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Abstract. CRAFT is a lightweight tweakable block cipher introduced in
FSE 2019. One of the main design criteria of CRAFT is the efficient pro-
tection of its implementations against differential fault analysis. While
the authors of CRAFT provide several cryptanalysis results in several at-
tack models, they do not claim any security of CRAFT against related-key
differential attacks. In this paper, we utilize the simple key schedule of
CRAFT to propose a systematic method for constructing several repeat-
able 2-round related-key differential characteristics with probability 2−2.
We then employ one of these characteristics to mount a key recovery at-
tack on full-round CRAFT using 230 queries to the encryption oracle and
269 encryptions. Additionally, we manage to use 8 related-key differen-
tial distinguishers, with 8 related-key differences, in order to mount a
key recovery attack on the full-round cipher with 235.17 queries to the
encryption oracle, 232 encryptions and about 26 64-bit blocks of memory.
Furthermore, we present another attack that recovers the whole master
key with 236.09 queries to the encryption oracle and only 11 encryptions
with 27 blocks of memory using 16 related-key differential distinguishers.

1 Introduction

Modern symmetric-key cryptographic primitives, such as the Advanced Encryp-
tion Standard (AES), which are likely designed for desktops and servers, cannot
be easily implemented on resource-constrained devices such as sensor networks,
healthcare equipment, Internet of Things (IoT) devices, and RFIDs. With the
rapidly increasing demand for such devices, the National Institute for Stan-
dards and Technology (NIST) has initiated a standardization process for new
lightweight cryptographic algorithms for use in resource-constrained devices.
SKINNY [3], PRESENT [7], SIMON [2], and GIFT [1] are examples of such
lightweight block ciphers that have been recently proposed .

The resistance against the differential cryptanalysis [6] is essential for any
proposed cryptographic block ciphers. In differential cryptanalysis, for an n-
bit primitive, an attacker is looking for a distinguisher (∆P → ∆C) where
an XOR difference of two plaintexts (∆P ) gives, after some rounds, another
XOR difference (∆C) with probability higher than 2−n. Using this distinguisher,
a key recovery attack can be performed by guessing the round keys. One of
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the variations of this attack is the related-key differential cryptanalysis [5] in
which the attacker has the ability to query the encryption oracle asking for the
encryption of two plaintexts, the first plaintext is encrypted using the secret key,
and the other one is encrypted using another key related to the secret key, where
such relation is known or even chosen by the attacker.

At FSE 2019, Beierle et al. presented CRAFT [4], a new lightweight tweakable
block cipher with a block size of 64 bits and a key length of 128 bits associ-
ated with 64 bits as a tweak. One of the main design criteria of CRAFT is the
efficient protection of its implementations against differential fault analysis. In
the design paper, the authors provide the security analysis of CRAFT against sev-
eral cryptanalysis techniques such as differential, linear, impossible differential,
zero correlation, and integral cryptanalysis in the single-key and related-tweak
settings. While they do not claim any security of CRAFT against the related-key
differential attacks, they presented a deterministic related-key/related-tweak dif-
ferential characteristic. However, this characteristic cannot be used to mount a
key recovery attack. In this paper, we study in details the security of CRAFT

against the related-key differential attack. More precisely,

1. We utilize the simple key schedule of CRAFT to present a systematic method
of how to select the key difference in addition to the input and the output
differences of the 2-round structure of CRAFT such that the input difference is
the same as the output difference. Thus, the resulting 2-round characteristic
is repeatable. In the same time, we also try to maximize the probability of
that characteristic. Thereby, we use it as a building block for constructing
a longer characteristic. To illustrate the effectiveness of this method, we
present 17 repeatable 2-round characteristics, each one of them has only one
active Sbox and holds with probability equals to the maximum differential
probability of an active Sbox of CRAFT (2−2).

2. We extend one of these characteristics to a 28-round related-key differential
characteristic with probability 2−28. After that, we employ it to mount a
key recovery attack on full-round CRAFT using 230 queries to the encryption
oracle and 269 encryptions.

3. We can speed up the key recovery attack against the full-round CRAFT using
235.17 queries to the encryption oracle and 232 full-round encryptions. To
this end, we manage to use 8 different related-key differential characteristics
(with 8 related-key differences) in order to recover 96 bits from the secret
master key and then we get the full master key by testing the right 96-bit
key along with the remaining 32 bits of the key using 2 plaintext/ciphertext
pairs.

4. Furthermore, we can perform the previous attack without the exhaustive
search step and recover the whole master key with 236.09 queries to the
encryption oracle and only 11 full-round encryptions (instead of 232 in the
above attack) using 16 different related-key differential characteristics (with
16 related-key differences). This attack has been verified experimentally.
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It should also be noted that, independent of our work, a related-key attack
on CRAFT has been recently presented in [8] but with data and time complexities
higher than the complexities of our attack.

The rest of this paper is organized as follows. In Section 2, we briefly revisit
the specifications of CRAFT. A systematic method to build a repeatable 2-round
related-key characteristic is explained in Section 3. In Section 4, we describe the
key recovery attack against the full rounds of CRAFT using a single related-key
differential characteristic. Then, the details of our attack using multiple related-
key differential characteristics are presented in Section 5. Finally, the paper is
concluded in Section 6.

2 Specifications of CRAFT

CRAFT [4] is a lightweight tweakable block cipher with a block size of 64 bits, a
key length (K) of 128 bits, and a tweak (T ) of 64 bits. The internal state of the
cipher can be represented as a 4 × 4 square array of nibbles or as a 16-nibble
vector by concatenating the rows of the square array. The notation Ii,j is used
to denote the nibble located at row i and column j of the 4 × 4 array. Also, a
single subscript Ii denotes the nibble in the i-th position of 16-nibble vector, i.e.,
Ii,j = I4i+j .

Tweakey Schedule. The 128-bit key K is split into two 64-bit subkeys K0

and K1. Similar to the internal state, the subkeys K0 and K1 in addition to the
64-bit input tweak T are represented as as 4 × 4 square array of nibbles or as
a 16-nibble vector using a similar indexing technique as for the internal state.
Then, four 64-bit tweakeys TK0, TK1, TK2 and TK3 are derived from K0 and
K1 with the associated T as follows:

TK0 = K0 ⊕ T, TK1 = K1 ⊕ T, TK2 = K0 ⊕Q(T ), TK3 = K1 ⊕Q(T ).

where Q(T ) is a permutation on the nibbles of the input tweak T using a per-
mutation Q = [12, 10, 15, 5, 14, 8, 9, 2, 11, 3, 7, 4, 6, 0, 1, 13]. In other words, the
i-th nibble of Q(T ) (T (Q)i, 0 ≤ i ≤ 15) is equal to the Q(i)-th nibble of T
(Q(T )i = TQ(i)). The tweakey TKi mod 4 (0 ≤ i ≤ 31) is used during the i-th
round of the encryption operation in order to update the internal state.

Encryption Operation. The encryption operation proceeds as follows. First,
the plaintext m = m0||m1|| · · · ||m14||m15 (where mi is a 4-bit nibble) is loaded
into the internal state. Then, the internal state is updated by applying the
full round function of CRAFT 31 times (Ri, 0 ≤ i ≤ 30). Finally, one more
linear round(R′31) is applied on the internal state to compute the ciphertext
as shown in Figure 1, where RCi is the round constant. The full round of
CRAFT (Ri) consists of the following five operations: MixColumn, AddConstanti,
AddTweakeyi PermuteNibbles and SubBox as described in Figure 2. The last

round (R′31) omits PermuteNibbles and SubBox operations from the full round.
These operations are defined as follows,
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Fig. 1: Structure of CRAFT
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Fig. 2: One full round function of CRAFT

– MixColumn (MC): Each column of the internal state is multiplied by a binary
matrix M ,

M =


1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1


This operation can be described using the XOR operation as follows. For
each column j (0 ≤ j ≤ 3),

I0,j
I1,j
I2,j
I3,j

 7→

I0,j ⊕ I2,j ⊕ I3,j

I1,j ⊕ I3,j
I2,j
I3,j


– AddConstantsi (ARCi): In the i-th round (0 ≤ i ≤ 31), the internal state

nibbles I4 and I5 are XOR-ed with the two nibbles (a and b), respectively,
where a and b represented the 2-nibble round constant RCi = (a, b). These
round constants are generated using 4-bit and 3-bit LFSRs. The details of
generating the round constants can be found in [4].

– AddTweakeyi (ATKi): Each nibble of the internal state is XOR-ed with the
corresponding nibble of the tweakey TKi mod 4.

– PermuteNibbles (PN): An permutation P is applied on the nibble positions
of the internal state. In particular, for all 0 ≤ i ≤ 15, Ii is replaced by IP(i),
where

P = [15, 12, 13, 14, 10, 9, 8, 11, 6, 5, 4, 7, 1, 2, 3, 0].

– SubBox (SB): A nonlinear bijective mapping applied on every nibble of the
internal state in parallel using the Sbox given in Table 1.
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Table 1: 4-bit Sbox of CRAFT

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6

3 Related-key Differential Characteristic of CRAFT

In this section, we describe our technique to build a repeatable 2-round related-
key characteristic with a high probability p. A repeatable characteristic is a
characteristic where the input difference is the same as the output difference.
Hence, we can construct a long characteristic by repeating the short one n times
and the probability of the long one will be pn.

Denote the state at the input and the output of round i of CRAFT by xi and
xi+1, respectively, and the state after MC, ARCi and ATKi operations by yi. Thus
we have

yi = ATKi ◦ ARCi ◦ MC(xi)

xi+1 = SB ◦ PN(yi)

In the related-key with a single tweak model of CRAFT, the tweak (T ) has
zero difference, and the subkeys (K0,K1) have the nonzero differences ∆K0 and
∆K1, respectively. Thereby, the four tweaks have nonzero differences as follows

∆TK0 = ∆TK2 = ∆K0, ∆TK1 = ∆TK3 = ∆K1

A 2-round Characteristic. Consider two consecutive rounds, i and i + 1,
where i is even. Thus ∆TKi mod 4 = ∆K0 and ∆TK(i+1) mod 4 = ∆K1. We
start building a repeatable 2-round characteristic by setting the input and the
output differences (∆xi and ∆xi+2) of the 2-round with arbitrary nonzero values
such that ∆xi = ∆xi+2. Then, we deterministically propagate the input differ-
ence ∆xi forward through the MC and ARCi operations and choose ∆K0 such
that ∆K0 = ARCi ◦ MC(∆xi). Thereby, we ensure that ∆yi = 0, ∆xi+1 = 0 and
∆yi+1 = ∆K1. From the other direction, we propagate the output difference
∆xi+2 backward through SB and PN operations to obtain ∆yi+1 and select ∆K1

such that ∆K1 = ∆yi+1 = PN−1i ◦ SB−1(∆xi+2). It should be noted that the
probability of propagating ∆xi+2 backward to ∆K1 is the same as the proba-
bility of propagating ∆K1 forward to ∆xi+2 due to the properties of the Sbox
of CRAFT. Therefore, the overall probability of this characteristic depends on the
probability of propagating ∆xi+2 through SB−1 operation. In order to maximize
the overall probability, we have to minimize the number of active nibbles in the
input/output differences to only one active nibble with, e.g., difference value (α).
Therefore, ∆K1 also has a single active nibble with, e.g., difference value (β)
such that Pr[SB−1(α) → β] = p. Finally, we select the value of the tuple (α, β)
so that p is equal to the maximum differential probability for an active Sbox
which is 2−2.
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Figure 3 depicts an example of such characteristics in which we set the in-
put/output differences to zero except for the two nibbles ∆xi12 and ∆xi+2

12 , which
we set to α. Therefore, we select the difference of the subkey K0 such that it
has zero difference except the nibbles ∆K0

0 , ∆K0
4 and ∆K0

12 have a nonzero
difference (α). For the subkey K1, it will have zero difference in 15 nibbles and
nonzero difference β in the nibble ∆K1

1 such that Pr[SB−1(α)→ β] = 2−2.
Based on the differential distribution table (DDT) of the CRAFT’s Sbox, the

unordered tuples (α, β) can take one of the values from the following set:

(α, β) or (β, α) ∈ {(1, 2), (2, 4), (2, 9), (2, c), (3, 6), (5, 7), (5, a),

(7, d), (a, a), (a, d), (a, f), (b, b), (e, e), (f, f)}.
(1)

We can also build a repeatable 2-round characteristic by setting the input
and the output differences to zero differences (∆xi = ∆xi+2 = 0), then selecting
∆K0 such that it has only one active nibble with nonzero difference (α). After
that, we obtain the value of the difference ∆K1 which will have only one active
nibble with nonzero difference (β) such that ∆K1 = ARCi+1 ◦MC ◦SB ◦PN(∆K0).
Finally, we select the value of the tuple (α, β) from the previously mentioned
set. Table 2 summarizes some examples for the obtained 2-round related-key
differential characteristics.

In the following sections, we utilize the repeatable 2-round related-key dif-
ferential characteristics derived here to mount two key recovery attacks against
the full round of CRAFT.

4 Related-key Differential Attack Using Single Difference

In this section, we employ the repeatable 2-round characteristic (RK0) with,
e.g., the tuple (α, β) = (4, 2) to present a related-key differential attack against
the full round of CRAFT. By repeating RK0 (14) times as depicted in Figure 4, we
are able to construct a 28-round related-key differential characteristic (covered
from round 0 to round 27) with probability (2−2)14 = 2−28. We have verified
this characteristic experimentally.

Since the characteristic ends at x28 with all nibbles have zero differences.
After that, we propagate this difference through the last 4 rounds, and we obtain
the difference at the ciphertext (∆C) in form of

(δ4, δ3, δ9, δ6, δ4, 0, δ8, δ6, 0, δ3, 0, 0, δ4, 0, δ7, δ6).

Thus, we can derive the following conditions:

∆C5 = ∆C8 = ∆C10 = ∆C11 = ∆C13 = 0,

∆C1 = ∆C9,

∆C0 = ∆C4 = ∆C12,

∆C3 = ∆C7 = ∆C15.

Our attack has two phases: Data Collection phase and Key Recovery phase.
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Table 2: Examples of repeatable 2-round related-key differential characteristics of
CRAFT, all of them hold with probability 2−2 starting from an even round i. and (α, β)
can take one of the values given by equation (1).

∆K0 = ∆TK0 = ∆TK2 ∆K1 = ∆TK1 = ∆TK3 ∆xi = ∆xi+2

RK0 (0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, β, 0, 0, 0, β, 0, 0, 0, 0, 0, 0, 0, β, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

RK1 (α, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, α, 0, 0, 0) (0, β, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, α, 0, 0, 0)

RK2 (0, α, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, α, 0, 0) (0, 0, β, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, α, 0, 0)

RK3 (0, 0, α, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, α, 0) (0, 0, 0, β, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, α, 0)

RK4 (0, 0, 0, α, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, α) (β, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, α)

RK5 (α, 0, 0, 0, 0, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, β, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0)

RK6 (0, α, 0, 0, 0, 0, 0, 0, 0, α, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, β, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, α, 0, 0, 0, 0, 0, 0)

RK7 (0, 0, α, 0, 0, 0, 0, 0, 0, 0, α, 0, 0, 0, 0, 0) (0, 0, 0, 0, β, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, α, 0, 0, 0, 0, 0)

RK8 (0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, α, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, β, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, α, 0, 0, 0, 0)

RK9 (0, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, β, 0, 0, 0, 0, 0) (0, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

RK10 (0, 0, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, β, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

RK11 (0, 0, 0, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, β, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, 0, 0)

RK12 (0, 0, 0, 0, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, β, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, 0)

RK13 (α, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, β) (α, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

RK14 (0, α, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, β, 0, 0, 0) (0, α, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

RK15 (0, 0, α, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, β, 0, 0) (0, 0, α, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

RK16 (0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, β, 0) (0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
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Fig. 3: A repeatable 2-round related-key characteristic of CRAFT with probability 2−2.
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4.1 Data Collection

We select a set of 2m 64-bit plaintexts associated with a 64-bit tweak in which
the plaintexts and the tweak can take any arbitrary values. Each plaintext is en-
crypted twice, using the secret master key (K0||K1) and using the secret master
key XORed with the key differences ((K0⊕∆K0)||(K1⊕∆K1)). Then, we com-
pute the difference at the ciphertext (∆C) and filter out the plaintext/ciphertext
pairs that do not satisfy the conditions, obtained above, on ∆C. This step pro-
vides a 5× 4 + 4 + 2× 4 + 2× 4 = 40 bits filtration. Suppose the number of the
remaining plaintext/ciphertext pairs after this filtration is 2m

′
, then on average,

2m
′

= 2m × 2−40 = 2m−40.

4.2 Key Recovery

We first prepare 215×4 = 260 counters corresponding to the 260 keys involved in
the analysis. After that, for each ciphertext pair in the filtered 2m

′
pairs obtained

in the data collection phase, we apply the following procedure:

1. Guess the key nibbles (K1
9 ,K

1
12) and partially decrypt the ciphertext to

obtain the differences (∆y301 , ∆y
30
5 ). The average number of the guessed keys

that satisfy the condition (∆y301 = ∆y305 ) is 22×4 × 2−4 = 24.
2. Guess the key nibbles (K1

6 ,K
1
14,K

1
15) and partially decrypt the ciphertext

to obtain the values and differences at the nibbles (y300 , y
30
3 , y

30
8 ) and discard

any key that does not lead to satisfy the condition of (∆y300 = ∆y308 ). The
average number of the keys passing this filtration is 24 × 23×4 × 2−4 = 212.

3. Guess the key nibbles (K1
2 ,K

1
10) with associated value of K1

14 passed the
filtration on the previous step (step 2) and partially decrypt the ciphertext
to obtain the values and the differences at the nibbles (y304 , y

30
13). Then fil-

ter out the keys if the difference(∆y3013) is not the same as the differences
(∆y301 , ∆y

30
5 ) that are obtained in the step (1). Thus, the average number of

keys suggested by a pair after this step is 212 × 22×4 × 2−4 = 216.
4. Guess the key nibbles (K0

8 ,K
0
13) and partially decrypt the nibbles (y308 , y

30
13)

obtained on steps (2,3), respectively, and get the differences (∆y292 , ∆y
29
6 ).

The average number of the guessed keys that satisfy the condition of (∆y292 =
∆y296 ) is 216 × 22×4 × 2−4 = 220.

5. Guess the key nibble (K1
7 ) and use the previous guessed value of K1

15 to
partially decrypt the ciphertext in order to obtain the value of y3011 . Also,
guess the key nibbles (K1

0 ,K
1
8 ) and use the previous guess of K1

12 to obtain
the value of y3015 . The average number of keys suggested by a pair after this
step is 220 × 23×4 = 232.

6. Use the value and the difference at (y303 ) from step (2) with the values
(y3011 , y

30
15) obtained from the previous step to get the value and the difference

at (y2914) by guessing the key nibbles (K0
3 ,K

0
11,K

0
15). We then filter out the

keys if the difference(∆y2914) is not the same as the differences (∆y292 , ∆y
29
6 )

that are obtained in the step (4). Thus, the average number of keys suggested
by a pair after this step is 232 × 23×4 × 2−4 = 240.



Related-key Differential Cryptanalysis of Full Round CRAFT 9

7. Use the previously guessed value of the key nibble (K1
14) to partially decrypt

the nibble y2914 to obtain the difference ∆y283 and discard the keys if the
condition of (∆y283 = 4) is not satisfied. Consequently, the average number of
keys suggested by a pair after this procedure will be decreased to 240×2−4 =
236. Thus, we increment the corresponding 236 counters.

After repeating the above procedure for 2m
′

pairs, we select the key cor-
responding to the highest counter as a 60-bit right key. Then, we recover the
128-bit master key by testing the 60-bit right key along with the remaining (17
nibbles = 68 bits) of the master key that are not involved in the analysis using
2 plaintext/ciphertext pairs.

4.3 Attack Complexity and Success Probability

In what follows, we present the complexity analysis of the attack in order to
determine the required number of chosen plaintexts and the memory required
to launch this attack.

Data Complexity. We utilize the concept of signal-to-noise ratio (S/N) [6] in
order to determine the required number of chosen plaintext/ciphertext pairs

(2m). S/N = 2k×p
α×β , where k is the number of key bits involved in the analysis,

p is the probability of the differential characteristic, α is the number of guessed
keys by a pair, and β is the ratio of the pairs that are not discarded. In our
analysis, k = 60, p = 2−28, α = 236 , and β = 2−40. Therefore, we have S/N =
260×2−28

236×2−40 = 236. Due to this high S/N , we can use the recommendation of Biham
and Shamir [6] that 3 ∼ 4 right pairs are sufficient enough to mount a successful
differential attack. Therefore, we select the number of plaintext/ciphertext pairs
(2m) equal to 4 × p−1 = 230. Consequently, the data complexity will be 230

chosen plaintexts.
During the data collection phase, we discard the pairs that do not satisfy the

conditions on the differences of the ciphertext. The probability of satisfying these
conditions is 2−40, i.e., there are, on average, 2m−40 = 230−40 = 2−10 remaining
pairs. This means that the right pairs only pass this filtration and 2m

′
= 4.

According to [9] and due to the high S/N , the success probability of the
attack (Ps) can be calculated as Ps ≈ Φ(

√
p× 2m) where Φ is the cumulative

distribution function of the standard normal distribution. Therefore, our differ-
ential attack will succeed with probability Ps ≈ 0.9772.

Time Complexity. During the key recovery phase, we perform several partial de-
cryption of some nibbles which we can consider as 1

16 of 1-round decryption. The
dominant time complexity of the key recovery procedure comes from step 6 in
which we perform 2m

′ ×3×244×2 ≈ 248.58 partial decryption of 3 nibbles. This
time equals to 1

16 ×
1
32 × 248.58 = 239.58 32-round encryptions. Then, we perform

the exhaustive search over the remaining 268 keys using 2 plaintext/ciphertext
pairs. The time complexity of this step is 2 × 268 = 269 32-round encryptions.
Therefore, the total time complexity of the attack is 239.58 + 269 ≈ 269 encryp-
tions.
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round related-key differential characteristic (RK0) where the colored cells are known
values and differences.
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5 Related-key Differential Attack Using Multiple
Differences

In this section, we present a key recovery attack in the related-key model against
the full-round CRAFT with 235.17 queries to the encryption oracle and 232 full-
round encryptions. To this end, we manage to use 8 different related-key differ-
ential characteristics in order to recover 96 bits (represented in 24 nibbles) from
the secret master key and then we get the full master key by testing the right 96-
bit key along with the remaining 32 bits of the key using 2 plaintext/ciphertext
pairs. Moreover, we can omit the exhaustive search step and recover the whole
master key with 236.09 queries to the encryption oracle and only 11 full-round
encryptions.

30-round Related-key Differential Characteristics. We employ the re-
peatable 2-round characteristics (RK1 – RK8) (see Table 2) with the tuple
(α, β) = (4, 2) in order to build eight 30-round characteristics as follows. First,
we repeat each RKi (1 ≤ i ≤ 8) 14 times to build a 28-round characteristic with
probability (2−2)14 = 2−28. Then, we append another 2 rounds with probability
of (2−2). Thus, we are able to construct a 30-round characteristic with total
probability (p) of 2−30. Figure 5 depicts the 30-round characteristic that is built
using RK1.

Consequently, we use these characteristics one by one to collect 8 datasets
(Di, 1 ≤ i ≤ 8) (Data Collection phase) and then apply a partial-key recovery
process to determine a part of the master secret key (Key Recovery phase).

5.1 Data Collection

We use the 30-round characteristic based on the repeatable 2-round character-
istic, e.g., RK1 to build the dataset D1 as follows. This characteristic ends at
x30 with zero differences in all nibbles except ∆x3012 = 1 as depicted in Figure 5.
After that, by propagating this difference through the last two rounds, we are
able to obtain the difference at the ciphertext (∆C) in the form

(0, δ0, β0, γ0, 0, 0, 0, γ0, 0, 0, β0, 0, 0, 0, 0, γ0)

where δ0 = α0 ⊕ 2 and based on the DDT of CRAFT Sbox, α0, β0, γ0 ∈
{0, 4, 7, 9, a, c}. Thus, we can derive the following conditions on the difference of
the ciphertext:

∆Ci = 0, i ∈ {0, 4, 5, 6, 8, 9, 11, 12, 13, 14}, ∆C1 = δ0,

∆C2 = ∆C10 = β0, ∆C3 = ∆C7 = ∆C15 = γ0.

Consequently, we first select a set of 4× p−1 = 4× 230 = 232 arbitrary plain-
texts (L0) and then we create another set of 232 plaintexts (L1) by XORing each
plaintext in the first set L0 with the input difference. After encrypting the two
sets (L0,L1) using (K0||K1) and ((K0 ⊕∆K0)||(K1 ⊕∆K1)), respectively, we
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discard the pairs where the output difference does not match the required output
difference (∆C). The probability of getting (∆C) is 2−(10×4+4+2×4) × ( 6

16 )3 ≈
2−56.25. In other words, only the right pairs can pass this filtration. Thus, we
collect, on average, 4 right pairs that follow the characteristic.

We repeat the same approach using the same set of plaintexts (L0) with
other sets of plaintexts Li, (2 ≤ i ≤ 8), selected like L1, in order to construct the
datasets Di, (1 ≤ i ≤ 8) using the 30-round characteristic that has been built
using RKi, (1 ≤ i ≤ 8) in order to get 4 right pairs per each dataset.

5.2 Key Recovery

We first prepare 24 groups of counters in which each group consists of 16 coun-
ters. Each group corresponds to a nibble of the key involved in the analysis.
After that, we perform the attack in three sequential stages as follows.

First Stage. In this stage, we manage to determine the nibblesK1
i , (8 ≤ i ≤ 15).

For example, we determine the right value of K1
15 as follows. We consider the

group of counters corresponding to K1
15, then for each right pair in the datasets

D1 and D5, we guess K1
15 and decrypt the ciphertext nibble (C15) (See Figures 5,

6), then increment the counter corresponding to the guessed value if the differ-
ence ∆y300 = 5. After repeating these steps for all the pairs, we select the value
corresponding to the highest counters as the right value for K1

15.

By repeating these steps, we are able to obtain the right values of the nibbles
K1
i , (8 ≤ i ≤ 15). Table 3 summarizes which datasets are used to recover these

nibbles.

Second Stage. After finishing the first stage, we have the right value of the key
nibbles K1

8 ,K
1
9 ,K

1
10,K

1
11,K

1
12,K

1
13,K

1
14,K

1
15. During this stage, we obtain the

right value of another 8 nibbles K1
0 ,K

1
1 ,K

1
2 ,K

1
3 ,K

0
12,K

0
13,K

0
14,K

0
15. To this end,

we consider, for example, the groups of counters corresponding to the key nibbles
K1

1 and K0
12, respectively. After that, we reuse the dataset D1 (See Figure 5) in

order to carry out the following steps:

1. Use the key nibbles K1
9 and K1

13 determined in the first stage to partially
decrypt the ciphertext nibbles (C9, C13) and obtain the values of the nibbles
x319 and x3113, respectively.

2. Guess K1
1 and partially decrypt the ciphertext nibble C1 to get the value

and the difference at y3012 , after that, increment the counter corresponding to
the value of K1

1 in case of ∆y3012 = 5.
3. Determine the right value of the key nibble K1

1 by observing the highest
counter.

4. Guess K0
12 and decrypt y3012 to get the difference ∆y291 , then increment the

counter corresponding to the value of K0
12 if ∆y291 = 2.
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Table 3: Key Recovery

Key Nibble Dataset Used Key Nibble Dataset Used

K0
0 D13 K1

0 D4

K0
1 D14 K1

1 D1

K0
2 D15 K1

2 D2

K0
3 D16 K1

3 D3

K0
4 D9 K1

4 D7

K0
5 D10 K1

5 D6

K0
6 D11 K1

6 D5

K0
7 D12 K1

7 D8

K0
8 D5 K1

8 D3

K0
9 D6 K1

9 D2

K0
10 D7 K1

10 D1

K0
11 D8 K1

11 D4

K0
12 D1 K1

12 D2, D6

K0
13 D2 K1

13 D3, D7

K0
14 D3 K1

14 D4, D8

K0
15 D4 K1

15 D1, D5

5. Determine the right value of the key nibble K0
12 by observing the highest

counter.

In the same manner, we reuse the datasets D2,D3 and D4 to determine the
right values of the key nibbles (K1

2 ,K
0
13), (K1

3 ,K
0
14), (K1

0 ,K
0
15), respectively.

Third Stage. Similar to the second stage, we reuse the datasets D5,D6, D7

and D8 to recover the key nibbles K1
i , (4 ≤ i ≤ 7) and K0

j , (8 ≤ j ≤ 11) as

follows. To recover the nibbles K1
6 and K0

8 , we consider the groups of counters
corresponding them, and we reuse the dataset D5 (See Figure 6) in order to
carry out the following steps:

1. Use the key nibble K1
14 determined in the first stage to partially decrypt the

ciphertext nibbles (C14) to obtain the value of the nibble x3114.
2. Guess K1

6 and get the value and the difference at y308 , then increment the
counter corresponding to the value of K1

6 in case of ∆y308 = 5.
3. Determine the right value of the key nibble K1

6 by observing the highest
counter.

4. Guess K0
8 and decrypt y308 to get the difference ∆y296 , then increment the

counter corresponding to the value of K0
8 if ∆y296 = 2.
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5. Determine the right value of the key nibble K0
6 by observing the highest

counter.

Using the same approach, we are able to determine the right values of the
key nibbles (K1

5 ,K
0
9 ), (K1

4 ,K
0
10) and (K1

7 ,K
0
11) using the datasets D6,D7 and

D8, respectively.

5.3 Attack Complexity

Each set of plaintexts L0, · · · ,L8 contains 232 plaintexts. Thus, we need 9×232 ≈
235.17 queries to the encryption oracle.

During the first stage of the key recovery phase, we determine 4 nibbles using
32 right pairs and another 4 nibbles using 16 right pairs, therefore, we execute
2 × (32 + 16) × 24 = 210.58 single nibble encryptions. For the second stage, we
recover another 8 nibbles using 4 right pairs per each nibble. This process needs
2 × 4 × 4 × (2 + 24 + 24) = 210.08 single nibble encryptions. The third stage
needs 2 × 4 × 4 × (1 + 24 + 24) = 210.04 single nibble encryptions. Therefore,
these three stages need 212.32 single nibble encryptions which is equivelant to
211.83× 1

16×
1
32 ≈ 8 full-round encryptions. After these stages, we run exhaustive

search over the remaining 232 keys using 2 plaintext/ciphertext pairs and this
step needs 232 = 233 full-round encryptions.

The dominant part of the memory complexity of this stage is for storing
4×8 = 32 right pairs in addition to the 128-bit right key. Therefore, the memory
complexity is 2× 32 + 2 = 66 64-bit blocks.

5.4 Omitting the Exhaustive Search Step

In this section, we describe how we can omit the exhaustive search over 232 keys.
To this end, we utilize the repeatable 2-round characteristics RK9 – RK16 to
build another 8 30-round characteristics. Then, we employ these characteristics
to construct the datasets D1 – D16 to get, on average, 4 right pairs per each
dataset as we do before.

To determine the right value of the key nibbles K0
i , (0 ≤ i ≤ 7), we first

prepare 16 counters per each nibble. Then, we partially decrypt some nibbles of
the ciphertexts. After that, we guess the key nibble and increment the counters
if a specific nibble at the state y29 has a difference equal to 2, as we do in the
second and the third stages before. The ciphertext nibbles to be decrypted in
addition to the position of the checked nibble at the state y29 and the used
dataset depend on which key nibble we recover (See Table 3).

In this case, we need 17 × 232 ≈ 236.09 queries to the encryption oracle.
In addition to the 8 full-round encryptions required during the previous three
stages, we need 2× 4× 4× (6 + 24) = 29.46 single nibble encryptions to recover
the nibbles K0

0 – K0
3 and 2× 4× 4× (4 + 24) = 29.32 single nibble encryptions to

recover the nibbles K0
4 – K0

7 . Thus, we need 8 + ((29.46 + 29.32)× 1
16 ×

1
32 ) ≈ 11

full-round encryptions. Also, we need more 2 × 4 × 8 = 64 block of memory to
store the right pairs. Thus, the total memory complexity will be 66 + 64 = 130
blocks of memory.
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Fig. 5: Related-key differential attack against Full CRAFT using the dataset (D1) to
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6 Conclusion

In this paper, we studied the security of the lightweight tweakable block cipher
CRAFT against the related-key differential cryptanalysis. More precisely, we de-
scribed a systematic method to build a repeatable 2-round related-key differen-
tial characteristic that holds with the probability of 2−2. We utilized this method
to build several 30-round related-key differential characteristics with probability
2−30. Then, we employed these characteristics to mount a key recovery attack
against the full round of CRAFT in practical time. Moreover, we have verified this
attack experimentally.
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