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Timing side-channels are arguably one of the main sources of vulnerabilities in cryptographic implementations.
One effectivemitigation against timing side-channels is to write programs that do not perform secret-dependent
branches and memory accesses. This mitigation, known as “cryptographic constant-time”, is adopted by several
popular cryptographic libraries.

This paper focuses on compilation of cryptographic constant-time programs, and more specifically on the
following question: is the code generated by a realistic compiler for a constant-time source program itself
provably constant-time? Surprisingly, we answer the question positively for a mildly modified version of the
CompCert compiler, a formally verified and moderately optimizing compiler for C. Concretely, we modify the
CompCert compiler to eliminate sources of potential leakage. Then, we instrument the operational semantics
of CompCert intermediate languages so as to be able to capture cryptographic constant-time. Finally, we
prove that the modified CompCert compiler preserves constant-time. Our mechanization maximizes reuse
of the CompCert correctness proof, through the use of new proof techniques for proving preservation of
constant-time. These techniques achieve complementary trade-offs between generality and tractability of
proof effort, and are of independent interest.

1 INTRODUCTION
Formally verified compilers are compilers that come together with a machine-checkable proof of
correctness. Typically, these correctness proofs show that the compiler does preserve the safety and
behavior of programs. Until recently, building formally verified compilers for realistic languages
was seen as a grand challenge. However, the advent of the CompCert [Kästner et al. 2018; Leroy
2006, 2009a; Leroy et al. 2016], Vellvm [Zhao et al. 2012, 2013], Crellvm [Kang et al. 2018], and
CakeML [Kumar et al. 2014; Lööw et al. 2019; Owens et al. 2017; Tan et al. 2016] verified compilers
show that they are now well within reach—although admittedly, every formally verified compiler
for a realistic language remains a feat.

Formally verified compilers guarantee the absence of correctness bugs, but do not protect against
other classes of bugs, such as performance bugs or security bugs, which also pose serious practical
threats. This limitation partly arises from the traditional form of stating compiler correctness as
preservation of operational or denotational semantics that do not capture non-functional properties
such as performance or security. However, there are some deeper issues, which have led to the
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emergence of a sub-area of research at the intersection of programming languages, compilation
and language-based security. First, the notion of secure compilation itself has remained elusive.
In particular, some previously proposed notions such as full abstraction [Patrignani et al. 2019]
do not accurately capture secure compilation, and furthermore there is no one-fits-all definition
of secure compilation [Abate et al. 2018]. Second, proof techniques for compiler correctness,
including the traditional notions of simulation, do not immediately apply to secure compilation,
and need to be extended accordingly. As a consequence, the main focus of secure compilation
has remained (understandably so) foundational, and very few works study secure compilation for
realistic compilers or even concrete compiler passes.

In this paper, we address the challenges of secure compilation from the specific angle of turning
a pre-exisiting formally-verified compiler into a formally-verified secure compiler. This angle of
attack is very natural, for three reasons: first, formally-verified compilers for full-fledged languages
are major feats, and factoring out this effort is appealing. Second, modular reasoning (in this case
first proving correctness then security) is good practice, especially in the context of machine-
checked proofs. Third, formally-verified compilers are already adopted, and leveraging their usage
seems ingenious. Specifically, we consider the problem of secure compilation for CompCert [Blazy
et al. 2006; Leroy 2006, 2009a], a formally-verified moderately optimizing compiler for C programs;
currently CompCert targets 4 architectures: PowerPC, ARM, x86 and RISC−V. The CompCert compiler
is programmed (mostly) and verified (fully) using the Coq proof assistant [Inria 2019]. The compiler
itself is written as a sequence of 20 compiler passes, from the CompCertC source language down
to assembly, going through 8 intermediate languages. Among them are standard optimization
passes performing mainly instruction selection, dataflow analysis (used for constant propagation,
common subexpression elimination and redundancy elimination), register allocation and function
inlining. Compiler passes are either programmed and verified in Coq, or programmed in OCaml and
verified in Coq, using translation validation. The correctness theorem states that the compilation
is semantics-preserving, i.e., does not introduce bugs in compiled programs. This main theorem
decomposes into correctness theorems for each of the 20 compilation passes. Again, each pass
decomposes into elementary passes that are proved correct. A general theorem states the correctness
of the sequential composition of two passes from the correctness of both passes. CompCert evolved
significantly over the last 15 years, starting as an academic project and now being used in commercial
settings. For example, CompCert was recently used in the certification of a highly safety-critical
application. With 100,000 lines of Coq and 6 person-years of effort, the CompCert proof is among
the largest ever performed with a proof assistant [Kästner et al. 2018].
To make the question “Does the CompCert compiler preserve security?” precise, we must fix

the notion of security we want to address. We focus on the specific setting of side-channel pro-
tection. More specifically, we consider “cryptographic constant-time”, a popular software-based
countermeasure against timing-based and cache-based attacks. Informally, an implementation is
secure with respect to the cryptographic constant-time policy if its control flow and sequence of
memory accesses do not depend on secrets. Thus, cryptographic constant-time is a misnomer and
it is perhaps more accurate to think of the cryptographic constant-time policy as the combination
of the program counter policy [Molnar et al. 2005] (programs should not branch on secrets) and the
memory obliviousness policy [Liu et al. 2013] (memory accesses should not depend on secrets). The
practical effectiveness of cryptographic constant-time is undisputed: on the negative side, imple-
mentations that do not comply with the policy are often vulnerable to cache attacks [Albrecht and
Paterson 2016; AlFardan and Paterson 2013; Ronen et al. 2018]; on the positive side, constant-time
implementations are much harder to break (without using advanced micro-architectural features
and in particular speculative execution). Furthermore, this practical effectiveness is supported
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by theoretical justifications: in [Barthe et al. 2014] the authors show that constant-time imple-
mentations are secure against powerful adaptive adversaries with control over the cache and the
scheduler in an idealized model of virtualization.
Cryptographic constant-time is an appealing property to study in the context of secure compi-

lation. On the theoretical side, cryptographic constant-time is an instance of observational non-
interference, an information-flow policy that reasons about instrumented semantics of programs—
see [Barthe et al. 2018; Ngo et al. 2017] for notions of observational non-interference. Therefore,
techniques for proving preservation of cryptographic constant-time could form a good starting
point for proving preservation of observational non-interference policies and more generally rela-
tional properties. On the practical side, building correct, efficient and constant-time cryptographic
libraries is very challenging. One problem is that, despite its apparent conceptual simplicity, pro-
gramming following the cryptographic constant-time policy is difficult, and expert developers
occasionally fail to adhere to the policy. Recently, several verification tools have been built and used
for checking that popular libraries achieve cryptographic constant-time, see e.g. [Almeida et al.
2016; Rodrigues et al. 2016]. These tools target low-level implementations, because it is generally
felt that compilers may break cryptographic constant-time. Unfortunately, checking low-level
implementations is not ideal, because it makes the results of the analysis difficult to understand
for programmers. In addition, verifying low-level implementations may be less precise, as pointed
out in [Blazy et al. 2019], and it may also require more complex analyses, including precise alias
analyses.
Perhaps surprisingly, it has been observed recently that many compiler optimizations do in

fact preserve constant-time security [Barthe et al. 2018]. This observation is made formal using
CT-simulations, a notion which combines the usual notion of simulation from compiler correctness
and the well-known unwinding lemmas (more specifically, the step-consistent unwinding lemma)
from the information-flow literature. However, this work has been developed in the setting of a toy
language and compiler. This raises the general question whether a realistic compiler like CompCert
preserves cryptographic constant-time.

Contributions
All results presented in this paper have been mechanically verified using the Coq proof assistant.
The complete Coq development is available as a supplementary material. The main contribution
of this paper is a machine-checked proof that a mildly verified version of the CompCert compiler
preserves cryptographic constant-time. To our best knowledge, our proof is the first of this kind,
making CompCert the first formally verified secure compiler for a realistic programming language.
The proof rests on several technical contributions:

• we identify the passes of the CompCert compiler that do not preserve constant-time, and
adjust them accordingly (see Section 6.2 for a discussion). We also modify CompCert to
generate conditional moves, one of the main ingredients used by cryptographers to ensure
that implementations are constant-time;

• we formalize the notions of cryptographic constant-time for CompCert intermediate repre-
sentations, and show equivalence between different notions.

• we develop new proof techniques for proving preservation of cryptographic constant-time.
Our proof techniques are designed to minimize proof effort and maximize compatibility
with pre-existing proofs for proving compiler correctness. Concretely, we propose a range of
methods that make different trade-offs between generality and proof effort, and use different
methods appropriately for each pass. In particular, the method from [Barthe et al. 2018] is at
the end of our spectrum (most general, most difficult to use) and we use it sparsely;
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• we prove that all passes in (modified) CompCert preserve cryptographic constant-time;
• we evaluate the performance of our compiler on representative examples.

This paper is organized as follows. First, Section 2 recalls the required background on the
CompCert compiler. Then, Section 3 defines our cryptographic constant-time policy for CompCert
and two of its variants. Section 4 explains why CompCert does not preserve our cryptographic
constant-time policy and how we modified CompCert so that it preserves it. Section 5 details our
new proof techniques and how we applied them to prove that CompCert preserves cryptographic
constant-time. Section 6 describes the experimental evaluation of our modified compiler. Related
work is discussed in Section 7, followed by concluding remarks.

2 BACKGROUND ON THE COMPCERT VERIFIED C COMPILER
CompCert [Leroy 2009a] is the first commercially available optimizing compiler that is formally
verified. The CompCert compiler comes with a machine-checked correctness theorem, conducted
using the Coq proof assistant [Inria 2019]; it states that the compilation does not introduce bugs in
compiled programs. This section introduces the ingredients of the correctness proof of CompCert
passes; they are further detailed in [Leroy 2009b]. First, the section describes the generic semantic
framework used to define the formal semantics of the 10 languages of the compiler. Then, it details
the proof techniques underlying the correctness lemmas. Last, it introduces memory injections
that formalize how memory is transformed by compiler passes.

2.1 Transition Semantics
In CompCert, semantics are defined using an operational style. For high-level languages, the formal
semantics combines a big-step semantics for expressions and a small-step semantics for statements.
Low-level languages are defined by small-step semantics. An operational semantics defines an
execution relation between semantic states and associates to each program the set of all its possible
behaviors. Three kinds of behaviors observe terminating, diverging and going-wrong programs.
The trace of input/output external actions (i.e., calls to library functions, loads and stores on global
volatile variables) performed by a program is also observed during program execution. A program
is safe when its execution either terminates or diverges. Traces and behaviors are defined on top of
Figure 1, where ε denotes an empty trace, and ν denotes a single external input/output event. A
trace is a list of events; this list may be finite or infinite.

Small-step semantics of the CompCert languages are specified using a generic notion of a one-step
transition relation→ between a global environment G which does not change during execution,
an initial program state S , a final program state S ′ and a trace t of input/output actions [Leroy
2009b]. Given an environment G, the transition from S to S ′ generates external events that are
recorded in trace t . The definitions of the global environment and of the state differ from one
language to another. They at least involve a local environment and a memory stateM (shared by
all the languages of the compiler). For example, in the RTL language 1 , the local environment is a
stack frame Σ (representing pending function calls) and the program states are either regular states
S(Σ, f ,σ ,pc,R,M) carrying the currently-executing function f with stack pointer σ , program
counter pc, map R from registers to values, or call states C(Σ, Fd, ®v,M) reached when calling a
function, or return states R(Σ,v,M) reached when returning from a function.

CompCert defines several transition relations from the generic step relation, together with their
properties: the star (resp. plus) relation denotes its reflexive transitive closure (resp. transitive
closure); the−→n relation counts finite numbers of transitions, and infinite transitions are represented
by the relation −→∞ of Figure 1. A diverging program execution observes infinite or finite traces
1Figure 11 recalls the languages and passes of CompCert.
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Behaviors
t ::= ε | ν .t finite traces (inductive)
T ::= ε | ν .T finite or infinite traces (coinductive)
B ::= terminates(t, n) termination with trace t and exit code n
| diverges(t) divergence with finite trace t
| reacts(T) divergence with trace T
| goes_wrong(t) blocking execution with trace t

Semantic judgements
G ⊢ S

t
−→S ′ (step transition)

G ⊢ S
t
−→∗ S ′ (star transition)

G ⊢ S
t
−→+ S ′ (plus transition)

G ⊢ S
t
−→n S ′ (counted transitions)

G ⊢ S
T
−→∞ (infinite transitions)

Fig. 1. Transition semantics defined in CompCert (from a generic step transition)

(e.g., an infinite loop that does not observe external input/output events). Moreover, a generic
notion of transition semantics is defined in CompCert. In addition to the type of program states,
the type of global environments and the transition relation, the semantics defines two predicates
representing the initial states of a program and the final states of a terminating program execution.
The first predicate checks that the memory and global environment are initialized, and that there is
a main function in P with a correct signature. In the remainder of this paper, for the sake of brevity,
we omit the global environment G in the transition relations.

2.2 Simulation Relations Between Program Executions
In C and in CompCertC, the source language of CompCert, evaluation orders are not fully specified
(meaning that the compiler is allowed to choose one of the possible evaluation orders). An example
is an expression made of calls to several functions: the expression is safe and the calls can be
evaluated in any order that the compiler may choose. CompCertC is the only non-deterministic
language of CompCert in that respect. For this reason, the correctness theorem of CompCert is
stated as follows: if the compiler produces code C from source S , without reporting a compile-time
error, then every observable behavior of C is a possible behavior of S . The standard proof technique
to conduct this proof is a backward simulation (i.e., every behavior of C is also a behavior of S).

It is hard to build backward simulation relations in the frequent case where a step in the original
program is implemented by several steps in the compiled program. For passes that preserve the
amount of nondeterminism, it is easier to reason on forward simulations (i.e., stating that every
behavior of S is also a behavior of C). A backward simulation from C to S can be constructed from
a forward simulation from S to C when S is receptive and C is determinate [Sevcík et al. 2013]. S is
receptive when each step produces at most one input/output action in the observed trace, and when
two matching traces t1 and t2 (i.e., they represent the same actions in the same order) are such that
any step s t1

−→ s1 implies that there exists a state s2 such that we have s t2
−→ s2.C is determinate when

each step produces at most one input/output action in the observed trace, and when two matching
traces t1 and t2 observed from a same initial state represent a same step (i.e., a same final state and
a same trace).

So in CompCert, the only backward simulation proof of a compiler pass is the correctness proof
of the transformation of CompCertC programs into determinized programs. All other passes are
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s1 s2

σ1 σ2

t

≈ ≈

t +

s1 s2

σ1

t

≈
≈

withm(s2) < m(s1)

Fig. 2. Forward-simulation diagram with measure. Black lines are hypotheses, red lines are conclusions.

proved correct using a forward simulation. The new proof techniques we define in this paper rely on
forward simulation diagrams (i.e., we do not need to update backward simulations of CompCert).
Furthermore, a C undefined behavior means that anything can happen when this behavior is

observed, and a C compiler is free to remove computations that cause an undefined behavior (e.g.,
an assignment including a division by zero that is detected as dead code by an optimization). Thus,
in compiler verification, the correctness theorem only applies to safe programs (see Section 2.1).
For this reason, our new proof techniques only consider safe programs as well.
Last, the most general forward-simulation diagram is defined in CompCert as follows. The

correctness proof of a compiler pass from language L1 to language L2 relies on a forward simulation
diagram shown in Figure 2 and expressed in the following theorem. Given a program P1 and its
transformed program P2, each transition step in P1 with trace t must correspond to transitions in P2
with the same trace t and preserve as an invariant a relation ≈ between states of P1 and P2. In order
to handle diverging execution steps and rule out the infinite stuttering problem, the theorem uses a
measure over the states of language L1 that strictly decreases in cases where stuttering could occur.
It is generically notedm(·) and is specific to each compiler pass. CompCert simulation relations
describe only one execution of a program. This is enough to prove the correctness of CompCert,
but not adapted to prove our security property, as it involves two different executions of a program.
We explain in Section 3 how we circumvent this problem.

2.3 Memory Injections
The memory model of CompCert is shared by the semantics of all the languages. Memory states are
collections of blocks, each block being an array of abstract bytes. A block represents a C variable
or an invocation of malloc. Pointers are represented by pairs (b,i) of a block identifier and a byte
offset i within this block. Pointer arithmetic modifies the offset part of a pointer value, keeping its
block identifier part unchanged. Values stored in memory are the disjoint union of 64-bit integers,
64-bit floating-point numbers, pointers, and the special value vundef representing the contents of
uninitialized memory [Leroy et al. 2014].
The memory layout evolves during compilation of a program. Some memory blocks are added,

while others are merged. To relate memories before and after these modifications, the memory
model of CompCert comes with a central notion of memory injection that formalizes the effect of
merging memory blocks together. Memory injections are used to specify the passes that transform
the memory layout. The stereotypical example is the construction of stack frames. For example,
in Cminor a single block contains all the local variables, stored at different offsets. In contrast, at
the upper level, each local variable is allocated in its own block. This mapping from local variable
blocks to offsets in the stack block in Cminor is captured by a memory injection. A memory injection
is characterized by an injection function that optionally associates with each block a new block
and an offset within that block.
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3 CRYPTOGRAPHIC CONSTANT-TIME POLICIES FOR COMPCERT
This section first defines the notion of cryptographic constant-time policy for CompCert. Second,
it presents a restriction on program executions that is adapted to our policy. We then give two
alternative definitions that use this restriction and show that they are equivalent to the baseline
definitions. These alternative definitions are more convenient for our proofs.

3.1 Main Cryptographic Constant-Time Policy for CompCert
Intuitively, we say that a program P is cryptographic constant-time if two of its executions that
differ only on their secret inputs induce equal leakage. In this paper, we note φ(si , s ′i ) the fact that
two initial states si and s ′i share the same values for public inputs of P , but differ on the values of
secret inputs of P . Our formalization splits the definition of φ into a generic part and a part that is
language dependent, by introducing a generic notion of input world but we omit it in the remainder
of the paper.
We model the leakages of P as a list of atomic leakages, where an atomic leakage results from

a single step of the program execution [Barthe et al. 2018]. An atomic leakage is either the truth
value of a condition, or a pointer representing the address of either a memory access (i.e., a load
or a store) or a called function. This leakage model is compliant with our constant-time policy.
Moreover, to observe leakages in all languages of CompCert, we instrument all their semantics, and
enrich the traces of input/output events defined in CompCert by leakages (i.e., we add leakages as
a new kind of event). We thus benefit from all the existing definitions and lemmas about traces,
that we directly reuse in our proofs.
More precisely, we distinguish 3 semantics: the CompCert semantics with traces enriched by

leakages, represented by the full step relation t
−→ , and two semantics where some events are filtered

out from traces. We call them leak-only semantics (represented by the t
−→l step relation) and compile-

only semantics (represented by the t
−→Comp step relation). A leak-only execution is based on the

former relation, while a compile-only execution is based on the latter. We omit the arrow subscripts
when the context makes clear which is considered. In leak-only semantics, the input/output events
of the full semantics are filtered out to produce only leakages. In compile-only semantics, the
leakages of the full semantics are filtered out to produce only input/output events. It corresponds
hence to the original semantics of CompCert. As explained in the remainder of this paper, in our
formalization, we either reuse directly standard simulation diagrams (and semantics) of CompCert
or define new simulation diagrams involving one of our instrumented semantics. These proof
techniques range from simple proofs (see Section 5.2) to tricky proofs requiring sophisticated
simulation diagrams and peculiar instrumentations in the semantics (see Section 5.5). Last, we
write |t | the size of trace t (i.e., the number of its observed events).

Furthermore, we assume that the languages are deterministic. This assumption is appropriate for
our intended application as cryptographic implementations are deterministic. Moreover, it does not
seem straightforward what it would mean for a non-deterministic C program to be constant-time.
The main cryptographic constant-time policy for CompCert is thus stated as follows.

Definition 3.1 (CTS). Let P be a safe program (see Section 2.1). We say that P is constant-time
secure w.r.t. φ (abbreviated as CTS) if for two initial states si , s ′i of P such that φ(si , s ′i ) holds, then
both leak-only executions starting from si and s ′i observe the same leakage (i.e., both leak-only
executions terminate with the same trace, or they both diverge with the same trace).
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a , a′ initial states of P =⇒ a ≡ a′(1) a final state of P
a ≡ a′

=⇒ a′ final state of P (2)

a
t
−→b

a′
t
−→b ′

a ≡ a′
=⇒ b ≡ b ′(3)

a
t
−→b

a′
t ′
−→b ′

a ≡ a′
=⇒ |t | = |t ′ | (4)

Fig. 3. Expected properties of the same-point relation ≡

3.2 Other Characterizations of Constant-Time Security
The CTS property ensures that differing executions of a safe program have the same control
flow. Indeed, conditions of branches are leaked and CTS ensures that leaks are the same in these
executions. Our proof methodology requires to introduce, for each intermediate languages, a notion
of a same-point relation between states. It expresses that during two executions of a program, two
semantic states are related to a same program point. The relation is written ≡ and must satisfy some
properties presented in Figure 3. Property 1 states that all initial states of the same program are at
the same program point. Furthermore, property 2 states that if a and a′ are at the same program
point, and one of them is a final state, then the other necessarily is.

The next two properties give some characterizations of the leakage model we consider. Property 3
means that step transitions with equal leakage preserve the same-point relation: if both states a
and a′ are at a same program point, and both program executions make one step respectively to b
and b ′ while leaking the same leakage (belonging to trace t ), then b and b ′ are at a same program
point. It ensures that the leakage reveals enough information to characterize the control-flow of
the execution. Property 4 means that if both states a and a′ are at a same program point, then both
steps from a and a′ leak the same amount of information (hence the same size for both traces). This
prevents from building an attacker model in which the mere absence of a leakage reveals some
information. We do not require the traces to be equal because t and t ′ may not depend only on
control-flow position. In the special case where t is empty, this property ensure that t ′ is empty
too. This property is useful in our methodology and easily satisfied by all CompCert semantics.
Another remark is that this property subsumes the non-cancelling assumption made by [Barthe
et al. 2018], i.e., that the equality of the leakages of two executions implies the pairwise equality of
the leakages of each of their steps. This is a direct consequence of our property.

When such same-point relations exist, they are all consequences of the most informative relation
(written ≡strongest): two states are related if and only if they are reachable from two initial states
within the same number of steps and producing the same trace. Although the relation ≡strongest
is convenient to prove general properties of ≡-related states, it is generally helpful to define a
same-point relation for each language in terms of the control-flow components of the execution
states. We illustrate that the ≡ relation is consequence of the ≡strongest one in the following lemma.

Lemma 3.2. For all ≡ relation, we have ≡strongest ⊆ ≡.

Proof. Let s and s ′ such that s ≡strongest s
′. By definition, there exist initial states si and s ′i ,

number of steps n and trace t such that si
t
−→n s and s ′i

t
−→n s ′. We show by induction on n that s ≡ s ′.

If n = 0, then s = si and s ′ = s ′i , and therefore s ≡ s ′ by property 1.
Otherwise, there exist states sn−1 and s ′n−1, traces t1, t2, t ′1, t ′2 such that si

t1
−→ n−1 sn−1

t2
−→ s ,

s ′i
t ′1
−→n−1 s ′n−1

t ′2
−→ s ′ and t = t1 ++ t2 = t ′1 ++ t

′
2. By induction hypothesis we have that sn−1 ≡ s ′n−1.
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By Property 4, we have that |t2 | = |t ′2 |. We thus have necessarily that t1 = t ′1 and t2 = t ′2. Hence,
s ≡ s ′ by Property 3. □

Given a same-point relation, we characterize in two supplementary ways constant-time security,
and show that our three definitions are pairwise equivalent. Our two following definitions are
more restricted than CTS, but they facilitate our correctness proofs.

Definition 3.3 (CTSn). Let P be a safe program. P is CTSn w.r.t. φ if the following holds. Let si
and s ′i be initial states of P such that φ(si , s ′i ) holds. If the leak-only execution of P from si (resp. s ′i )
reaches state s (resp. s ′) in a same number of steps with a leakage trace t (resp. t ′), then both traces
(hence both leaks) are the same. More formally, for all n, s, s ′, t , t ′ such that si

t
−→n s and s ′i

t ′
−→n s ′,

then t = t ′.

Lemma 3.4. CTSn implies CTS.

Proof. We show that if a program P satisfies CTSn, then it also satisfies CTS. This proof is similar
to the standard simulation proofs of CompCert. Let’s first assume that the execution of P from si

terminates with leakage t in n steps, i.e., si
t
−→n sf and sf is a final state. We can assume without

loss of generality that s ′i has a longer execution, whether terminating or infinite.
We can split this execution in two parts, so that the first part takes also n steps and matches the

execution starting from si , i.e., s ′i
t ′
−→n s ′n . By using CTSn, we have that t = t ′. Therefore, sf ≡ s ′n by

Lemma 3.2.
As sf is a final state, s ′n is also necessarily a final state by Property 2. The execution starting from

s ′i is thus also terminating with leakage t ′ such that t = t ′.
If the execution of P from si diverges with leakage t , then in a similar way, the execution of P from

s ′i must diverge with some leakage t ′ (otherwise, the first execution would have been terminating).
By using CTSn, we have that all prefixes of same size of t and t ′ are equal, thus t = t ′. □

Our third definition (called CTS |l |) requires leakages to have the same length, without requiring
executions to have the same numbers of steps.

Definition 3.5 (CTS |l |). Let P be a safe program. P is CTS |l | w.r.t. φ if the following holds. Let si , s ′i
be two initial states of P such that φ(si , s ′i ) holds. If for all s, s ′, t , t ′ such that si

t
−→∗ s , s ′i

t ′
−→∗ s ′ and

|t | = |t ′ |, then t = t ′.

Lemma 3.6. CTSn and CTS |l | are equivalent.

Proof. We first prove that CTSn implies CTS |l | . Let si and s ′i be two initial states of P such that
φ(si , s

′
i ), for all s, s ′, t , t ′ such that si

t
−→∗ s , s ′i

t ′
−→∗ s ′ and |t | = |t ′ |. Without loss of generality, we can

assume that the first execution is longer than (or equal to) the other, we can thus cut it short such
that there exists t = t1 ++ t2. By CTSn hypothesis, we get that t1 = t ′ and therefore |t | = |t ′ | = |t1 |
and |t | = |t1 | + |t2 |. It is thus necessary that t2 = ε , hence t = t ′.

Proving that CTS |l | implies CTSn is slightly more challenging. Indeed, let si and s ′i be two initial
states such that φ(si , s ′i ). For all n, s, s ′, t , t ′ such that si

t
−→n s and s ′i

t ′
−→n s ′, we prove that t = t ′

by induction on n. For n = 0 , it is true since t = t ′ = ε . Otherwise, there exist executions

si
t1
−→n−1 sn−1

t2
−→ s , s ′i

t ′1
−→n−1 s ′n−1

t ′2
−→ s ′ and t = t1 ++ t2 and t ′ = t ′1 ++ t

′
2. By induction hypothesis,

we have that t1 = t ′1 and therefore sn−1 ≡ s ′n−1 by Lemma 3.2. By Property 4 of the same-point
relation, t2 and t ′2 have same length, and thus t and t ′ also have same length. Finally, by definition
of CTS |l | , t = t ′. □
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Σ ≡ Σ′ #(M) = #(M ′)

S(Σ, f ,σ ,pc,R,M) ≡ S(Σ′, f ,σ ,pc,R′,M ′)

Σ ≡ Σ′ #(M) = #(M ′) | ®v | = | ®v ′ |

C(Σ, Fd, ®v,M) ≡ C(Σ′, Fd, ®v ′,M ′)

Σ ≡ Σ′ #(M) = #(M ′)

R(Σ,v,M) ≡ R(Σ′,v ′,M ′)

Fig. 4. Expected properties of the same-point relation for the RTL language

Lemma 3.7. CTS implies CTS |l | .

Proof. Let si and s ′i be two initial states such that φ(si , s ′i ), for all s, s ′, t , t ′ such that si
t
−→∗ s ,

s ′i
t ′
−→∗ s ′ and |t | = |t ′ |. t and t ′ are prefixes (by determinism) of the full traces obtained by considering

the full executions from si and s ′i which are equal by hypothesis, thus t and t ′ are equal. □

Theorem 3.8. The three definitions CTSn, CTS, and CTS |l | are equivalent.

Proof. This is a consequence of the three previous lemmas. □

Given these multiple characterizations of constant-time security, we consequently obtain three
ways of proving that security is preserved as we show in the following sections where we assume
that all considered languages satisfy the same-point relation.

3.3 Defining the Same-point Relation
For each language of CompCert, we defined a same-point relation and proved that it satisfies the
properties of Figure 3. These definitions depend on how much information we need to prove; they
all relate the control flow of states, but in some cases, we also need to relate the memory layout.

For instance, Figure 4 defines the same-point relation for the RTL intermediate language, where
RTL states are defined in Section 2.1. Only states of a same kind can be at a same point. Two program
states are at the same point if their stack frames Σ and Σ′ match (we omit the definition of Σ ≡ Σ′

for simplicity) and their memoriesM andM ′ have the same layout (written as #(M) = #(M ′)). More
precisely,M andM ′ have the same number of allocated blocks and the same identifier for the next
block to allocate. This definition ensures that states at the same point have a similar memory layout
but says nothing about their contents. For regular states, we further require that the states are
within the same function f . For called states, we further require the same function definition Fd to
be called with the same number of arguments.
Defining the same-point relation for assembly programs is slightly more challenging. Indeed,

indirect jumps and calls transfer control to an arbitrary computed position. Justifying that two
executions follow the same control flow thus requires to prove that the computed return addresses
agree. This is particularly difficult as assembly programs may tamper with their call stacks and
modify return addresses. However, as we are only concerned with assembly programs produced by
the compiler, we can prove that calls and returns are properly bracketed.
To this end, we would like to strengthen the semantics of assembly programs to make the

call-stack explicit and dynamically check that the targets of return instructions is consistent with
this stack. However, assembly being the target language of the CompCert compiler, it is part of
its trusted computing base (TCB) and should not be changed lightly. Therefore, we introduce an
intermediate instrumented semantics with a ghost call stack and assertions about its consistency. We
then prove a simulation which justifies that the instrumentation can be removed (preserving traces,
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S S/≡

T
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f
д

Fig. 5. Commutative diagram proving that a function f only depends on the control-flow part of the state.

hence behaviors as well as the constant-time property). This implies that this instrumentation is
only a proof intermediate and does not belong to the TCB. Finally, we prove the correctness of the
compilation from Mach to assembly using the instrumented semantics, embedding in the behaviors
of assembly programs the knowledge that they come from the usual compilation process.

3.4 Benefiting from the Same-point Relation: Explicit Control-flow State
Generally, the same-point relation is an equivalence relation. One way to define such an equivalence
relation is to define the corresponding quotient: a function C that extracts from a state its control
state (usually the program point, the stack of return points, etc.). Many of the proof obligations in
this work are of the following form: prove that some function f : S → T is compatible with the
same-point relation. In other words, for any states s and s ′ such that s ≡ s ′, show that f (s) = f (s ′).
If we can instead define that function from the control state instead of the full state (i.e., to explicitly
factor it as f = д ◦ C, as in the diagram of Figure 5), then all these proof obligations vanish. The
compatibility property follows from the type of the function. It is no longer necessary to prove it
for each such function. Moreover, it is not even needed to state these properties, as they are mere
instances of the congruence of equality.

As an additional benefit, working explicitly modulo same-point avoids relational reasoning: it is
no longer necessary to consider two steps from equivalent states, nor two pairs of related states
that are pairwise equivalent, etc.

4 A COMPCERT COMPILER THAT PRESERVES CRYPTOGRAPHIC CONSTANT-TIME
Compilers may break the cryptographic constant-time property of a source program. Well-known
examples of introduction of if statements during compilation are string equality, lazy operations
and optimizations on multiplications [Barthe et al. 2018; Kaufmann et al. 2016]. The cryptographic
constant-time propertymay also be broken due to the introduction of memory accesses. For example,
when there are not enough available registers, a register allocation pass generates new memory
accesses that can induce leakages. This section explains why the CompCert compiler does not
preserve the constant-time policy, and how we modified CompCert in order to preserve it. First, the
section details how the instruction selection pass introduces conditional branches in compiled code.
Then, the section explains how we modified CompCert so that the compilation does not introduce
conditional branches anymore2. It relies on the use of a selection operation that is architecture
dependent and shared by the languages of the backend of the compiler; it should be integrated in
an upcoming release of CompCert. Our modified CompCert targets the x86 architecture.

4.1 Non-preservation of our Policy by the Instruction Selection Pass
Instruction selection is the first pass of the backend compiler. It optimizes Cminor expressions to
take advantage of combined expressions and addressing modes of the target processor and of
processor’s capabilities [Leroy 2009b]. Cminor expressions are optimized into CminorSel expressions,

2Then the only conditional branches that appear in the produced assembly program correspond to conditional branches at
source level.
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float floatofintu(unsigned int x) {
float y = 0x1p31; // 231
if (x < 0x80000000) // 231

return floatofints(x);
else

return y + floatofints(x − 0x80000000);
}

(a) The unsigned int to float conversion.

(xh, xl) = x; (yh, yl) = y;
if (xh ==s yh)

if (xl <=u yl) goto lthen;
else goto lelse;

else if (xh <s yh) goto lthen;
else goto lelse;

(b) Comparison ≤ for the signed 64-bit integers x and y,
using signed (s) and unsigned (u) operators.

Fig. 6. Examples (in C-like syntax) of conditional branches introduced by CompCert.

that use machine-specific operators and addressing modes. These optimizations are defined using
rewrite rules for each operator. The Cminor language supports all logical and arithmetic operators
of C. Moreover, conversions between floats and integers are made explicit, using Cminor conversion
operators. In Cminor, there are 5 kinds of constants, 33 unary operators and 40 binary operators.
All the following intermediate languages, from CminorSel to Mach, share the same definition of
operators, which are architecture dependent. To handle in a uniform way this large variety of
shared operators, a generic notion of backend operator (Eop op e) applied to an operand list e is
defined in CompCert, and reused in the definition of these languages. It roughly represents what the
processor can compute in one instruction as well as the addressing modes of the processor. Some
examples of these operations are Eop add [v1;v2] (addition between two integers), Eop (intconst n) []
(integer constant) and Eop (shrximm n) [v] (signed efficient division by 2n using a logical shift).

Among the Cminor operations are int-to-float and float-to-int conversions. Two of them may
introduce conditional branches that are not present in the source program, to work around a
limitation of the target instruction set architecture: in x86, there is no instruction allowing to
convert an unsigned 32-bit integer to a float. The workaround is to emulate the generic source
operations with several target instructions, sometimes involving new conditional branches. During
instruction selection, there are two conversion operations and several comparison operations
that generate conditional branches. Figure 6a shows in C syntax how the unsigned int to float

conversion is defined in CompCert. It uses the signed int to float conversion (represented by the
function floatofints), and introduces a new conditional branch to handle the conversion of an
out-of-bound (i.e., greater than or equal to 231) unsigned integer value. Indeed, the signed int to
float operator can only be applied on an integer whose value is in the interval [−231 ; 231). In a
similar way, the conversion from a float to an unsigned int introduces a conditional branch.
Moreover, on 32-bit architectures, comparing 64-bit integers introduces conditional branches.

Indeed, in the CompCert memory model, a 64-bit integer is represented by a pair of two 32-bit
integers. For efficiency reasons of the generated code, comparing two 64-bit integers consists in first
comparing their upper-32 bits, and second in comparing their lower-32 bits only if necessary. There-
fore, any comparison between 64-bit integers may introduce new conditional branches, as shown
in the example of Figure 6b. Given two signed 64-bit integers called x and y, it shows the two condi-
tional branches generated when compiling the instruction if (x <= y) goto lthen; else goto lelse;.
The syntax (xh, xl) = x; introduces the pair of 32-bit integers representing x.

To work around this issue, we changed the implementations of these operations, using a condi-
tional move (i.e., a branchless choice between two values) instead of conditional branches. Indeed,
conditional moves are a standard technique to achieve constant-time security. In CompCert, a
conditional move instruction (cmov c rd r) is defined but only at assembly level for x86. It performs
a move from one integer register r to another register rd, only if condition c holds; otherwise,
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the move is not performed. This cmov instruction already exists in CompCert, but a user may not
directly use it, as it is only generated during the compilation of the shrximm operation.

4.2 Modification of the Instruction Selection and Generation of Assembly Passes
In order to remove the introduced conditional branches, we define a new architecture-dependent
selection operation, shared by the intermediate languages of the backend compiler. This section
first details this operation and its compilation to the cmov instruction. Then, it explains the further
changes we performed on the instruction selection pass, so that it only generates branchless
instructions.

4.2.1 A New Selection Operation. Eop (select c ty) [e1;e2] returns the value of type ty of the
expression (if c then e1 else e2) when both expressions e1 and e2 are of type ty, and the undefined
value vundef otherwise. However, unlike a conditional expression, this operation has a strict
semantics: both e1 and e2 are always evaluated, whatever the value of the condition is. The type
annotation ty allows the selection operator to be typed like any other arithmetic operator. These
typing passes are performed by CompCert at RTL and LTL levels (where most optimizations are
performed) to guarantee that operations (Eop op e) are applied to the right number of arguments and
that the arguments are of the correct type. Thanks to the ty annotation, we benefit from these typing
passes and did not need to change or to add special typing rules to ensure that Eop (select c ty) is
typed in a safe way.
The new selection operation is compiled down to the cmov instruction on x86 architecture.

We chose to add our selection operation to the generic backend operations because it induces
minimalistic changes in CompCert and does not require to modify directly the syntax of the
languages of the backend. In a similar way, thanks to smart constructors, the changes in the
compiler passes were minimalistic and so were the associated correctness proofs.

The selection operation is compiled to the cmov instruction, during the last compiler pass, from
Mach to assembly language. At Mach level, res <− Eop (select c ty) [r1;r2] operates over two registers
r1 and r2, and stores the result in a register res. In order to generate efficient code and to apply
CompCert optimizations (e.g., register allocation) on the selection operation as well, select is a
two-address operation (i.e., its first argument r1 and its result res lie in the same location). For an
integer selection operation (when ty = int), this is done directly using one cmov instruction and
the negation of the condition c. So, the Mach operation r1 <− Eop (select c ty) [r1;r2] is compiled
down to the x86 instruction cmov (negate c) r1 r2, and the compilation from the CminorSel opera-
tion Eop (select c ty) [e1;e2] to the Mach operation Eop (select c ty) [r1;r2] does not require further
changes in CompCert.
Moreover, the syntax of the cmov instruction requires c to be a testable condition (usable for

a conditional jump), which in our case requires to transform c because of the way comparisons
proceed on x86 architecture. More precisely, the x86 hardware provides a way to handle most
comparisons of the source language; we call them testable conditions. Two comparisons (namely
equality and inequality between floating point numbers) cannot be handled by the hardware,
and require a software workaround. The idea is to split these comparisons into several testable
conditions, and to combine them with logical and or or operators. Therefore, as the case of equality
between floating point numbers introduces a logical and in the condition, we then need to com-
pile the operation r1 <− Eop (select (c1 && c2) ty) [r1;r2]. It is done with the following sequence:
cmov (negate c1) r1 r2 ; cmov (negate c2) r1 r2. Finally, the case of inequality (,) between floating
point numbers introduces a logical or in the condition. We chose to negate the condition (hence to
introduce a logical and), which we then compile in a similar way as the previous case) and swap
the operands of the selection operation.
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float floatofintu(unsigned int x) {
C = 0x80000000; // 231
a = select(x < C, 0, −C);
b = select(x < C, x, x − C);
return floatofints(b) − floatofints(a); }

(a) unsigned int to float conversion.

(xh, xl) = x; (yh, yl) = y;
if (select(xh ==s yh, xl <=u yl, xh <s yh))

goto lthen;
else

goto lelse;

(b) Comparison x ≤ y

Fig. 7. Constant-time implementations (in C-like syntax) of the examples of Figure 6.

4.2.2 Taking Floats into Account. Section 4.2.1 only describes the compilation of the integer
selection operation. Indeed, the cmov instruction only operates over integer registers, and there is no
x86 conditional move instruction over floating point registers. This requires more work to replace
the conditional branches introduced by the instruction selection pass by branchless instructions.
Directly replacing the conditional branch with a selection operation in the unsigned int to float

conversion would require a floating point selection operation. Instead of implementing such an
operation, we were able to only use the integer selection operation, as shown in Figure 7a. In this
example, the conversion from unsigned int to float first computes the values of temporaries a and
b using two integer selection operations, and these values are converted to floating point values.
The value of a is always in the range of the float to the signed int operation, and so is the value of
b, with respect to the condition x < C. Figure 7b shows our implementation of the comparison of
64-bit integers, which uses the new selection operation instead of conditional branches.

5 PROVING THE PRESERVATION OF OUR CONSTANT-TIME POLICY
Cryptographic constant-time preservation is a property about the leak-only semantics −→l (see
Section 3.1) of a source and a target programs. Existing CompCert simulation diagrams deal with
the compile-only semantics −→Comp . Our proof engineering strategy is to benefit as much as possible
from the proof scripts of these diagrams. First, this section details the main theorem of constant-time
preservation. Then, it presents the four proof techniques we use to prove this theorem; except the
last one, these are relaxations of the classical diagram that we prove on the full step relation −→ .
Then we derive, on one hand the standard compiler correct forward simulation diagram for the
compile-only relation, and on the other hand a proof of constant-time preservation for the leak-only
semantics.

5.1 Preservation of Constant-Time Security in CompCert
Our modified version of CompCert preserves our cryptographic constant-time policy, as stated by
the following main theorem, which considers a source Clight program. Clight is a determinized
large subset of C. As explained in Section 3, we only consider deterministic languages, which C

and CompCertC are not. We thus chose to start our compilation pipeline from the first determinate
intermediate language, which is Clight. Wary programmers can directly write programs in this
subset in order to make sure that the determinization pass from CompCertC to Clight did not modify
their programs and are covered by our theorem.

Theorem 5.1 (Constant-Time security preservation). Let S be a safe Clight source program
such that it is compiled into an x86 assembly program T . If S is constant-time w.r.t. φ, then so is T .

The theorem is proved by leveraging the proof structure already present in CompCert. We prove
that each individual compiler pass preserves constant-time security using four proof techniques
presented in the remainder of this section. All such proofs are then composed in order to obtain
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Compiler pass Diagram used Explanation on the pass

Cshmgen Trace preservation Type elaboration, simplification of control
Cminorgen Memory injection Stack allocation
Selection Leakage erasing Recognition of operators and addr. modes
RTLgen Trace preservation Generation of CFG and 3-address code
Tailcall Trace preservation Tailcall recognition
Inlining Trace transformation Function inlining
Renumber Trace preservation Renumbering CFG nodes
ConstProp Trace transformation Constant propagation
CSE Leakage erasing Common subexpression elimination
Deadcode Leakage erasing Redundancy elimination
Allocation Leakage erasing Register allocation
Tunneling Leakage erasing Branch tunneling
Linearize CT-simulation Linearization of CFG
CleanupLabels Trace preservation Removal of unreferenced labels
Debugvar Trace preservation Synthesis of debugging information
Stacking Memory injection Laying out stack frames
Asmgen Trace transformation Emission of assembly code

Table 1. Compilation passes and how we prove them constant-time preserving

the final theorem. Each proof technique relies on a simulation diagram that we present in the
following subsections: trace-preservation simulation (Section 5.2), leakage-erasing simulation
(Section 5.3), leak transforming by memory-injection simulation (Section 5.4) and CT-simulation
(Section 5.5). All techniques, except CT-simulation, are subtle variations of a classic simulation
diagram. CT-simulation is more involved because it adds an extra dimension of interaction (a cube
diagram).
We detail in Table 1 which proof technique was used for each pass. 6 out of 17 passes only

required minimal modifications, as they preserve traces (hence leakages). Another 5 passes are
proved security preserving by using the leakage-erasing diagram. Further 2 passes are proved
through the leak transforming by memory-injection simulation. Only the pass Linearize relies on a
full-fledged CT-simulation. Each of the 3 remaining passes uses a different technique, which is a
generalisation of the leak transforming by memory-injection simulation, and requires to reason on
trace transformations. This table shows that thanks to our proof techniques, most transformations
were relatively convenient to adapt, and heavily benefit from existing proof scripts.

5.2 Leakage Preservation
The first case we consider is one where leakages are preserved by compilation. This case is ac-
tually the one covered by compiler correctness and can thus leverage directly the many already
existing lemmas and theorems of CompCert. It is directly stated and proved on the instrumented
semantics →.

Theorem 5.2 (Constant-time security preservation by leakage preservation). Let S be
a safe source program and T be the target compiled program. If S is constant-time w.r.t. φ then T
is constant-time w.r.t. φ, provided that the relation ≈ between program states is a trace preserving
simulation (w.r.t. to →) as defined in Figure 2.

, Vol. 1, No. 1, Article . Publication date: August 2019.



736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

:16
Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vincent Laporte, David Pichardie,

and Alix Trieu

s1 s2

σ1 σ2

t

≈n ≈n′

τ n

τ = t ∨ τ = ε
n = 0 ⇒m(s1) > m(s2)

Fig. 8. Leakage-erasing simulation. Assumptions are in black and conclusions in red.

Proof. First we observe that such simulation implies that the leak-only semantics satisfies a
leak-preserving simulation. This simulation is the classic forward simulation used in CompCert
and we know it implies behavior preservation. Hence source and target programs share the same
leakages. As a consequence, CTS at source level implies CTS at target level. □

While this simulation is quite basic and restrictive, it is still satisfied by a few transformation
passes (6 among 17, see Table 1), including passes that do not optimize conditional branches, nor
memory accesses. These passes are then especially easy to adapt to constant-time preservation
since we can reuse the same proof script as for the original simulation proof. This is a great time
saver for a pass like RTLgen (which transforms a structured Cminor program into a RTL control-flow
graph) because its soundness proof is quite verbose. However, many optimizations do not preserve
leakages. Indeed, optimizations such as common subexpression elimination (CSE) or constant
propagation can remove memory accesses or even branchings if they manage to conclude that a
condition always evaluates to the same truth value.

5.3 Leakage Erasing
Some optimizations erase leakages. They are still constant-time preserving as long as their decision
to erase this information does not depend on secret values. For instance, in the CSE pass, some
memory loads are replaced by reads from local registers: the corresponding memory-access leak
is thus erased; but this does not threaten the security of the target program. This intuition is
formally defined by the following leakage-erasing simulation, illustrated in Figure 8, where the
relation between states ≈n is indexed by a natural number n that predicts how many steps the
target execution takes when a source step is observed. The correctness of this prediction is thus an
additional proof obligation in the simulation proof. The next definition is again directly stated on
the instrumented semantics → that mixes CompCert and leakage events.

Definition 5.3 (Leakage erasing simulation). Let ≈n be an indexed relation between source and
target states, andm be a measure on source states (see Section 2.2). We say that ≈n is a leakage-
erasing simulation w.r.t.m when the three following conditions hold.

(1) For all source step s1
t
−→ s2, and every target state σ1 such that s1 ≈n σ1, there exists an index

n′, a target state σ2 and a target execution σ1
τ
−→n σ2, such that end states are related (i.e.,

s2 ≈n′ σ2),m(s1) > m(s2) if there is no target step (i.e., n = 0), and either (preservation as in
Section 5.2) τ = t , or (erasure) τ = ε and τ is leak-only.

(2) For every source initial state si , there exists an index ni and a target initial state σi such that
we have si ≈ni σi .

(3) For all source and target states s and σ such that s ≈n σ , we have s is a final source state iff σ
is a final target state.
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Formal Verification of a Constant-Time Preserving C Compiler :17

Note that this definition implies that the compile-only semantic satisfies the standard forward
simulation (compiler correctness is preserved).

We make sure that the prediction of n does not depend on secret by requiring it will only depend
on the control state. This property is called step counting prediction is same-point congruent and
defined as follows.

Definition 5.4 (Same-point congruence). Given a same-point ≡ relation for source and target
languages, an indexed relation ≈n between source and target states is said same-point congruent if
for all source states s , s ′, and target states σ , σ ′ such that s ≡ s ′, σ ≡ σ ′, s ≈n σ and s ′ ≈n′ σ ′, we
have n = n′.

As previously noted in subsection 3.4, the same-point congruence holds if the index can be
defined as a function of the control-flow parts of the source and target states. Furthermore, same-
point congruence implies that the initial index for all source initial states is the same, as all initial
states are at the same point (it is noted as n0 in the rest of the paper).

Example 5.5. The instruction selection preserves leaks except when it replaces a function call by
a builtin call. Applying our leakage erasing methodology here consists in the following steps.
(1) Adding a provably correct step counter. The simulation relation consists in 5 cases and the

step counter (0 or 1) can be easily guessed looking at the current instruction in the source
state.

(2) Proving a leakage-erasing simulation. We reuse exactly the same original simulation script,
except a few systematic generic tactics for proving the correctness of the step counter, plus
the specific case where a leak is erased.

As a conclusion, the notable effort for this pass is focused on proving the correctness of the new
selection operation we introduced (see Section 4), not its security.

More advanced counting are sometimes necessary. Several choices made by the compiler may
depend on heuristics; the correctness proof of the compiler should not take into account the details
of such heuristics. Instead, the compiler should be correct whatever heuristic is used to guide
it. Therefore in the correctness proofs, these choices are often existentially quantified (i.e., in a
non-constructive way). However, to predict the number of target execution steps, it is necessary to
discover what optimizations were applied.

Example 5.6. For instance, the getparam instruction of the Mach language is normally implemented
in assembly using two memory loads: one fetches the address of the caller’s stack frame into
register A and the second fetches into register B the value of the parameter from the stack frame
using the contents of register A as base pointer. When the compiler is able to prove —through
a heuristic— that register A already holds the correct value, the first load is not emitted. Under
such circumstances, given a step corresponding to the execution of a getparam instruction, how
to predict how many assembly steps will match it and how many memory accesses will occur?
In this specific case, it is possible to recover the choice made at compile time by looking at the
generated assembly code: if there is no load to register A at the current program point, then it has
been optimized away.

The following theorem states that constant-time security is preserved by a leakage-erasing
simulation. Its proof is postponed at the end of Section 5.5.

Theorem 5.7 (CTS preservation from leakage-erasing simulation). Let S be a safe source
program and T be the target compiled program. If S is constant-time w.r.t. φ then T is constant-time
w.r.t. φ, provided that ≈n is a leakage-erasing simulation and is same-point congruent.
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Because the definition of leakage-erasing simulation is very close to the standard CompCert
trace-preservation diagram, we were able to pleasantly reuse most of the existing proof scripts. For
each simulation, the original proof starts with a case study on the current source instruction; if the
instruction preserves the trace we reuse the same script, otherwise we prove that it erases all the
leakages, which is generally an easy proof task and concerns very few instructions.
On the other hand, it may be quite difficult to write out the prediction for the number of steps

taken by the target state when the corresponding source state takes one step. The process is
however proof driven as this index is already embedded in the proof in CompCert. It is then needed
to understand the proof details, which can be quite involved. For instance, the proof script for the
Cminorgen pass uses dependent inductions within the main induction on the source steps. This
indicates on what the predicted number of steps depends on. In such a case of a recursive simulation,
the index depends on the proof depth.

This simulation is satisfied by many CompCert passes (5 among 17, see Table 1). Still, there remain
passes that require more advanced reasoning. We describe them in the upcoming subsections.

5.4 Memory Injections Transform Leakages
Memory injections deserve a specific proof strategy. Passes that rely on them do not preserve
leakages because a memory access in a source program may be transformed into a memory access
to a different block and offset at the target level. Still, there exists a leakage transformation that
maps the source leakage trace to the target leakage trace. However, this transformation is not static:
it may depend in particular on the current memory injection. We dedicate a specific proof strategy
for this situation. For these passes, each simulation relation contains an existentially quantified
injection that relates memory addresses between source and target memories. During the execution,
injections are updated to take into account new memory allocations.
CompCert provides a generic framework for reasoning on memory injections. We extend it by

providing explicit injection updates every time CompCert proves a lemma starting with there exists
an injection such that. These update operators are then used to explicitly build the next injection
during the simulation proof. Hence, instead of having a simulation relation ≈ whose definition
contains an existentially quantified injection ι, we make this injection ι appear in the signature of
the simulation relation.
For example, a (lockstep) diagram like p −→ p ′ ∧ p ≈ q ⇒ ∃q′,q −→ q′ ∧ p ′ ≈ q′ becomes the

diagram p −→ p ′ ∧ p ≈ι q ⇒ ∃q′,q −→ q′ ∧ p ′ ≈F (p,q, ι) q
′, where F builds the next memory injection

using the generic injection updates we added.

Definition 5.8 (Leak-transforming by memory-injection simulation). Given an indexed relation ≈n, ι
between source and target states, a measurem on source states, and F a mapping that given source
and target states s and σ , and a memory injection ι computes a new memory injection F (s,σ , ι).
We say that ≈n, ι is a leak transforming by memory-injection simulation w.r.t.m and F when:

(1) for all source step s1
t
−→ s2, and every target state σ1 such that s1 ≈n, ι σ1, there exists an

index n′, a target state σ2 and target execution σ1
τ
−→n σ2, such that end states are related

s2 ≈n′,F (s1,σ1, ι) σ2, traces t and τ are such that they are related by ι if they are both memory
access leaks and equal otherwise3, andm(s1) > m(s2) if there is no target step (i.e., n = 0);

(2) there exists an index n0 and a memory-injection ι0 such that for all initial source state si ,
there exists an initial target state σi such that si ≈n0, ι0 σi ;

3More specifically, either t and τ are both empty or equal boolean leakages, or they are both function call (respectively,
memory access) leakages using pointers p and ρ , and ι(p) = ρ .
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Formal Verification of a Constant-Time Preserving C Compiler :19

(3) for all source and target states s and σ such that s ≈n, ι σ , we have s is a final source state iff
σ is a final target state;

(4) the step counting prediction is same-point congruent: for all source states s1, s2 at same point
(i.e., s1 ≡ s2) and target states σ1,σ2 at same point (i.e., σ1 ≡ σ2), if s1 and σ1 (resp. s2 and σ2)
are in simulation relation s1 ≈n1, ι1 σ1 (resp. s2 ≈n2, ι2 σ2), then n1 = n2;

(5) for all source states s1, s2 at same point (s1 ≡ s2 holds) and target states σ1,σ2 at same point
(σ1 ≡ σ2 holds), if s1 and σ1 (resp. s2 and σ2) are in simulation relation s1 ≈n1, ι σ1 (resp
s2 ≈n2, ι σ2), then F (s1,σ1, ι) = F (s2,σ2, ι).

Let us note that the definition concerns the full instrumented semantics → but if we filter it on
compile-only event, we recover the compiler correctness forward diagram.

Let us also note that we do not treat symmetrically step numbers andmemory injections in (5.8.(4))
and (5.8.(5)). Property (5.8.(4)) is easier to prove than introducing a step number transformation.
Such a simplified situation for memory injection is unfortunately not provable in CompCert since
several memory injections could satisfy a given simulation relation.

The following theorem states that constant-time security is preserved by a leak transforming by
memory injection simulation. Its proof is postponed at the end of Section 5.5.

Theorem 5.9 (CTS preservation from leak transforming by memory injection simulation).
Let S be a safe source program and T be the target program obtained by compilation. If S is constant-
time w.r.t. φ then T is constant-time w.r.t. φ, provided that ≈n, ι is a leak transforming by memory
injection simulation.

One of the difficulties in setting up this simulation pass is that when defining the injection
updates, we need to be careful that the function only uses things that are preserved by the same
point relation in order to be able to prove 5.8.(5). For instance, it should only use aspects of the
memory layout and not the memory state itself as explained in Section 3.3. Otherwise, whenever a
lemma about memory injection is used in the original proof script, we replace it with the more
explicit injection update version. The rest of the proof becomes relatively straightforward for the
two compilation passes that use this simulation.

This simulation diagram can be generalized to any datatype that is existentially quantified in the
original simulation but is an argument to the security preservation proof. To justify the same-point
congruence of this argument, we must make explicit how it evolves during the execution and prove
that this evolution cannot be influenced by secret data. The proof for the Inlining pass uses this
simulation with dynamic trace transformation.
More advanced passes like assembly generation, require to insert new leakages in the target

trace. This specific pass implements parameter passing (communication from the caller to the callee
function) through memory accesses in the caller’s stack frame. Nonetheless, these new leakages
are statically predictable: they may only depend on the source code, the source leakage, or the
public part of the execution states. Indeed, while the execution state may hold sensitive value, the
same-point relation characterizes a view of the state that cannot be influenced by secret data. To
accommodate for such cases, we generalize what we do with memory injection and program a static
prediction function F that predict the target trace from the control-flow part of the execution states
and the source trace. The constant-time preservation of this method is ensured by the CT-simulation
presented in the next section.

5.5 CT-simulation with a Cube Diagram
Previous methods allow intensive reuse of existing CompCert proof scripts because they slightly
strengthen classical simulation diagrams. In last resort, we rely on a full-fledged CT-simulation.
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with τ = τ ′ and n1 = n′1

Fig. 9. CT-diagram (with missing conclusion arrows, for clarity purposes). Assumptions are in black.

For this purpose, we adapt the CT-simulation from [Barthe et al. 2018] under our strengthened
notion of same-point relation and its related properties. It is directly phrased using the leak-only
semantics −→l , but we omit the subscript. A CT-simulation can be split into two parts, namely a
“counting” simulation and a CT-diagram. These are defined as follows. We consider a general notion
of simulation relation ≈n,h parameterized by a step number prediction n and a history h. The exact
nature of histories is kept abstract here. It can be instantiated with memory injections or more
compound structures (for the inlining and assembly generation passes).

Definition 5.10 (Counting simulation). Let ≈n,h be an indexed relation between source and target
states,m be a measure on source states, F be a mapping that given source and target states s and σ ,
and a history h, computes an updated history F (s,σ ,h). Let Fi be a mapping that given source and
target states s and σ computes an initial history Fi (s,σ ). We say that ≈n,h is a counting simulation
w.r.t.m, F and Fi when the four following conditions hold.

(1) For all source step s1
t
−→ s2, and every target state σ1 such that s1 ≈n,h σ1, there exists an

index n′, a target state σ2 and a target execution σ1
τ
−→n σ2, such that end states are related

(i.e., s2 ≈n′,F (s1,σ1,h) σ2) andm(s1) > m(s2) if there is no target step (i.e., n = 0).
(2) There exists an index ni such that for every initial states si and σi , we have si ≈ni ,Fi (si ,σi ) σi .
(3) For all source and target states s and σ such that s ≈n,h σ , we have s is a final source state iff

σ is a final target state.
(4) For all source states s1, s ′1 at a same point (i.e., s1 ≡ s ′1) and target states σ1,σ ′

1 at a same
point (σ1 ≡ σ ′

1), if s1 and σ1 (resp. s ′1 and σ ′
1) are in simulation relation i.e., s1 ≈n1,h σ1 (resp.

s ′1 ≈n′
1,h σ ′

1), then F (s1,σ1,h) = F (s ′1,σ
′
1,h) and Fi (s1,σ1) = Fi (s

′
1,σ

′
1).

The counting simulation is very similar to the previous leak transforming by memory-injection
simulation, except that source and target leakages do not need to be related anymore. The most
difficult part, property 5.10.(1) is generally proved reusing the original CompCert simulation script,
with little modifications. The second component, the CT-diagram, is a cube simulation, defined as
follows and depicted in Figure 9.

Definition 5.11 (CT-diagram). Given an indexed relation ≈n,h between source and target states,
we say that a CT-diagram is satisfied by the source and target programs when:

• ≈n,h is a counting simulation with respect to some functionsm, F and Fi ,
• for all s1, s ′1, s2, s ′2,σ1,σ ′

1,σ2,σ
′
2, t ,τ ,τ

′ such that:
– the two following simulation relations hold: s1 ≈n1,h σ1 and s ′1 ≈n′

1,h σ ′
1 ,

– the two following same-point relations hold: s1 ≡ s ′1 and σ1 ≡ σ ′
1 ,

– s1
t
−→ s2 and s ′1

t
−→ s ′2,
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– σ1
τ
−→n1 σ2 and σ ′

1
τ ′
−→n′

1 σ ′
2 ,

we have that τ = τ ′, n1 = n′1.

The definition does not explicitly require that s2 ≡ s ′2 and σ2 ≡ σ ′
2, because it is a direct

consequence of Property 3.

Theorem 5.12 (Constant-time security preservation from CT-diagram). Let S be a safe
source program and T be the target compiled program. If S is constant-time w.r.t. φ then T is constant-
time w.r.t. φ, provided that there is a CT-diagram between S and T .

Proof. We prove that T is constant time using the CTSn definition. We first generalize the
statement to be proved before running an induction. For all trace length n and measure rankM ,
we then prove by lexicographic induction on (n,M) that for all source states s1, s2 reachable from
initial states in φ relation after the same number of steps, for all target states α1,α2 in simulation
relation with s1, s2 for a same history h (i.e., s1 ≈k1,h α1 and s2 ≈k2,h α2), ifm(s1) = M , if s1 ≡ s2 and
α1 ≡ α2, if α1 reaches γ1 after n steps and produces a trace T1 (α1

T1
−→n γ1), if α2 reaches γ2 after n

steps and produces a trace T2 (α2
T2
−→n γ2), then T1 = T2. Moreover k1 = k2 or all states s1, s2,α1,α2

are final states.
If s1 is final, so are all other states s2,α1,α2 and T1 = T2 = ε . Otherwise there exists source steps

s1
t1
−→ s ′1 and s2

t2
−→ s ′2. Because S is constant time, we can prove that t1 = t2. Thanks to the counting

simulation hypothesis, there exists states β1, β2 and traces τ1,τ2 such that α1
τ1
−→k1 β1 and α2

τ2
−→k2 β2.

Moreover there exists k ′
1 and k ′

2 such that s ′1 ≈k ′1,F (s1,α1,h) β1 and s ′2 ≈k ′2,F (s2,α2,h) β2 hold. Thanks to
the CT-diagram, we have that τ1 = τ2 and k1 = k2.
It remains to prove that T1 = T2. Thanks to the same-point properties, we deduce that β1 ≡ β2

and s ′1 ≡ s ′2. Thanks to the counting simulation, we can prove that F (s1,α1,h) = F (s2,α2,h).
It remains to compare n and k1 (= k2).
• If k1 = 0 thenM =m(s1) > m(s ′1) and we can rely on the induction hypothesis on (n,m(s ′1))
to conclude.

• If 0 < k1 ≤ n then T1 (resp. T2) can be decomposed into T1 = t1 ++T
′
1 (resp. T2 = t2 ++T

′
2 ) for

some new tracesT ′
1 andT ′

2 such that β1
T ′
1

−→n−k1 γ1 and β2
T ′
2

−→n−k2 γ2. Since n − k1 < n, we can
rely on the induction hypothesis on (n − k1,m(s ′1)) to conclude.

• If n < k1 then T1 and T2 are both prefixes of trace τ1. Since α1 ≡ α2, we have α1
T1
−→n γ1 and

α2
T2
−→n γ2; the same-point properties imply that T1 = T2 (by induction on n).

□

The theorem is similar to the one presented in [Barthe et al. 2018]. They exclusively use the
CT-diagram to prove that multiple transformation passes preserve constant-time security for a toy
compiler for a core imperative language. We however mainly use it to prove the correctness of the
previous methods which allows us to avoid most of the required relational reasoning when proving
that compilation passes preserve security.

Proof of Theorem 5.9. We show that the existence of a leak transforming by memory injection
simulation ≈n, ι (with respect to some functionsm, F ) implies the existence of a CT-diagram and
conclude by Theorem 5.12. First we build a counting simulation. A history is a memory injection
here. Functions m and F are given by the leak transforming by memory injection simulation.
Function Fi is defined by Fi (s,σ ) = n0.

, Vol. 1, No. 1, Article . Publication date: August 2019.



1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

:22
Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vincent Laporte, David Pichardie,

and Alix Trieu

cu
rv

e2
55

19
-d

on
na te
a

be
ar

_d
es

_c
t

be
ar

_s
ha

1
be

ar
_s

ha
25

6
sa

lsa
20

sn
ow

-2
.0

m
be

dt
ls_

sh
a1

m
be

dt
ls_

sh
a2

56
m

be
dt

ls_
sh

a5
12

na
cl_

ch
ac

ha
20

na
cl_

sh
a2

56
na

cl_
sh

a5
12

Programs

0.5

1

2

4

No
rm

al
ize

d 
ex

ec
ut

io
n 

tim
e,

 u
sin

g
 C

om
pC

er
t 3

.4
 a

s a
 re

fe
re

nc
e

CompCert-CT
GCC -O0
GCC -O1

Fig. 10. Execution times of our benchmark. We compare the original CompCert, our modified CompCert,
gcc −O0 and gcc −O1. We normalized the measured execution times with the execution time of the original
CompCert, which is represented by the red line on the graph. A bar below (resp. above) the red line represents
a shorter (resp. longer) execution time. Every tick on the vertical axis represents a factor of two. The error
bars represent the 99% confidence intervals of our measurements.

Then we prove the CT-simulation. We assume s1 ≈n1, ι σ1, s ′1 ≈n′
1, ι σ

′
1, s1 ≡ s ′1, σ1 ≡ σ ′

1, s1
t
−→ s2,

s ′1
t
−→ s ′2, σ1

τ
−→n1 σ2, σ ′

1
τ ′
−→n′

1 σ ′
2 and we prove τ = τ ′ and n1 = n′1. Thanks to property 5.8.(4), we

know that n1 = n′1. For proving τ = τ ′, we rely on property 5.8.(1) (and semantic determinism): τ is
non-ambiguously defined by t and ι, and τ ′ is non-ambiguously defined by t and ι, hence τ = τ ′. □

Proof of Theorem 5.7. We show that the existence of a leak-erasing simulation≈n (with respect
to some functionm, and initial counter n0) implies the existence of a CT-diagram and conclude by
Theorem 5.12. We assume that the simulation relation is same-point congruent (definition 5.4).

First we build a counting simulation. We do not need history modification here, so a constant
unit history is fine: h = ∅. Functionm is given by the leak-erasing simulation, and functions F and
Fi always return the same constant history.

Thenwe prove a CT-diagram. The equalityn1 = n′1 is a consequence of the same-point congruence
hypotheses. Under the CT-diagram hypothesis, we must also prove the trace equality τ = τ ′ but we
know that (τ = t ∨τ = ε) and (τ ′ = t ∨τ ′ = ε). The same-point properties also imply that |τ | = |τ ′ |,
so we can conclude the expected trace equality. □

Proving directly a CT-diagram on a transformation pass requires relational reasoning. For
instance we chose to rely on a CT-diagram for the RTL linearization pass where some boolean
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CompCert C Clight Csharpminor Cminor

Linear LTL RTL CminorSel

Mach ASM

SimplExpr

SimplLocals

Cshmgen Cminorgen

Selection

Stacking

CleanupLabels,
Debugvar Tunneling

Linearize

Tailcall, Inlining, Renumber,
Constprop, CSE, Deadcode,

Unusedglob

Allocation RTLgen

ASMgen

Fig. 11. The CompCert compilation chain. All transformation passes are semantics preserving, bolded ones
correspond to formally proved constant-time security preserving passes.

leakages are negated during the pass. This is explained by the fact that the compiler may decide to
put the most likely branch just after the current block. At source level, it corresponds to a simple
transformation from if c then a else b to if not c then b else a. This is the only pass we directly
prove with a CT-diagram and the proof experience was not especially pleasant because the diagrams
are difficult to exploit (we must in particular exploit two many-step judgements at target level and
explain their effects).

6 EXPERIMENTAL EVALUATION AND LIMITATIONS
We presented in Section 4 how we modified CompCert. This section first presents the results
of experiments evaluating the performance of our constant-time preserving CompCert. Then, it
presents the limitations of our work.

6.1 Experimental Evaluation
We compare our version of CompCert to the original CompCert (version 3.4), and to gcc, with
and without optimizations. We test these compilers on a benchmark of common cryptographic
programs that were shown to be constant-time in [Almeida et al. 2016; Blazy et al. 2019]. They
include cryptographic primitives such as an implementation of elliptic curve arithmetic operations
over Curve25519 [Bernstein 2006; Langley 2015], and TEA [Wheeler and Needham 1994], together
with implementations from the NaCL [Bernstein et al. 2012] and mbedTLS libraries [ARM 2016].

We first measured the execution times (using an Intel i7-8550U CPU 1.8GHz, with 16GB of
RAM), which are shown in Figure 10. We compiled these programs using 4 compilers: the original
CompCert, our version of CompCert, gcc without optimization, and gcc with the first level of
optimization. As all programs have a very short execution time, we executed them a large amount
of time (from 106 to 109 depending on the program). We obtain shorter execution times than gcc

without optimization. This is a promising result, as cautious users who wary of too aggressive
compiler optimizations breaking constant-time security would use it to compile cryptographic
implementations. Yet, gcc −O1 remains more efficient. However, we also noticed that our modified
CompCert is as efficient as the original CompCert. On average, programs compiled with our
modified CompCert are 1.45% slower than programs compiled with the original CompCert.
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6.2 Limitations
Among the 20 compiler passes of CompCert shown in Figure 11, only 17 are present in Table 1.
The first compiler pass from CompCertC to Clight is a determinization pass; it is removed as ex-
plained earlier (see Section 5.1). Moreover, we encountered difficulties while doing the proofs
and had to consequently make compromises: 2 passes were not proved to be security preserving,
namely, SimplLocals and Unusedglob. They are still proved semantics preserving as in the original
CompCert.

SimplLocals is the second compiler pass. C-like languages such as Clight are split into ex-
pressions and statements. Expressions include variable lookups (pointer dereferencing) and are
modeled as memory loads underhood; they must thus produce leakages as instructed by our leak-
age model. However, expressions may contain multiple nested variable lookups and may thus
produce multiple leakages. Modifying CompCert so that the evaluation of expressions may gen-
erate leakages is a large endeavour. We therefore chose instead to normalize the source code so
that memory loads can only be found at right hand sides of assignments (e.g., the code f(∗x + ∗y);
becomes t1 = ∗x; t2 = ∗y; f(t1 + t2);). This standard transformation is commonly used to facilitate
analyses (e.g., the Verasco [Jourdan et al. 2015] and VST [Appel 2011] tools use it). Unfortunately,
normalizing code before the SimplLocals pass results in significant performance reduction. We
hence compromised by performing the normalization after the SimplLocals pass, and prove secu-
rity preservation starting after the normalization. This compromise does not affect verification
tools like Verasco which operates at Csharpminor level to prove constant-time security [Blazy et al.
2019]. Furthermore, we removed special support for some external calls that are not critical for
cryptographic programs.
The second compilation pass (called Unusedglob) removes unused global variables. This is the

only pass that modifies the initial memory layout, and would thus require further proofs about the
global environments which are notoriously difficult to reason about in CompCert, as illustrated by
the already quite complex proof for this pass. We have proved the pass to be security preserving
with a memory injection diagram assuming that we can relate the initial states of the source and
target programs. As the optimization does not seem critical, we leave proving that the assumption
can be satisfied for future work.

We also decided to lighten the instrumentation burden w.r.t. memory stores by copy. We do not
support them because they require to add leakage during argument passing. This restriction means
that code that have functions that return structures or take them as arguments will not compile for
instance. It does not concern our cryptographic benchmarks. It is however also acceptable to pass
these structures by pointer.
Our last restriction is that we do not support the compilation of switch statements yet. Indeed,

they may be either compiled as a sequence of branching instructions or as a jumptable and a
branching. Hence, their compilation may introduce multiple leakages where there was only one
before in the first case. This transformation is done in the RTLgen pass and should still be security
preserving. Unfortunately, we have not yet managed to write out how leakages are transformed in
that case in order to fit into one of our diagrams. As switches are not critical for cryptographic
code, we leave this for future work.

7 RELATEDWORK
Ourwork is most closely related to [Barthe et al. 2018], which introduces the notion of CT-simulation
and uses the Coq proof assistant for proving preservation of constant-time security for a core
imperative language and basic program transformations. Their approach exclusively relies on
CT-simulation, whereas we rely on a range of techniques that achieve different trade-offs between
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proof effort and generality of the technique. In particular, 1) at the end of our spectrum we formalize
the CT-simulation method from [Barthe et al. 2018] but adapt it to CompCert proofs; 2) we also
design stronger preservation diagrams that are sufficient for some passes and permit major reuse of
existing CompCert proof scripts. In our experience, using such a range of techniques is instrumental
for reducing proof effort and scaling to realistic compilers.

Our work is also related to independent efforts by Murray et al. [Murray et al. 2016; Sison and
Murray 2019] to formally verify using the Isabelle proof assistant preservation of value-dependent
non-interference for compiling a core concurrent imperative language to a simple RISC architecture.
Although their work is cast in a rather different setting and targets a more traditional information-
flow policy, the approach is remarkably similar, in that their first paper develops an approach based
on “cube-shaped” definition of secure refinement, and their second paper proposes a sufficient
“square-shaped” condition which almost halves the proof effort. Whereas our work targets a realistic
compiler, their work is focused on a more modest language, and does not have to deal with the
legacy of a large pre-existing development.
Other works focus on type-preservation for type systems which enforce secure information

flow [Barthe et al. 2006; Chen et al. 2010; Tedesco et al. 2016]. It is worth noting that the 2 approaches
are incomparable, since the type systems are incomplete and therefore preservation of information-
flow typing does not entail preservation of non-interference nor the converse for similar reasons.
However, the proof techniques used for showing both kinds of results are remarkably close. Besson
et al. [Besson et al. 2019] present another approach, for specific compilation passes.
Recently, authors have developed compilers that automatically enforce security [Cauligi et al.

2019; Polikarpova et al. 2016; Wu et al. 2018], both for information-flow policies and constant-time
security. Interestingly, the correctness of the compiler from [Cauligi et al. 2019] is cast as type-
preserving compilation. Unlike our work which targets an end-to-end compiler, these works focus
on selected parts of the compilation chain.

Our work is concerned about preservation of constant-time property. However, it is also critical
to enforce the constant-time property in the first place. To this end, several authors have developed
fully automated methods. In unpublished work, Langley developed a variant of Valgrind to verify
that implementations are constant-time. A formally verified type-based analysis for constant-time
security of CompCert assembly was proposed in [Barthe et al. 2014]. The analysis relied on a simple
alias analysis, which limited its applicability. Later, a more powerful analysis based on the Verasco
analyzer was implemented for the Csharpminor intermediate language of CompCert [Blazy et al.
2019]. The analysis could handle more examples than [Barthe et al. 2014] but was not verified
formally. A more powerful type-based static analysis for LLVM programs is proposed in [Rodrigues
et al. 2016] and used to verify a large body of cryptographic algorithms. Independently, a sound and
(relatively) complete approach based on product programs has been proposed also for LLVM, and
also used to analyze large code bases. More recently, a variant of this approach based on relational
Hoare logics has been used for proving constant-time security of Jasmin programs [Almeida et al.
2017]. Further work considers constant-time security of floating point operations [Andrysco et al.
2015, 2018] and hardware implementations [von Gleissenthall et al. 2019].
In a different direction, several works have used the CompCert compiler to produce formally

verified cryptographic libraries. For instance, Appel et al. [Appel 2015; Beringer et al. 2015; Ye
et al. 2017] use the Verified Software Toolchain [Appel 2014] to prove functional correctness of
cryptographic implementations, and the CompCert compiler to carry these guarantees to assembly
code. Similarly, Zinzindohoue et al. [Zinzindohoué et al. 2017] use CompCert to generate assembly
from HACL* implementations. These works assume that CompCert preserves constant-time; it
would thus seem very beneficial to use our modified compiler to prove that the generated assembly
code is indeed constant time.

, Vol. 1, No. 1, Article . Publication date: August 2019.



1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

:26
Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vincent Laporte, David Pichardie,

and Alix Trieu

8 CONCLUSION
We have proved that a modified version of the CompCert compiler preserves cryptographic constant-
time. Our formalization relies on carefully crafted methodologies that maximize proof reuse. In the
future, it would be interesting to use our modified compiler to generate provably cryptographic
constant-time implementations from [Beringer et al. 2015; Ye et al. 2017] and [Zinzindohoué et al.
2017]. We also intend to extend our proof methodologies to establish preservation of observational
non-interference for a larger class of properties that encompasses constant cost — the execution
cost, in an idealized model that computes the number of primitive operations, does not depend
on secrets. These properties raise two challenges: they allow branching on secrets and therefore
require to generalize our methodology, and they are not leakage cancelling in the sense of [Barthe
et al. 2018].
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