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Abstract. SNEIK is a family of lightweight cryptographic algorithms derived from a
single 512-bit permutation. The SNEIKEN authenticated encryption and SNEIKHA
hash algorithms are candidates in the ongoing NIST Lightweight Cryptography stan-
dardization effort. The SNEIGEN “entropy distribution function” was designed to
speed up certain functions in post-quantum and lattice-based public key algorithms.
We implement and evaluate SNEIK algorithms on popular 8-bit AVR and 32-bit
ARMv7-M (Cortex M3/M4) microcontrollers, and also describe an implementation
for the open-source RISC-V (RV32I) Instruction Set Architecture (ISA). Our re-
sults demonstrate that SNEIK algorithms usually outperform AES and SHA-2/3
on these lightweight targets while having a naturally constant-time design and sig-
nificantly smaller implementation footprint. The RISC-V architecture is becoming
increasingly popular for custom embedded designs that integrate a CPU core with
application-specific hardware components. We show that inclusion of two simple
custom instructions into the RV32I ISA yields a radical (more than five-fold) speedup
of the SNEIK permutation and derived algorithms on that target, allowing us to reach
12.4 cycles/byte SNEIKEN-128 authenticated encryption performance on PQShield’s
“Crimson Puppy” RV32I-based SoC. Our performance measurements are for realistic
message sizes and have been made using real hardware. We also offer implementation
size metrics in terms of RAM, firmware size, and additional FPGA logic for the
custom instruction set extensions.
Keywords: SNEIK · SNEIKEN · SNEIKHA · Lightweight Cryptography · AVR
· Cortex-M4 · ARMv7-M · RISC-V · ISA Extensions · Crimson Puppy

1 Introduction
There are two traditional design targets for lightweight cryptographic algorithms; com-
pact and efficient stand-alone hardware implementation and software implementation for
lightweight CPUs. NSA’s SIMON and SPECK algorithms are an example of this duality;
SIMON is optimized for hardware while SPECK is optimized for software [BSS+13]. The
ongoing NIST Lightweight Cryptography (LWC) standardization effort1 has candidates
that are clearly in either one of these categories, and some that try to meet both targets.

The emergence of open source RISC-V Instruction Set Architecture (ISA) introduces a
viable third option where we can consider custom instruction set extensions that maximize
total performance return against power consumption and other costs. This also creates
an opportunity to address potential security issues such as side-channel leakage in the
processor itself. Naturally one would prefer any new instructions to have broad performance
benefits for all kinds of cryptographic tasks, rather just for some very specific use cases.

1NIST LWC Project: https://csrc.nist.gov/projects/lightweight-cryptography
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The NIST evaluation criteria also emphasizes algorithms that can share features of the
implementation to do multiple things – namely cryptographic hashing and authenticated
encryption – since both of these functions are often required by the same applications.

SNEIK [Saa19c] is one such proposal; its use cases are more complex than simple
RFID authentication or verification of a hashed password. The design intends to satisfy
all symmetric cryptographic needs of cryptographic protocols and applications, including
tasks such as pseudorandom number generation and key derivation.

Paper outline and contributions. Section 2 describes the SNEIK family of algorithms,
notably the SNEIKEN AEAD and SNEIKHA hash. Section 3 discusses their imple-
mentation on an 8-bit AVR microcontroller where our hand-crafted assembly language
implementation is roughly 10 times faster than compiled C reference code. SNEIK was
largely designed with the 32-bit low-power Cortex M3/M4 target in mind (Section 4), so
our new assembler implementation achieves only about 10% performance improvement
over the original on that target. Section 5 discusses the RISC-V (RV32I) ISA, which lacks
some features that are important to SNEIK, most importantly rotation instructions. We
observe that RISC-V embedded targets are ideal for custom instruction set extensions,
and propose two simple instructions that significantly speed up (and lower the power
consumption) of the SNEIK permutation. These benefits are directly translated to more
efficient SNEIKHA hashing, SNEIKEN encryption, and other applications. We compare
SNEIK to current NIST algorithms on our target platforms and conclude in Section 6.

2 The SNEIK Family of Algorithms
SNEIK [Saa19c] is a family of lightweight cryptographic primitives whose security is derived
from the core SNEIK permutation (Section 2.2). Several SNEIK algorithms are candidates
in the NIST Lightweight Cryptography (LWC) standardization effort (See Table 1.)

• SNEIKEN provides Authenticated Encryption with Associated Data (AEAD) func-
tionality and has a similar external interface to the AES-GCM standard [NIS01,
Dwo07]. Modern protocols such as TLS 1.3 use AEADs to secure bulk data [Res18].

• SNEIKHA is a cryptographic hash function intended as a replacement for SHA-
2/3 [NIS15b,NIS15a] in lightweight applications. It can be used in digital signatures,
to hash passwords, etc. It is also an eXtensible Output Function (XOF) like SHAKE.

An appendix of the SNEIK specification further defines SNEIGEN, which is charac-
terized as an “entropy distribution function” – essentially a fast XOF or pseudo-random
generator. SNEIGEN is equivalent to SNEIKHA but has only ρ ∈ {3, 4, 5} rounds, corre-
sponding to rate r ∈ {384, 320, 256}. SNEIGEN is significantly faster than SNEIKHA but is
intended only for use cases where certain types of attacks are not a concern. The “R5Sneik”
variant of the Round5 post-quantum public key encryption algorithm [BBF+19,GMZB+19]
uses both SNEIKHA and SNEIGEN as its internal building blocks, resulting in significantly
increased overall performance on Cortex M4 [Saa19a].

2.1 Permutation-based cryptography
As is usual in permutation-based cryptography, the SNEIKEN state (b = 512 bits) is split
into r-bit “rate” and c-bit “capacity” parts. The performance of permutation (sponge)
modes is mostly determined by number of rounds ρ and the rate r; this is the number of
input/output bits processed per permutation invocation.

The capacity parameter c = b − r is related to the security level of the mode – this
is the “secret” portion of the state that does not directly interact with input or output.
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Table 1: SNEIK Parameters proposed for the NIST LWC Project.

Name Type Security Rate Rounds
SNEIKEN128 AEAD 2128 r = 384 ρ = 6
SNEIKEN192 AEAD 2192 r = 320 ρ = 7
SNEIKEN256 AEAD 2256 r = 256 ρ = 8
SNEIKHA256 Hash 2128 r = 256 ρ = 8
SNEIKHA384 Hash 2192 r = 128 ρ = 8
(SNEIGEN) (A fast entropy distribution function.)

For SNEIKEN the confidentiality level is designed to be 2c (offline computation), while
integrity is set at 264 (messages required for successful forgery). For SNEIKHA we claim
2c/2 security against collision attacks – the security against pre-image attacks may be
significantly higher in many use cases.

We do not go into specifics of the BLNK2 sponge modes in this work, but note that
they are quite simple and consist almost exclusively of XOR operations of input with words
of the internal state (“absorption”), outputting a part of the internal state (“squeezing”),
and various padding details. The hash mode of SNEIKHA is virtually equivalent to the
Sponge modes used by SHA-3 / SHAKE algorithms, apart from padding details. Little or
no storage beyond the 64-byte state is required by the modes.

As the sponge mode wrappers are very simple, the overall performance largely depends
on the implementation details of the underlying SNEIK permutation. We note that
in addition to the modes that have been proposed for standardization, the BLNK2
framework used by SNEIK supports many additional applications, including full protocol
designs [Saa14].

2.2 The SNEIK Permutation f512
The SNEIK permutation operates on a b = 512 bit state organized as sixteen (n = 16)
32-bit words (s[0], s[1], . . . s[15]). Each round has of 16 steps, corresponding to state words.

The permutation is a pure ARX design; it is composed of 32-bit addition (“A” = �),
cyclic left rotation (“R” = ≪), and exclusive-or operations (“X” = ⊕). For purposes
of analysis one may view the SNEIK permutation non-linear feedback shift register, and
write out the specific substeps ti:

t1 = s[i− n]⊕ d[i]
t2 = t1 � s[i− 1]
t3 = t2 ⊕ (t2 ≪ 24)⊕ (t2 ≪ 25)
t4 = t3 ⊕ (s[i− 2]≪ 1)
t5 = t4 � s[i− n+ 2]
t6 = t5 ⊕ (t5 ≪ 9)⊕ (t5 ≪ 17)
t7 = t6 ⊕ s[i− n+ 1]

s[i] = t7.

(1)

The d[i] input in substep t1 provides an 8-bit round constant rc[i/n] when i ≡ 0 ( mod n)
and a 8-bit domain separator δ when i ≡ 1 (modn). It is zero for 14 of the n = 16 steps.
Since both ρ and δ inputs are variable (even in the same higher-level algorithm), SNEIK
is actually a “permutation family”.

The “feedback” is usually implemented with a cyclic word buffer in software; s[i− n] is
at the same memory location as s[i]. With this type of indexing, we see that computation
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Figure 1: Illustration of a single SNEIK step. Five input words are used to refresh a single
output word. The state consists of sixteen 32-bit words, which conveniently fits into the
register file of RISC-V. We see that almost the entire permutation is captured by the two
custom instructions SNEIK1 and SNEIK2. The constant input d[i] is zero for most steps.

of each new word uses a cyclically continuous block of five input words: s[i] = fd[i](s[i−
2], s[i− 1], s[i], s[i+ 1], s[i+ 2]). This sliding window representation (“two words to the left
and two words to the right”) is essential in most of our implementations since it allows
us to keep four state words in registers and load just one (s[i+ 2]) when computing and
storing a new value for s[i]. Word s[i− 2] are not be needed before the next round.

Note. A cryptanalytic flaw in the permutation of SNEIK v1.0 [Saa19b] was identified
shortly after its publication [Per19]. The problem is addressed in the current SNEIK
v1.1 [Saa19c] proposal. This new version has an additional of a single-bit rotation in
sub-step t4 of Equation 1. Furthermore, the size of the AEAD authentication tag was
reduced from 128 bits to 64 bits to save bandwidth.

3 Atmel/Microchip AVR
AVR is a family of 8-bit microcontrollers which are widely used in commercial embedded
applications and hobbyist projects. The highly popular and accessible Arduino2 board
and development system is based on AVR. The AVR instruction set [Atm16] is mostly
consistent across a large section of Atmel/Microchip microcontrollers.

Most instructions are two bytes long and execute in a single cycle. Instructions are
limited to two operands; the destination register doubles as the first source register, which
of often necessitates moving data around. The AVR register file consists of 32 byte-wide
registers R0. . .R31, with R1 permanently set to zero. Three fixed pairs of registers can be
paired to provide 16-bit indirect access via X=R27:R26, Y=R29:R28, and Z=R31:R30. There
is an additional stack pointer SP and various single-bit conditional flags such as carry.

2The Arduino platform: https://www.arduino.cc/

https://www.arduino.cc/
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Table 2: SNEIK size and performance on the 8-bit AVR platform.

256-bit Secret State: Code ρ = 8 r = 256
Permutation Code Bytes Cycles Cycles/B
AVR Fast (Asm) 2,144 9,265 289.5
AVR Small (Asm) 666 9,648 301.5
AVR Ref C (-Os) 4,326 99,281 3,102.5
AVR Ref C (-Ofast) 5,178 101,574 3,174.2

Message size (bytes) and corresponding cycles:
Algorithm 50B 100B 500B 1,000B
SNEIKEN128 29,761 37,659 100,834 179,805
SNEIKEN192 34,365 43,415 132,016 246,816
SNEIKEN256 39,028 58,483 177,107 334,640
SNEIKHA256 19,852 38,943 154,682 308,603
SNEIKHA384 57,025 85,409 321,734 614,829

Implementation. We compiled the SNEIK reference C implementation using GCC
(avr-gcc 5.4.0 on Ubuntu 18.04) to the AVR target and instrumented it with cycle (“tick”)
counters. After verifying correct operation we left the main mode wrappers (encrypt.c
and hash.c) largely intact, only changing the length arguments to recommended size_t
type from unsigned long long.

We note that the hash wrapper hash.o is 288 bytes, and encrypt.o provides AEAD
encryption, decryption, and authentication functionality in 1032 bytes. These are the
only components required (in addition to the shared permutation) to implement and use
SNEIKHA and SNEIKEN in applications.

Assembler optimization of permutation. To translate the ARX arithmetic to AVR
instruction set we note that a 32-bit XOR can be implemented with four EOR instructions.
A 32-bit addition is one ADD and three ADC (add with carry) instructions. AVR has
instructions only for 1-bit shifts; the ROR and ROL rotation instructions actually insert the
carry bit as the most or least significant bit of the byte rather than performing a plain
8-bit cyclic rotation.

To implement a 32-bit left rotation (x ≪ 1) we use a single LSL logical shift left
(which sets the carry), followed by three ROL carry-utilizing shifts on bytes of increasing
significance, and finally, an ADC that puts the wraparound bit back to the first byte with
the aid of R1, which always holds zero by convention.

We adopt the sliding window approach and group twenty 8-bit registers into five 32-bit
“meta-registers” W0, W1, W2, W3, WT. This still leaves R20 for loop counter, R21 for δ (one byte
is sufficient), a pointer X for the round constants, and Z for the state. Each meta-register
assignment uses a continuous set of registers, which helped to simplify macros:

W0 = R07:R06:R05:R04 W1 = R11:R10:R09:R08 W2 = R15:R14:R13:R12
W3 = R19:R18:R17:R16 WT = R25:R24:R23:R22

Rotation by a multiple of 8 bits is just a matter of shuffling or “renaming” the individual
registers used to represent the number. We observe from Equation 1 that all of the required
left rotations (24, 25, 1, 9, 17) are either by 8n or 8n+ 1 bits and therefore realizable by no
more than five instructions; one can also directly exclusive-or the contents of a meta-register
rotated by 24 bits over with four EOR operations. The SNEIK rotations were specifically
chosen to have this property; we knew that rotating a word by 4 bits is four times more
expensive than by 9, 17, or 25 bits on AVR!
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We created GNU Assembler macros that implement a single SNEIK step in about 63
AVR instructions, including one 4-byte load and one 4-byte store. These were then used
to construct two versions of the overall permutation:

• “Fast” (sneik_f512_avr_fast.S): unrolled round, 1145× ρ+ 105 cycles per call.

• “Small” (sneik_f512_avr_small.S): unrolls 4 steps, 1191× ρ+ 120 cycles per call.

Performance. Table 2 summarizes our AVR results. We recommend using the “small”
version in most applications as its performance penalty is not very large. The permutation
and modes use just a few bytes of (stack) RAM in addition to the 64-byte state.

Benchmarks were measured on a 16 MHz ATmega2560 chip (Arduino MEGA 2560
compatible board). The numbers for -Ofast and -Os optimization flags are not flipped;
this is a gcc quirk. We offer timings for the raw permutation as well as SNEIKEN and
SNEIKHA when operating on messages of various sizes, following the style of [BEE+12].
In this paper the performance numbers given for SNEIKEN are an average of successful
encapsulation (authenticated encryption) and decapsulation (authenticated decryption)
operations with zero-length associated data.

4 ARMv7-M (Cortex M3/M4)
The ARMv7-M microcontroller architecture [ARM18] is one of three ARMv7 architecture
profiles, the other two being the ARMv7-A application profile (e.g. 32-bit Android
phones) and the ARMv7-R real-time profile. There is a common subset of Thumb (16-bit)
instructions among all the three; ARMv7-A/R profiles also support 32-bit instructions.

ARMv7-M is the most lightweight of the three in terms of on-chip area, power con-
sumption, and also price. It is implemented in the Cortex-M3 and M4 cores used by a
large number of microcontroller vendors: NXP, ST, TI, Silicon Labs, Nordic, and others.

SecurCore SC300 - based SIMs, smart cards, and other security elements are also based
on Cortex M3 and use the ARMv7-M ISA. STMicroelectronics alone has reported to have
shipped more than one billion such ST33 (SC300) units by early 2019 [STM19].

Note that ARMv7-M is a Harvard (dual-bus) architecture and differs significantly from
ARMv6-M (Cortex-M0 and Cortex-M1), a Von Neumann (single bus) architecture.

C Implementation. We started our project as with AVR; compiling the SNEIK reference
implementations on target with a C cross compiler, which in this case was a version of
GCC 8.2.1 released by ARM (arm-none-eabi-gcc, 8-2018-q4-major).

We again implemented full hash and AEAD functionality, not just the permutation.
The outputs are compliant with SNEIKEN and SNEIKHA test vectors. The hash and
AEAD mode implementations (i.e. excluding the permutation) with -Os optimization
level are very compact: hash.o is 180 bytes and encrypt.o is 672 bytes. We note that
the C optimization level of the mode implementations affects overall performance by about
5-15%; however the speed-optimized variants can be two or three times larger.

Assembler Optimization. SNEIK was designed to be particularly effective on this in-
struction set; in addition to a 32-bit datapath, ARMv7 allows a second source operand
to be rotated “for free” in most arithmetic operations, including XOR. This significantly
reduces the number of instructions required for the SNEIK permutation.

Unfortunately ARMv7 has only of 13+2 general purpose registers (LR and even SP can
be used with certain caveats), so it is not possible to keep the entire SNEIK state in the
register file. There are additional implementation considerations as only the lower eight
registers are truly general purpose; R8-R12 are not accessible by some Thumb instructions.



Markku-Juhani O. Saarinen 7

The core of the implementation is built form two assembler macros. SNEIK1 and SNEIK2
perform steps t2 · · · t4 and t5 · · · t7 of Equation 1, respectively:

.macro SNEIK1 x, y, z // x=s[i], y=s[(i+14) %16] , z=s[(i+15) %16]
ADD \x, \x, \z // x += z;
EOR R3 , \x, \x, ROR #8 // x ^= (x <<< 24)
EOR \x, R3 , \x, ROR #7 // ^ (x <<< 25);
EOR \x, \x, \y, ROR #31 // x ^= (y <<< 1);

.endm

.macro SNEIK2 x, y, z // x=s[i], y=s[(i+1) %16] , z=s[(i+2) %16]
ADD \x, \x, \z // x += z;
EOR R3 , \x, \x, ROR #23 // x ^= (x <<< 9)
EOR \x, R3 , \x, ROR #15 // ^ (x <<< 17);
EOR \x, \x, \y // x ^= y;

.endm

Both of these macros consist of four instructions; 8 total. One additional load and/or
one store operation may be required for each step, and each round requires few instructions
for domain, round constant, and looping. In experimentation with real hardware we
consistently obtained 179× ρ+ 50 cycles per function invocation; 11.2 average per step.

In our “ARMv7 Fast” implementation the registers R0, R1, R2, and R12 are taken up
by state pointer *s, domain separator δ, round counter, and round constant table *rc,
respectively. We use R3 as a temporary register and assign R4-R7 as our sliding window,
but keep some state words permanently in registers; R8-R11 and R14 (=LR) hold the state
words s[2 . . . 6] between iterations. The remaining 11 words need to stored and loaded
from memory in each round.

The difference between a hand-crafted assembler and compiled C implementations
is not 10-fold like with AVR. The SNEIK primitive operations are quite natural to the
Thumb instruction set. We looked at the code created by the compiler and observed that
it nicely utilizes the special rotation instructions – even though those are expressed in
terms of shifts in the C implementation – and yields a relatively good performance from
the unmodified “opt” reference implementation. Again, the -Os compiler flag strangely
yields better performance than -Ofast for the core permutation (but not for the modes!).

Cortex M3 and M4 support unaligned access, but this may not be safe across all
ARMv7-M systems. Some performance gain was obtained by changing the encrypt.c code
to process full blocks as 32-bit words. This change did strangely had a negative performance
impact on hash.c. Some compilers may perform this optimization automatically since the
block size is always of full word length.

Performance. Table 3 summarizes our ARMv7-m measurements. Again, the cycle count
for SNEIKEN is an average of successful encapsulation and decapsulation operations
(which have very similar performance profile). Implementations were benchmarked on
a STM32F407VGT6 Cortex M4 microcontroller from STMicroelectronics (STM32F4
discovery development board3). We instrumented the code with cycle-accurate counters
(“SysTick”) available on the microcontroller itself. The MCU was clocked at 24 MHz,
which helps to remove wait states caused by the flash ROM. A serial interface was used
to read out the results. Note that there is some performance variation across ARMv7-m
implementations from different vendors and Cortex M3 tends to be 1-2% faster than M4.
The RAM usage of the implementation is less than 100 bytes.

3STM32F4 kit used: https://www.st.com/en/evaluation-tools/stm32f4discovery.html

https://www.st.com/en/evaluation-tools/stm32f4discovery.html
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Table 3: SNEIK size and performance on Cortex M4 (ARMv7-M).

256-bit Secret State: Code ρ = 8 r = 256
Permutation Code Bytes Cycles Cycles/B
ARMv7 Fast (Asm) 592 1,482 46.3
ARMv7 Small (Asm) 240 1,814 56.7
ARMv7-M Ref C (-Os) 656 1,715 53.6
ARMv7-M Ref C (-Ofast) 748 1,635 51.1

Message size (bytes) and corresponding cycles:
Algorithm 50B 100B 500B 1,000B
SNEIKEN128 4,866 6,118 16,146 28,681
SNEIKEN192 5,653 7,156 21,106 39,010
SNEIKEN256 6,449 9,397 28,197 52,897
SNEIKHA256 3,268 6,293 24,785 49,366
SNEIKHA384 9,498 14,288 54,313 103,953

5 RISC-V
The RISC-V Instruction Set Architecture (ISA) is an increasingly popular open-source
alternative to commercial vendor-defined ISAs (e.g. ARM, Intel, MIPS). The specifications
are published by the RISC-V Foundation4, and allow anyone to create royalty-free imple-
mentations. The RISC-V ISA is now well supported by open source toolchains (notably
the GNU C compiler and libraries) and operating systems such as Linux.

Due to its healthy development ecosystem, an increasing number of commercial vendors
are using the ISA: Rambus, Nvidia, Western Digital, and SiFive are among companies that
have either released or announced products based on RISC-V. PQShield has developed
RISC-V cores and systems specifically for cryptography and security applications.

The RISC-V ISA comes in many shapes, the main ones being RV32I and RV64I, the
32- and 64-bit base variants. There are numerous optional extensions which add to the
capabilities of the base set. At the time of writing, seven have been ratified: Multiplication
and division instructions (“M”), atomic instructions (“A”), control and status registers
(“Zicsr”), single-, double, and quad-precision floating point arithmetic (“F”, “D”, “Q”),
and 16-bit compressed instructions (“C”). The specification even allocates specific code
points for custom instructions.

However, all variants are intended to be backwards compatible with the base ISA,
and processor designers may choose to emulate optional instructions in software. We will
focus on the (smallest) RV32I variant and provide implementation-independent instruction
counts in addition to cycle counts on our RV32I hardware implementation.

5.1 SNEIK Permutation on “Base” RV32I
The RV32I architecture has an exceptionally large register file with 31 general-purpose
32-bit registers5. This allows us to fit the entire 16-word state of SNEIK into the registers,
removing the need for load and store operations between rounds. This is a very large save,
especially as RISC-V generally does not allow one to combine load and store operations
with arithmetic. On a negative side, the base instruction set does not provide instructions
for bit rotations; those are only provided by the (draft) “B” Bit Manipulation extension.

4RISC-V Foundation, ISA specifications: https://riscv.org/
5The register file is reduced to fifteen (plus zero) in the RV32E variant.

https://riscv.org/
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// A SNEIK Step. Window S[0] = f(S[0], S[1], S[2], S[-2], S[ -1]).

.macro SNEIKS a, b, c, d, e
ADD \a, \a, \e // a += e; ( a=s[i], e=s[(i+15) %16] )
SLLI a2 , \a, 24 // a ^= (a <<< 24)
SRLI s6 , \a, 8
XOR a2 , a2 , s6
SLLI s6 , \a, 25 // ^ (a <<< 25);
XOR a2 , a2 , s6
SRLI s6 , \a, 7
XOR a2 , a2 , s6
XOR \a, \a, a2
SLLI a2 , \d, 1 // a ^= (d <<< 1); ( d=s[(i+14) %16] )
SRLI s6 , \d, 31
XOR a2 , a2 , s6
XOR \a, \a, a2
ADD \a, \a, \c // a += c; ( c=s[(i+ 2) %16] )
SLLI a2 , \a, 9 // a ^= (a <<< 9)
SRLI s6 , \a, 23
XOR a2 , a2 , s6
SLLI s6 , \a, 17 // ^ (a <<< 17);
XOR a2 , a2 , s6
SRLI s6 , \a, 15
XOR a2 , a2 , s6
XOR \a, \a, a2
XOR \a, \a, \b // a ^= b; ( b=s[(i+ 1) %16] )

.endm

Listing 1: A SNEIK step on RV32I. The five macro inputs constitute a “sliding window”;
(a, b, c, d, e) = (s[ i ], s[ i�1 ], s[ i�2 ], s[ i�14 ], s[ i�15 ]). This sequence of 23 instructions
is replaced by just two custom R4-type instructions SNEIK1 and SNEIK2 in this work. With
RV64I and other 64-bit ISAs we can potentially create a single 3-input (3× 64→ 64 - bit)
instruction that computes two full steps, a further four-fold improvement.

Each of the five left rotation operations contained in a single step (Equation 1) will have
to be implemented with one n-bit left shift, one 32− n bit right shift, and a combination
operation. So a single step has two ADDs, 11 XORs, and five SLLI and SRLIs shifts each,
totaling 23 instructions as shown in Listing 1.

Two registers, a2 (X11) and s6 (X24), are used as temporary variables in the macro. The
16-word state is kept in registers t0-a6, a3-a7, and s0-s3. In addition to the 23× 16 = 368
instructions for stepping, an additional five are needed for fetching and XORing the round
constant, domain δ, incrementing the loop counter, and a conditional branch, bringing
the total to 373 instructions per round (of which 3 can be eliminated by unrolling fully).
Loading and saving the state, setting up pointers, and handling stack adds a 55 instruction
overhead, bringing the total to 373× ρ+ 55 instructions.

Performance. We cross-compiled the SNEIK reference code with RISC-V GCC 8.2.0
(-march=rv32i), and executed it with PQShield’s “pqse” emulator to obtain platform-
independent instruction counts; see Table 5 for results. The compiler is actually able to do
a “perfect” 373× ρ - instruction job on the permutation (with -Os), although the function
call overhead is higher, 73 instructions. A size-optimized SNEIKHA hash mode hash.o is
336 bytes, while a SNEIKEN encrypt.o is 1096 bytes. RAM usage of the implementation
is approximately 128 bytes, including the 64-byte state.
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5.2 Instruction Set Extension
A single SNEIK step splits conveniently into two parts, which both take in three 32-bit
input values and output one (Figure 1). This is ideal for a simple instruction set extension.
We name our custom 32-bit instructions SNEIK1 and SNEIK2. They have the same purpose
as the assembler macros of the same name in our ARMv7-m implementation (Section 4).
We can consider various implementation options:

• On architectures that only allow two source operands, one may use simplified
two-input (R-type) versions of SNEIK1 and SNEIK2 that need two “external” ADD
instructions can per step. Each step then has four instructions, rather than just two.
If the problem lies in instruction encoding (e.g. 16-bit instructions), we note that
the output register is essentially always one of the inputs (rd = rs3).

• On RV64I and other 64-bit targets two full steps can be expressed as a single three-
input instruction (“the SNEIK instruction”) operating on 3× 64 = 192 input bits and
producing 64. This reduces the instruction count further by a factor of 4. Only eight
registers are needed to hold the state in this case – which also applies to the 64-bit
double-precision floating point register file of the “D” extension.

• In an unrolled round, one of the source operands to SNEIK1 and SNEIK2 is always
the result of the immediately preceding operation. Therefore it is available in the
pipeline unless an interrupt occurs; a CPU designer can impose an penalty of several
cycles for this very rarely occurring register file fetch.

5.3 Experiments: Crimson Puppy
We use the “Crimson Puppy” RISC-V core developed by PQShield Ltd. in our testing and
experiments. This core is notable for its small size and Harvard architecture (like AVR
and Cortex-M3/4). Crimson Puppy achieves single-cycle instruction execution with about
95% probability in practice. All ALU operations are single-cycle, while jumps, branches,
loads, and store operations may require 1-2 additional cycles.

The core implements the ratified RV32I v2.0 user-level ISA [WA19], which we run in
“machine mode” of the privileged ISA. This corresponds to a typical embedded microcon-
troller set-up. The complexity of this core is somewhere between AVR and Cortex M0
architectures, or even less.

The RISC-V ISA specification does not address implementation details such as in-
struction timing at all, and cycle counts vary widely from one implementation to another.
Since some RISC-V cores require three or more cycles per instruction, we also report the
(implementation independent) instruction count for core SNEIK primitives.

Proving the design on FPGA. Hardware synthesis was targeted on the Artix-7 XC7A35T
FPGA chip of the Arty7-35T6 development board. Our basic SoC design used in this
project has rudimentary UART input and output peripherals for testing. See Table 4 for a
hardware utilization summary for the SoC using Vivado 2019.1. Utilization of all resources
except BRAM is well under 10% on this low-end FPGA model.

The SoC makes most of the 36kB BRAM blocks available to the CPU as working
memory but SNEIK itself requires a minimal amount RAM. SNEIK implementation was
tested on a relatively feature-rich runtime environment that provides standard C libraries
(for the NIST testbench) and therefore needs some working RAM.

6Digilent Arty A7-35T: https://www.xilinx.com/products/boards-and-kits/arty.html

https://www.xilinx.com/products/boards-and-kits/arty.html
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Table 4: Artix-7 (XC7A35T) resource utilization of the “Crimson Puppy” RV32I SoC
with and without SNEIK instructions.

Synthesis Target LUT FF Slice DSP MHz
Base RV32I SoC 1,547 460 493 0 100.0
..with 3-input SNEIK 1,805 484 558 0 100.0
Change +258 +24 +65 +0 −0.0

Extending the ISA. The “Crimson Puppy” core has an option for R4-type instructions
with three source register operands rs1, rs2, and rs3. There may be a penalty if none of
the three source operands is in the pipeline (as a result of immediately preceding arithmetic)
and needs to be fetched from the register file. We also tested the 2-input versions that use
more typical R-type encoding and data paths but the difference in terms of implementation
size and timing turned out to be negligible.

We use the custom-0 major opcode of the ISA specification [WA19] to define a straight-
forward encoding for our new R4-type instructions as follows:

[31:27] [26:25] [24:20] [19:15] [14:12] [11:7] [6:0] Bitfields
rs3 00 rs2 rs1 001 rd 0001011 SNEIK1

rs3 00 rs2 rs1 010 rd 0001011 SNEIK2

For 2-input variants we simply set rs3 to zero (00000) – this corresponds to R-type
encoding with “funct7” set to zero and allows downward compatibility in software – and
explains the slightly counter-intuitive input operand ordering that we use.

These new instructions are relatively simple to implement. We may describe their
combinatorial logic in “Pseudo Verilog”:

// rs1_w , rs2_w , rs3_w have been decoded and fetched

wire [31:0] t_w = rs2_w + rs3_w; // t = rs2 + rs3;

wire [31:0] sneik1_w = t_w ^ // sneik1 = t ^
{ t_w [7:0] , t_w [31:8] } ^ // (t <<< 24) ^
{ t_w [6:0] , t_w [31:7] } ^ // (t <<< 25) ^
{ rs1_w [30:0] , rs1_w [31] }; // (rs1 <<< 1);

wire [31:0] sneik2_w = t_w ^ // sneik2 = t ^
{ t_w [22:0] , t_w [31:23] } ^ // (t <<< 9) ^
{ t_w [14:0] , t_w [31:15] } ^ // (t <<< 17) ^
rs1_w; // rs1;

The actual implementation on the “Crimson Puppy” core was not much more compli-
cated than this; about a dozen lines of Verilog HDL. For the two-input versions, one can
simply assign t_w = rs2_w directly.

It is clear that the above additional circuitry would not be very substantial as a separate
module. However it makes more sense to evaluate it as a part of the whole core. From
Table 4 we see that the two custom instructions add no more than 258 LUTs and 65 Slices
to the size of “Crimson Puppy” on Artix-7. The timings of all synthesized variants is
within 0.5ns of each other, and the same operating frequency suits them all.

Performance results for the 2-input variant are not included in Table 5, but we note
that ρ = 8 permutation was 695 or 119 + 72× ρ cycles. Hashing 1000 B with SNEIKHA
required 25,463 cycles, 47 % more than the 3-input version, but it is still a four times
faster than with plain RV32I.
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Table 5: SNEIK cycle count with and without 3-input SNEIK1 and SNEIK2 custom
instructions on “Crimson Puppy” – and instruction counts for plain RV32I.

256-bit Secret State: Code ρ = 8 r = 256
Permutation Code Bytes Cycles Cycles/B
Custom Asm 384 439 13.7
Plain Asm 1,728 3,134 97.9
# Instr. Asm same 3,039 95.0
# Instr. Ref C (-Os) 1,736 3,057 95.5
# Instr. Ref C (-Ofast) 1,772 3,304 103.3

Input size (bytes) and corresponding instructions or cycles:
Mode Target 50B 100B 500B 1,000B
SNEIKEN128 Custom 2,219 2,755 7,043 12,403
SNEIKEN128 Plain 10,311 12,870 33,342 58,932
SNEIKEN128 # Instr. 9,629 12,006 31,022 54,792
SNEIKEN192 Custom 2,548 3,238 8,433 14,831
SNEIKEN192 Plain 11,984 15,033 43,818 80,883
SNEIKEN192 # Instr. 11,215 14,027 41,247 76,438
SNEIKEN256 Custom 2,841 3,665 10,309 18,601
SNEIKEN256 Plain 13,621 19,835 58,819 110,231
SNEIKEN256 # Instr. 12,785 18,827 55,979 105,215
SNEIKHA256 Custom 1,331 2,382 8,776 17,271
SNEIKHA256 Plain 6,721 13,162 51,896 103,511
SNEIKHA256 # Instr. 6,338 12,480 49,418 98,648
SNEIKHA384 Custom 3,611 5,517 21,217 40,660
SNEIKHA384 Plain 19,781 29,772 112,847 215,835
SNEIKHA384 # Instr. 18,741 28,107 106,057 202,705

6 Discussion and Conclusions
We have implemented SNEIK algorithms on three (Fig. 2) common lightweight embedded
platforms: 8-bit AVR, 32-bit ARMv7-M used in Cortex M3 and M4 cores, and RV32I
open source ISA. What is noteworthy is that SNEIKEN (AEAD) and SNEIKHA (a hash)
share a majority of their code, resulting in code (ROM) and state size (RAM) savings.

On AVR we showed how to implement the permutation in assembler in a way that is
roughly 10 times faster than the compiled C version. We obtain sustained 180 cycles/byte
for authenticated encryption of 1kB messages with SNEIKEN128, while plain AES-
128 (with precomputed subkeys) requires 213 cycles/byte and more memory [DCK+18].
SNEIKHA256 can hash 500 B in 155k cycles, while SHA2-256 requires 266k cycles, and
SHA3-256 716k cycles [BEE+12].

Our new ARMv7-M (Cortex M4) implementation archives 10% performance improve-
ment by using additional registers to store state words across rounds. We demonstrate
authenticated encryption of 1kB messages at 28.6 cycles/byte with SNEIKEN128, while the
fastest “unprotected” AES-128-CTR implementation in [SS16] requires 34.7 cycles/byte.
SNEIKHA256 hashes 1kB messages at 49.3 cycles/byte on ARMv7-M, while the fastest
known SHA3 implementation (XKCP7 distribution) requires 95.3 cycles/byte [Saa19a].

On RISC-V (RV32I) SNEIKEN128 achieves authenticated encryption of 1kB messages
at 54.8 instructions/byte, which approximately matches the 57.0 cycles/byte for plain

7XKCP, eXtended Keccak Code Package: https://github.com/XKCP/XKCP

https://github.com/XKCP/XKCP
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Figure 2: A “family portrait” of the development boards used in this work. From left:
An Arduino compatible ATmega2560 board (AVR Architecture), STM32F407-Discovery
(Cortex M4, ARMv7-M Architecture), and Arty7-35T XC7A35T (An Artix-7 FPGA used
to run our RISC-V RV32I+ ISA core).

AES-128 on a comparable target [Sto19]. SNEIKHA256 requires 98.6 instr/byte for 1kB
messages on RV32I, while peak throughput of SHA3-256 is very similar at 101.3 cycles/byte
(r = 1088, estimated from the reported 13,774 tick permutation [Sto19]).

The RV32I base instruction set lacks rotation instructions, which are dominant in the
SNEIK permutation function, resulting in effective halving of per-cycle throughput in
comparison to ARMv7. However as an open source architecture, RISC-V may more readily
be implemented as a customizable IP core, which motivated us to consider custom ISA
extensions. We have discovered that the structure of the SNEIK permutation is highly
suitable for this type of optimization, both on lightweight (32-bit RV32I) and 64-bit ISAs.

Our custom RV32I extensions have only a 258 LUT / 65 slice impact on FPGA resource
utilization, but speed up the SNEIK permutation by a factor of 7. Our “Crimson Puppy”
RISC-V SoC achieves 12.4 cycle/byte SNEIKEN128 performance and 17.3 cycles/byte for
SNEIKHA256 when tested on Artix-7 FPGA hardware.

We conclude that SNEIK is well suited for these microcontroller targets, usually
outperforming NIST algorithms, while also having a smaller implementation footprint and
a naturally constant-time design. A very simple RISC-V instruction set extension easily
gives it five-fold speedup (and a similar reduction in energy consumption), which is a great
benefit in applications such as custom security controllers.
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