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1 Introduction

The famed Bitcoin white paper presented an unconventional (at the time) Byzantine fault tolerant consensus
algorithm that is now known as the Nakamoto consensus [4]. Nakamoto consensus centers around the proof-
of-work (PoW) mechanism and the “longest-chain-win” rule. It is extremely simple and can be described
very succinctly: at any time, an honest node adopts the longest PoW chain to its knowledge and attempts
to mine a new block that extends this longest chain; a block is committed when buried sufficiently deep in
the chain. Such a simple algorithm deserves a simple analysis, which is what this paper aims to provide.

2 Model and Overview

We assume the readers are familiar with how Nakamoto consensus works and we review its basics only to
introduce notations. Transactions in Nakamoto consensus are batched into blocks. Each block is linked to
a unique predecessor block via PoW, thus forming a PoW chain. A block’s height is its predecessor block’s
height plus one. Upon adopting a new longest chain, either through mining or by receiving from other nodes,
a node broadcasts and mines on top of the new longest chain. Ties can be broken arbitrarily.

Mining in Nakamoto consensus is modeled by Poisson processes as done in the Bitcoin white paper.
A Poisson process with rate λ is denoted as {N(t;λ), t ≥ 0}. The number of blocks mined within a time
interval (t1, t2) is independent of other non-overlapping internals (mining is memoryless). It follows a Poisson

distribution with parameter λ′ = λ(t2 − t1), i.e., Pr[N(t2)−N(t1) = k] = p(k;λ′) = e−λ
′
λ′k

k! . Let α and β be
the collective mining rate of honest nodes and malicious nodes, respectively. If a block is mined by an honest
(resp. malicious) node, we call it an honest (resp. malicious) block. This paper makes an ideal assumption
that the mechanism of mining difficulty adjustment keeps α and β stable.

We will prove the traditional safety and liveness properties.
– Safety. Honest nodes will not adopt different blocks at the same height.
– Liveness Every transaction is eventually committed by honest nodes.

The liveness property of Nakamoto consensus is analyzed as two separate parts in the literature [2, 5] as
chain growth and chain quality. Together, they state that honest blocks keep making into the longest chain,
and hence keep committing new transactions.

If a group of nodes have zero communication delay between them, then they can extend a chain at their
collective mining rate. We assume this is the case with malicious nodes. Between honest nodes, however,
we assume a known bounded communication delay of ∆. With such a delay, honest nodes extend the chain
at a rate slower than their collective mining rate, because blocks mined less than ∆ time apart may not
extend one another. The core of the proof is to analyze the mining rate loss due to communication delay.
We will show that the effective honest mining rate is at least gα for liveness and at least g2α for safety where
g = e−α∆ < 1. Thus, Nakamoto’s protocol solves consensus if the effective honest mining rate is noticeably
larger than the malicious mining rate, i.e., if g2α > (1 + δ)β for some constant δ > 0. We remark that if
∆ � 1/α, i.e., the communication delay is much smaller than the expected block interval, then g ≈ g2 ≈ 1
and the above condition becomes the “honest majority” assumption.
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∆ upper bound on communication delay
α collective honest mining rate
β collective malicious mining rate
g = e−α∆, a discount factor of honest mining rate due to communication delay

Table 1: Notation

3 Proofs

3.1 Preliminary

The following Poisson tail bound and Chernoff tail bound will be frequently used. It is not surprising that
the two bounds have almost identical forms because the Poisson distribution is a limiting case of the binomial
distribution. We defer the proof of Lemma 1 to appendix and use 0 < δ < 1 for the rest of the paper.

Lemma 1 (Poisson tail). Define F (k;λ) =
∑bkc
j=0 p(j;λ) and F̄ (k;λ) =

∑∞
j=dke p(j;λ). For 0 < δ < 1,

F ((1− δ)λ;λ) < e−Ω(δ2λ) and F̄ ((1 + δ)λ;λ) < e−Ω(δ2λ).

Lemma 2 (Chernoff). Let X =
∑n
i=1Xi be the sum of n independent Boolean random variables and µ be

the expectation of X. For 0 < δ < 1, Pr[X > (1 + δ)µ] < e−Ω(δ2µ) and Pr[X < (1− δ)µ] < e−Ω(δ2µ)

3.2 Non-tailgaters and Loners

Let us put all honest blocks on a time axis based on when they are mined. An honest block is essentially
“wasted” if it “tailgaters”, i.e., mined too closely after another block. On the other hand, honest blocks that
do not tailgate contribute to the liveness and safety of Nakamoto consensus.

Definition 3 (Non-tailgaters and loners). Suppose an honest block B is mined at time t. If no other honest
block is mined between time t−∆ and t, then B is a non-tailgater (otherwise, B is a tailgater). If no other
honest block is mined between time t−∆ and t+ ∆, then B is a loner.

In other words, a non-tailgater is mined more than ∆ time after the previous honest block. A loner
(called a “convergence opportunity” in [5]) does not tailgate and is not tailgated. Note that these notions
apply to honest blocks only. The next two lemmas establish useful properties of non-tailgaters and loners.

Lemma 4. (i) Non-tailgaters have different heights. (ii) A loner is the only honest block at its height.

Proof. It suffices to show that if two honest blocks do not tailgate one another, then they have different
heights. Let the two blocks be B and B′. Without loss of generality, assume B is mined first. B reaches all
honest nodes within ∆ time, which is before B′ is mined (otherwise B′ tailgates B). Upon receiving B, an
honest node will attempt to extend B and will only mine at a height greater than B.

Lemma 5. During a time interval of duration t, (i) at least (1− δ)gαt non-tailgaters are mined except for

e−Ω(δ2gαt) probability, and (ii) at least (1− δ)g2αt loners are mined except for e−Ω(δ2g2αt) probability.

Proof. Since honest blocks follow a Poisson process of rate α, by Lemma 1, there are N > (1− δ
2 )αt honest

blocks mined during the interval, except for e−Ω(δ2αt) probability. Number these blocks 1, 2, . . . , N . For
convenience, let us define block 0 to be the last honest block mined before the interval and block N +1 to be
the first honest block mined after the interval. Let Xi = 1 if the i-th honest block mined is a non-tailgater,
and 0 otherwise. Let Yi = 1 if the i-th honest block mined is a loner, and 0 otherwise. The number of
non-tailgaters is X =

∑N
i=1Xi. The number of loners is Y =

∑N
i=1 Yi.

Recall that interarrival times in a Poisson process follow independent exponential distributions with the
same parameter α. Thus, Pr[Xi = 1] = e−α∆ = g, independent of each other. By Chernoff, X > (1− δ

2 )gN >

(1− δ
2 )2gαt > (1− δ)gαt, except for e−Ω(δ2gαt) probability.
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Yi = XiXi+1, so Pr[Yi = 1] = g2. However, Yi and Yi+1 are dependent (both depend on Xi+1), so we
cannot directly invoke Chernoff. Luckily, Yi and Yi+2 are independent. Thus, Y can be broken up into two
summations of independent Boolean random variables Y =

∑
odd Yi +

∑
even Yi. Applying Chernoff on the

two summations separately completes the proof of (ii).

3.3 Liveness

Theorem 6 (Chain growth). At time t, the longest chain adopted among honest nodes has length at least

(1− δ)gαt except for e−Ω(δ2gαt) probability.

Proof. Follows from Lemma 4(i) and 5(i).

Theorem 7 (Chain quality). At time t, in the longest chain adopted among honest nodes, the fraction of

honest blocks is at least 1− (1 + δ) β
gα except for e−Ω(δ2βt) probability.

Proof. The honest fraction is smallest if all malicious blocks make it to the longest chain. At time t, except
for the said probability, the number of malicious blocks N1(t) < (1 + δ/4)βt by Lemma 1, the chain length

N2(t) > (1−δ/4)gαt by Theorem 6, and the fraction of honest blocks 1−N1(t)
N2(t) > 1− (1+δ/4)β

(1−δ/4)gα > 1−(1+δ) β
gα .

(For the last step, note that 1+δ/4
1−δ/4 < 1 + δ.)

3.4 Safety

Theorem 8 (Safety). Let B∗ and B∗∗ be two distinct blocks at the same height. If g2α > (1 + δ)β, then
once an honest node adopts a chain that buries B∗ by k blocks deep, no honest node will adopt a chain that
buries B∗∗ by k blocks deep, except for e−Ω(δ2k) probability.

Proof. Let t1 be the first time after B∗ is buried k deep that some honest node adopts a chain that buries
B∗∗ by k blocks deep. Thus, right before t1, an honest node (potentially the same one) adopts a chain that
extends B∗. Let these two diverging chains end at B1 and B′1 respectively. Let Block B′0 be the last common
ancestor of the two diverging chains. Let B0 be the most recent honest ancestor of B′0, and let t0 be the
time it is mined. Let h0, h

′
0, h1, h

′
1 be the height of blocks B0, B

′
0, B1, B

′
1, respectively. Note that if B′0 is

mined by an honest node, then B0 = B′0 and h0 = h′0; otherwise, the blocks between B0 (excluded) and
B′0 (included) are all malicious blocks. Without loss of generality, assume h1 ≤ h′1. Figure 1 illustrate the
scenario, which is similar to the one used in Garay et al. [2].

Let Z be the set of malicious blocks mined between time t0 and t1, a duration of t. Let Y be the set of
loners mined between time t0 + ∆ and t1 −∆, a duration of t− 2∆. Let t = t1 − t0.

Lemma 9. |Z| ≥ |Y |.

Proof. We first show that every loner y ∈ Y has height h ∈ (h0, h1]. By time t0 + ∆, all honest nodes have
received B0 with height h0 and will never again mine on height h0 or lower. If any loner at height h > h1

has been mined before time t1 −∆, then at t1, no honest node will adopt a chain ending at B1 with h1.
Now, we prove the lemma by pairing every y ∈ Y with a distinct malicious block in Z as follows. If y has

height h ∈ (h0, h
′
0], then it is paired with the height-h block that buries B0, which is a malicious block by the

definition of B0. If y has height h ∈ (h′0h1], then it is paired with the height-h block on the diverging chain,
which must be a malicious block due to Lemma 4(ii). In either case, the paired malicious block belongs to
Z because it extends B0 (mined at t0) and is known by some honest node before t1. Lastly, these malicious
blocks are distinct because they have distinct heights (the loners have distinct heights).

Lemma 10. If we ignore all unlikely events, then |Z| < |Y |.

Proof. If we ignore all unlikely events, then |Y | > (1−δ1)g2α(t−2∆) by Lemma 5(ii) and |Z| < (1+δ2)βt by
Lemma 1. When k is sufficiently large (the exact condition can be derived from Lemma 11), t− 2∆ > t

1+δ3
.

Picking δ1 = δ2 = δ3 = δ/8, |Y | > (1− δ1)g2α(t− 2∆) > 1−δ1
1+δ3

g2αt > 1+δ2
1+δ g

2αt > (1 + δ2)βt > |Z|.
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Figure 1: A chronology of the events involved in the proof of Theorem 8.

To avoid the contradiction between Lemma 9 and 10, some unlikely event involving Poisson or Chernoff
tail bounds must happen. These probabilities are bounded by e−Ω(δ2βt) (note that β < g2α). The following
lemma helps converts the probabilities to use k and completes the proof.

Lemma 11. t > k
(1+δ)(α+β) except for e−Ω(δ2k) probability.

Proof. t is smallest if all mined blocks (honest or malicious) form a chain that buries B0. In this case, t is
the sum of k interarrival times of a Poisson process with rate λ = α + β, which follow i.i.d. exponential
distributions. Sum of k i.i.d exponential distributions is an Erlang distribution, whose cumulative distribution

function is 1 −
∑k−1
i=0

e−λt(λt)i

i! , which equals the Poisson upper tail F̄ (k;λt) defined in Lemma 1. Plugging

in t = k
(1+δ)(α+β) and denote l = k/(1 + δ), we have Pr[t ≤ l/λ] = F̄ ((1 + δ)l; l) < e−Ω(δ2k) by Lemma 1.

With Lemma 11, e−Ω(δ2βt) is bounded by e−Ω(δ2κ) because βt > βk
(α+β)(1+δ) = Ω(k).

4 Remarks

Prior work. The first rigorous analysis of Nakamoto consensus is by Garay et al. [2], and they used the
standard lock-step synchrony model. The lock-step model is a clean theoretical model but is not practical
because it assumes that nodes have perfectly synchronized rounds and messages can only be sent at round
boundaries. Pass et al. [5] extended the analysis to the non-lock-step synchrony model with significant added
complexity. Pass and Shi [6] later simplified the analysis but it is still much longer and more involved than
this paper. Kiffer et al. [3] used Markov chains to tighten the safety condition in [5]; their result has a
non-closed form.

This paper also adopts the non-lock-step synchrony model and further removes the artificial notion of
rounds by working with continuous time. We clarify that some papers [5, 3] incorrectly called non-lock-
step synchrony “asynchroy” or “partial synchrony”. Those two terms are well established in the literature
and they describe much weaker models that Nakamoto consensus cannot handle. For example, the partial
synchrony model assumes the communication bound ∆ is “unknown”, meaning that the adversary can choose
∆ after all the other protocol parameters are fixed. Then, it can easily pick a very large ∆ so that β far
exceeds the effective honest mining rate gα = e−α∆α.

Source of simplicity. Simplicity of this paper results from many sources. We list a few.

1. We use continuous time rather than discrete, i.e., Poisson processes rather than Bernoulli trials. This
simplifies various quantities and formulae. The Poisson model is by no means new; it is the model
used in Nakamoto’s original white paper [4]. Given that hash operations take very little time and the
winning probability is very low, the Poisson model is well justified.

2. We directly abstract mining as an ideal lottery while Pass et al. [5] spent significant efforts proving this
claim using the random oracle model. Because random oracles are also ideal tools that do not exist in
reality, we do not find the extra complexity worthwhile.
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3. Prior works [2, 5, 6] analyze chain growth and chain quality over all time intervals at all honest nodes
in prior works. Such results can be easily shown in our framework using similar techniques. We opt
for weaker but sufficient forms for simplicity.

4. We manage to prove the same or tighter results without needing the “no long withholding” lemma [5]
or Markov chains [3].

Tightness. Theorem 6 is tight because malicious nodes can force this slow chain growth by simply re-
maining silent. Theorem 7 is tight given a simple variant of selfish mining [1, 2]. Tightness of the safety
condition g2α > (1 + δ)β is unknown. The best attack we know is still the simplest “private chain” attack
described by Nakamoto [4] and it requires β > gα. Another aspect that is quite loose in all existing analysis
is the relation between latency and failure probability, i.e., for a particular κ, what is the exact probability
of safety violation. We still do not have a theoretically sound way to analyze the number of confirmations
needed for a given failure probability in Nakamoto consensus. These two aspects remain interesting future
directions.

Acknowledgement. The author is grateful to Jiantao Jiao, Kartik Nayak and Elaine Shi for helpful
discussion and feedback.

References

[1] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable. Communications
of the ACM, 61(7):95–102, 2018.

[2] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The Bitcoin backbone protocol: Analysis and appli-
cations. In Annual International Conference on the Theory and Applications of Cryptographic Techniques,
pages 281–310. Springer, 2015.

[3] Lucianna Kiffer, Rajmohan Rajaraman, et al. A better method to analyze blockchain consistency. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pages
729–744. ACM, 2018.

[4] Satoshi Nakamoto et al. Bitcoin: A peer-to-peer electronic cash system. 2008.

[5] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous networks.
In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages
643–673. Springer, 2017.

[6] Rafael Pass and Elaine Shi. Rethinking large-scale consensus. In 2017 IEEE 30th Computer Security
Foundations Symposium (CSF), pages 115–129. IEEE, 2017.

5



A Poisson Tail Bound and Chernoff Bound

Proof of Lemma 1. Recall Stirling’s inequality k! > (k/e)k and Poisson distribution p(k;λ) =
e−λλk

k!
.

For 1 ≤ j ≤ k1 = b(1− δ)λc, we have
p(j − 1;λ)

p(j;λ)
=
j

λ
< 1− δ, and

F ((1− δ)λ;λ) =

k1∑
j=0

p(j;λ) <
p(k1;λ)

1− (1− δ)
=
e−λλk1

k1!
· 1

δ
< e−λ ·

(
eλ

k1

)k1
· 1

δ

< e−λ ·
(

e

1− δ

)(1−δ)λ

· 1

δ
(
(
eλ
k

)k
increases with k when k < λ)

<

[
e−δ

(1− δ)1−δ

]λ
· 1

δ

For j ≥ k2 = d(1 + δ)λe, we have
p(j + 1;λ)

p(j;λ)
=

λ

j + 1
<

1

1 + δ
, and

F̄ ((1 + δ)λ;λ) =

∞∑
j=k2

p(j;λ) <
p(k2;λ)

1− 1
1+δ

=
e−λλk2

k2!
· 1 + δ

δ
< e−λ ·

(
eλ

k2

)k2
· 1 + δ

δ

< e−λ ·
(

e

1 + δ

)(1+δ)λ

· 1 + δ

δ
(
(
eλ
k

)k
decreases with k when k > λ)

=

[
eδ

(1 + δ)1+δ

]λ
· 1 + δ

δ

It is not hard to show that (1 + δ)1+δ ≥ δ + δ2/3 and (1− δ)1−δ ≥ δ + δ2/3, which complete the proof.
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