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Abstract

The security proofs for isogeny-based undeniable signature schemes
have been based primarily on two isogeny hardness assumptions: that the
One-Sided Modified SSCDH problem and the One-More SSCDH problem
are hard to solve. We challenge the validity of these assumptions, showing
that both the decisional and computational variants of these problems can
be solved in polynomial time. We further demonstrate an attack, appli-
cable to two undeniable signature schemes, one of which was proposed at
PQCrypto 2014, which allows an adversary to forge signatures in 24λ/5

steps on a classical computer. This is an improvement over the expected
classical security of 2λ, where λ is the chosen security parameter.

1 Introduction
Most currently deployed cryptographic schemes are based on mathematical
problems that are assumed to be hard on classical computers, but can be solved
in polynomial time using quantum algorithms. Continuous progress in quantum
computing therefore requires the development of “post-quantum secure” cryp-
tography relying on problems that will (at least to the best of our knowledge)
remain hard for quantum algorithms. To achieve quantum resistance some direc-
tions currently being explored include lattice-based, multivariate, code-based,
and hash-based cryptography and, most recently, cryptography based on isogeny
problems. While the latter is appealing for relatively small key sizes compared
to other candidates, it requires further optimization and scrutiny.

Isogeny-based cryptography was first proposed by Couveignes in 1997 in a
seminar at the ENS [7], but he did not publish his ideas at the time. Almost a
decade later Rostovtsev and Stolbunov rediscovered and further developed the
same idea independently [17]. While these cryptosystems were based on “or-
dinary curves”, “supersingular curves” were first put to use in the construction
of a hash function by Charles, Goren and Lauter [4]. Jao and De Feo intro-
duced another cryptosystem in the supersingular case, the so called Supersingu-
lar Isogeny Diffie-Hellman (SIDH) [11]. Instead of using the action of the class
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group on certain isomorphism classes of ordinary elliptic curves like Couveignes,
Rostovtsev and Stolbunov, SIDH relies on the simple observation that it does
not matter in which order we divide out two non-intersecting subgroups of an
elliptic curve. One of the promising submissions to NIST’s post-quantum stan-
dardization project is the SIDH-based key-exchange protocol called SIKE [1].

For a nice introduction to different computational problems in supersingular
isogeny-based cryptography we refer to Galbraith and Vercauteren [10]. The
template for isogeny-based cryptography is the general isogeny problem. That
is, to find an isogeny φ : E1 → E2, for two randomly chosen isogenous curves
E1 and E2. A variant of this problem includes the additional information of the
degree of φ. This reduces the problem space from an infinite to a finite number of
isogenies while simultaneously reducing the search space. Hence, it is not clear
whether it makes the problem harder or easier. Another related problem is the
computation of endomorphism rings of supersingular elliptic curves. Assume
you know the endomorphism ring of a supersingular curve E1 and you want
to compute the endomorphism ring of E2. This is computationally broadly
equivalent to computing an isogeny φ : E1 → E2 [13, 14].

However, more practical supersingular isogeny constructions give more in-
formation to a potential attacker. For example the SIDH protocol, which we
will describe in Section 3 in more detail, reveals the image of certain torsion
points under some secret isogenies in addition to the origin and image curves.
It was observed that this additional information might make the problem a pri-
ori easier and a framework for a potential attack under additional assumptions
was given by Petit [16].

Various other versions of isogeny problems have been suggested and conjec-
tured to be hard by other authors to provide security proofs for their crypto-
graphic constructions.

Our contribution: In this work, we will review some of the isogeny prob-
lems that have been suggested in the construction of isogeny-based undeniable
signatures [12] published at PQCrypto 2014. While this construction has been
used and extended by other authors [19], we show that the assumptions used to
make the security proofs work are not valid and the proposed isogeny problems
lack the conjectured hardness. This does not immediately lead to an attack on
the signature scheme itself. However, we propose an attack on the cryptographic
construction as well.

Outline: In Section 2 we recall some mathematical background on isogeny-
based cryptography. In Section 3 we give the definitions of some isogeny prob-
lems that have been used in the literature and we give an attack on two of
them. The following Section 4 describes how the problems have been used in
the construction of isogeny-based undeniable signatures of [12] and we provide
an attack combining a near-collision search in the hash function and the attack
on the underlying isogeny problem. Before concluding the paper, we mention
other constructions that are affected by our attacks in Section 5.
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2 Mathematical background
For a full treatment of background information on elliptic curves and a detailed
introduction to isogeny-based cryptography we refer to Silverman [18] and De
Feo [9], respectively.

Let Fq be a finite field of characteristic p. In the following we assume p ≥ 3
and therefore an elliptic curve E over Fq can be defined by its short Weierstrass
form

E(Fq) = {(x, y) ∈ F2
q | y2 = x3 +Ax+B} ∪ {OE}

where A,B ∈ Fq and OE is the point (X : Y : Z) = (0 : 1 : 0) on the projective
curve Y 2Z = X3 + AXZ2 + BZ3. The set of points on an elliptic curve is an
abelian group under the “chord and tangent rule” with OE being the identity
element. The number of points on an elliptic curve is #E(Fq) = q + 1 − t for
some integer t ≤ 2

√
q. A curve E is called supersingular if p|t and ordinary

otherwise. The j-invariant of an elliptic curve is

j(E) = 1728
4A3

4A3 + 27B2

and there is an isomorphism f : E → E′ if and only if j(E) = j(E′).

Given two elliptic curves E1 and E2 over a finite field Fq, an isogeny is a
morphism φ : E1 → E2 such that φ(OE1

) = OE2
. One can show that isogenies

are morphisms both in the sense of algebraic geometry and group theory. If there
exists a non-constant isogeny between them, two curves are called isogenous.
The degree of an isogeny φ is its degree when treated as an algebraic map. This
is equal to the size of the kernel of φ if the isogeny is separable (which is always
the case in this work).

Since an isogeny defines a group homomorphism E1 → E2, its kernel is a
subgroup of E1. Conversely, any subgroup S ⊂ E1 determines a (separable)
isogeny φ : E1 → E2 with ker(φ) = S and E2 = E1/S. Since all isogenies in
the following will have cyclic groups as kernels, knowledge of the isogeny and
knowledge of the kernel of the isogeny are equivalent.

A basic example of an isogeny is the multiplication by n map on an elliptic
curve [n] : E → E. The kernel of the multiplication by n map over the algebraic
closure Fq of Fq is the n-torsion subgroup

E[n] = {P ∈ E(Fq) : nP = OE}.

Whenever n and q are relatively prime, the group E[n] is isomorphic to (Z/nZ)2.
Given any isogeny φ : E1 → E2, there exists another isogeny φ̂, called the

dual isogeny, satisfying φ ◦ φ̂ = φ̂ ◦ φ = [deg(φ)].
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3 The one-more isogeny problem
We begin this section by recalling the SIDH protocol and a problem underlying
its security. Then, we define and illustrate the somewhat more artificial isogeny
problems that are conjectured to be hard and that are used in the security
proofs of [12, 19]. However, at the end of this section we present our polynomial
time attack against these more artificial problems and show that no confidence
in them is justified.

3.1 Problem statements
Even though we do not attack SIDH, it is useful to recall this fundamental
key-exchange protocol as it contains some ideas upon which the undeniable sig-
nature scheme that we cryptanalyze is based.

Let p be a prime of the form `eAA `eBB ·f±1 where `A and `B are small distinct
primes, eA and eB are positive integers and f is some (usually small) cofactor.
Moreover, we fix a supersingular elliptic curve E defined over Fp2 together with
bases {PA, QA}, {PB , QB} of the `eAA and `eBB torsion of E, E[`eAA ] and E[`eBB ],
respectively.

Suppose Alice and Bob wish to establish a shared secret. Alice’s secret
is an integer a ∈ {0, . . . , `eAA − 1}, defining the subgroup A := 〈PA + [a]QA〉
of E[`eAA ]. Her public key is the curve EA := E/A together with the im-
ages φA(PB), φA(QB) of Bob’s public basis under her secret isogeny φ : E →
E/A. Analogously, Bob chooses his secret key b ∈ {0, . . . , `eBB − 1} defining the
cyclic subgroup B := 〈PB + [b]QB〉 ⊂ E[`eBB ], and his public key is the tuple
(EB , φB(PA), φB(QA)).

The key exchange proceeds as follows: Upon receipt of Bob’s public key,
Alice uses the points to push her secret A ⊂ E[`eAA ] to E/B, i.e. Alice computes
an isogeny φ′A : EB → EAB having kernel equal to 〈ΦB(PA) + [a]φB(QA)〉 ⊂
E/B[`eAA ]. Bob proceeds mutatis mutandis. We have

EAB = φ′A(φB(E)) = φ′B(φA(E)) = E/〈PA + [a]QA, PB + [b]QB〉,

where the equality holds up to isomorphism. Since the j-invariant is the same
for all curves in one isomorphism class, both Alice and Bob can compute the
shared secret j(EAB).

The hardness of the following problem underlies the security of the SIDH
protocol.

Problem 1 (Supersingular Computational Diffie-Hellman (SSCDH)). LetmA, nA
(and mB , nB) be chosen at random from Z/`eAA Z (respectively Z/`eBB Z) not both
divisible by `A (respectively `B). Furthermore, let φA : E → EA and φB : E →
EB denote the isogenies with kernel 〈[mA]PA+[nA]QA〉 and 〈[mB ]PB+[nB ]QB〉
respectively.
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EA

E EAB

EB

φ′BφA

φB φ′A

Figure 1: The commutative diagram of the SIDH key exchange

Given the curves EA, EB and the points φA(PB), φA(QB), φB(PA) and
φB(QA), find the j-invariant of

EAB = E/〈[mA]PA + [nA]QA, [mB ]PB + [nB ]QB〉.

For the following, we fix the notation of Problem 1.

Problem 2 (Modified SSCDH (MSSCDH)). [12] Given EA, EB and ker(φB),
determine EAB up to isomorphism, i.e. j(EAB).

Note that knowledge of ker(φB) is equivalent to knowledge of φB , but the
lack of information on the auxiliary points in the image of φA in the MSSCDH
problem prevents to shift ker(φB) into EA.

Problem 3 (One-sided Modified SSCDH (OMSSCDH)). [12] For fixed EA,
EB, given an oracle to solve MSSCDH for any EA, EB′ , ker(φB′) with EB′

not isomorphic to EB and `eBB -isogenous to E, solve MSSCDH for EA, EB and
ker(φB).

E

EA EB EB′

EAB

EAB′

φB′

φBφA

Figure 2: The oracle provides EAB′ for any E′B and φB′ , while EAB needs to
be found in OMSSCDH

While the OMSSCDH assumption seems somewhat more artificial, it arises
naturally in the security analysis of undeniable signatures proposed in [12].
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Moreover, the authors proposing the problem conjectured it to be computation-
ally infeasible, in the sense that for any polynomial-time solver algorithm, the
advantage of the algorithm is a negligible function in the security parameter
log p. However, we will see in the next subsection that a polynomial time at-
tacker will have a non-negligible advantage to solve the OMSSCDH problem.

A decisional variant of this problem is also defined in [12]; our attack applies
to it in the obvious way as well.

Our results furthermore break other strongly related problems, such as the
following slightly weaker problem used in the construction of undeniable blind
signatures [19].

Problem 4 (One-More SSCDH (1MSSCDH)). As before let {PA, QA} be a basis
of the `eAA torsion of some base curve E of the form as in the SIDH protocol and
let mA, nA be secret integers in {0, . . . , `eAA − 1}.
After making q queries to the signing oracle, which on input of EB isogenous
to E outputs a curve EAB ∼= EB/〈[mA]PA + [nA]QA〉, produce at least q + 1
distinct pairs of curves (EBi

, EABi
), where EBi

are `eBB -isogenous to E and
EABi

is isomorphic to EB/〈[mA]PA + [nA]QA〉 for 1 ≤ i ≤ t.

Compared to the OMSSCDH problem it leaves the choice of the additional
MSSCDH instance which needs to be solved to the attacker.

3.2 Basic attack
Now, we describe our attacks on the OMSSCDH and 1MSSCDH problems.

Theorem 1. A solution to OMSSCDH, Problem 3, can be guessed with proba-
bility 1

(`B+1)`B
after a single query to the signing oracle.

Proof. Assume an attacker wants to solve OMSSCDH given EA, EB and ker(φB).
Let EB′ be another curve `2B-isogenous to EB and `eBB -isogenous to E. That is,
one gets from EB to EB′ via backtracking the last `B-isogeny step of φB . Note,
one could guess such an EB′ with probability `B−1

(`B+1)`B
even without knowing

φB .
Then, the attacker can query the oracle on EB′ to receive EAB′ . Now, any curve
in the isomorphism class of EAB is `2B-isogenous to EAB′ as depicted in Figure
3. Therefore an attacker can guess the isomorphism class of EAB correctly with
probability ((`B + 1)`B)−1 which finishes the proof.

In practice the prime `B is chosen to be small (usually 2 or 3) and thus
Theorem 1 breaks the OMSSCDH problem completely.
Remark. Without the condition on the degree of the isogeny between the curves
submitted to the OMSSCDH oracle and the base curve, the attack can be made
even more efficient. Namely, an attacker can always solve this modified version
of the OMSSCDH problem after two queries to the oracle as follows.
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E ◦ ◦ EB

EB′

EA ◦ ◦ EAB

EAB′

Figure 3: Query of OMSSCDH oracle on `2B-isogenous curve via backtracking
one step yields elliptic curve close to target curve

The attacker computes two curves EB1 , EB2 of different isomorphism classes
that are `B-isogenous to EB . Knowing ker(φB) the attacker can compute
ker(φBi

) and they can query the oracle to solve MSSCDH for EA, EBi
and

ker(φBi
) for i = 1, 2. The oracle sends back EABi

which are `B-isogenous to
the unknown EAB as shown in Figure 4. Listing all `B + 1 isomorphism classes
which are `B-isogenous to EAB1

and EAB2
respectively, we find the isomorphism

class of EAB as it is the only one appearing in both lists.

E ◦ ◦ EB ◦

EA ◦ ◦ EAB ◦

Figure 4: Diagonal maps are the signing oracle sending `B-isogenous curves of
EB to `B-isogenous curves of target curve EAB

Clearly, the attack described in Theorem 1 can be generalised to OMSSDDH,
the decisional variant of OMSSCDH. Furthermore, a solution to the OMSSCDH
problem implies a solution to the 1MSSCDH problem which yields the following
theorem.

Theorem 2. A solution to 1MSSCDH, Problem 4, can be guessed with proba-
bility 1

(`B+1)`B
after a single query to the signing oracle.

4 Application to Jao-Soukharev’s construction
We now describe the application of our attack against Jao-Soukharev’s undeni-
able signature scheme [12]. For background knowledge on undeniable signature
schemes we refer the reader to [5], [8] and [15].
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4.1 Jao-Soukharev undeniable signatures
An undeniable signature scheme is a scheme in which signatures can only be
verified with cooperation from the signer [5]. Upon receipt of a signature σ from
a verifier, the signer engages in a zero-knowledge confirmation (or disavowal)
protocol to prove the validity (or invalidity) of σ. The security properties re-
quired by an undeniable signature scheme are undeniability, unforgeability and
invisibility. Undeniability ensures that a signer cannot repudiate a valid sig-
nature. Unforgeability is the notion that an adversary cannot compute a valid
message-signature pair without knowledge of the signer’s secret key. Invisibility
requires that an adversary cannot distinguish between a valid signature and a
signature produced by a simulator with non-negligible probability. We refer to
Appendix A for a full definition of all security games for undeniable signatures
schemes.

The Jao-Soukharev protocol takes p as a prime of the form `eAA `eBB `eCC ·f ±1.
We fix a supersingular curve E over Fp2 and bases {PA, QA}, {PB , QB} and
{PC , QC} of the `eAA , `eBB and `eCC torsion of E, E[`eAA ], E[`eBB ] and E[`eCC ], re-
spectively. The public parameters of the scheme are p, E and the three torsion
bases, together with a hash function H. The signer generates random inte-
gers mA, nA ∈ Z/`eAA and computes the isogeny φA : E → EA, defined as in
Problem 3.1. The public key consists of the curve EA together with the points
{φA(PC), φA(QC)} and the integers mA, nA constitute the private key. Note
that this is equivalent to taking φA as the private key.

To sign a message M, the signer computes the hash h = H(M) and the
isogenies φB : E → EB = E/〈PB + [h]QB〉, φAB : EA → EAB = EB/〈φA(PB +
[h]QB)〉 and φBA : EB → EAB = EA/〈φB([mA]PA+[nA]QA)〉. The signer then
outputs EAB in addition to two auxillary points {φBA(φB(PC)), φBA(φB(QC))}
as the signature.

Given a signature σ = (E,P,Q), the first step in the confirmation and dis-
avowal protocols is for the signer to select mC , nC ∈ Z/`eCC Z and compute
the curves EC = E/〈[mC ]PC + [nC ]QC〉, EBC = EB/〈φB([mC ]PC + [nC ]QC)〉,
EAC = EA/〈φA([mC ]PC+[nC ]QC)〉 and EABC = EBC/〈φB([mA]PA+[nA]QA)〉,
where φCB is the isogeny from EC to EBC . The signer outputs these curves
and ker(φCB) as the commitment. In addition to the auxiliary points of the
signature, this commitment gives the verifier enough information to compute
EABC and EσC = Eσ/〈[mC ]P + [nC ]Q〉, to check whether EσC = EABC . Fur-
ther details of the confirmation and disavowal protocols can be found in [12].

In the Jao-Soukharev construction, the adversary knows EA and can com-
pute EBi

and ker(φBi
), corresponding to message Mi, from H. The signing

oracle then essentially solves MSSCDH for any of the adversary’s input mes-
sages Mi. The paper claims that under the assumption that the confirmation
and disavowal protocols of the signature scheme are zero-knowledge, the un-
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forgeability game describes the OMSSCDH problem. We will show that this
claim is incorrect.

4.2 Another look at the security proof of [12]
In [12] the claim is made that forging a signature for this construction is equiv-
alent to solving OMSSCDH, so one would expect our attack to directly break
unforgeability. However, equivalence would only be true if an attacker had the
freedom to submit arbitrary curves to the signing oracle. In the protocol, an
adversary wishing to forge a signature can only query the signing oracle with
messages, Mi. In the Jao-Soukharev signing protocol the curves EBi are com-
puted from message hashes, rather than the messages themselves. Thus, an
adversary would need to find a message mapping to some specific curve first for
the scheme to be equivalent to OMSSCDH and thus an adversary would need
to break the hash function. Forging messages seems therefore actually harder
than breaking OMSSCDH.

As a consequence the attack of Section 3 does not actually apply to [12].
However, in this section we will demonstrate how a hybrid version of our attack
on OMSSCDH and finding “near-collisions” in the hash function allows to re-
duce the security of the construction for the given parameters.

In accounting for the scheme’s loss of malleability due to the hash function
we make use of the following Lemma:

Lemma 1. Let E be a supersingular elliptic curve, let ` be a prime, let e be an
integer, and let {P,Q} be a basis for E[`e]. Let n,m < `e be positive integers
congruent modulo `k for some integer k < e. Then the `-isogeny paths from E
to EA = E/〈P + [n]Q〉 and EB = E/〈P + [m]Q〉 are equal up to the k-th step.

Proof. Let m = n + α`k, for some α > 0. Let φA : E → EA be a separable,
cyclic isogeny with deg(φA) = `e and ker(φA) = 〈P + [n]Q〉. We can express
φA as the composition of e `-isogenies such that φA = φA1 ◦ . . . φAe . Likewise,
φB : E → EB can be expressed as φB = φB1 ◦ . . . φBe . The single `-isogenies cor-
respond to the single steps in the `-isogeny graph. We will show that φAi = φBi
for 1 ≤ i ≤ k.

For i = 1, . . . , e, let φAi : Ei−1 → Ei be an isogeny with kernel 〈`e−iSAi−1〉,
where E0 = E, SA0 = P + [n]Q and SAi−1 = φAi−1(SAi−2). Define the φBi similarly,
with B substituted for A and m for n. A proof can be found in [6] that these are
`-isogenies and that φA1 ◦· · ·◦φAe = φA up to composition with an automorphism
on EA (similarly for φB). We also have the recursion

`e−iSAi−1 = `e−iφAi−1(SAi−2) = φAi−1 ◦ · · · ◦ φA1 (`e−iSA0 )

with the analogous result for `e−iSBi−1. For 1 ≤ i ≤ k, we have e − i + k ≥ e
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and so

`e−iSB0 = `e−i(P + [m]Q)

= `e−i(P + [n]Q) + `e−i+k[α]Q

= `e−i(P + [n]Q)

= `e−iSA0

using that isogenies are group homomorphisms and Q ∈ E[`e]. It follows that
φAi = φBi for 1 ≤ i ≤ k.

LetM be the message upon which the adversary wishes to forge a signature.
Let H : {0, 1}∗ → Z be the public hash function used in the signature scheme.
The hash function determines a coefficient of a point in the E[`eii ] torsion group
and can therefore be treated as a function to a group of size 22λ for classical
security levels and 23λ for quantum security levels. Let 2L denote the size of
this group in the image.

EA EAB′

EAB

φ1 φ2

ψB′ , deg = `kB

ψB , deg = `kB

φeB′

φeB

Figure 5: Isogeny paths between EA, EAB and EAB′ . In our attack we use
φAB′ = φeB′ ◦ φeB′−1 ◦ · · · ◦ φ1 and ψ = ψB ◦ ψ̂B′ .

The attack proceeds as follows:

1. Build a near-collision on H with respect to the `B-adic metric. More
precisely, find two messages M and M ′ such that the difference between
H(M) and H(M ′) is divisible by a large power of `B , say a power of size
roughly 2L1 .

2. Submit M ′ to the signing oracle to obtain the signature

σ′ = (EAB′ , φB′A(φB′(PC)) = P1, φB′A(φB′(QC)) = P2).

3. Guess the `2kB -isogeny ψ : EAB′ → EAB , where EAB is the unknown
curve corresponding to M . Let ψ = ψ̂B′ ◦ ψ̂B′ , the composition of two
degree `kB ≈ 2L2 isogenies with L2 = L− L1, where ψ̂B′ corresponds to k
backwards steps on the isogeny path from EAB′ and ψB corresponds to k
forward steps to EAB . This is illustrated in Figure 5. The probability of
correctly identifying ψ in a single guess is 1

(`B+1)`2k−1
B

.
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4. Find s such that s`kB ≡ 1 mod `eBB . Compute the auxilary points of the
signature as {[s] · ψ(P1), [s] · ψ(P2)}.

5. Output σ = (EAB , [s] · ψ(P1), [s] · ψ(P2)).

Finding a near-collision of L1 bits on H classically has cost 2L1/2. In step
3 we can then guess the correct isogeny and curve EAB with probability ≈
2−2L2 = 2−2(L−L1). Taking L1 = 4L/5 the attack then has a total classical cost
of 22L/5, as opposed to the expected 2L/2.

Assuming that we can find (near)-collisions of the hash function with lower
quantum complexity [2], the first step of our attack costs 2L1/3 on a quantum
computer. Taking L1 = 6L/7, this could lower the complexity on a quantum
computer to 22L/7, as opposed to the expected 2L/3. However, it has been ar-
gued that quantum collision search might be inferior to classical collision search
because of the expensive memory access and quantum memory [3].

Theorem 3. Let s, ψ, P1 and P2 be defined as in our attack. Moreover, let σ
be the signature (EAB , [s] ·ψ(P1), [s] ·ψ(P2)) computed in the attack. Assuming
that EAB is guessed correctly, σ is a valid signature.

Proof. First, recall that ψ = ψB ◦ ψ̂B′ and P1 = φB′A(φB′(PC)). By expanding
φB′A we obtain

ψ̂B′ ◦ φB′A = φ̂eB′−k ◦ · · · ◦ φ̂eB′ ◦ φeB′ ◦ · · · ◦ φeB′−k ◦ . . . φeB−k ◦ · · · ◦ φ1
= [`kB ] ◦ φeB′−k−1 ◦ · · · ◦ φ1.

So ψ(P1) = [`kB ]φAB(φB′(PC)) ∈ EAB [`eBB ]. Since s is the multiplicative inverse
of `kB modulo `eBB , we have [s] · ψ(P1) = φAB(φB′(PC)) ∈ EAB [`eBB ]. Following
the same logic, we also have [s] · ψ(P2) = φAB(φB′(QC)) ∈ EAB [`eBB ].

Let P = φAB(φB(PC)) and Q = φAB(φB(QC)). In both the confirmation
and disavowal protocols of the Jao-Soukharev scheme, the verifier uses the aux-
iliary points to compute an isogeny from EAB to a curve, Eσ = EAB/〈[mC ·
s]ψ(P1) + [nC · s]ψ(P2)〉, where mc, nC ∈ Z/`eCC Z are integers chosen by the
signer. This curve is checked against EABC = EAB/〈[mC ]P + [nC ]Q〉 to de-
termine the validity of σ. Since the two points obtained in our attack lie in
EAB [`eBB ], and we have EAB as the correct signature curve, it follows that
Eσ = EABC up to isomorphism.

Clearly, our attack breaks the unforgeability property of the scheme. More-
over, we are also able to break invisibility, since any adversary with the ability
to forge signatures with higher probability can simply check whether the chal-
lenge signature obtained in the invisibility game (see Appendix A) matches a
potential forgery.
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5 Srinath and Chandrasekaran undeniable blind
signatures

Srinath and Chandrasekaran [19] extend the Jao-Soukharev construction to an
undeniable blind signature scheme, introducing a third actor, the requestor,
to the scheme. It is a four-prime variant of the original scheme, taking p =
`eAA `eBB `eCC `eDD · f ± 1 and adding the public parameter {PD, QD}, a basis for
E[`eDD ]. The requestor computes the message curve EB = E/〈PB + [H(m)]QB〉
using the public hash function, as before. They then blind the curve by taking
a random integer 0 < d < `eDD to compute EBD = EB/〈φB(PD) + [d]φB(QD)〉.
The blinded curve is then sent to the signer. The Sign algorithm of the scheme
functions in the same way as for the Jao-Soukharev construction. Upon re-
ceipt of the blinded signature curve EBDA, the requestor uses an unblinding
algorithm to obtain the unblinded signature EBA. This resulting signature is
the same as the Jao-Soukharev signature and the scheme is vulnerable to our
attack. As before, both unforgeability and invisibility are broken.

6 Conclusion
In this paper, we investigate the hardness of some isogeny problems used in
cryptography. In particular, we show that the assumptions that the OMSS-
CDH and 1MSSCDH problems are hard to solve are invalid. This contribution
is particularly relevant to isogeny-based undeniable signature schemes, as the
security proofs for unforgeability and invisibility are based on this assumption.
We give basic attacks against both OMSSCDH and 1MSSCDH, which are also
applicable to their decisional variants.

Jao and Soukharev [12] proposed the first quantum-resistant undeniable
isogeny-based signature scheme, which was extended to include blindness by
Srinath and Chandrasekaran [19]. We present an attack against the unforge-
ability and invisibility properties of the Jao-Soukharev protocol, showing that
an adversary with access to a signing oracle is able to forge arbitrary signatures
at lower cost than expected for a given security parameter, λ. To summarise,
this is achieved by computing a near-collision on the public hash function H and
guessing an `2kB -isogeny between an honest signature produced by the oracle for
one message to the target forgery curve. The classical cost for this attack is
24λ/5, with the hash function length equal to 2λ. We postulate that the quan-
tum cost for this attack is 24λ/7. These attacks imply that parameters should
now be increased by 25% to achieve the same classical security level (75% for
quantum security). Furthermore, we argue that the equivalence drawn in [12]
between unforgeability and the OMSSCDH problem is incorrect, and hence that
the security proofs in this paper are incorrect. We note that the inclusion of
a hash function increases the difficulty of forgery, assuming the hash function
is ‘cryptographically secure’, as the adversary is forced to search for a message
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that will result in a specific curve, rather than querying the oracle indiscrimi-
nately.

Finally, we review the Srinath-Chandrasekan signature scheme and show
that our attack is applicable against it. We also note the same problem with
the security proofs.

Acknowledgements. We thank David Jao for his comments on a prelimi-
nary version of this paper.
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A Undeniable (Blind) Signature Schemes
Undeniable signature schemes were introduced by Chaum and van Antwerpen
[5], differing from traditional signature schemes in that verification of a signa-
ture cannot be completed without cooperation from the signer. Following the
notation of [15] we denote an undeniable signature scheme Σ by

Σ = {KeyGen, Sign, Check, Sim, πcon, πdis}.

KeyGen is the PPT (probabalistic polynomial time) key generation algorithm,
which outputs (vk, sk) - a verification and signing key, respectively. Sign is the
PPT signing algorithm, taking a message m and sk as input to generate a
signature σ. Check is a deterministic validity checking algorithm, such that
Check((vk,m,σ),sk) returns 1 if (m,σ) is a valid message-pair and 0 if not. Sim
is a PPT algorithm outputting a simulated signature σ′ on input of vk and m.

14



Finally, πcon and πdis are confirmation and disavowal protocols, respectively,
with which the signer can prove the validity (or invalidity) of a signature to the
verifier. These are zero-knowledge interactive protocols.

An undeniable signature scheme must satisfy undeniability, unforgeability
and invisibility. We use the definitions as stated in [8, 5, 15]. An undeniable
blind signature scheme must also satisfy blindness, as defined in [19].

Undeniability requires that a signer cannot use the disavowal protocol to
deny a valid signature. A signer is also unable to convince the verifier that an
invalid signature is valid.

Unforgeability is the notion that an adversary cannot compute a valid
message-signature pair with non-negligible probability. It is defined using the
following security game:

1. The challenger generates a a key-pair, giving the verification key to the
adversary.

2. The adversary is given access to a signing oracle and makes queries adap-
tively with messages mi, for i = 1, 2, . . . , k, for some k, receiving corre-
sponding signatures σi.

(a) The adversary additionally has access to a confirmation/disavowal or-
acle for the protocol, which they can query adaptively with message-
signature pairs throughout step 2.

3. The adversary outputs a pair (m,σ).

The adversary wins the game (i.e. successfully forges a signature) if (m,σ)
is a valid message-signature pair and m 6= mi for any i = 1, 2, . . . k. A signature
scheme is unforgeable if any PPT adversary wins with only negligible probability.

Invisibility requires that an adversary cannot distinguish between a valid
signature and a simulated signature with non-negligible probability. It is defined
by the following security game:

1. The challenger generates a a key-pair, giving the verification key to the
adversary.

2. The adversary is given access to a signing oracle and makes queries adap-
tively with messages mi, for i = 1, 2, . . . , k, for some k, receiving corre-
sponding signatures σi.

(a) The adversary additionally has access to a confirmation/disavowal or-
acle for the protocol, which they can query adaptively with message-
signature pairs throughout step 2.

3. The adversary sends a new message mj to the challenger.
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4. The challenger computes a random bit b. If b = 1, the challenger computes
σ = Sign(mj , sk). If b = 0 the challenger computes σ = Sim(mj , vk). The
challenger sends σ to the adversary.

5. The adversary is able to query the signing oracle again, with access to
the confirmation/disavowal oracles. They cannot submit (mj , σ) to either
oracle.

6. The adversary outputs a bit b∗.

The adversary wins the game if b∗ = b. An undeniable signature scheme is
invisible if |Pr(b = b∗)−1/2 | is negligible.

Blindness requires that an adversary cannot relate message-signature pairs
with their associated blind versions with non-negligible probability. It is defined
by the following security game:

1. The adversary generates a key-pair (sk, vk).

2. The adversary chooses two messages, m0 and m1, and sends them to the
challenger.

3. The challenger computes a random bit b and reorders the messages as
(mb,mb−1).

4. The challenger blinds the messages and sends them to the adversary.

5. The adversary signs the blinded messages, generating the signatures σblindb

and σblindb−1 , which are returned to the challenger.

6. The challenger applies an unblinding algorithm to σblindb and σblindb−1 and
reveals the unblinded signatures, σb and σb−1, to the adversary.

7. The adversary outputs a bit b′.

The adversary wins if b′ = b. A signatures scheme is blind if |Pr(b =
b∗)−1/2 | is negligible.
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