2C(n)+2 log2(n) 
steps. 
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Select k (1<k<n) at random such that gcd(n,k)=1 and compute m≡k2 (mod n).  Apply A to 
m to find k1 such that k1

2≡m (mod n).  We must have pq |(k- k1)(k+ k1). 
There are 4 possibilities: 
1. k ≡ k1 (mod p) , k ≡ k1 (mod q) with probability1/4 
2. k ≡ k1 (mod p), k ≡ -k1 (mod q) with probability1/4 
3. k ≡ -k1 (mod p), k ≡ -k1 (mod q) with probability1/4 
4. k ≡ -k1 (mod p), k ≡ -k1 (mod q) with probability1/4 
If (2) or (4) holds, then gcd (k-k1, n) = p or q with probability ½. On average at most two 
choices of k need be tried to factor n. Thus, breaking Rabin’s scheme is equivalent in 
difficulty to factoring n. 

Problem:  How does Bob solve x(x+b)≡h (mod n)? 

   This is equivalent to solving y2≡m (mod n), where m= h+d2 and(m/p)=(m/q)=1.  Thus, if 
Bob can solve for y (mod p) and y (mod q), then he can use the CRT to find y (mod m) and 
put s≡y-d (mod m).  If n is a Blum number (p≡q≡ 3 (mod 4)) [14; section 2.4.6], finding y 
(mod p) and y (mod q) is easy by putting y≡m(p+1)/4 (mod p)  and y≡m(q+1)/4 (mod q).  Note 
that y2≡ m(p+1)/2=mm(p-1)/2≡m(m/p)=m (mod p). 

   The CRT in this case can be written as:  If y≡ a (mod p) and y≡ b (mod q), then 

                             y≡ a + q(q-1(a-b)( mod q)  (mod pq), 

where q-1q≡1 (mod p) where  q-1≡ qp-2 (mod p). 

Chosen Message Attack: As in most signature schemes, the use of hashes and random 
numbers must be used to avoid certain attacks. If Bob were to use Rabin’s scheme, but 
neglect to use hashing and randomization, then he might be vulnerable to attack.  For, 
suppose Eve selects some k and computes M≡k(k+b) (mod n) and asks Bob to sign M  to 
produce (M, s).  Since M≡s(s+b) (mod n), we have pq|(x-k)(x+k+b) which means that Eve 
can factor n with probability 1/2).  Rabin avoids this attack by randomizing and hashing, 
leaving Eve with no control over the congruence that Bob will solve. 

 

2.2   Williams’ protocol   

As mentioned earlier, one of the difficulties with Rabin’s protocol is that for a given value 
of a there are four possible values of x satisfying 0<x<n and x2≡a (mod n), when this 
congruence has a solution.   This problem can be circumvented by using an idea in Williams 
[21].  We give a simple précis of this process here with encryption exponent e=1 and Alice 
and Bob interchanged. 

   Let n=pq, where and p and q are primes such that p≡ 3 (mod 8) and q≡7 (mod 8).  
Williams’ protocol is based on the observation that the Jacobi symbol (a|n) can be easily 
evaluated without knowing the factorization of n.  For more information about evaluating 
the Jacobi symbol, see Shallit [17]. 

   The protocol is dependent of the following simple result. 
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Theorem.  For a given integer C such that (C/n)=1, then C(p-1)(q-1)/4≡ ±1 (mod n). 

Put 𝒳𝒳={x: 4(2x+1)<n and (2x+1|n)=1 OR 2(2x+1)<n and (2x+1|n)=-1}.  If x∈𝒳𝒳, we 
define E(x)= 4(2x+1) when ((2x+1)/n)=1, or E(x)= 2(2x+1) otherwise. Observe that since 
n≡5 (mod 8), we always have (E(x)/n)=1 for x∈𝒳𝒳.  In [21] it is shown that |𝒳𝒳 | ≈ 3(p-1)(q-
1)/16 which means that if we select at random some x such that 0<2(2x+1)<n, there is a 
good chance that x∈𝒳𝒳.   
 
   Set d=((p-1)(q-1)/4+1)/2 = m, so that, with e =1,  ed ≡ m (mod lcm(p-1, q-1)) as in [21]. 

The Williams “Signing Protocol” 

• Bob produces at random two large primes p, q such that p≡5 and q≡7 (mod 8).  He next 
computes n=pq with 2L<n<2L+1.  The value of n is made public. 

• To sign a message M, Bob first selects at random a suffix r (0<r<2B) for a preselected B 
and then computes h=Hash(M||r).  If h∉𝒳𝒳, change r and try again until we find some 
h∈𝒳𝒳. In view of previous remarks, only a few trials should suffice.   

• Bob computes S≡hd (mod n) where 0<S<n.  He then sends his signature (M, S, r) to 
Alice. 

• Alice determines h=Hash(M||r) and verifies that h ∈𝒳𝒳.   She then computes L such that 
0<L<n from L≡S2 (mod n). (This step is not mentioned in [W1980], but is consistent 
with the method of [R1979].)                                               

She can verify the signature by the following simple procedure: 
                 If L≡0 (mod 4), she checks that M=(L/4-1)/2; 
                 if L≡1 (mod 4), she checks that M=((n-L)/4-1)2; 
                 if L≡2 (mod 4), she checks that M=(L/2-1)/2; 
                 if L≡3 (mod 4), she checks that M=((n-L)/2-1)/2. 

   Alice is able to determine the unique L because of the following result: 

Theorem.  For a given integer C, there is only one solution L (0<L<n) of the congruence 
                                                          X2≡C (mod n)                                                            (*)             
such that 2 |L and (L|n)=1. 
 
Proof.  Let N1, N2, N3, N4 be the four distinct solutions of (*) such that 0< N1, N2, N3, N4<n.  
since n-Ni is a solution of (*) whenever Ni is, we see that only 2 of N1, N2, N3, N4 are even; 
without loss of generality, suppose they are  N1 and N2.  We have N1

2≡N2
2≡C (mod n) which 

implies that n|(N1
2-N2

2) or n|( N1 +N2)( N1 -N2).  Since n cannot divide both N1+N2 and N1-
N2, we must have p|(N1 -N2) and q|(N1+N2). Hence, (N1|p) = (N2|p) and (N1|q) =(-N2|q)= -
(N2|q), and therefore (N1|pq) =        
-(N2|pq). Hence only one of the even solutions satisfies the necessary Jacobi symbol 
equation. 
 
   Much later than Williams’ paper of 1980, Kurosawa and Ogata in [10] developed a scheme 
they claimed improved Rabin’s scheme by deterministically identifying the ‘correct’ 
message as well as by running much more efficiently. Their setup is very similar to that of 
Williams, and like Williams, deterministically identifies the message wanted. Their real 
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contribution appears to be an improvement in the speed with which the signature scheme 
runs. 

2.3   Bernstein’s protocol 

Williams [21] modified Rabin’s scheme by replacing a square root s by, what Bernstein [4] 
refers to as a ‘tweaked square root’, a triple which speeds up signing. Bernstein explains the 
reason: “Recall that Rabin’s system needed to try several values of r, on average about 4 
values, before finding a square h = Hash(M||r) modulo pq.” Bernstein’s interpretation of the 
R–W system eliminates this problem by using tweaked square roots in place of square roots. 
According to Bernstein, a tweaked square root of h modulo pq is a vector (e, f, s) such that 
e ∈{−1, 1}, f ∈{1, 2} and efs2 − h ∈ pqZ; the signer’s secret primes p and q are chosen from 
3 + 8Z and 7 + 8Z respectively. Each h has exactly four tweaked square roots, so each choice 
of r works, speeding up signatures. 

   Like Williams, Bernstein adopts the restriction that p≡3 (mod 8) and q≡ 7 (mod 8), under 
which conditions we have Jacobi symbols (-1/p) = (-1/q) = -1, (2/p) = -1, (2/q) =1. 

   With h=Hash(M||r), Bernstein makes use of the following simple theorem. 

Theorem. [4] Given any h, there exists (e, f, x) such that e∊{1,-1}, f∊{1,2} and  

                                        efx2≡h (mod n).                                                                         (**)               

Proof.  If suffices to find e and f such that (efh/p)= (efh/q)=1.  Since e∊{1,-1}, we must have 
(e/q)=(e/p)=e.  Also, we have (f/q)=1; hence, we get (eh/q)=1 and e=(h/q).  Since (f/p) = 
(eh/p) =e(h/p), we select f=1 when (h/p) =e; otherwise, put f=2.                                                       
QED 

   Bernstein calls a solution of (**) a “tweaked square root of h.”  There exist exactly 4 
distinct positive solutions of (**) which are bounded above by n = pq.  Only one of these, s, 
is such that (s/p)=(s/q)=1.  He calls this the principal tweaked square root of h. 

Bernstein’s protocol is: 

• Bob solves (**) for the principal tweaked square root s of h. 
• He sends his signed message (M, e, f, r, s) to Alice. 
• Alice computes h=Hash(M||r) 
• She then computes efs2 (mod n) and checks that this is h (mod n). If so, she accepts that 

Bob sent M. 

   Bernstein’s algorithm from [4] to solve (**) for the principal tweaked square root s of h 
(mod n = pq) is copied in here: 
   Since (s/p)=(s/q)=1, there must exist some y such that s≡y2 (mod n).  We need to solve 
efy4 ≡ h (mod n) for y (mod n). 
 
1. Precompute 2(9p-11)/8 (mod p), 2(3q-5)/8 (mod q), qp-2 ≡q-1 (mod p).   
2. Put u ≡h(q+1)/8 (mod q) ⇒ u4≡(h/q)h (mod q) ⇒ u4≡eh (mod q). 
3. If u4≡h (mod q), put e=1; otherwise, put e=-1. 
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4. Put v≡ (eh)(p-1)/8  (mod p)  ⇒ v4≡ (eh)-1(eh/p) ⇒ (eh)2v4≡(eh)(eh/p)=eh(f/p). 
5. If v4 ≡eh, put f=1; otherwise, put f=2.  
6. Put w ≡f(3q-5)/8u (mod q), z ≡f(9p-11)/8v3eh (mod p) ⇒ efw4≡h (mod q), efv4≡h (mod p).   
7. Now (3q-5)/2=q-2 +(q-1)/2 and (9p-11)/2=4p-5+(p-1)/2 
8. Then set y≡ (w +q(q-1(z-w) (mod p)) (mod n) and s≡y2 (mod n). 

   The most expensive steps are (2) and (4), but these are modular exponentiations where the 
moduli are of only ½ log2n bits. This algorithm does not require Jacobi symbol computations 
and is high speed. 

   Bernstein goes on to mention that a square root s of h modulo pq should be transmitted as 
(s, t) where s and t satisfy s2 − tpq = h, doubling the space taken by signatures but allowing 
extremely fast verification. 

   Stinson [18; Section 7.1] and Bernstein [4] explain the need for use of hash functions with 
signatures in order to avoid some kinds of attacks on them. RSA in its original version did 
not use hash functions, while Rabin [16], Williams [21] and Bernstein [4] do. In practice 
these days, all signature schemes sign hashes. 

 

3. Security of these Three Schemes 

Both RSA and R-W signature schemes rely on the inability to factor the composite modulus. 
RSA does this by increasing the size of values used beyond the capability of current factoring 
algorithms. It has long been well known that factoring the modulus easily breaks RSA [14; 
section 8.2.2]; however, only recently, in 2016, Aggarwal and Maurer proved that breaking 
RSA generically is equivalent to factoring [2]. 

DEFINITION. A security reduction proof for a signature scheme is said to be tight when 
breaking the signature scheme leads to solving some well established, unsolved problem 
with probability close to one. A security reduction proof for a signature scheme is said to be 
loose when breaking the signature scheme leads to solving some well established, unsolved 
problem with probability more than zero but not close to one.  

   Bernstein [5] examines tight and loose security for variations of RSA and of R-W signature 
schemes. His analysis shows that if a large number of bits is added to the message before 
hashing, them both RSA and R-W schemes can be shown to have tight security; in most 
cases, when at most one bit is added, loose security is the best that can be shown. 
Surprisingly, variations of the R-W signature scheme are more amenable to tight security 
proofs than are variations of RSA. In particular, Bernstein demonstrates that the most 
computationally efficient of all these schemes, the so-called ‘fixed unstructured R-W 
scheme’ with no added random bits has tight security.  

   In [21], Williams proves that the existence of an algorithm for message decryption in his 
scheme implies one for factoring the modulus which he states as follows: 

Theorem [21]. For the message set M, encryption function E and modulus n described in 
Section II of Williams’ paper, if there exists an algorithm F such that for every element M 
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of M, F can be applied to find M from E(M), then the following algorithm can be used to 
factor n. 

   This is followed by a 4-step algorithm which makes use of F, and gives a proof of the 
claim. 

   Bernstein [5] is able to extend this idea to an equivalence for the R-W signature scheme in 
his Theorem 4.1 which establishes the equivalence of algorithms to compute a tweaked 
square root and for factoring the modulus. The general overview of his tight security proofs 
is given in Sections 4 and 5 of his paper, while Sections 6 and 7 go on to treat separately the 
situations of the number of bits B of r being 0 (in an unstructured scheme) and being > 0 
respectively.  Hence, his Section 6 proves tight security for unstructured schemes with B = 
0; his Section 7 adapts the proof for B ≥ 1 and for all types of tweaked square roots. 
   Bernstein does mention that he believes his tight proofs are specific to Rabin-Williams and 
do not assist with potential tight proofs for RSA. 
 
   In Section 7 of our paper, we discuss the security of our new proposal, which is described 
in detail in Section 5. 
 
 
4.    Public Key Schemes with Modulus p2q 

Some alternative variations on RSA have been given in the literature using n = p2q as the 
modulus and attempting to decrypt in this modulus. We describe some of these papers here. 

   In 1990, Okomoto developed a signature scheme based on two primes, say p and q with 
modulus n = p2q [15]. In the paper, Okomoto shows that the scheme’s security relies on 
factoring n. While he mentions [16], he does not use exponent 2, and his focus is on 
demonstrating that his signature scheme is much faster than those based on RSA. 

   In 1997 and 1998, Takagi published variations of the RSA scheme also changing the 
modulus to p2q, for primes p and q. See [19] and [20]. The aim was to speed up the decryption 
procedure while retaining security. In establishing the encryption (e) and decryption (d) 
exponents, Takagi used the equation ed ≡ 1 (mod (lcm(p-1, q-1)) which is the same as that 
used by Williams in [21], though [21] is not mentioned in either of Takagi’s papers above.  

   In [20], Takagi looked at a specific case of the focus of [19] for public key schemes and 
mentions that his scheme can be used to provide a digital signature, which he claims is faster 
than an RSA-based digital signature based on the CRT. He also claims that his concept can 
be used to produce a ‘Rabin-type cryptosystem (which) is as intractable as factoring the 
modulus p2q.’ He proves neither of these claims in this paper, but does mention that, at the 
time, the difficulty of factoring products of the form p2q was considered an open problem.  

   The R-W signature scheme is examined in [12] where the authors mention the problem of 
deriving the correct decrypted message from the four usually obtained by using the Chinese 
Remainder Theorem. They consider two situations, both using p2q as the modulus, and 
provide two methods of producing a single (correct) decryption of the equation C ≡ X2 (mod 
p2q). Both methods begin with certain conditions on p and q, restrict the message set, and 
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use the CRT to determine four solutions to an equation for a square modulo pq (rather than 
p2q); neither method uses message redundancy or the Jacobi symbol. While their methods 
produce a single (correct) decryption to the original message, they are not more efficient 
than other decryptions of R-W, since, in all cases, four possible solutions are found and then 
three have to be eliminated. (We refer the reader to their paper, and note that in Algorithm 
6, lines 8 and 9, and Algorithm 9, lines 8 and 9, N should be p2q.) 

   For primes p and q congruent to 3 modulo 4, the CRT can easily be used to solve an 
equation modulo p2q; the two equations derived are modulo p2 and then q. We sketch the 
procedure below. 

Proposition 19.1 [9; p 104]. Let p be a positive prime integer, and let k ∈ N. If f(r) ≡ 0 (mod 
pk+1) then f(r) ≡ 0 (mod pk).  (The proof is trivial.) 

Corollary. The number of solutions to x2 ≡ A (mod pk) is the same as the number of solutions 
to x2 ≡ A (mod p), for p a positive prime integer and k ≥ 1. 

   In the same section (19) of [9], this proposition is followed by a version of Hensel’s 
(lifting) Lemma which uses roots from f(x) ≡ 0 (mod pk) to obtain roots of f(x) ≡ 0 (mod 
pk+1).  For a univariate function f, the notation f’ denotes the derivative of f with respect to 
its unique variable. 

Theorem 19.2 (Hensel’s Lemma as in [9; p 104]). Let f(x) be a polynomial of positive degree, 
and suppose that f(r) ≡ 0 (mod pk), so that c = f(r)/pk is an integer. Based on the derivative 
f’of f, Hensel continues with conditions under which roots are related. For instance: If f’(r) 
≠ 0 (mod p) then f(r + tpk) ≡ 0 (mod pk+1) if and only if t ≡ −c[f’(r)]−1 (mod p). (See [9] pages 
104 and 105 for full details.)  

   Only the statement we need below is quoted here from Theorem 19.2 as given by Klain in 
[9]. 

Lemma. Let p≡3 (mod 4) and 0 < A < p be an integer such that gcd(A, p) = 1. Then there 
exist precisely two solutions modulo p2 to the equation 

                                                 X2 ≡ A (mod p2)                                                                       (***)                                           

and these are the negative of each other modulo p2. 

Proof. It is well known that X2 ≡ A (mod p) has the two solutions ± A(p+1)/4 modulo p, each 
relatively prime to p. By the Corollary to Proposition 19.1, there are precisely two solutions 
to X2 ≡ A (mod p2). 
The proof of Theorem 19.2 goes on to describe exactly how to obtain these two solutions. 
Letting f(x) = x2 – A, we have that f(± A(p+1)/4) ≡ 0 (mod p) and so c = f(± A(p+1)/4)/p is an 
integer for both  ± A(p+1)/4. Now f’(x) = 2x and f’(± A(p+1)/4) = (± 2A(p+1)/4) is not congruent 
to 0 modulo p since gcd(A, p) = 1. It follows from Theorem 19.2 above that we can compute 
each of the two solutions ± A(p+1)/4 +tp (mod p2) to (***), where t ≡ −c[±2A(p+1)/4]−1 (mod p).                                            
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Corollary. (a) For p≡3 (mod 4) and 0 < A < p an integer such that gcd(A, p) = 1, the two 
solutions to the equation  (***) can be found in polynomial time.  
(b) For p and q primes, p, q ≡3 (mod 4) and A an integer such that gcd(A, pq) = 1, the four 
solutions to X2 ≡ A (mod p2q) can be found in polynomial time. 
 
Proof. For the first statement, apart from calculating additions and multiplications modulo p 
and p2, from the proof of the Lemma, the only division (involving the polynomial time 
Euclidean Algorithm) is in calculating t ≡ −c[±2A(p+1)/4]−1 (mod p). For the second statement, 
in addition to the first calculation, only the polynomial time CRT is needed to find the four 
solutions.                                                                                                                                                                                                                                  

 

5.    Our Proposal 

In all the papers making use of variations of R-W mentioned above, the CRT is used to 
determine four solutions of a quadratic equation modulo some function of two primes. In all 
cases, some final work is needed to ascertain the correct (original) message. This is usually 
done by applying constraints to the primes and to the message set. In most cases this has 
been enough to guarantee the identification of the original message. In the case of [12], 
uniqueness of the correct message is probabilistic only, as a function of the bound n applied 
to the primes and messages. (See Case 1 of their Proposition 3.2.) 

   Our aim in this section is to construct an R-W type signature scheme modulo p2q which 
deterministically identifies the correct original message more efficiently than do previous 
schemes.  

5.1   Assumptions 
 
We begin with two primes, p and q, (for our main result choosing both congruent to 3 modulo 
4), and a fixed positive integer s such that 1 < s < √q. We will require a message set restricted 
using this value s. We choose the set M = {integers 0 < M < pq/s, with gcd(M, pq) = 1}. 
Given a message M from M, we suppose D ≡ M2 (mod p2q). When D is sent as a signed 
message, we want the recipient to recover the correct message M as efficiently as possible 
without knowing the sender’s secret information. Note that in taking square roots modulo 
pq, both a root m, and pq-m will satisfy the equation. The next Lemma shows that not both 
of these roots can be in our restricted message set.  
 
LEMMA 1.  Let p and q be primes and s a positive integer such that 1 < s < √q. Let M be an 
integer from the set M = {integers 0 < M < pq/s, with gcd(M, pq) = 1}. If M ∈ M, then pq – 
M ∉ M.      

Proof. By contradiction, if pq – M < pq/s, then, pq – pq/s < M < pq/s, so that 1 < 2/s, while 
s must be at least 2 by the assumption on it. So this is false.                                                                                                                                                                                     

COROLLARY. Under the conditions of Lemma 1, at most two of the solutions of D ≡ X2 
(mod pq) can be in M.                          
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   The next theorem, which is our main result, shows how, when choosing primes and 
messages appropriately, we can isolate the correct message with no work additional to the 
Euclidean algorithm and CRT computations. 

THEOREM 1. Let p and q be primes congruent to 3 modulo 4 and let s be an integer such 
that 1 < s < √q and such that sp > 2q. Let M be an integer from the set M = {integers 0 < M 
< pq/s, with gcd(M, pq) = 1}. Let D ≡ M2 (mod p2q). Then M is the only root of  
 
                                                                        D ≡ X2 (mod pq)                                                   (1) 
which is also a root of 
                                                                       D ≡ X2 (mod p2q).                                                  (2) 
 
Proof. Note first that any solution to equation (2) is also a solution to equation (1), so M is a 
root of both equations.                                      
Since p and q are congruent to 3 modulo 4, it is well known, that each of X2 ≡ D (mod q) 
and X2 ≡ D (mod p) has precisely two solutions. Using the Euclidean Algorithm, in the usual 
manner, write gcd(p, q) = 1 as a combination of p and q. 
These four combinations result in all four solutions to equation (1); label them M1, M2, M3 
and M4. Each Mi is a positive value less than pq and they are all distinct modulo pq (in fact 
they can be paired as a solution and its negative); recall that the initial integer M is one of 
these solutions; we show that it is the only one less than pq/s which satisfies both (1) and 
(2). 

We work by contradiction. Suppose that two of the Mi are less than pq/s. Say pq/s > Mi > Mj 
> 0.  Since Mi

 2 ≡ Mj
 2 (mod p2q), it is the case that p2q |( Mi – Mj)( Mi + Mj). We now 

consider three situations. Let α = 1 or -1. 

Case 1. p2q | (Mi – Mj) OR (Mi + Mj). 

The first division implies that Mi and Mj are the same in this modulus, which is a 
contradiction. The second implies that they are the negative of each other, more specifically 
that Mi = p2q– Mj. But both are less than pq/s, so this cannot be the case since p2q = Mi + Mj 
< 2pq/s only if sp < 2. 
 
Case 2. pq | (Mi + αMj) AND p|( Mi – αMj). 
In this situation, p| {(Mi + αMj) +( Mi – αMj) = 2Mi} which is impossible.  
 
Case 3. p2| (Mi + αMj) AND p|( Mi – αMj). 
Set (Mi + αMj) = Sp2, for some non-negative integer S. Then 0 ≤ Sp2  ≤ | Mi | + | Mj| ≤ 2pq/s 
< p2 since by assumption, sp > 2q. Therefore S = 0 and once again Mi = αMj which cannot 
be possible for either value of α. 
It follows that the original value M is the only one of the four solutions which is less than 
pq/s and which satisfies both (1) and (2).                                                                                                                                                                                                
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COROLLARY. Let p and q be primes congruent to 3 modulo 4 and let s be an integer such 
that 1 < s < √q and such that sp > 2q. Let M ∈  M = {integers 0 < M < pq/s, with gcd(M, pq) 
= 1}. Let D ≡ M2 (mod p2q). Then M is the smallest root of D ≡ X2 (mod pq). 
Proof. This follows from the proof of Theorem 1 as all four solutions M1, M2, M3 and M4 to 
D ≡ X2 (mod pq) must be less than pq but only one of these, the original M, is less than the 
bound pq/s, hence is the smallest.           
 
   We conclude this section with an example of THEOREM 1 and its COROLLARY.                                                                                                                                                         
                                                                                                                                                                        
EXAMPLE. Bob chooses primes p=1187 and q = 2351, congruent to 3 modulo 4, and 4 = s 
< √q; he chooses as his bound B on messages the integer part of pq/s which is 697659. He 
lets N = p2q = 3312486119, keeps p, q and pq secret and publishes the parameters of his 
signature scheme as (N = 3312486119, B = 697659). 

Alice has a message M to send to Bob using his signature scheme. She makes sure that M is 
less than B and that gcd(M, N) = 1. Alice chooses M = 500000, computes the signed message 
D ≡ M2 ≡ 1563541075 (mod N) and sends D to Bob along with a claim that it came from 
her.  

Bob retrieves M from D as follows using his private information. 
First he determines the roots of X2 ≡ D (mod pq = 2790637), using the CRT. Separating 
primes, he first finds roots of the quadratic for p and q separately, which are 
 
± D(p+1)/4 = ± 914 (mod 1187); set R1 = 914, and  
± D(q+1)/4 = ± 1588 (mod 2351); set R2 = 1588. 
 
Using the CRT based on these four values, and using Maple commands ([13]) Alice 
computes the four solutions to the modulo pq equation as: 
 
chrem([R1,R2],[p,q]);    1405135  ∉ M 
chrem([R1,-R2],[p,q]);   2290637   ∉ M 
chrem([-R1,R2],[p,q]);    500000   ∈ M 
chrem([-R1,-R2],[p,q]);  1385502 ∉ M. 
 
Finally, by the COROLLARY to THEOREM 1, Bob only needs to choose the correct 
message as the minimum of these, 500000, which is also the only one in M. Note that none 
of the other solutions to (1) satisfies (2), demonstrating THEOREM 1, and that the value 
2290637 appearing in the list of four solutions is in fact pq – 500000 modulo pq.  By 
LEMMA 1, it cannot be less than the bound B. 
 
 
 
6.   Comparison of Five Rabin-Williams Type Signature Schemes  

In his 1979 publication [16], Rabin set the stage by transforming RSA into a useful private 
key scheme with the efficient encryption exponent 2 as opposed to the very high encryption 
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exponents usually propounded for RSA. Rabin, Williams [21] and Bernstein [4] employ a 
method whereby user Bob establishes a private key scheme which incorporates a signature 
scheme allowing him to send signed messages along with the message in the clear, while 
permitting the receiver to verify that indeed the message was signed by Bob. In all cases, the 
receiver needs none of Bob’s private information in order to confirm. 

   The authors of [12] changed this perspective. As in the above schemes, Bob establishes 
his own private key cryptosystem incorporating a signature scheme which allows other 
people to send him signed messages. When Bob receives such a message, he retrieves it 
using his secret primes along with the CRT. The CRT results in four possible messages, and 
the authors of [12] indicate how to test each of the four in order to determine which one is 
correct (the original message). As in the former schemes, Bob posts the signature scheme 
information allowing anyone to use it to send him a message. The fact that Bob’s posted 
information suffices to identify the message along with the hash of a random value is enough 
to confirm the identity of the sender. 

   The work of our paper is along the lines of the [12] paper which can be used similarly as 
a signature scheme. In our situation Alice needs only to send Bob her signed version of a 
message and the encrypted message, which, along with his public and private information, 
allows him to identify the message precisely as well as verify the signature. We improve on 
[12] by using bounds which uniquely identify (decrypt to) the correct message, without 
further work, beyond that of using the CRT. 

   The schemes [15], [19] and [20] discussed in Section 4 are not considered here for the 
reasons mentioned in that section. 

   Table 1 compares five schemes both from the point of view of the user setup and of the 
message recipient. We include items: ‘Conditions on primes used’, ‘Special message set’, 
‘Use of random numbers’, ‘Number of trials’ and ‘Work to verify’. Since all five schemes 
here make use of the CRT to solve quadratic congruence equations in the setup and since no 
verifier needs the secret primes of another user, we do not include these features in our table. 
(However, verifiers of signed messages sent to themselves using their own scheme require 
the secret primes.) Also, since it is recommended in general that public key signature 
schemes be used with a hash function and some random padding, we do not use these features 
as distinguishers. 

   In the table, we assume that Bob has established the scheme and Alice uses it, either as a 
receiver or as a sender. In the first three schemes, Alice is given the plaintext message and 
the random value used to produce the hash value, and verifies the signature without knowing 
the primes; in the last two, Bob uses his secret primes to decrypt the message sent to him by 
Alice and verifies the signature using a hash provided to him by Alice, along with a random 
value. 
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Table 1. Comparison of Five Types of Rabin-Williams Schemes. 

 Conditions on 
primes 

Special 
message set 

Random 
number 
generation 

No. 
trials 
needed by 
Bob to set 
up or verify 

Work to verify 

IN THE SCHEMES FOLLOWING ALICE VERIFIES SIGNATURE 
Rabin [17] p, q ≡ 3 (mod 4) No. 

[0, n) is used for 
n=pq. 

Yes.  
 
As message 
padding. 

4 trials by 
Bob in 
setting up 
the scheme. 

1 hash 
1 congruence 

Williams 
[21] 

p ≡ 3 (mod 8) 
q ≡ 7 (mod 8) 

Complex set 
using Jacobi 
symbols. 

Yes.  
As message 
padding. 

4 trials by 
Bob in 
setting up 
the scheme. 

1 hash 
2 congruences 
2 lookups 
1 Jacobi 

Bernstein 
[4] 

p ≡ 3 (mod 8) 
q ≡ 7 (mod 8) 

Same set as in 
Williams. 

Yes.  
As message 
padding. 

None. 1 hash 
1 congruence 

IN THE FOLLOWING BOB DERIVES SECURE 
MESSAGE 

AND 
VERIFIES 

SIGNATURE 

[12] p, q ≡ 3 (mod 4) No. 
[0, n) is used for 
n=pq. 

Yes.  
As message 
padding. 

4 trial 
divisions by 
Bob. 

1 CRT 
4 divisibility 
checks 
1 hash 

Our 
protocol 

p, q ≡ 3 (mod 4) [0, n/s) is used 
for n=pq and s 
specially 
chosen. 

Yes.  
As message 
padding. 

None. 1 CRT 
1 hash 

 

   In Table 1, a ‘trial’ refers to elimination of possibilities as in the need to test for values 
satisfying an equation for Bob in Rabin’s protocol and the need to try random numbers to 
obtain a value in the message set as in Williams’ protocol; in both cases, four trials are 
expected by Bob in order to locate a message in his special message set. In contrast, 
Bernstein shows how to avoid the need for such trials. In all three of these schemes, the 
message is sent in the clear and Alice only checks the fact that it has been signed by Bob. 

   The last two schemes in Table 1 deal with a situation in which Alice can send a confidential 
signed message to Bob. Only Bob can determine this message and can verify Alice’s 
signature on it. In obtaining the plaintext message using the MAA scheme, Bob applies the 
CRT, then needs to test all four resulting possibilities for an integer division. In our new 
protocol, only Bob can determine this message and can verify Alice’s signature on it. In 
obtaining the plaintext message using our scheme, Bob simply applies the CRT with no 
additional testing. 

   It is difficult to truly compare all five of these schemes as each is designed either to allow 
a public key scheme owner to send signed messages to other people, OR to allow others to 
send the public key scheme owner messages which are to be discovered. None-the-less, two 
of them use a very complex message set while three use simple message sets.  
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   The final two are able to recover a confidential message directly from a CRT and so are 
both more functional and more efficient than the first three protocols. However, the MAA 
protocol needs to do up to four additional checks before determining the message, and in 
addition, as mentioned in their Proposition 3.2, uniqueness in [12] is only demonstrated up 
to a probability as a function of the bound chosen on the primes. In contrast, in our new 
protocol, Bob only needs to apply the CRT to determine the plaintext message and its 
uniqueness is shown to be with probability 1.   

 

7.    Security of our Scheme 

In our protocol of Section 5, we can assume that any potential attacker, Eve, understands 
fully how Bob established his private key and signature schemes.  She also has access to the 
modulus N and bound B. She knows that N has the form p2q, that B is an integer in the range 
(p√q, pq/s) where p and q are Bob’s secret primes and s is some integer satisfying 1 < s < √q 
and sp > 2q.  The following theorem establishes the fact that for Eve to break Bob’s scheme, 
she must factor N. 
 
THEOREM 2. Breaking our new scheme is equivalent to factoring N = p2q. 
 
Proof. Clearly, if an attacker Eve can factor N = p2q, then she has Bob’s secret primes, thus 
breaking his scheme. 
As mentioned above, an attacker Eve is assumed to have Bob’s values N and B and to know 
precisely how Bob’s scheme has been established. Eve’s aim is to determine the primes p 
and q where N = p2q, and sp > 2q. Since Bob can allow s to vary while still fixing B as an 
integer in the range (p√q, pq/s), Eve should avoid trying to determine s.  Therefore her best 
attack is to try to factor N = p2q, which only involves Bob’s two primes.                                                                                                                        
 
   Since factoring n = pq is now known to be equivalent to breaking RSA because of [2], the 
question becomes: is factoring N = p2q as difficult as factoring n = pq?  
 
   In 1994, both of these problems were labelled open questions by the Adleman and 
McCurley in [1]; in fact they propose factoring n as an open question in their Section 5 
(Integer Factoring) and factoring N as an open question in their Section 7 (Squarefree part) 
and then ask if perhaps, finding a polynomial time algorithm for the latter could be translated 
in polynomial time into one for the former. In 2003, the authors of [7] looked for methods 
of factoring RSA-type moduli of more than two distinct primes. Their paper examines if 
selected attacks on RSA can be extended to the multi-prime case, and how they would 
perform in the new setting. They concluded that, as the number of prime factors in the 
modulus increases, the attacks become more complex, apply in fewer instances, or become 
totally ineffective. Zheng and Takagi in [22] also consider the case of more than two distinct 
primes, in particular with ‘small’ differences between them; they show that a modulus which 
is a product of distinct primes with ‘extremely small’ differences (less than the modulus to 
a power of one over the square of the number of its primes) can be factored efficiently. 
 



16 
 

   In the meantime there have been several attempts to find polynomial time attacks given a 
portion of the bits of the primes involved. Zheng credits Hermann and May [8] with showing 
that if about 70% of the bits of p are known, then n = pq can be factored in time polynomial 
in O(lnln(n)). We refer the reader to [11] for a description of their method. Zheng himself in 
[23] uses the ideas of [8] in showing that knowing about 1/3 of the bits of p when the modulus 
is N = p2q, is sufficient to factor N in polynomial time. He also gives a unified condition on 
the minimum number of known bits required to factor a modulus of the general form paqb, 
a, b ≥ 1.  
 
   As of 2019, there appears to be no polynomial time method of factoring N, the best method 
being the Number Field Sieve which works in sub-exponential time [23]. We can only 
conclude that factoring N = p2q is likely to be as difficult as factoring n = pq. 
 
 
8.    Summary 

   We proposed a version of an R-W signature scheme, and showed that, compared to all 
other such proposals, it has the most efficient decryption method. See THEOREM 1, its 
COROLLARY and Table 1. We also proved in THEOREM 2 that breaking our scheme is 
equivalent to factoring N = p2q, for primes p and q, and argued that it is highly likely that 
factoring N is equivalent to factoring n = pq, which has been shown in [2] to be generically 
equivalent to breaking RSA. 
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