
Tree authenticated ephemeral keys

Pavol Zajac

Slovak University of Technology in Bratislava, Slovakia
pavol.zajac@stuba.sk

Abstract. Public key algorithms based on QC-MPDC and QC-LDPC
codes for key encapsulation/encryption submitted to NIST post-quantum
competition (BIKE, QC-MDPC KEM, LEDA) are vulnerable against
reaction attacks based on decoding failures. To protect algorithms, au-
thors propose to limit the key usage, in the extreme (BIKE) to only
use ephemeral public keys. In some authenticated protocols, we need to
combine each key with a signature, which can lead to increased traffic
overhead, especially given large signature sizes of some of the proposed
post-quantum signature schemes. We propose to combine ephemeral pub-
lic keys with a simple Merkle-tree to obtain a server authenticated key
encapsulation/transport suitable for TLS-like handshake protocols.

Keywords: ephemeral keys, Merkle tree, authenticated KEM

1 Introduction

Recent NIST call for public-key post-quantum cryptographic algorithms [4] has
motivated many researchers to propose new cryptographic schemes that are be-
lieved to be secure against quantum adversaries. One of the proposed candidates
for Key Encapsulation is a suite of algorithms named BIKE by Aragon et.al. [1].
BIKE algorithms are based on quasi-cyclic binary moderate-density parity-check
codes (QC-MDPC). A basic QC-MDPC KEM was also proposed by Yamada
et.al. [13]. Another proposed system, LEDA by Baldi et.al., is based on QC
low-density parity-check codes (QC-LDPC). The class of algorithms based on
QC-LDPC and QC-MDPC codes can achieve post-quantum security with pa-
rameters similar to currently used RSA cryptosystem.

One of the main problems with LDPC/MPDC based designs is the proba-
bilistic nature of decoding algorithms. Non-negligible decoding failure rate can
lead to various attacks that can derive the secret key, such as [9, 6, 5]. To prevent
these attacks, BIKE relies on generating one-time ephemeral keys. QC-MDPC
KEM authors also recommend using ephemeral only keys. LEDA limits a num-
ber of uses for each key pair, but the number of key uses might be lower than
originally proposed due to new attacks such as [7].

In TLS 1.3 handshake protocol [11], an initial session key is negotiated in
key exchange using ephemeral public keys. The handshake is authenticated by
signing protocol messages by the server, and verified by client using server’s



certificate. Instead of (EC)DHE, a post-quantum public key cryptosystem or
KEM with ephemeral keys, such as BIKE, QC-MDPC KEM or LEDA, can be
used to transport initial key shares to provide post-quantum security. To fully
migrate TLS handshake to the post-quantum era, we also need to replace server
side signatures and certificates with quantum-resistant routines. The signature
structure can be compatible with previous TLS 1.2 handshake with signed keys.

There are multiple candidates for post-quantum signatures with varying pub-
lic key and signature sizes. In a typical handshake scenario, both a public key
and a signature needs to be sent. Among balanced-size algorithms, Falcon sig-
nature [8] scheme (lattice based) provides Level-1 security with 897 bytes public
key and 617 bytes (on average) signature size. Short signatures are achieved by
multivariate proposals, led by HiMQ-3F [12] with 67 bytes needed for signature,
and 100878 bytes for public key. On the opposite side, hash-based signature
schemes provide short public keys and long signatures, led by Sphincs+ [3] with
32 byte public key and 8080 byte signature.

Hash-based signature schemes are based on one-time signatures (OTS) that
are combined with Merkle trees or Goldreich trees to provide multiple-time sig-
natures. Our observation is, that when we use ephemeral public keys, we already
have a one-time key pair with its own secret. Thus, we do not need to produce
a specific one-time signature, we only need to pre-authenticate the sequence of
public keys. We propose to use Merkle trees with leaves directly based on hashes
of ephemeral public key sequence. An l-level Merkle tree will allow us to authen-
ticate 2l ephemeral trees, with the public key size equal to the size of a single
hash value, and another l− 1 hash values needed for the signature (to store the
path through the Merkle tree). E.g. an l = 20 level Merkle tree will provide
authentication for 220 ephemeral keys, with the total signature + PK size for
128-bit security level equal to 640 bytes. This comes at the additional cost of
storing the hash tree on the server with 2l hashes (32 MB in the previous setup).

If the number of one-time certificates is not sufficient, with PKI support, the
root of the Merkle tree can be signed by the CA with an algorithm with different
trade-off. As the public key of the CA can be pre-installed in the client device,
CA’s algorithm can have a short signature size and large public key. Different
trade-offs with sizes of Merkle trees and certification paths can be made for
different usage scenarios (depending on the number of accesses, available storage,
tree precomputation time, etc.). E.g., we can construct another simple Merkle
tree on top of 220 OTS on the server as a level one local certification authority
(whose root is further signed by real authority). This will provide a flexible server
setup with 240 usable keys.

The stateful authentication using Merkle tree based authentication of public
keys retains the forward secrecy, because we can derive private keys on the fly
from a seed using a one-way function (old private keys are not needed anymore
after they are used). We can modify the scheme to stateless, if we relax conditions
on a key reuse (e.g. for the use with LEDA cryptosystem [2]). In this case,
however, we will lose the forward secrecy, because we must store the private



keys, or the pre-key, that can be used to derive any private key authenticated in
the Merkle tree.

2 Preliminaries

We will work in the client-server scenario typical for internet communication.
We rely on standard cryptographic tools and primitives:

– Public key cryptosystem with a pair of keys. We are only interested in key
generation and authentication. KeyGen primitive for a cryptosystem should
efficiently generate a pair (SK,PK) (from some randomness, see further),
where SK denotes a secret key, and PK a public key. We suppose that to
initiate secure communication between the client and server, it is sufficient
to provide a mechanism to transport the authenticated public key of the
server to the client. We are not interested in further protocols that realize
the rest of the secure channel establishment, etc.

– KeyGen primitive can be based on a deterministic algorithm KDF : Zn2 →
K, that computes keypair (SK,PK) from a bitstring k of length n. We will
call k a pre-key. In classical setting n = λ, where λ is a security level, but
in post-quantum setting we will use pre-keys n = 2λ to prevent Grover’s
algorithm based speed-up.

– A truly random pre-key is required for a secure public-key system. In our
scheme we will use a single master (secret) pre-key that is generated as a
true random bit-string. All other pre-keys will be derived with a one-way
function OWF : Zn2 → Zn2 .

– In the construction of public key authentication, we will also use a specific
cryptographically secure hash function denoted by hash (in practice instan-
tiated by the standard SHA-2 or SHA-3). Both OWF and KDF can be
implemented with a correct use of the same hash function (or by a different
specific mechanism, as required by the system/protocol).

3 Merkle tree

Merkle tree was introduced in [10] to allow signing arbitrary documents with any
one-way function F . It is a basis of post-quantum secure hash-based signatures.
The Merkle tree is used in conjunction with one-time signatures (e.g. Lamport
or Winternitz), and extends them for arbitrary number of uses.

We use a simplified hash tree method, based on binary tree with l levels.
Let h1 denote the root of the tree, and let each node hi have a left sub-node
h2i and a right sub-node h2i+1. Each node is marked by a hash of subnodes
hi = hash (h2i|h2i+1).

Let us suppose that the root node h1 is publicly known. It suffices to prove
the knowledge of the whole hash tree by publishing a single hash path from some
requested hj . The path consists of the missing sub-node h2i or h2i+1 required to
compute the hi, up to the previously published root h1.



Note that we can restrict the essentially infinite Merkle tree to a fixed number
of levels, say l. Then the final leaves have indexes between 2l and 2l+1 − 1 (here
l = 0 meaning degenerate tree with only the root node).

4 Combining Merkle tree and ephemeral keys

Our goal is to provide authentication for the server’s ephemeral key pairs. We
can understand this as a problem of authenticating a set of public keys, each of
which can be used only once. The corresponding secret keys are never revealed,
but their ownership is verified in the course of the underlying protocol.

The set of private keys can be randomly generated, and stored in a key store.
A more efficient option is to derived private keys from some master secret (a
secret pre-key). In the pre-key approach, we can either derive consecutive secret
keys from the pre-keys chained in a sequence (with a one-way functionOWF that
derives the next pre-key from the previous). Alternatively, we can derive each
secret key from a master pre-key, and an index in the set of keys. The sequential
generation has the advantage of forward-secrecy: the server can store only the
last pre-key. The price is, however, handling the issues with concurrency and
state-keeping. The index method allows a (pseudo-)random selection of public
keys (with no state and parallel access to the server). As the design goal of TLS
1.3 was to provide default forward secrecy, we only present the version with
sequential pre-keys.

To generate an authenticated set of ephemeral keys, server does the following
pre-computation:

1. Generate a random secret seed k0 ∈ Zλ2 .
2. Use a one way function F to define a sequence of derived pre-keys ki =
OWF (ki−1).

3. Generate 2l ephemeral key pairs (SKi, PKi) from pre-keys ki using the de-
fined KDF function.

4. Compute the hashes h2l+i = hash(PKi), and the rest of the Merkle tree
with hj = hash (h2j |h2j+1).

5. Publish (sign by CA) the root h1.
6. Store as an initial (secret) state: (0, k0) and the hash path from h2l to the

root.

To initiate the KEM, the server does:

1. Send current public key PKi along with hash path from h2l+i to the root.

To verify the authenticity of the public key, the client does:

1. Verify that h2l+i = hash(PKi), and that for each hash in the path to the
root: hj = hash (h2j |h2j+1).

After the handshake part is finished, and keypair (SKi, PKi) is no longer
needed, server prepares a new key pair:



1. Derive the next ki+1 = OWF (ki).
2. Recompute the hash path.
3. Store a new (secret) state: (i + 1, ki+1) and the hash path from h2l+i+1 to

the root.

To recompute the hash path, there are two possibilities. Either the whole hash
tree needs to be stored (if enough storage is available), in which case generating
a new hash path is trivial. We only need to store public key hashes, and do not
need to store the key pairs or seeds kj with j 6= i. However, if key generation
is too slow, we might prefer to store the key-pairs as well (but this option is
more vulnerable to data-retention attacks). It is also possible to combine key
derivation with more efficient batch key generation (such as the one for BIKE-2
in [1]).

We can save some storage space by recomputing the required parts of the
Merkle tree after the key use. We only need to store the current ki and the path
from h2l+i to the root. All the left-hand sub nodes for the path from h2l+i+1

are actually computed when verifying the path from h2l+i. Only the right-hand
child nodes need to be recomputed, similar to original hash tree precomputation.
In this case, we never need to store kj with j < i, thus old seed values can still
be removed (to preserve forward secrecy).

If we allow key reuse and do not need forward secrecy, we can change the com-
putation of pre-keys to ki = hash(k0|i). In this case, in KEM initiation phase,
server selects PKi randomly among 2l options. This factor limits a potential
attacker’s access to private keys by factor 2l.

Note that a man in the middle type attacker can always present a valid signed
public key to the client in both cases: the signature of any of the previously used
public keys is known. However, the attacker does not know the corresponding
private key (and the signature does not help him to learn it). In the stateful
version of the protocol, the past private keys can not be computed even by the
server, which achieves forward secrecy. Attacker cannot forge the signature of
any public key, that is not already stored in the Merkle tree due to the properties
of the Merkle tree and the underlying hash function.

5 Basic security analysis

In this paper we have introduced a general scheme that combines public key
encryption with Merkle trees for key authentication. Security of the scheme
is based on its components and should be analysed in concrete instantiation.
However, we can provide a simple security analysis for a general scheme with
random key pairs.

Suppose that there is anM level Merkle tree that is used to authenticate 2M
random public keys with (pre-shared) root h1. We will only focus on authenti-
cation. Thus, we suppose that attacker has a knowledge of all public keys and
the whole Merkle tree, but he is unable to learn any information about secret
keys. Furthermore, we suppose some ideal hash function h : Z∗

2 → Zn2 was used
to build the Merkle tree: h is essentially a collision resistant one-way function.



The security arguments for the scheme are really simple. Attacker can present
any public key PK with any authentication path (H1, H2, . . . ,HM−1). Attacker
”wins” if the PK gets accepted by verifier. This happens only if after evaluating
hash path with the initial h(PK) the verifier gets HM .

It is easy to see that if the attacker provided a validHM to the verifier, he was
able to create a preimage of a hash function h in some of the points of the original
Merkle tree. For the sake of simplicity, suppose that authentication path is always
evaluated from the right-side. Attacker’s PK, and sequence (H1, H2, . . . ,HM−1)
induce a sequence of hash values g0 = h(PK), gi = h(gi−1|Hi). Attacker’s
success means that gM = h1. This means that either attacker has constructed a
preimage for h1, or that gM−1 = h2, and HM−1 = h3, respectively. We can now
repeat the argument to finding preimage of h2, h4, etc. up to h2M (which is the
hash of an original public key in authenticated by the Merkle tree).

We have thus established that if attacker succeeded, he has constructed a
preimage for h. Thus, authentication property of the scheme reduces to preim-
age resistance of the used hash function. Note however, that there is a slightly
more complicated situation: attacker can try to create preimage to any of the
2M+1 hash values included in the Merkle tree. In ideal case, probability of cre-
ating a preimage with random tries is 2M+1/2n. Thus the attacker needs to test
approximately 2n−M values to succeed with at least 50% probability. Note that
he does not need to generate as many public keys, as he can try to combine hashes
of randomly generated public keys with hashes already in the public Merkle tree.
However, this optimisation does not reduce the expressed work-factor expressed
as number of hash calls.

If hash size n = 2λ, where λ is a chosen security level, the Merkle tree
can contain up to M = λ levels to resist preimage attacks. In practice, M is
significantly lower, and the generic attack is not possible.

6 Conclusions

Public key encryption schemes / or KEMs / with ephemeral keys only (or keys
with a limited number of uses) are sufficient to build TLS-like handshake pro-
tocols. While the authentication of the protocol can be solved with additional
signature scheme, we can also authenticate the ephemeral public keys directly
by employing Merkle-tree technique. In post-quantum setting this technique can
provide a building block to more efficient and flexible authenticated key estab-
lishment schemes.

Selected components and their well known security properties should provide
tools to create a key exchange mechanism (with underlying KEM) with server
authentication (through the use of Merkle tree based signatures) and optionally
forward secrecy (by the use of ephemeral keys). Authentication can be extended
to the client side as well, if the client also keeps a Merkle tree of her potential
ephemeral public keys. Client authenticated keys can also be recommended to
prevent potential key exhaustion attack (malicious attacker creates false connec-
tions to a server to exhaust one-time keys). In the TLS setting, the lifetime of



the set of authenticated keys can also be extended by using pre-shared keys for
clients that re-connect to the server, and with a suitable use of hierarchical PKI.

References

1. Aragon, N., Barreto, P., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville, J.C., Ga-
borit, P., Gueron, S., Guneysu, T., Melchor, C.A., et al.: BIKE: Bit flipping key
encapsulation (2017)

2. Baldi, M., Barenghi, A., Chiaraluce, F., Pelosi, G., Santini, P.: Design of ledakem
and ledapkc instances with tight parameters and bounded decryption failure rate

3. Bernstein, D., Dobraunig, C., Eichlseder, M., Fluhrer, S., Gazdag, S.L., Hülsing,
A., Kampanakis, P., Kölbl, S., Lange, T., Lauridsen, M., Mendel, F., R., N., Rech-
berger, C., Rijneveld, J., Schwabe, P.: SPHINCS+ (2017), https://sphincs.org/

4. Chen, L., Chen, L., Jordan, S., Liu, Y.K., Moody, D., Peralta, R., Perlner, R.,
Smith-Tone, D.: Report on post-quantum cryptography. US Department of Com-
merce, National Institute of Standards and Technology (2016)

5. Eaton, E., Lequesne, M., Parent, A., Sendrier, N.: Qc-mdpc: A timing attack and a
cca2 kem. In: International Conference on Post-Quantum Cryptography. pp. 47–76.
Springer (2018)

6. Fabšič, T., Hromada, V., Stankovski, P., Zajac, P., Guo, Q., Johansson, T.: A reac-
tion attack on the QC-LDPC McEliece cryptosystem. In: International Workshop
on Post-Quantum Cryptography. pp. 51–68. Springer (2017)

7. Fabšic, T., Hromada, V., Zajac, P.: A reaction attack on ledapkc. IACR eprint
archive (2018), https://eprint.iacr.org/2018/140

8. Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: Falcon: Fast-fourier lattice-based
compact signatures over ntru (2018)

9. Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on MDPC with
CCA security using decoding errors. In: Advances in Cryptology–ASIACRYPT
2016: 22nd International Conference on the Theory and Application of Cryptology
and Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part
I 22. pp. 789–815. Springer (2016)

10. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) Advances in Cryptology — CRYPTO ’87. pp. 369–378.
Springer Berlin Heidelberg, Berlin, Heidelberg (1988)

11. Rescorla, E.: The transport layer security (tls) protocol version 1.3. Tech. rep.
(2018)

12. Shim, K.A., Koo, N., Park., C.M.: HiMQ-3: A high speed signature scheme based
on multivariate quadratic equations (2017)

13. Yamada, A., Eaton, E., Kalach, K., Lafrance, P., Parent, A.: QC-MDPC KEM: A
key encapsulation mechanism based on the QC-MDPCMcEliece encryption scheme
(2017), https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-
Submissions


