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Abstract In this article, we demonstrate practical side-channel assisted
chosen-ciphertext attacks (CCA) over multiple CCA-secure lattice-based
public-key encryption schemes (PKE) and key-encapsulation mechanisms
(KEM). Most lattice-based PKE/KEMs suffer from the problem of decryp-
tion failures and some of these schemes use forward error correction codes
to reduce the failure probability. These error correcting codes, when used
within public-key cryptographic schemes, involve computations with se-
cret components and hence might leak sensitive side-channel information.
In this work, we identify a side-channel vulnerability in constant-time
error correcting codes, which help the attacker distinguish between faulty
and valid codewords through the EM/power side-channel information.
We exploit the vulnerability to demonstrate a practical chosen-ciphertext
attacks on the CCA-secure Round5 algorithm which uses timing attack
resistant error correcting code.
We further identify a generic side-channel vulnerability within the CCA
transformation steps used in multiple CCA-secure lattice-based PKE/KEM
schemes. Exploiting the vulnerability, we demonstrate a practical chosen-
ciphertext attack which can be performed on multiple CCA-secure lattice-
based PKE/KEM schemes.
We perform experimental validation of our attacks using Electromagnetic
measurements observed over optimized implementations of multiple NIST
candidates taken from the pqm4 library, a benchmarking framework for
post quantum cryptographic implementations for the ARM Cortex-M4
microcontroller. We thus establish that (1) lattice-based schemes that use
error correcting codes, no matter constant-time or not, are vulnerable
to power/EM side-channel attacks and (2) the notion that CCA-secure
schemes are as insecure as their CPA-secure versions unless suitably
masked against side-channel attacks.

1 Introduction
Shor’s algorithm running on a powerful quantum computer can break widely
used public-key algorithms, namely the RSA and Elliptic Curve cryptosystems,



in polynomial time. Post-quantum public-key cryptography is a branch which
focuses on designing public-key algorithms and protocols that cannot be broken
using very powerful quantum computers. In 2017, NIST initiated a project to
standardize post-quantum public-key algorithms.

In the first round of NIST’s standardization project, there were 69 candidates
based on mathematical problems that cannot be solved by present-day classical
as well as quantum computers. After intense scrutiny by the the cryptography
community, the NIST selected 17 Public-key Encryption (PKE) & Key Encap-
sulation schemes (KEM) and 9 Digital Signature schemes (DS) for the second
round of the standardization project. While the main selection criterion for the
first round had been theoretical security and uniqueness of the schemes, the
second round will also consider implementation aspects such as performance on
both hardware and software platforms as well as resistance to side-channel and
fault attacks.

Twelve out of the 26 candidates in the second round are based on compu-
tationally infeasible problems from the lattice theory. The majority of these
lattice-based candidates are based on some variants of the Learning With Er-
rors (LWE) or Learning With Rounding (LWR) problems. The hardness of the
LWE/LWR problems is based on the fact that when properly chosen small errors
are added to a system of linear equations, then it becomes computationally
infeasible for both present-day classical and quantum computers to solve the
system of equations. Naturally, cryptosystems based on LWE/LWR are noisy
due to the presence of small errors (which make them secure). Several research
works have investigated efficiency aspects of these algorithms and have resulted in
improved performance on high-end computers [20] as well as resource-constrained
microcontrollers [6, 17, 21, 22, 23]. Interestingly, side-channel security of these
lattice-based cryptographic schemes have received only limited attention in [7,24].
In this paper we analyze side-channel security of several lattice-based candidates
that have been selected for the second round of NIST’s standardization project.

Although, LWE/LWR-based cryptographic constructions are generally more
efficient compared to our present-day elliptic curve or RSA cryptosystems, one
major disadvantage is that most of them have non-zero decryption failure rate
due to the presence of noise in the ciphertext. For security against a Chosen
Ciphertext Attack (CCA), where an attacker can adaptively craft ciphertexts, it
is essential for a cryptographic scheme to have negligible decryption failure rate,
e.g. in the order of 2−λ for λ-bit security. While some schemes [1,5] tune their
parameter sets to achieve negligible decryption failure rates, others [2, 18] use
forward error correcting codes. The advantages of using error correcting code is
that the LWE/LWR-related parameters (ciphertext modulus and standard devia-
tion of error distribution) can be reduced to improve computation performance
and communication bandwidth. This is possible because the error correcting
mechanism can compensate the increased noise which comes from the use of
smaller ciphertext modulus. For example, LAC is the only scheme which has
byte-level ciphertext modulus.
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While the application of error correcting code can be lucrative from a per-
formance point of view, it can open new doors for implementation attacks and
sometimes over-complicate or even deteriorate performance. D’Anvers et al.
in [9] demonstrated practical chosen-ciphertext attacks against CCA-secure
KEMs LAC [18] and RAMSTAKE [30] by exploiting timing leakage from non-
constant-time error correcting codes. Such an attack can be prevented by using
constant-time error correcting code. In [31], a constant-time BCH error correcting
code was implemented and it was found that the computation time of LAC in-
creases by 40% thus negating the theoretical advantages of using error correcting.
Such a performance degradation is not always the case as can be observed in
Round5 which uses a constant-time but lightweight error correcting code called
‘XEf’. With the help of XEf, Round5 achieves better performance and bandwidth
compared to its predecessor Round2 which was a candidate in the first round of
NIST’s standardization project. The timing attack by D’Anvers et al. cannot be
used to break the constant-time implementation of Round5.

Contributions: In this paper we investigate side-channel security of several
second round lattice-based key exchange schemes in the CCA setting.

1. We demonstrate successful Electromagnetic Emanation-based (EM-based)
side-channel attacks against the Round5 scheme which uses constant-time
error correcting code that are inherently resistant against timing attacks. We
identify a vulnerability within the ECC’s decoding procedure which leak EM
side-channel information about validity of the codeword. We show that this
vulnerability can be exploited to perform chosen-ciphertext attacks that lead
to retreival of the long term secret key of CCA-secure Round5 algorithm.

2. We also identify a very similar side-channel vulnerability in the operations
within the CCA transformation used in lattice-based KEMs. Exploiting the
vulnerability in a similar manner, we craft chosen-ciphertexts and introduce
differential side-channel behavior during the execution of CCA transform
steps in the decapsulation operation. This generic attack leads to retrieval of
long term secret keys from CCA secure KEMs.

3. We perform experimental validation of our attacks on the implementations of
the aforementioned NIST candidates obtained from the pqm4 3 public library,
a testing and benchmarking framework for post quantum cryptographic
schemes on the ARM Cortex-M4 microcontroller [16].

4. We thus establish/strengthen the notion that 1) lattice-based key exchange
schemes using constant-time error correcting are not secure in the present of
power side-channel attacker and 2) that CCA-secure schemes are as insecure
as their CPA-secure versions unless suitably masked against possible side-
channel attacks.

Organization of the Paper: This paper is organized as follows. Section 2
covers the necessary background by introducing the required concepts, Section 3
presents our side-channel-assisted chosen-ciphertext attack on the CCA-secure
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Round5 algorithm exploiting side-channel vulnerability in its constant time error
correcting code. Section 4 presents our chosen-ciphertext attack exploiting a very
similar vulnerability in the CCA transformation utilized by multiple lattice-based
PKE/KEMs. Section 5 discusses potential countermeasures against our attacks
followed by Section 7 which presents our conclusions.

2 Lattice Preliminaries

In this section, we briefly review some background on the Learning With Errors
(LWE) and the Learning With Rounding (LWR) problem. Further, we briefly
explain the LPR Encryption scheme [19] based on which multiple lattice-based
NIST candidates have been developed. We also touch upon the issue of decryption
failures and usage of error correction codes in lattice-based schemes followed by
the well-known FO transformation [13] used by several lattice-based PKE/KEMs
for security in the CCA security model.

2.1 Notation

We denote the ring of integers modulo a prime q as Zq. The polynomial ring
Zq(X)/φ(X) is denoted as Rq where φ(X) is its reduction polynomial. Let the
module of dimension k × ` be the ring of matrices of the size k × ` with each
element in Rq. Polynomials in Rq are denoted in bold lower case letters and the ith
coefficient of a polynomial a ∈ Rq is denoted as a[i]. Similarly, matrices/vectors
in Zk×lq are denoted in bold upper case letters and their individual elements are
represented similar to the coefficients of polynomials in ring Rq. Multiplication
of two polynomials a and b is denoted as c = a × b. Byte arrays of length n are
denoted as Bn.

An element x ∈ Zq rounded to a lower modulus p with p < q is denoted as
bxeq→p. The same rounding operation can be applied coefficient-wise or element
wise to larger elements such as polynomials in rings Rq, modules in rings Rk×`q

or matrices/vectors in Zk×`q .

2.2 LWE problem

The Learning With Errors (LWE) problem, introduced by Regev in 2009 [27]
is one of the most well known average-case hard problems on which several
lattice-based NIST candidates are built on. Solving the LWE problem on random
lattices in the average case is at-least as hard as solving the related Bounded
Distance Decoding (BDD) problem on the same lattices in the worst case. There
are two versions of the LWE problem - Search LWE and Decisional LWE. The
search variant of the LWE problem requires the attacker to solve for a secret
S ∈ Z`×nq given polynomially many LWE instances of the form

(
A,T = A× S + E

)
∈ (Zk×`q × Zk×nq ),
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with A ← U(Zk×`q ) and E ← Dσ(Zk×nq ) where U represents uniform distri-
bution and Dσ represents a discrete error distribution with standard deviation
σ. The decisional variant of this problem requires the attacker to distinguish
similarly structured ordered pairs of LWE instances (A,T) ∈ (Zk×`q × Zk×nq )
from uniformly random pairs U(Zk×`q × Zk×nq ).

2.3 LWR problem

While errors in the LWE problem are sampled from an error distribution Dσ(Zk×nq )
and explicitly added to the linear system of equations (A× S) ∈ Zk×nq , Banerjee
et al. [3] showed that it is possible to implicitly add errors to the linear system
A× S by scaling down the coefficients from Zq to Zp with p < q as follows:(

A,T =
⌊
p

q
(A× S)

⌉)
∈ (Zk×`q × Zk×np )

Such ordered pairs are referred to as the Learning With Rounding (LWR)
instances which are also associated with their corresponding search and decisional
problems that are at least as hard as the search and decisional problems over
LWE instances [19].

2.4 Structured variants of LWE/LWR problem

Cryptographic schemes built upon the aforementioned standard version of the
LWE and LWR problems involve costly matrix-vector arithmetic and impractical
key-sizes as they both scale quadratically with the dimension of the lattice. Thus,
all LWE/LWR based NIST candidate PKE/KEMs, except for FRODO (based
on the standard LWE problem) are based on algebraically structured variants
of the LWE and LWR problems known as Ring/Module-LWE (RLWE/MLWE)
and Ring/Module-LWR (RLWR/MLWR) problems respectively. The ring variant
of the LWE/LWR problem (RLWE/RLWR) [19] deals with computation over
polynomials in polynomial rings Rq with s← χs(Rq) and e← χe(Rq) such that
the corresponding RLWE instance is (a, t = a × s + e) ∈ (Rq ×Rq) and RLWR
instance is (a, t = ba × seq→p) ∈ (Rq ×Rp).

The module variant deals with computations over vectors/matrices of poly-
nomials in Rk1×k2

q with (k1, k2) > 1. In this paradigm, the public parameter
a ← U(Rk1×k2

q ) and the secret s and error e are sampled from χs(Rk2
q ) and

χe(Rk1
q ) respectively. Thus, the corresponding MLWE instance is (a, t = a × s +

e) ∈ (Rk1×k2
q , Rk1

q ) and MLWR instance is (a, t = ba × seq→p) ∈ (Rk1×k2
q , Rk1

p ).
Moreover, it can be easily seen that the special case of k = 1 in the Module-
LWE/LWR problem is nothing but the corresponding Ring-LWE/LWR problem.
Both the ring and module variants provide asymptotic improvements in both
computational times and key-size requirements, compared to their corresponding
unstructured variants.
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2.5 A Generic Framework for LWE/LWR based PKE schemes

Most of the lattice-based schemes based on the LWE/LWR problem, contain in
their core a public-key encryption scheme secure in the chosen-plaintext (CPA-
secure) model. Moreover, it is important to note that PKE core within these
schemes is based on a general paradigm/framework proposed by Lyubashevskey,
Peikert and Regev in 2010 [19], better known as the “LPR Encryption scheme".
We describe the LPR encryption scheme in detail as it captures the basic essence
of multiple lattice-based PKE and KEMs. But, we generalize its description so
that specific parameter choices such as the structure of the underlying ring (Rq,
Rk×kq , Zn×nq ), choice to use error correcting codes to reduce decryption failures
(Rchoice = 0/1) and relative sizes of the rounding moduli (p, q) can be used to
describe specific schemes using this generic framework.

2.5.1 LPR Encryption Scheme [19]: We define gen to be an extendable
output function that takes as input a seed ρ and outputs a matrix A ∈ Rk×kq .
We also define Ecc_EncR and Ecc_DecR to denote the encoding and decoding
functions corresponding to the error correcting code R. Moreover, additional
message encoding (resp. decoding) functions enc (resp. dec) are used to convert
binary messages (∈ Zn2 ) into elements in the underlying ring and vice versa. The
generalized version of the LPR encryption scheme is described in Alg. 1. Please
note this is only a high level description with the lower level technical details
ignored for generalization.

From Alg.1, we can see that specific parameter choices can help describe
different schemes based on the same framework. For instance, choice of the
parameteric tuple (Rq = Znq , p = q, k > 1) describes the encryption scheme of
FRODOKEM which is based on the standard LWE problem, while the choice of
tuple (Rq 6= Znq , p = q, k = 1) describes the encryption scheme of NewHope or
LAC, which is based on the Ring-LWE problem. While the encryption scheme
of Round5 based on the Ring-LWR problem can be described using the tuple
(Rq 6= Znq , p 6= q, k = 1), schemes such as Saber and Kyber can be described using
the tuple (Rq 6= Znq , p 6= q, k > 1).

Security and Correctness of LPR Encryption Scheme

We briefly explain the basic principles underlying the security and correctness of
the LPR encryption scheme (Refer Alg.1). We explain the scheme using LWE
instances for simplicity, we note that the same also applies to schemes using
LWR instances or combinations of both. Firstly, the key-generation procedure
generates the public parameter a and further samples the secret and error vectors
s and e respectively. The LWE instance (a, t) (Line 6 in PKE.KeyGen) is gener-
ated and output as part of the long term public-key while the secret s used to
generate the LWE instance is considered as part of the long term secret key. The
indistinguishability of the public key (LWE instance) from a random element in
the same space comes from the hardness of solving the decisional LWE problem
while the the computational hardness of retrieving the secret key s from the
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public key (a, t) comes from the hardness of solving the search variant of the
LWE problem.

The encryption procedure takes the public key pk and the message m to be
encrypted as input and generates its corresponding ciphertext. The ciphertext
consists of two LWE instances whose secret (s′) and error components (e′, e′′) are
internally generated within the encryption procedure. The first LWE instance u

Algorithm 1: Generic framework of LWE/LWR based PKE schemes
1 Procedure PKE.KeyGen()
2 publicseed← U(B32)
3 a = gen(publicseed) ∈ Rk×kq

4 s← χs(Rkq )
5 e← χe(Rkq )
6 t = baT × s + eeq→p ∈ Rkp
7 return (pk = EncodePK(t, publicseed), sk = EncodeSK(s))
8

1 Procedure PKE.Encrypt(pk,m ∈ B32, r ∈ B32)
2 (t, publicseed) = DecodePK(pk)
3 a← gen(publicseed)
4 s′ ← χs′ (Rkq )
5 e′ ← χe′ (Rkq )
6 e′′ ← χe′′ (Rq)
7 tr = bteq→p ∈ Rkp
8 u = baT × s′ + e′eq→p ∈ Rkp
9 if Rchoice = 1 then

10 c = Ecc_EncR(m)
11 else
12 c = m

13 v = btTr s′ + e′′ + enc(c)eq→t ∈ Rt
14 return ct = EncodeCT(u,v)
15

1 Procedure PKE.Decrypt(ct, sk)
2 u,v = DecodeCT(ct)
3 s = DecodeSK(sk)
4 u′ = buep→q
5 v′ = bvet→q
6 r = (v′ − (u′)T s) ∈ Rq
7 c′ = dec(r)
8 if Rchoice = 1 then
9 m′ = Ecc_DecR(c′)

10 else
11 m′ = c′

12 return m′
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is generated using the public parameter a (Line 8 in PKE.Encrypt) while another
LWE instance is generated using the component t in the public key as its public
parameter. For simplicity, we will assume that Rchoice = 0 and that we do not
use error correcting codes (i.e) c = m. Thus, the message c to be encrypted is first
converted into an element in the underlying ring using the enc function before
being added to the second LWE instance to generate v (Line 13 in PKE.Encrypt).
Essentially, the encoded message is added to v in order to hide it within the
pseudo-random LWE instance. Both u and v are output as part of the ciphertext
ct.

Further, the decryption procedure extracts u and v from the ciphertext ct
and essentially computes r = v′ − u′ × s where s is the long term secret key and
v′ and u′ are rounded versions of v and u respectively. Let the errors introduced
due to rounding of a component x be represented as additional error components
ex and hence v′ can be represented as v′ = v+ex and the same applies to u′. The
computed element r is approximately equal to the encoded form of the message
m with high probability and this can be clearly seen from the computation below:

r = v′ − u′ × s
= v + ev − (u + eu)s
= ts′ + e′′ + enc(c) + ev − (as′ + e′ + eu)s
= ass′ + es′ + e′′ + enc(c) + ev − (as′ + e′ + eu)s
= enc(c) + es′ + e′′ + ev − e′s− eus
= enc(c) + ê

Thus, as long as the total error ê is less than a certain threshold qt (based
on the parameters of the scheme), the computed component r can be correctly
decoded back to the message c.

2.6 Error Correcting Codes in LWE/LWR-based schemes

Almost all semantically secure lattice-based PKE scheme based on the LWE/LWR
problem are associated with a certain decryption failure probability. Thus, KEMs
built upon such PKE schemes may encounter a failure event when the two
involved parties fail to establish a shared secret key. Designers strive to achieve a
non-negligible failure probability if not zero, for PKE schemes since it comes with
a number of obvious advantages. Firstly, zero or negligible failure probability
reduces the attacker’s chances of triggering decryption failures and performing
cryptanalysis using such observed decryption failures, similar to the attacks
demonstrated in several previous works [4,10,12]. Secondly, having a negligible
failure probability also satisfies a formal requirement for PKE schemes to achieve
security against adaptive chosen-ciphertext attacks in the CCA-secure model [8].

But on the contrary, having negligible decryption failures is also associated
with some disadvantages. Sometimes, reducing decryption failures could come at
the cost of reducing the size of the error e of the LWE instance which reduces
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security against attacks trying to solve the underlying lattice problem. This could
impose a severe penalty on performance since the lost security is compensated
by increasing the dimension of the underlying lattice. Thus, one can always
observe a fine trade-off between decryption failure probability and performance
of LWE/LWR-based PKE/KEMs.

In order to strike a balance, certain LWE/LWR based PKE schemes opted for
usage of error correcting codes (ECC) to artificially reduce decryption failures
by correcting the errors in the decrypted message [2, 18]. The message m is first
converted into a codeword c (Line 10 in PKE.Encrypt of Alg.1) which is used by
the encryption scheme as the modified message. Further during decryption, the
decrypted codeword c′ is decoded into m′ (Line 9 in PKE.Decrypt) as the output
of the decryption operation. If the number of bit errors in c′ are less than the
maximum error correcting capability of the ECC, then m′ = m and hence will
result in correct decryption.

Thus, usage of ECC enable schemes to achieve negligible decryption failure
probability required for CCA security without compromising on competitive
parameter settings. Thus, LWE/LWR-based lattice PKE/KEMs can be broadly
divided into two classes based on the usage of ECC. Among all such current NIST
candidates for PKE/KEMs, LAC and Round5 utilize ECC while the majority
schemes rely on other conventional parametric changes to achieve the desired
decryption failure probability.

While LAC relies on the BCH [15] as its ECC, Round5 utilizes a constant-time
linear parity code XEf [2] as its ECC to tackle decryption failures. But, usage
of error correcting codes also comes with its own set of disadvantages such as
complexity of implementation and possible susceptibility to side-channel attacks.
D’Anvers et al. [9] demonstrated chosen-ciphertext attacks against two CCA-
secure KEMs LAC and RAMSTAKE1 through exploitation of timing side-channel
information from the decoding procedure execution of its ECC. Their main idea
was to exploit the difference in execution times of the decoding procedure of
ECC between valid and non-valid/faulty codewords.

This differential behaviour of the decoding procedure helps the attacker
distinguish between valid and faulty decrypted codewords for chosen ciphertexts,
which subsequently leads to direct retrieval of the secret key. Though their attack
only target non-constant time ECC, it has definitely necessitated discussions
about hardening implementation of ECC procedures against possible side-channel
attacks. Moreover, this has also raised questions about existence of other side-
channel vulnerabilities in implementation of ECCs. As a first step towards
answering this question, we identify side-channel vulnerabilities in constant-
time implementations of error correcting codes and exploit them to perform
chosen-ciphertext attacks against CCA-secure lattice-based PKE/KEMs.
1 RAMSTAKE is a Mersenne prime based KEM which was not selected for the second
round of the NIST standardization process
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2.7 CCA transformation

The LPR encryption scheme is provably secure in the CPA (Indistinguishability
under Chosen-Plaintext Attack) secure model. A PKE scheme is said to be
secure in the CPA model when the scheme is secure against an attacker who
can obtain ciphertexts for arbitrarily crafted plaintexts of the attacker’s choice.
But, the LPR encryption scheme does not provide security against attackers
who can decrypt arbitrary ciphertexts adaptively chosen by the attacker. This
security model which assumes a more powerful attacker is known as the CCA
(Indistinguishability under Adaptive Chosen-Ciphertext Attack) security model.

A lattice-based PKE scheme secure in the CPA model can be converted into
a CCA-secure PKE/KEM using the well known post-quantum variant of the
Fujisaki-Okamoto transformation [13]. This transformation is used by multiple
lattice-based NIST candidates to achieve CCA security. It utilizes a pair of hash
functions H and G and operates over the top of the encryption and decryption
schemes respectively as shown in Alg.2. Upon decapsulation failures, some schemes
simply return a failure symbol ⊥, while certain schemes such as Kyber [5] and
Saber [11] use a different variant of the FO transformation, which returns a pseduo
random value as the shared secret key, that is generated by simply hashing the
ciphertext with the secret key.

In theory, the FO transformation helps protect KEMs against chosen-ciphertext
attacks since the validity of ciphertexts are checked through the re-encryption
procedure during decapsulation. Thus in theory, the attacker only sees decapsu-
lation failures for any handcrafted (invalid) ciphertext. Moreover, the decryption
procedure is encapsulated within the decapsulation procedure and hence the
attacker cannot directly observe the output of the decryption module. This
provides strong theoretical security guarantees against chosen-ciphertext attacks

Algorithm 2: FO-transformation for CCA-secure KEM
1 Procedure KEM.Encaps(pk)
2 m← U(B32)
3 r = G(m, pk)
4 ct = PKE.Encrypt(pk,m, r)
5 K = H(r)
6 return ct,K

7

1 Procedure KEM.Decaps(sk, pk, ct)
2 m′ = PKE.Decrypt(sk, ct)
3 r′ = G(m′, pk)
4 ct′ = PKE.Encrypt(pk,m′, r′)
5 if ct′ = ct then
6 return K = H(r′)
7 else
8 return K = ⊥;
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which were previously possible over CPA-secure PKE/KEMs. But, in this work
we show that side-channel information from certain operations within the FO
transformation leak information about the decrypted message, which can be used
to mount chosen-ciphertext attack against CCA secure schemes using the FO
transformation.

2.8 Test Vector Leakage Assessment (TVLA)

The Test Vector Leakage Assessment (TVLA) [14] is a popular conformance-
based methodology in side-channel analysis which has been widely used by both
academia and the industry to perform side-channel evaluation of embedded
cryptographic implementations. TVLA uses the well known Welsh’s t-test over
two sets of measurements and tries to identify the differentiating features in them.
By testing for a null hypothesis such that the mean of two sets is identical, a
PASS/FAIL decision is taken. Let the two sets of measurements be denoted as tr
and tf . The formulation of TVLA is as follows:

TV LA = µr − µf√
σ2

r

mr
+ σ2

f

mf

, (1)

where µr, σr and mr are mean, standard deviation and cardinality of the trace
set tr and µf , σf and mf are mean, standard deviation and cardinality of the
trace set tf . The null hypothesis is accepted only if the TVLA value stays in the
range [−4.5, 4.5] with a confidence of 99.9999% [14]. A rejected null hypothesis
implies that the two trace/data sets are different and that they might leak some
side-channel information and hence is considered to FAIL the test. While TVLA
is mainly used as a metric for side-channel evaluation, it has been also been
used as a tool for feature selection in multiple cryptanalytic efforts [26]. In this
work, we use TVLA as a tool for performing binary classification of side-channel
measurements into two classes.

3 Side-Channel analysis of Error Correcting Codes

In this section, we demonstrate our side-channel assisted chosen-ciphertext attack
on CCA-secure lattice-based schemes through exploitation of EM side-channel
information from execution of constant-time error correcting codes. In particular,
we demonstrate an attack on the Round5 CCA-secure KEM which utilizes
constant-time error correcting procedures that are resistant to timing attacks.

3.1 Prior works

D’Anvers et al. [9] demonstrated successful timing attacks on two KEMs, namely
LAC and RAMSTAKE, which use non-constant-time error correction algorithms.
They showed that the difference in the execution times, which can also be observed
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for the whole decapsulation operation, can be used to distinguish validity of
decrypted codewords for chosen ciphertexts with very high probability. This
timing information subsequently facilitated their attack over the aforementioned
two CCA-secure KEMs. However, their timing attack cannot be used to extract
secret from schemes which use constant-time error correction. Round5 is one such
lattice-based key exchange scheme that is resistant against the timing attacks
due to the application of constant-time error correction algorithm.

3.2 Side-channel vulnerability of Error Correcting Codes

We attempt to analyze the power/EM side-channel behaviour of constant-time
decoding procedures of error correcting codes which are inherently resistant to
timing attacks. As a target algorithm for our evaluation, we choose the constant-
time XEf error correction code which has been used in the Round5 scheme [2]. XEf
is an f-bit forward error correcting block code which can always correct atleast f
errors in any given codeword. In the following part of this sub-subsection, we
describe the functioning of XEf code and then highlight its differential behavior.

3.2.1 XEf error correction code: Let the k-bit message to be encoded be
m = (mk−1,mk−2, . . . ,m0) and its corresponding binary polynomial be defined
as mp = mk−1x

k−1 + . . .+m1x+m0. XEf is a linear parity code and works with
2f registers (ri for i ∈ {0, 2f − 1}) each of size li which are computed as follows:

ri = mp mod (xli − 1)

The codeword c = Ecc_EncR(m) consists of the message m appended with
the register set r (i.e) c = (m|r), which amounts to a total of µ bits where
µ = k +

∑2f−1
i=0 li. This codeword c is used by the encryption procedure as the

modified message to be encrypted. The decryption module firstly decrypts the
ciphertext ct to retrieve the codeword (m′|r′′) which is subsequently passed to
the Ecc_DecR procedure. The decoding procedure computes the register set
r′ for the received message m′. Further, r′′ is compared with the computed r′
and those bits j in the received message m′ are flipped based on the following
condition:

2f∑
i=1

((
r′′(i,j mod li) − r

′
(i,j mod li)

)
mod 2

)
≥ (f + 1)

One of the main advantages of this approach, as claimed by the authors is that
it can be implemented devoid of any look-up tables and also in constant-time,
thus resistant to timing attacks. But, we show in the following discussion that
the constant time implementation of XEf still leaks side-channel information
about validity of the codewords during its decoding procedure.
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3.2.2 Side-channel vulnerability of XEf: We analyze the decoding proce-
dure of XEf in the optimized implementation of Round5 taken from the open-
source pqm4 library [16], a benchmarking and testing framework for PQC schemes
on the ARM Cortex-M4 family of microcontrollers. We ported the optimized imple-
mentation of Round5 (R5ND_1KEM_5d as a representative variant in particular)
to the STM32F4DISCOVERY board (DUT) housing the STM32F407, ARM
Cortex-M4 microcontroller. The implementation (compiled with -O3 -mthumb
-mcpu=cortex-m4 -mfloat-abi=hard -mfpu=fpv4-sp-d16) was running at a
clock frequency of 24 MHz. We used the ST-LINK/v2.1 add-on board for USART
communication with our DUT. We used the OpenOCD framework for flash
configuration and on-chip hardware debugging with the aid of the GNU debugger
for ARM (arm-none-eabi-gdb).

The XEf decoding procedure involves a decision-making operation to decide
the position of the bits to be flipped in the decrypted message. One of the steps
in this decision-making operation involves a majority logic which takes as input
a modified form of the register set r as input, which we denote as r̂ = {r̂i} for
i ∈ {0, 2f − 1}. Moreover, this majority logic operation is implemented using
bitwise operations such as bitwise and (&), bitwise xor (∧) and bitwise not (∼)
operations over r′′.

We observe over multiple trials that for a correct codeword with zero erroneous
bits, all the inputs to the majority logic are always zero. On the other hand, for
a faulty code word with one or more erroneous bits, at least one of the input
registers r̂i are non-zero. Since the input to the majority logic differs based on
the validity of the codeword, the corresponding computations also differ based
on the validity of the codeword.

This differential behavior can be identified through the power/EM side-
channel. In particular, we consider the all zero codeword (c = 0) as the valid
codeword. An all zero codeword (c = 0) is valid and corresponds to encoding an
all zero message (m = 0), since XEf is a linear parity code. For faulty codewords,
we consider a single bit error in c = 0, where one of the bits of c is 1. For
simplicity, we denote the valid codeword case to be HW(c) = 0 and the faulty
case to be HW(c) = 1.

Please refer Fig.3 in the appendix for the screenshots from the Openocd-
Open On-Chip debugger tool [25] showing values of the internal general purpose
registers during operation of the targeted majority logic for different cases. We
can clearly see all the internal registers are zero when HW(c) = 0, while more
than one registers are non-zero when HW(c) = 1.

There are two possible types of faulty codewords depending on the location
of the erroneous bit in the codeword c = (m|r). The erroneous bit could either
be present in the message portion (m) or the register set portion (r) of the
codeword. Comparing Fig.3(b) and 3(c), we can clearly see that the number of
non-zero registers during the targeted majority logic operation is higher when
the erroneous bit is in the message m (i.e) HW(m) = 1, as opposed to the case
when the erroneous bit is in the register set portion (i.e) HW(r) = 1. Thus,
we only consider faulty codewords with the erroneous bit in m for maximum
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distinguishability. Henceforth, faulty codewords only mean single bit errors in m
and not in r.

We perform EM measurements of the majority logic in order to distinguish
this differential behaviour through the EM side-channel. EM Measurements
were observed from the same DUT using a near-field probe and are processed
using a Lecroy 610Zi oscilloscope at a sampling rate of 500MSam/sec. We utilize
the standard TVLA approach based on the Welch’s t-test to differentiate the
EM measurements. It is important to note that we consider absolute t-test
values since their signs does not matter for our attack. We collect two sets of 25
measurements corresponding to repeated executions of the decoding operation
for valid codewords (HW(c) = 0). Let the two sets of measurements be denoted
as tv′ and tv′′ . Refer Fig.1(a) for the t-test results between tv′ and tv′′ . Since
both are valid codewords and all the operating registers are zero, the operations
within the majority logic corresponding to the two sets of measurements are the
same. Hence, we do not observe any peaks (greater than the pass/fail threshold
4.5) in the TVLA plot.

We collect another set of 25 measurements corresponding to repeated execu-
tions for the faulty case when HW(c) = 1, which is denoted as tf . Refer Fig.1(b)
for the t-test results between tv′ and tf . Since the data being operated on are
very different in the two cases, we are able to observe clear peaks (greater than
the pass/fail threshold 4.5) indicating that the two sets of measurements are
different.

So, an attacker collects a set of reference traces corresponding to HW(c) = 0,
which we denote as tref . During the attack, the attacker can then collect equal
number of EM traces for those computations which he wants to classify. We
denote this trace set as tattack. He can then simply compute the TVLA between
tref and tattack and based on the number of peaks observed in the t-test plot,
can decide upon the case to which the tattack traces belong to. Thus, we have
shown that the validity of the codeword (even in the presence of a single bit
error) can be easily distinguished using only a few EM measurements.

3.3 Side-channel Attack on Round5

In this section, we show that the identified side-channel vulnerability of XEf’s
decoding procedure can be exploited to perform a practical chosen-ciphertext
attack on the CCA-secure Round5 PKE/KEM.

3.3.1 Adversary Model: We assume that the attacker has complete physical
access to the device performing the decapsulation operation. The attacker must
be capable of triggering the decapsulation operation arbitrarily many number of
times in order to decapsulate ciphertexts of the attacker’s choice. The attacker
does not require knowledge of the output of the decapsulation operation. We
assume that the attacker is able to passively observe the behaviour of the device
during the decapsulation operation through side-channels such asEM.
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Figure1: TVLA results based on Welch’s t-test between (a) decoding of two valid
codewords (b) decoding of valid and faulty codeword

Algorithm 3: Round5 CPA.PKE scheme
1 Procedure Round5.Decrypt(ct, sk)
2 u,v = DecodeCT(ct)
3 s = DecodeSK(sk)
4 w = Truncateµ(u× s mod (xn+1 − 1))

5 c′′ = Roundp→2

(
p

t
v−w, 1

2

)
6 m′′ = Ecc_Dec(c′′)

3.3.2 Description of Decryption in Round5: Refer Alg.3 for the decryp-
tion operation of the Round5 PKE scheme2. Since our attack only deals with
the decryption procedure, we do not describe its corresponding encryption and
key generation procedures, for brevity. The reader is referred to [2] for complete
details of the PKE scheme of Round5.

Round5 is based on the RLWR problem and hence both u and v are polyno-
mials with degree n− 1 and µ− 1 respectively with n > µ3. Furthermore, s is
a ternary polynomial with degree n− 1 with coefficients in {−1, 0, 1}. The de-
cryption procedure firstly computes the product u× s (Line 4 of Round5.Decrypt
in Alg.3) in the polynomial ring defined by the modular polynomial (xn+1 − 1).
Further, the product is truncated to only the µ lower order coefficients using the
Truncate function. The truncated result is subtracted from a rounded version of
2 The description of the decryption procedure in Alg.3 ignores a lot of technical details
for simplification. For complete details of the same, the reader is referred to [2]

3 Since the encryption scheme of Round5 also follows the paradigm of the LPR
encryption scheme, components u and v are directly taken from the description of
the LPR encryption scheme in Alg.1
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v (Line 5 in Round5.Decrypt) which approximately yields the codeword in the
underlying ring. Further, it is converted into the codeword c′′ ∈ Zµ2 using the
Roundp→2. This codeword is decoded to the final message m′′ using the Ecc_Dec
decoding procedure of XEf.

3.3.3 Attack Methodology: We briefly state the summary of our attack
methodology before diving into its technical details. Our attack recovers the
secret polynomial one coefficient at a time. The main idea is to craft chosen
ciphertexts for the decryption procedure of the KEM such that the validity of
the resulting codewords solely depend on the targeted secret coefficient. We
trigger the decapsulation operation with these chosen ciphertexts and observe
the corresponding EM side-channel of the majority logic within the decoding
procedure of XEf. Since the validity of the codeword can be detected from the
EM side-channel as shown in Sec.3.2.2, this leads to a straightforward recovery
of the targeted secret coefficient. This procedure can be repeated to recover all
the coefficients of the secret key polynomial.

For our attack, we create chosen ciphertexts such that both u and v are
polynomials with a single non-zero coefficient. For now, let us choose u = ku×xi
and v = kv × xj . Thus, the product u × s in the ring defined by the modular
polynomial φ(x) = xn+1 − 1 will be nothing but a cyclic rotation of s by i
coefficients (considering the degree of s is n with s[n] = 0) and scaled by the
constant ku. Due to truncation (Line 4 in Round5.Decrypt), only the lower order
µ coefficients of the product are considered. Thus, the final result involves
computations with µ coefficients of s. If i ≤ 1, the exposed secret coefficients are
s[1− i], . . . , s[µ− i] If i ≥ 2, the exposed secret coefficients are the last (i− 1)
coefficients (i.e) (s[n − i − 1], s[n − i − 2], . . . , s[n − 1], s[n] = 0) and the first
(µ− i+ 1) coefficients (i.e) (s[0], s[1], . . . , s[µ− i]). Since s[n] = 0, effectively µ− 1
coefficients of s are exposed when i ≥ 2 is chosen.

The values of ku and kv are together chosen for our attack based on certain
criteria, which are derived from the following observations. Since v[k] = 0 ∀ k 6= j
and k ∈ {0, µ− 1}, only the bit c′′[j] depends on both kv and ku, while all the
other bits of c′′ depend on ku, but not on kv. Thus, ku should be chosen such that
c′′[k] = 0 ∀ k 6= j and k ∈ {0, µ− 1}. The values for kv are chosen for v[j] such
that, given (ku, kv) the bit c′′[j] solely depends on the value of the corresponding
secret coefficient. If i ≤ 1, the targeted secret coefficient is s[1 + j − i]. But if
i ≥ 2, then for (j < i− 1), the targeted secret coefficient is s[n− i− 1 + j], while
for j ≥ i, the targeted secret coefficient is s[j − i].

If c′′[j] = 1 and c′′[i] = 0 ∀ i 6= j and i ∈ {0, µ − 1}, then c′′ (HW(c′′) = 1)
becomes a faulty codeword while c′′ = 0 (HW(c′′) = 0) is a valid codeword. Thus,
if a specific choice of ku and kv yields c′′[j] = 1 for a given secret coefficient,
then it can be easily detected using the EM side-channel information as shown
in Sec.3.2.2.

Please refer Tab.1 for the choices of (ku, kv) which we used for our attack on
the R5ND_1KEM_5d variant of the Round5 CCA-secure KEM. Given (ku, kv),
the validity of the codeword purely depends on the corresponding secret coefficient.
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Since the validity of the codeword can be detected through the EM side-channel,
the attacker can use the side-channel information along with information in Tab.1
to directly retrieve the corresponding secret coefficient.

The attacker can similarly change the position j of the non-zero coefficient of
v over positions 0 to k − 1 (k is the length of the message m in c) and retrieve
the k corresponding coefficients of s (s[n − i − 1], s[n − i], . . . , s[n − 1], s[n] =
0, s[0], s[1], . . . , s[k − i− 2]). Though µ− 1 coefficients of s are exposed, we only
recover k of them, since we only consider errors in the message portion (m) of
the codeword for maximum side-channel distinguishability.

Further, the attacker can increment the position of the non-zero coefficient
of u by k (i.e) k + i to attack the next set of k coefficients of s. Thus, the
attacker can retrieve the whole secret in dn

k
e such iterations. Since the targeted

decryption procedure is used in the CCA-secure PKE and KEM of Round5, our
side-channel assisted chosen-ciphertext attack breaks both the CCA-secure PKE
and CCA-secure KEM.

Table1: Values for (u[i],v[j]) = (ku, kv) chosen for our attack on the
R5ND_1KEM_5d variant of Round5 CCA-secure KEM. V and F refer to
valid (HW(c′′) = 0) and faulty codewords (HW(c′′) = 1) respectively.

Secret Coeff.
HW(c′′) = 0/HW(c′′) = 1

(21,3) (12,1)

-1 F F

0 F V

1 V V

3.4 Experimental Results

We implemented our attack on the optimized implementation of Round5, taken
from the pqm4 library [16], a post-quantum cryptographic suite for the ARM
Cortex-M4 microcontrollers. In particular, we ported the R5ND_1KEM_5d
variant of Round5 to the STM32F4DISCOVERY board (DUT) housing the
STM32F407, ARM Cortex-M4 microcontroller. The attacker requires to trigger
the decapsulation operation using two chosen ciphertexts to retrieve one coefficient
of s. For each ciphertext choice, we collect about 25 traces for repeated executions,
thus totalling to about 50 executions for retrieval of every coefficient of the secret
key s. Thus, for full key recovery on the R5ND_1KEM_5d variant, the attacker
requires to collect traces for about 50 ·490 executions. We are able to perform full
key recovery with a 100% success rate and we are also able to replicate the attack
multiple times over, thus demonstrating the importance of providing side-channel
protection to implementation of ECCs.
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4 Side-Channel Analysis of the FO transform

In section 3, we showed that the execution of XEf ECC’s decoding procedure
leaks side-channel information about the validity of the decrypted codeword. The
vulnerability existed due to the differential behaviour of the ECC’s decoding
procedure based on the validity of the codeword, which was detectable through
the power/EM side-channel.

We found that a very similar vulnerability also exists in the underlying FO
transform which governs multiple CCA-secure lattice-based KEM schemes. In
this section, we explain about the identified vulnerability and demonstrate a
chosen ciphertext-attack against one such lattice-based KEM scheme, that uses
the FO transformation for CCA security.

4.1 Side-Channel vulnerability in the FO transform

We refer to the KEM.Decaps procedure of Alg.2 for the generic framework of
the decapsulation procedure underlying multiple lattice-based KEM schemes. It
can be seen that operations from Line 2 in the KEM.Decaps procedure operate
over the decrypted message m′. If any of these operations exhibit any differential
behaviour based on the value of the decrypted message m′ that is observable
through the power/EM side-channel, then we will be able to extend our attack
to multiple lattice-based KEM schemes that utilize the FO-transformation for
CCA conversion.

Similar to the identified vulnerability in the XEf ECC, we would like to
distinguish between the two cases (1) HW(m′) = 0 and (2) HW(m′) = 1 with high
probability through the power/EM side-channel. We target the hash operation G
in particular (Line 2 of KEM.Decaps in Alg.2), which operates directly over the
decrypted messagem′, immediately after the PKE.Decrypt procedure. We attempt
to exploit the diffusion property of hash functions which alters statistically half
the number of bits of the output for a single bit change in the input. Thus, we
observe side-channel traces corresponding to the end of the hash computation
so that the altered bit is diffused enough to be easily distinguishable from the
traces.

We utilize the same DUT and the experimental setup as described in Sec.3. Our
main objective is to distinguish between the two cases HW(m′) = 0 and HW(m′)
= 1 with very high probability. We first collect two sets of 25 measurements for
replicated runs corresponding to two different ciphertexts, but both of which
yield the same decrypted message m′ = 0. Let the two sets of measurements be
denoted as tv′ and tv′′ . Refer to Fig.2(a) for the TVLA results between tv′ and
tv′′ . We can see that there are no values greater than the threshold of 4.5, thus
determining that both computations are the same with m′ = 0.

We further collect a new set of 25 measurements for replicated experiments
corresponding to HW(m′) = 1, which we denote as tf . Refer Fig.2(b) for the TVLA
results between tv′ and tf . We can clearly see many number of peaks (greater
than the pass/fail threshold 4.5), which indicates that there is a considerable
difference between the two sets of measurements at those peaks. Thus, an attacker
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can collect a set of reference traces corresponding to m′ = 0, which we denote as
tref . Further, the attacker can collect a set of traces which he wants to classify,
which we denote as tattack. He can then assign the class to which tattack belongs
to based on the TVLA results between tref and tattack. Thus, we can see that the
EM/power side-channel information from the hash function G utilized in the FO
transformation clearly helps to distinguish between the values of the decrypted
message output (i.e) HW(m′) = 0 and HW(m′) = 1. This observation thus violates
a very fundamental theoretical assumption about CCA-secure schemes that the
attacker sees nothing except the output of the decapsulation operation.

It is important to note that the above identified side-channel vulnerability
is present in the FO transformation and thus applies to multiple lattice-based
KEM schemes utilizing the same to achieve CCA security.
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Figure2: t-test results for traces corresponding to G(m′, pk) between (a)
HW(m′1) = 0 and HW(m′2) = 0 (b) HW(m′1) = 0 and HW(m′2) = 1

4.2 Attack methodology

In this section, we will show that the identified side-channel vulnerability can be
exploited to perform chosen-ciphertext attacks on multiple lattice-based KEM
schemes based on the FO transformation, which do not utilize error correcting
codes within decryption. Our adversary model is already described in Sec.3.3 and
our attack methodology also follows very closely to the one used to demonstrate
our attack over the Round5 KEM scheme.

As a proof of concept, we demonstrate our attack on module lattice-based
KEM schemes which utilize the FO transformation to achieve security in the
CCA model. We remark that the attack is generic and is applicable to other
lattice-based schemes as well. This is because of the fact that a module lattice
can be transformed into a standard or an ideal lattice.
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Algorithm 4: Decryption operation in module lattice-based KEM
1 Procedure KEM.Decrypt(ct, sk)
2 u,v = DecodeCT(ct)
3 s = DecodeSK(sk)
4 w = u× s
5 m′ = Compress(v−w, 1)

The high-level description of the decryption procedure in Alg. 4 closely
resembles the decryption procedure of Round5. The vectors u, v and s are in
Rkq consisting of k polynomials each of degree n− 1 in the polynomial ring Rq.
We will demonstrate our attack to retrieve the ith polynomial element si of the
secret vector s. The same steps can be repeated to retrieve the other polynomials
of s, one at a time.

Let the ith polynomials of u and v be denoted as ui and vi respectively. To
retrieve the jth coefficient of si, we set ui[0] = ku and vi[j] = kv respectively,
while all the other coefficients of ui and vi are set to zero. Furthermore, all the
other polynomials in the u and v vectors are set to zero. The values for ku and
kv are chosen together such that only the jth bit of m′ is determined by the
corresponding secret coefficient si[j] and all other bits of m′ become 0.

The attacker collects a set of EM measurements tattack of the targeted hash
function G for the different crafted ciphertexts. The attacker already has a set
of reference traces (tref ) corresponding to HW(m′) = 0. He simply computes
the TVLA between tattack and tref to determine the class of tattack based on
the results of the t-test. He can then correlate the results of the side-channel
analysis to retrieve the targeted secret coefficient si[j]. The position j of the
non-zero coefficient of vi can be varied to similarly retrieve all the coefficients of
si. Furthermore, the same attack can be repeated over the other polynomials of
u and v to retrieve the entire secret module s.

Table2: Values for (ui[0],vi[j]) = (ku, kv) chosen for our attack on the KYBER512
variant of the CCA-secure Kyber KEM scheme. While V refers to the case of
HW(m′) = 0, F refers to the case of HW(m′) = 1.

si[j]
HW(m′) = 0/HW(m′) = 1

(210, 209) (210, 2705) (101, 644) (100, 2626) (415, 1041)

-2 F V F V F

-1 V V F V F

0 V V V V F

1 V V V F V

2 V F V F V
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4.3 Experimental Results

As an example, in Table 2 we list the values of (ku, kv) for the KYBER512 variant
of the CCA-secure Kyber KEM scheme. Similar values can be computed for other
lattice-based KEM schemes to perform our attack.

To evaluate our attack, we used the optimized implementation of KYBER512
available in the pqm4 library [16]. The implementation was run on the ARM
Cortex-R4 based STM32M407 microcontroller hosted on the
STM32MF4DISCOVERY board. Recovery of one coefficient of s requires the
attacker to trigger the decryption oracle with five choices of ciphertexts, as shown
in Tab.2. For each choice, we collect about 25 traces corresponding to repeated
executions, thus amounting to 125 executions for recovery of every coefficient.
We were able to retrieve the secret coefficients with a 100% success rate and
were able to successfully repeat the attack multiple times. Since a secret vector
in KYBER512 consists of two polynomials of degree 255, the attacker performs
total 2 ·125 ·256 queries to recovery the entire secret for KYBER512. Similarly for
LightSaber (which has similar security as KYBER512), the number of traces will
be 2 · 175 · 256 as each secret coefficient can have 7 possible values in the range -3
to 3. Similar numbers can be computed for other lattice-based schemes such as
NewHope, LAC, Frodo, Round5 etc. The number of traces will change linearly
with the width of the secret distribution, module dimension and polynomial
degree. Naturally, schemes with binary secrets will be the easiest targets.

5 Countermeasures

In this section, we briefly talk about the countermeasures separately for both our
attacks. Firstly, our attack targeting the constant-time error correcting codes can
be protected through incorporation of side-channel protection measures for the
implementation of the error correcting code procedures. Additionally, given the
earlier attack of D’Anvers et al. [9] targeting the same error correcting procedures,
it is very important to start considering side-channel protected implementation
of error correcting codes.

Secondly, our attack exploiting the vulnerability of the FO transformation
requires a more generic countermeasure, provided the generic nature of our
attack. Masking the decryption/decapsulation operation can definitely protect
against our attack exploiting vulnerabilities in the FO transform. There are
several works on masking lattice-based primitives [28, 29] and Oder et al. [22]
describe masking techniques for protecting the FO transformation steps in the
CCA setting. Of course, masking countermeasures will slowdown performances
significantly. Hence, efficient masking strategies for CCA-secure LWE/LWR based
schemes is an interesting research problem that warrants immediate attention by
the cryptographic research community.

Masking might also help protect the schemes using error correcting codes.
However, efficient masking schemes for the error correcting codes used in lattice-
based cryptography are yet to be invented. It will be an interesting but a
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challenging research topic to design masking schemes for complicated strong error
correcting codes such as BCH.

6 Conclusion

In this work, we demonstrated side-channel assisted chosen-ciphertext attacks
against IND-CCA secure lattice-based PKE/KEM schemes. We identified vulner-
abilities within the constant-time error correcting codes used in the Round5 KEM
scheme which help the attacker distinguish between faulty and valid codewords
through the EM side-channel information. We showed how the vulnerabilites
can be exploited to perform chosen-ciphertext attacks against the CCA-secure
Round5 algorithm. Our attack thus shows that the application of error correct-
ing codes in lattice-based cryptography weakens the side-channel security of a
lattice-based PKE/KEM scheme.

We also identified a generic vulnerability in the CCA transformation steps used
in multiple lattice-based PKE/KEM schemes. We showed that this vulnerability
can be exploited in a similar manner and we demonstrated practical chosen-
ciphertext attacks on CCA-secure lattice-based PKE/KEMs. We performed
practical validation of our attacks through EM measurements over the CCA
transform steps from the open source pqm4 library, a benchmarking framework
for PQC schemes on the ARM Cortex-M4 microcontroller.

The attacks proposed in this paper show that CCA-secure schemes need to be
protected against side-channel attacks thus reaffirming the need for appropriate
countermeasure such as masking.
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A Visualization of Activity in Registers
Please refer Fig.3 for the screenshots from the Openocd- Open On-Chip debugger
tool [25] showing values of the internal general purpose registers during operation
of the targeted majority logic within the decoding procedure of XEf error cor-
recting code of the Round5 PKE scheme. It is important to note that the values
of the registers for the different cases are captured at the same point of time in
the program (Refer to the program counter in the register set (highlighted in
brown) in each figure).

While Fig.3(a) corresponds to the decoding of a valid codeword (i.e) c = 0,
Fig.3(b) corresponds to the decoding of a faulty codeword, with the single
erronous bit is present in the message portion m of the codeword c (i.e) c 6= 0
with HW (m) = 1 and HW (r) = 0. Finally, Fig.3(c) also corresponds to the
decoding of a faulty codeword, but with erronous bit present in the register
portion r of the codeword c (i.e) c 6= 0 with HW (m) = 0 and HW (r) = 1. We
can see that all the operating registers are zeros in case of the valid codeword
(a), but is not the case with the faulty codewords ((b) and (c)). Moreover, on
comparing Fig.3(b) and Fig.3(c), we can also see that there are more number of
non-zero registers when the message m is faulty, as opposed to when the register
r is faulty. Thus, there is more observable activity in the side-channel traces
when the message is faulty, compared to the registers. Thus, we only consider
the former case for our attack. Since there is a significant difference between the
data being operated on, based on the validity of the codeword, we are able to
easily distinguish the same using the power/EM side-channel information.
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(a)

(b)

(c)

Figure3: Visualization of internal registers during the targeted majority logic
(a) Decoding of valid codeword c = 0 (b) Decoding of faulty codeword c 6= 0
with HW (m) = 1 and HW (r) = 0 (c) Decoding of faulty codeword c 6= 0 with
HW (m) = 0 and HW (r) = 1
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