
Structure-Preserving and Re-randomizable RCCA-secure
Public Key Encryption

and its Applications

Antonio Faonio1, Dario Fiore1, Javier Herranz2, and Carla Ràfols3

1 IMDEA Software Institute,
2 Universitat Politècnica de Catalunya,

3 Universitat Pompeu Fabra

Abstract. Re-randomizable RCCA-secure public key encryption (Rand-RCCA PKE) schemes
reconcile the property of re-randomizability of the ciphertexts with the need of security against
chosen-ciphertexts attacks.
In this paper we give a new construction of a Rand-RCCA PKE scheme that is perfectly re-
randomizable. Our construction is structure-preserving, can be instantiated over Type-3 pairing
groups, and achieves better computation and communication efficiency than the state of the art
perfectly re-randomizable schemes (e.g., Prabhakaran and Rosulek, CRYPTO’07).
Next, we revive the Rand-RCCA notion showing new applications where our Rand-RCCA PKE
scheme plays a fundamental part: (1) We show how to turn our scheme into a publicly-verifiable
Rand-RCCA scheme; (2) We construct a malleable NIZK with a (variant of) simulation soundness
that allows for re-randomizability; (3) We propose a new UC-secure Verifiable Mix-Net protocol
that is secure in the common reference string model. Thanks to the structure-preserving property,
all these applications are efficient. Notably, our Mix-Net protocol is the most efficient universally
verifiable Mix-Net (without random oracle) where the CRS is an uniformly random string of size
independent of the number of senders. The property is of the essence when such protocols are used
in large scale.

Table of Contents

Structure-Preserving and Re-
randomizable RCCA-secure Public
Key Encryption and its Applications . . . 1

Antonio Faonio1, Dario Fiore1,
Javier Herranz2, and Carla Ràfols3

1 Introduction . 2
2 Preliminaries and Definitions 8

2.1 Re-randomizable RCCA PKE . . 9
2.2 Malleable NIZKs 10

3 Our Rand-RCCA PKE scheme 11
4 Our Publicly-Verifiable Rand-

RCCA PKE . 19
5 Malleable and True-Simulation

Extractable NIZK 20
6 An UC-Secure Mix-Net 23
7 Acknowledgements 30

A Missing proofs from Section 3
(Rand-RCCA PKE) 32

B Missing proofs from Section 4
(pv-Rand-RCCA PKE) 34
B.1 Details on the Malleable Proof . . 35

C Missing proofs from Section 5
(tSE-cm NIZK) 37

D Controlled-Malleable Smooth-
Projective Hash Functions 38
D.1 Our Construction 41

E Verifiable Threshold Decryption in
the Random String model 42

F Definitions . 44
F.1 All-but-One label-based NIZK

systems . 44
F.2 Additional Definitions for

Malleable NIZK. 45

1 Introduction

Security against chosen ciphertext attacks (CCA) is considered by many the gold standard for
public key encryption (PKE). Since the seminal paper of Micali, Rackoff and Sloan [35], the
research community has spent a great effort on this fundamental topic by both interconnecting
different security notions and producing a large body of efficient public encryption schemes.

Challenging the overwhelming agreement that CCA security is the right notion of security
for PKE, a paper of Canetti, Krawczyk and Nielsen [7] showed that for many use cases a weaker
security notion than CCA security is already sufficient. More in details, the paper introduced
the notion of Replayable CCA (RCCA) and showed that the notion is sufficient to realize a
variant of the public key encryption functionality in the universal composability (UC) model of
Canetti [4] where only replay attacks, namely attacks in which the data could be maliciously
repeated, can be mounted by the adversary.

In a nutshell, the main fundamental difference between RCCA security and CCA security
is that, in a RCCA secure scheme (which is not CCA secure) an adversary is able to maul
the challenge ciphertext to obtain new decryptable ciphertexts, the only limitation is that the
adversary still cannot break the integrity of the underlying plaintext. To explain this with an
example, in a RCCA secure PKE scheme an adversary might append an extra 0 at the end of
the ciphertext and still be able to obtain a valid decryption of the mauled ciphertext (to the
same plaintext), on the other hand, for a CCA secure PKE, this attack should by definition
result into an invalid decryption.

Later, Groth [24] showed that the capability to maul a ciphertext to obtain a new ciphertext
which decrypts to the same plaintext should be seen as a feature and not a weakness. In
his paper, he introduced the notion of re-randomizable RCCA (Rand-RCCA) PKE, namely a
RCCA-secure PKE which comes with an algorithm that re-randomizes the ciphertexts in a way
that cannot be linked.

PKE schemes that are both re-randomizable and RCCA-secure have been shown to have
several applications, such as: anonymous and secure message transmissions (see Prabhakaran
and Rosulek [41]), Mix-Nets (see Faonio and Fiore [16], and Pereira and Rivest [39]), Controlled
Functional Encryption (see Naveed et al. [38]), and one-round message-transmission protocols
with reverse firewalls (see Dodis, Mironov, and Stephens-Davidowitz [13]).

When it comes to constructing these objects, if we look at the literature it is striking to ob-
serve that there are extremely efficient constructions of schemes that are only RCCA-secure but
not re-randomizable (e.g., Cramer-Shoup [10] or Phan-Pointcheval [40]), or are re-randomizable
but only CPA-secure (e.g., ElGamal [14]). In contrast, when the two properties are considered
in conjunction, a considerable gap in the efficiency of the schemes seems to arise. More in con-
crete, the most efficient Rand-RCCA scheme in the standard model of [41] has ciphertexts of 20
groups elements,4 while, for example, the celebrated Cramer-Shoup PKE [10] has ciphertexts
of only 4 groups elements.

In the following paragraphs we state the main contributions of our work.

Rand-RCCA PKE. Our first contribution is a new structure-preserving5 Rand-RCCA PKE
scheme which significantly narrows the efficiency gap described above. The scheme is secure
under the Matrix Diffie-Hellman Assumption (MDDH) in bilinear groups, and for its strongest
instantiation, namely, under the Symmetric External Diffie-Hellman Assumption (SXDH), has
ciphertexts of 6 groups elements (3 elements in G1, 2 elements in G2 and 1 element in GT).

From a practical perspective, the advantage of a re-randomizable PKE over a standard
(non-re-randomizable) PKE strikes when the re-randomizable PKE scheme is part of a larger
protocol. To this end, we notice that the structure-preserving property is indeed vital as it allows
for modularity and easy integration, which are basic principles for protocol design. However, we
can substantiate further our assertion by giving three applications where structure-preserving
Rand-RCCA PKE schemes are essential.

Publicly-verifiable Rand-RCCA PKE. Our first application is a publicly-verifiable (pv)
Rand-RCCA PKE scheme. A PKE scheme is publicly verifiable when the validity of a ciphertext
can be checked without the secret key. This property is for example convenient in the setting of
threshold decryption with CCA security [43,5], as the task, roughly speaking, reduces to first
publicly check the validity of the ciphertext and then CPA-threshold-decrypt it. Very roughly
speaking, we can obtain our pv-Rand-RCCA PKE scheme by appending a Groth-Sahai (GS)
NIZK proof [26] of the validity of the ciphertext. We notice that the ciphertext of our Rand-PKE
scheme contains6 an element in GT . The verification equation does not admit a GS NIZK proof,
but only NIWI. We overcome this problem by constructing an additional commitment type for
elements in GT . This gives us a new general technique that extends the class of pairing product
equations which admit GS NIZK proofs, enlarging therefore the notion of structure preserving.
The latter is a contribution of independent interest which might have applications in the field
of structure-preserving cryptography in general.

Controlled-Malleable NIZKs. Our second application is a general framework for true-
simulation extractable (tSE) and re-randomizable (more generally, controlled-malleable) NIZK
systems. The notion of tSE-NIZK was introduced by Dodis et al. [12] and found a long series
of applications (see for example [20,11,18]). Briefly, the notion assures soundness of the NIZK
proofs even when the adversary gets to see simulated NIZK proofs for true statements of its

4 A recent work of Faonio and Fiore [16] takes this down to 11 group elements at the price of achieving a strictly
weaker notion of re-randomizability, in the random oracle model.

5 A scheme is structure preserving if all its public materials, such as messages, public keys, etc. are group
elements and the correctness can be verified via pairing-product equations.

6 In the lingo of structure-preserving cryptography, the scheme is not strongly structure preserving.

3

choice. In comparison with simulation-extractable (SE) NIZKs (see [42,25]), tSE-NIZKs are
considerably more efficient and keep many of the benefits which motivated the introduction
of SE-NIZKs7. However, if one would like a controlled malleable tSE-NIZK, the only available
scheme is an SE-NIZK obtained through the general result of Chase et al. [8], which is not
very efficient. As main result, we scale down the framework of Chase et al. to true-simulation
extractability, and by using our new Rand-RCCA PKE we construct a new re-randomizable
tSE-NIZK scheme. Compared to [8], our scheme can handle a more restricted class of relations
and transformations,8 but our proofs are significantly more efficient. For example, for simple
re-randomizable NIZK proofs our tSE NIZKs have an overhead of the order of tens more pairing
operations for verification, opposed to an overhead of the order of hundreds more pairing oper-
ations for verification of the simulation-extractable with controlled malleability NIZK systems
of [8]. The overhead is computed as the difference with the adaptive sound Groth-Sahai NIZK
proof for the same statement.

Mix-Net. Our third application is a universally verifiable and UC-secure Mix-Net based on our
pv-Rand-RCCA PKE scheme. Recently, Faonio and Fiore [16] gave a new paradigm to obtain
UC-secure verifiable Mix-Net protocols based on Rand-RCCA PKE scheme. Their construction
makes use of a non-publicly verifiable Rand-RCCA PKE scheme and obtains a weaker notion
of security called optimistic (àla Golle et al. [23]). More in details, the mixing paradigm of
[16] is conceptually simple: a mixer receives a list of Rand-RCCA ciphertexts and outputs
a randomly permuted list of re-randomized ciphertexts together with a simple NIZK proof
that they informally dub “loose shuffling”. Such “loose shuffling” proof guarantees that if all
the ciphertexts correctly decrypt then the output list is a shuffle of the input one. Hence, in
their scheme, cheating can be caught at decryption time, that is after the last mixer returned
its list. The problem is that, cheating might be caught too late, thus, their scheme is only
optimistic secure. Namely, the scheme is an universal verifiable mix-net optimized to quickly
produce a correct output when all the mixers run the protocol correctly. If instead one or more
mixers cheat, then no privacy is guaranteed but one can “back up” to a different, slow, mix-net
execution.

In this paper, we show that by leveraging the public verifiability of the Rand-RCCA PKE
scheme we can obtain a simple design for Mix-Net protocols. In fact, since it is possible to
publicly check that a mixer did not invalidate any ciphertext, the proof of loose shuffling turns
out to be, indeed, a proof of shuffle.

Interestingly, our use of publicly verifiable ciphertexts come with additional benefits. As
mentioned in the paragraph above, our pv-RCCA-PKE scheme can support threshold decryption
very easily, and more efficiently than Faonio and Fiore [16]. Finally, our protocol can be fully
instantiated in the standard model, whereas the one in [16] rely on non-programmable random
oracles.

Most notably, our protocol is the first efficient universally verifiable Mix-Net in the common
random string model, namely where the common reference string is a (small) uniformly random
string. In fact, a popular approach to achieve a universally verifiable Mix-Net is to use a NIZK
proof of shuffle. However, the most efficient protocols for this task either rely on random oracles
to become non-interactive (such as the protocol of Bayer and Groth [1] or Verificatum [46]), or
need a structured common reference string (as is the case for the most efficient state-of-the-art

7 As an example, tSE-NIZKs are sufficient for the CCA2-secure Naor-Yung PKE of Sahai [42], simulation-sound
(SS) NIZKs were introduced in the same paper with exactly this application in mind.

8 Yet, our framework is powerful enough for the application of controlled-malleable CCA security of Chase et
al. Interestingly, we can obtain another pv-Rand-RCCA PKE through their paradigm, although less efficient
than our construction. We believe that analyzing what other kinds of CM-CCA notions are supported by our
scheme is interesting future work.

4

PKE Group Assumption Model Struc. Pub. Re-Rand

Setting Pres. Ver.

[24] Groth – DDH GGM perfect

[41] PR07 Cunn. DDH std perfect

[8,34] CKLM12, LPQ17 Bilin. SXDH std X X perfect

[16] FF18 – DDH NPRO weak

PKE1 Bilin. Dk-MDDH std X∗ perfect

PKE2 Bilin. Dk-MDDH std X∗ X perfect

Table 1. Comparison of the properties of a selection of Rand-RCCA-secure PKE schemes. For group setting,
– means any group where the assumption holds; Cunn. refers to a pair of groups whose prime orders form a
Cunningham chain (see [41]); Bil. stands for bilinear groups. For model, GGM refers to generic group and NPRO
refers to non-programmable random oracle. ∗ the structure-preserving property of the two schemes in this paper
is not strict, since ciphertexts contain some elements in GT .

NIZK proof of shuffle of Fauzi et al. [19]). Furthermore, the common reference string of [19] has
size that depends on the number of senders (which in practical scenarios can be huge), whereas
our common reference string is made by a number of group elements that is linear in the number
of mixers.

Our Mix-Net protocol is proved secure based only on general properties of the pv-Rand-
RCCA PKE scheme, and can be instantiated with other schemes in literature (for example with
the schemes in [34,8]).

Controlled-Malleable Smooth Projective Hash Functions. At the core of our Rand-
RCCA PKE scheme is a new technique that can be seen as a re-randomizable version of smooth
projective hash functions (SPHFs) [10]. Given the pervasive use of SPHFs in cryptographic
constructions, we believe that our technique may find more applications in the realm of re-
randomizable cryptographic primitives. For this reason, we formalize our technique as a prim-
itive called controlled-malleable SPHF. Briefly, we define it as an SPHF with tags that allows
to re-randomize both instances and tags (inside appropriate spaces), and for which soundness
(i.e., smoothness) holds even if the adversary can see a hash value for an invalid instance. We
elaborate on this notion in Appendix D.

Comparison with Related Work. If we consider the state of the art of Rand-RCCA PKE
schemes, the most relevant works are the work of Groth, which introduced the notion of Rand-
RCCA PKE scheme [24], the aforementioned scheme of Prabhakaran and Rosulek [41], the
Rand-RCCA PKE scheme of Chase et al. derived from their malleable NIZK systems [8], and
two recent works of Libert, Peters and Qian [34] and of Faonio and Fiore [16]. In Table 1 we
offer a comparison, in terms of security and functionality properties, of our schemes of Sec. 3
(PKE1) and Sec. 4 (PKE2) against previous schemes.

From a technical point of view, the scheme of [41] and our scheme PKE1, although both based
on the Cramer-Shoup paradigm, have little in common. The main differences are: (1) a different
design to handle the tags (see next section); (2) a different approach for the re-randomization
of the ciphertext. In particular, the Rand-PKE scheme of [41] uses the double-strand technique
of Golle et al. [22] to re-randomize the ciphertext, while our re-randomization technique, as far
as we know, is novel. Furthermore, the scheme of [41] works in two special groups, Ĝ and G̃
that are the subgroups of quadratic residues of Z∗2q+1 and Z∗4q+3 respectively, for a prime q such
that (q, 2q + 1, 4q + 3) is a sequence of primes (a Cunningham Chain of the first kind of length
3).

In Table 2 we compare the efficiency of our new schemes (in the most efficient instantiation
with k = 1) with the most efficient ones among the Rand-RCCA schemes: the ones in [41] and

5

PKE Enc ≈ Rand Dec |C| |pk|
PR07 22 Ẽ 32 Ẽ 20G̃ 11G̃
FF18 16 E 18 E 11G 11G
PKE1 4E1+5E2+2ET +5P 8E1+4E2+4P 3G1+2G2+GT 7G1+7G2+2GT
LPQ17 79E1+64E2 1E1+142P 42G1+20G2 11G1+16G2

PKE2 36E1+45E2+6ET +5P 2E1+50P 14G1+15G2+4GT 8G1+8G2

Table 2. Efficiency comparison among the best Rand-RCCA-secure PKE schemes; only the last two rows include
schemes with public verifiability. For our schemes we consider k = 1, so based on SXDH assumption. We use
G̃ for the special groups used in [41], G for standard DDH groups as considered in [16], and then groups in
asymmetric bilinear pairings e : G1 ×G2 → GT as considered both in [34] and in this work. Similarly, we denote
as E, Ẽ, E1, E2, ET the cost of an exponentiation in groups G, G̃,G1,G2,GT , respectively. Finally, P denotes the
cost of computing a bilinear pairing.

[16] for the case of secret verifiability, and the scheme in [34] for publicly verifiable Rand-RCCA
encryption. We do not consider the scheme of Groth [24], that suffers having ciphertexts with
as many group elements as the bitlength of the plaintext, and the one of [8] that is superseded
by [34]. First we stress that the generic Dk-MDDH Assumption, in the case k = 1, can be
instantiated with the SXDH Assumption. Therefore, the security guarantees of our schemes
PKE1 and PKE2 in Table 2 are exactly the same as in the pairing-based schemes in [8,34].
Among the schemes with private verifiability, the most efficient one is that in [16], but its re-
randomizability property is weak and the security is in the random oracle model. Among the
other two, our scheme PKE1 is more efficient than that in [41], because the special groups G̃
required in [41] are large, at least 3072 bits for a security level of 128 bits. Turning to comparing
with publicly verifiable schemes, the computational costs for the scheme in [34], in the table, are
roughly approximate, because not all the exact computations in the algorithms of the scheme
(involving Groth-Sahai proofs) are explicitly described. The size of the ciphertexts reported in
[34] is 34|G1| + 18|G2|. After personal communication with the authors, we realized that this
number is not correct; the correct one is 42|G1|+20|G2|. Our scheme PKE2 is the most efficient
Rand-RCCA scheme with public verifiability up to date: ciphertext size is comparable to that
in [34] whereas the computational costs are significantly lower. Even for ciphertext size, ours
is comparable to [34] only due to the size of the 4 GT elements in our scheme. Besides that,
our ciphertexts have many fewer group elements, which is conceptually simpler and, we believe,
leaves hope for further improvements. For the two publicly verifiable schemes, the number of
pairings required for decryption can be decreased, at the cost of increasing the number of
exponentiations, by applying the batching techniques in [28]. The resulting number would be
22P for PKE2 and something between 40P and 50 P for the scheme in [34].

Technical Overview. We recall that the main technical contributions of this paper are: (1)
a new technique for Rand-RCCA PKE scheme (which we also formalize in terms of SPHFs),
(2) a new general technique that extends significantly the class of pairing product equations
which admits GS NIZK proofs, and (3) a new technique for standard-model UC-secure verifiable
Mix-Nets. For space reason, in this technical overview we concentrate on (1).

A common technique of many CCA-secure PKE schemes in the standard model consists in
explicitly labeling each ciphertext produced by the encryption algorithm with a unique tag. This
technique is usually useful to simulate the decryption oracle and to asses that the decryption
oracle would not reveal any information about the challenge ciphertext. Some notable examples
of CCA-secure PKE schemes that use tags are the Cramer-Shoup PKE [10], the tag-based PKE
of Kiltz [32], and IBE-to-CCA transform of Canetti, Halevi and Katz [6].

6

Unfortunately, unique tags are not a viable option when designing a re-randomizable PKE
scheme. In fact, a ciphertext and its re-randomization would share the same tag, and so they
could be trivially linked by an attacker. The main consequence is that many well-known tech-
niques in CCA security cannot be easily exported in the context of Rand-RCCA security. A
remarkable exception is the work on Rand-RCCA PKE of Prabhakaran and Rosulek [41]. In
this work, the authors managed to reconcile tags and re-randomizability with an ingenious tech-
nique: the tag for a new ciphertext is computed as a re-randomizable encoding of the plaintext
itself, the tag is then encrypted and attached to the rest of the ciphertext. The decryptor first
decrypts the tag and then uses it to check the validity of the payload ciphertext. More in details,
the PKE scheme follows the Cramer-Shoup paradigm, therefore their tag (more accurately, a
part of their tag) is a Zq element (for a properly chosen q). Unfortunately, the restriction on the
type of the tags implies that the scheme can be instantiated only in special groups G of prime
order q where the DDH assumption simultaneously holds for both Zq and G. Conclusively, the
main drawback is a quite large ciphertext size.

We use bilinear-pairing cryptography to overcome the problem of the tags in Zq. Our starting
point is the structure-preserving CCA-PKE of Camenisch et al. [3]. Briefly, their PKE scheme is
based on the Cramer-Shoup paradigm, with the main twist of performing the validity check in
GT . This trick allows to move the tags from Zq to the source group. We give a brief description
of the ideas underlying our PKE scheme. We use the implicit notation of Escala et al. [15], that
uses additive notation for groups and where elements in Gi, are denoted as [a]i := aPi where
Pi is a generator for Gi. The PKE scheme of [3] uses Type-1 pairing groups (where G1 = G2)
which are less efficient and secure than Type-3 pairing groups (where no efficient isomorphism
from G2 to G1 is known to exist). As a first step, we convert their scheme to Type-3 pairing
groups; however, for simplicity, in this overview we present the Type-1 version.

Following the blue print of Cramer and Shoup, a ciphertext of the PKE scheme of Camenisch
et al. consists of three elements: a vector [c]1 ∈ G3

1 which we call the instance (for the DLIN
problem described by a matrix [D]1 ∈ G3×2

1), an element [p]1 which we call the payload, and an
element [π]T which we call the hash. Together, the instance and the payload form the tag, that
we denote as [x]1 = [(c>, p)>]1. The hash is, briefly speaking, a tag-based designated-verifier
zero-knowledge proof of the randomness of [c]1 (namely, that [c]1 = [D]1 ·r). The main difference
is that in Cramer-Shoup PKE the tag is computed as a collision-resistant hash of [x]1, while in
our scheme the is the value [x]1 itself. More in details, the public key material consists of [D∗]1 =
[(D>, (a>D)>)>]1, [f>D]T , and [F>D]1, where a, f ∈ Z3

q and F ∈ Z3×4
q are uniformly random,

and the encryption algorithm on message [m]1 computes the tag as [x]1 = [D∗]1 ·r+[(0>,m)>]1,
and the proof of consistency as ([f>D]T + [(F>D)> · x]T) · r, where the addend [(F>D)> · x]T
can be efficiently computed using the pairing. Using the terminology of SPHFs, the hash of the
instance [c]1 and tag [x]1 is produced using the projective hash algorithm which takes as input
the witness r for [c]1 ∈ span([D]), the tag [x]1 and the projection key ([f>D]T , [F

>D]1). The
decryption procedure can re-compute the hash as e(f>[c]1, [1]1) + e([x]1,F

>[c]1), without the
knowledge of the witness r but only using the hash key (f ,F).

To validly re-randomize a ciphertext, the goal would be to compute, using only public in-
formation, a new ciphertext where the tag is of the form [x′] = [D∗](r + r̂) + [(0>,m)>]1
(and therefore the instance is of the form [c′] = [D](r + r̂)) and the hash is of the form
([f>D]T + [(F>D)>x′]T)(r + r̂). However, computing such a re-randomization of the hash is
actually infeasible since the scheme is CCA secure.

To overcome this problem, our idea is to reveal enough information about the secret key so
as to allow re-randomizability while keeping the scheme secure. To this end, our first observation
is to rewrite the equation defining the re-randomized hash considering what we know about x′.
Specifically, we use the fact that (F>D)>x′ = (F>D)>(x + D∗r̂) = (F>D)>x + (F>D)> D∗r̂.

7

So the re-randomized hash can be decomposed in three addends as:

[f>D + (F>D)>x]T (r + r̂) + [(F>D)>(D∗r̂)]T r̂ + [(F>D)>(D∗r̂)]T r

Notice that the first and the second addends can be easily computed knowing the randomizer
r̂, the hash [π]T and thanks to the pairing function. So only the third addend is missing.

The second key observation is that we can include the value [FD∗]1 in the public key. It is
easy to check that, due to the bilinearity of the pairing function, we can compute the missing
part as a function of tag x, the randomizer r̂ and this extra piece of information. The third
addend can be rewritten as:

[(F>D)>(D∗r̂)]T r = [D>FD∗r̂]T r = [(r>D>)(FD∗)r̂]T = [x>(FD∗r̂)]T

(The last equation can be computed using the pairing e ([x]1, [FD∗]̂r).) However, at first look,
it is not clear why the scheme should still be secure. To understand it, let us strip away all the
computational pieces of the scheme, keeping only the information-theoretic core. In a nutshell,
the (one-time simulation) soundness property of the hash boils down to the fact that the function
f(x) = f + F · x is pair-wise independent, meaning that, with knowledge of f(x) one cannot
predict f(x′) for x 6= x′ better than guessing it. However, once we publish the value FD∗ we
lose this property. Indeed, given f(x) and FD∗, now we can easily compute the function f over
all the points in the affine space {x′ | x′ = x + D∗r, r ∈ Z2

q}. On one hand, this is good as it
allows us to re-randomize. On the other hand, we should prove that one cannot do more than
this honest manipulation. Our main technical lemma shows that for any x′ outside this affine
space we still have pair-wise independence, i.e., the value f(x′) is unpredictable.

In Appendix D, we abstract the re-randomization procedure in the framework of malleable
SPHF [9] with tags. Specifically, we define three re-randomization algorithms: the first re-
randomizes the instance [c], computing [c]+[D] · r̂; the second re-randomizes the tag computing
[x] + [D∗] · r̂ (notice that, in the specific case of our Type-1 pairing construction, the instance
and the tag “overlap”, but in general, they could be unrelated); the third, taking as input the
randomness used by the first two and the projection key, can re-randomize the hash value to
be correct with respect to the re-randomized instance and tag.

2 Preliminaries and Definitions

A function is negligible in λ if it vanishes faster than the inverse of any polynomial in λ, we
write f(λ) ∈ negl(λ) when f is negligible in λ. An asymmetric bilinear group is a tuple G is a
tuple (q,G1,G2,GT , e,P1,P2), where G1,G2 and GT are groups of prime order q, the elements
P1,P2 are generators of G1,G2 respectively, e : G1 × G2 → GT is an efficiently computable,
non-degenerate bilinear map, and there is no efficiently computable isomorphism between G1

and G2. Let GGen be some probabilistic polynomial time algorithm which on input 1λ, where
λ is the security parameter returns a description of an asymmetric bilinear group G. Elements
in Gi, are denoted in implicit notation as [a]i := aPi, where i ∈ {1, 2, T} and PT := e(P1,P2).
Every element in Gi can be written as [a]i for some a ∈ Zq, but note that given [a]i, a ∈ Zq is in
general hard to compute (discrete logarithm problem). Given a, b ∈ Zq we distinguish between
[ab]i, namely the group element whose discrete logarithm base Pi is ab, and [a]i · b, namely the
execution of the multiplication of [a]i and b, and [a]1 · [b]2 = [a · b]T , namely the execution of
a pairing between [a]1 and [b]2. Vectors and matrices are denoted in boldface. We extend the
pairing operation to vectors and matrices as e([A]1, [B]2) = [A> · B]T . span(A) denotes the
linear span of the columns of A. Given a set of vectors V in some vector space over Zq, span(V)
denotes its linear span.

8

Experiment ExpRCCA
A,PKE(λ):

prm← Setup(1λ), b∗ ← $ {0, 1}
(pk, sk)← KGen(prm)

(M0, M1)← ADec(sk,·)(pk)
C← Enc(pk, Mb∗)

b′ ← ADec�(sk,·)(pk, C)
return (b′ = b∗)

Oracle Dec�(sk, ·):
Upon input C;
M′ ← Dec(sk, C);
if M′ ∈ {M0, M1} then output �
else output M′

Fig. 1: The RCCA Security Experiment.

Let `, k be positive integers. We call D`,k a matrix distribution if it outputs (in PPT time,
with overwhelming probability) matrices in Z`×kq . We define Dk := Dk+1,k. Our results will be
proven secure under the following decisional assumption in Gγ , for some γ ∈ {1, 2}.

Definition 1 (Matrix Decisional Diffie-Hellman Assumption in Gγ, [15]). The D`,k-
MDDH assumption holds if for all non-uniform PPT adversaries A,

|Pr [A(G, [A]γ , [Aw]γ) = 1]− Pr [A(G, [A]γ , [z]γ) = 1]| ∈ negl(λ),

where the probability is taken over G = (q,G1,G2,GT , e,P1,P2) ← GGen(1λ), A ← D`,k,w ←
Zkq , [z]γ ← G`

γ and the coin tosses of adversary A.

2.1 Re-randomizable RCCA PKE

A re-randomizable PKE (Rand-PKE) scheme PKE is a tuple of five algorithms:

Setup(1λ) upon input the security parameter λ produces public parameters prm, which include
the description of the message and ciphertext space M, C.
KGen(prm) upon input the parameters prm, outputs a key pair (pk, sk).

Enc(pk, M) upon inputs a public key pk and a message M ∈M, outputs a ciphertext C ∈ C.
Dec(pk, sk, C) upon input the secret key sk and a ciphertext C, outputs a message M ∈M or an
error symbol ⊥.

Rand(pk, C) upon inputs a public key pk and a ciphertext C, outputs another ciphertext C′.

The RCCA security notion is formalized with a security experiment similar to the CCA
security one except that in RCCA the decryption oracle (called the guarded decryption oracle)
can be queried on any ciphertext and, when decryption leads to one of the challenge messages
M0, M1, it answers with a special symbol � (meaning “same”).

Definition 2 (Replayable CCA Security, [7]). Consider the experiment ExpRCCA in Fig. 1,
with parameters λ, an adversary A, and a PKE scheme PKE. We say that PKE is indistinguish-
able secure under replayable chosen-ciphertext attacks (RCCA-secure) for any PPT adversary
A:

AdvRCCA
A,PKE(λ) :=

∣∣∣∣Pr
[
ExpRCCA

A,PKE(λ) = 1
]
− 1

2

∣∣∣∣ ∈ negl(λ).

Definition 3 (Perfect Re-randomizability). We say that PKE is perfectly re-randomizable
(Re-Rand, for short) if the following three conditions are met:

1. (Indistinghuishability) For any λ ∈ N, any prm← Setup(1λ), any (pk, sk)← KGen(prm, 1`),
for any M ∈M and any C ∈ Enc(pk, M) the following two distributions are identical

C0 ←$ Enc(pk, M) and C1 ←$ Rand(pk, C);

9

2. (Correctness) For any λ ∈ N, any prm ← Setup(1λ), any (pk, sk) ← KGen(prm, 1`), for
any (possibly malicious) ciphertext C and every C′ ← $ Rand(pk, C) it holds

Dec(sk, C′) = Dec(sk, C).

3. (Tightness of Decryption) For any (possibly unbounded) adversary A and any sequence
of parameters {prmλ ← Init(1λ)}λ∈N the following holds:

Pr

[
C 6∈ Enc(pk, M) ∧ Dec(sk, C) = M 6= ⊥ :

(pk, sk)← $ KGen(prmλ)

C← A(pk)

]
∈ negl(λ).

The last condition, coupled with the first one, implies that for any (possibly malicious)
ciphertext that decrypts correctly the distribution of the re-randomized ciphertext and a fresh
ciphertext are statistically close. This stronger property is particularly useful in applications
where we need to re-randomize adversarially chosen ciphertexts.

The condition 3 is similar to the notion of “tidiness” of Namprempre, Rogaway and Shrimp-
ton [37]. There are some minor differences related to the fact that we model public key (proba-
bilistic) encryption and we leave the possibility that there may exist a negligible fraction of non
tight ciphertexts. The last condition, coupled with the first one, implies that for any (possibly
malicious) ciphertext that decrypts correctly the distribution of the re-randomized ciphertext
and a fresh ciphertext are statistically close. This stronger property is particularly useful in
applications, like our Mix-Net of Sec. 6, where we need to re-randomize adversarially chosen
ciphertexts.

Definition 4 (Public Verifiability). PKE = (Setup,KGen,Enc,Dec,Rand) is a public key
scheme with publicly verifiable ciphertexts if there is a deterministic algorithm Ver which, on
input (pk, C) outputs an error symbol ⊥ whenever Dec(pk, sk, C) = ⊥, else it outputs valid.

2.2 Malleable NIZKs

Recall that a non-interactive zero-knowledge proof system (NIZK) is a tuple (Init,P,V) of PPT
algorithms. Briefly, the algorithm Init upon input group parameters outputs a common reference
string and, possibly, trapdoor information (we will consider algorithms that outputs a trapdoor
tpe for extraction and a trapdoor tps for simulation). We use the definitional framework of Chase
et al. [8] for malleable proof systems. For simplicity of the exposition we consider only the unary
case for transformations (see the aforementioned paper for more details). Let T = (Tx, Tr) be a
pair of efficiently computable functions, that we refer as a transformation.

Definition 5 (Admissible transformations, [8]). An efficient relation R is closed under a
transformation T = (Tx, Tw) if for any (x,w) ∈ R the pair (Tx(x), Tw(w)) ∈ R. If R is closed
under T then we say that T is an admissible for R. Let T be a set of transformations, if for
every T ∈ T , T is admissible for R, then T is allowable set of transformations.

We are ready to define malleable NIZK proof systems.

Definition 6 (Malleable NIZK, [8]). Let NIZK = (Init,P,V) be a NIZK for a relation R.
Let T be an allowable set of transformations for R. The proof system is malleable with respect
to T if there exists an PPT algorithm ZKEval that on input (crs, T, (x, π)), where T ∈ T and
V(crs, x, π) = 1 outputs a valid proof π′ for the statement x′ = Tx(x).

We would like the property that two NIZK proofs where one is derived from the other cannot
be linked. This is formalized with the notion of derivation privacy.

10

Expder-priv
A,NIZK:

prmG ← $ SetupG(1λ); b∗ ← $ {0, 1};
(crs, tpe, tps)← Init(prmG);
(x,w, π, T)← A(crs, tps); Assert V(crs, x, π) = 1;
If b∗ = 0 then π′ ← $ P(crs, Tx(x), Tw(w));
else π′ ← $ ZKEval(crs, π, T);
b← A(π′);
Output b = b∗.

Fig. 2: The security experiments for the derivation privacy.

Definition 7. Let NIZK = (Init,P,V,ZKEval) be a malleable NIZK argument for a relation
R and an allowable set of transformations T . We say that NIZK is derivation private if for
any PPT adversary A we have that

Adv
der-priv
A,NIZK(λ) :=

∣∣∣Pr
[
Exp

der-priv
A,NIZK(1λ) = 1

]
− 1

2

∣∣∣ ∈ negl(λ)

where Expder-priv is the game described in Fig. 2. Moreover we say that NIZK is perfectly
derivation private (resp. statistically derivation private) when for any (possibly unbounded)
adversary the advantage above is 0 (resp. negligible).

Finally, we assume that an adversary cannot find a verifying proof for a valid statement which
is not in the support of the proof generated by the proving algorithm (see Def. 16 in Appendix
F). We notice that this property is true for both GS proof systems and for quasi-adaptive proof
system of Kiltz and Wee [33]. In particular, for GS proofs, for any commitment to the witness,
the prover generates a proof that is uniformly distributed over the set of all the possible valid
proofs. On the other hand, the proofs of Kiltz and Wee are unique, therefore the condition is
trivially true.

3 Our Rand-RCCA PKE scheme

We present our scheme in Fig. 3. We refer to the introduction for an informal exposition of our
techniques. We notice that the check in the decryption procedure can be efficiently computed
using the pairing function and the knowledge of f ,F,g,G. In the next paragraphs we first show
correctness of the scheme, secondly, we give an information-theoretic lemma which is the basic
core of the security of our PKE scheme, then we proceed with perfect re-randomizability and
the RCCA-security of the scheme.

Correctness of decryption. For correctness of decryption, it is easy to see that for a honestly
generated ciphertext ([x]1, [v]2, [π]T)← $ Enc(pk, [M]1), the first line of decryption [p]1 − [a>u]1
yields [M]1. Hence, we are left with showing that the test [π]T = [(f + Fv)>u]T + [(g + Gx)>v]T
is satisfied:

π = π1 + π2 = (f>D)r + (F>Dr)>v + (g>E)s + x>(G>E)s

= f>u + u>Fv + g>v + x>G>v

= (f + Fv)>u + (g + Gx)>v (1)

Before analyzing the perfect re-randomizability and RCCA security of the scheme we state
and prove a powerful information-theoretic lemma. Very informally speaking, the lemma proves
that the smooth projective hash proof system at the core of our scheme remains sound even
if the adversary gets to see a proof for an instance of its choice. As we want to allow for re-
randomization, we relax the notion of soundness by requiring that the instance forged by the
adversary does not lie in the set of possible re-randomizations of its query.

11

Setup(1λ):

G ← $ GGen(1λ) where
G = (q,G1,G2,GT , e,P1,P2);
M = G1;

C = Gk+2
1 ×Gk+1

2 ×GT ;
Output prm = (G,M, C).

KGen(prm):
Sample D,E← $ Dk;

Sample a, f ,g← $ Zk+1
q ;

F← $ Zk+1×k+1
q and G← $ Zk+1×k+2

q ;

Set D∗ = (D>, (a>D)>)>;
Set sk = (a, f ,g,F,G) and

Set pk = ([D]1, [E]2, [a
>D]1, [f

>D]T ,

[F>D]1, [g
>E]T , [G

>E]2, [GD∗]1, [FE]2);
Output (pk, sk).

Enc(pk, [M]1):

Sample r, s← $ Zkq ;

[u]1 ← [D]1 · r, [p]1 ← [a>D]1 · r + [M]1;

[x]1 ← ([u>]1, [p]1)>;
[v]2 ← [E]2 · s;
[π1]T = [f>D]T · r + e([F>D]1 · r, [v]2);

[π2]T = [g>E]T · s + e([x]1, [G
>E]2 · s);

Set π = π1 + π2;
Output C = ([x]1, [v]2, [π]T);

Dec(sk, C):
Parse C = ([x]1, [v]2, π);

parse [x>]1 = ([u>]1, [p]1);

set [M]1 ← [p]1 − [a>u]1;

set [π1]T ← [(f + Fv)>u]T ;

set [π2]T ← [(g + Gx)>v]T ;
If π 6= π1 + π2 then output ⊥
else output [M]1.

Rand(pk, C):

Parse C = ([x]1, [v]2, [π]T), [x>]1 = ([u>]1, [p]1);

Sample r̂, ŝ← $ Zkq
[x̂]1 ← [x]1 + [D∗]1 · r̂;
[v̂]2 ← [v]2 + [E]2 · ŝ;
[π̂1]T = [f>D]T · r̂ + e([F>D]1 · r̂, [v̂]2) + e([u]1, [FE]2 · ŝ);
[π̂2]T = [g>E]T · ŝ + e([x̂]1, [G

>E]2 · ŝ) + e([GD∗]1 · r̂, [v]2);
Output the ciphertext Ĉ = ([x̂]1, [v̂]2, [π̂]T), with [π̂]T ← [π]T + [π̂1]T + [π̂2]T .

Fig. 3: Our Rand-RCCA encryption scheme PKE1 based on the Dk-MDDH assumption for
k ∈ N∗.

Lemma 1. Let k be a positive integer. For any matrices D ∈ Zk+1×k
q ,E ∈ Zk+1×k

q and any
(possibly unbounded) adversary A:

Pr

 u 6∈ span(D)

(v − v∗) 6∈ span(E)

z = (f + Fv)>u

∣∣∣∣∣∣∣
f ← $ Zk+1

q ,F← $ Zk+1×k+1
q ;

(z,u,v)← $ AO(·)(D,E,D>f ,D>F,FE)

 ≤ 1/q,

where the adversary outputs a single query v∗ to O(·) which returns f + F · v∗.

Proof. Let K =
(
f , F

)
∈ Zk+1×k+2

q . We can rewrite the information that the adversary sees

about f ,F in matrix form:(
D,E,D>f ,D>F,FE, f + F · v∗

)
=

(
D,E,D>K,K

(
0

E

)
,K

(
1

v∗

))
.

We now have to argue that z = u>K

(
1

v

)
is independent of the adversary’s view when u 6∈

span(D) and (v − v∗) 6∈ span(E). Without loss of generality we assume the matrices D,E
to be full rank. Otherwise this means there is a redundancy in the information provided to
the adversary and this clearly does not give him more chances of being successful. Define the
following matrices:

D̃ =
(
D, u

)
∈ Zk+1×k+1

q , Ẽ =

(
0, 1, 1

E, v∗, v

)
∈ Zk+2×k+2

q .

12

By the condition that u /∈ span(D) and (v − v∗) 6∈ span(E), D̃ and Ẽ are invertible matrices.

Let us consider the matrix Z = D̃
>

KẼ ∈ Zk+1×k+2
q and the information that the adversary

has on this matrix. Note that for zk+1,k+2, namely the term in last row and last column of Z,
the following holds:

zk+1,k+2 = u>K

(
1

v

)
= z.

Since the view of the adversary contains invertible matrix Ẽ, knowledge of D>K (in the view
of the adversary) is equivalent to knowledge of D>KẼ, which are the first k rows of Z.

Similarly, let Ê be the first k + 1 columns of Ẽ, since D̃ is invertible and is known by the

adversary, knowledge of KÊ (in the view of the adversary) is equivalent to knowledge of D̃
>

KÊ,
the first k+1 columns of Z. Therefore, the view of the adversary includes all the matrix Z except
for zk+1×k+2.

On the other hand, since D̃ and Ẽ are invertible matrices, if we see Z = D̃
>

KẼ ∈ Zk+1×k+2
q

as a system of equations with unknown K, there exists a unique solution K for any choice of

Z, namely, K = (D̃
>

)−1ZẼ
−1

.
Therefore, from the point of view of the adversary, every value of zk+1×k+2 ∈ Zq is equally

likely, since K← $ Zk+1×k+2
q is sampled uniformly at random. This concludes the proof.

Corollary 1. Let k be a positive integer. For any matrices D ∈ Zk+1×k
q ,E ∈ Zk+1×k

q and any
(possibly unbounded) adversary A:

Pr

[
u 6∈ span(D)

z = (f + Fv)>u

∣∣∣∣∣ f ← $ Zk+1
q ,F← $ Zk+1×k+1

q ;

(z,u,v)← $ A(D,E,D>f ,D>F,FE)

]
≤ 1/q.

The proof of the corollary is trivial, for any adversary A that does not make oracle queries, we
can consider an adversary A′ that first receives the output of A and then makes an oracle query
for v∗ such that v − v∗ 6∈ span(E).

Perfect re-randomizability.
Next, we prove that the scheme has perfect re-randomizability. First, we focus on property

(1) which says that the re-randomization of a honest encryption is identically distributed to a
fresh encryption.

Let C = ([x]1, [v]2, [π]T) be an encryption of [M]1 with randomness fixed to r, s, and let
Ĉ = ([x̂]1, [v̂]2, [π̂]T) ← $ Rand(pk, C) be its re-randomization with randomness r̂, ŝ. We show
that Ĉ is identically distributed to a fresh encryption of [M]1 with randomness (r+ r̂) and (s+ ŝ).
(Notice that for any r and s, the random variables (r + r̂), (s + ŝ) are uniformly distributed.)

It is straightforward to verify that this holds for ([x̂]1, [v̂]2), i.e., x̂ = D∗(r + r̂) + (0>, M)>

and v̂ = E(s + ŝ). We show that also π̂ is correctly distributed:

[π̂]T = [f>D]T (r + r̂) + e([F>D]1(r + r̂), [v̂]2) + [g>E]T (s + ŝ) + e([x̂]1, [G
>E]2(s + ŝ)) (2)

Let u (resp. û) be the first k + 1 elements of x (resp. x̂).
Notice that by the construction of π̂ in Rand, of π1 and π2 in Enc (with the alternative

expression proven in (1)), and of π̂1 and π̂2 in Rand we have

π̂ = π1 + π2 + π̂1 + π̂2

= (f + Fv)>u + (g + Gx)>v + π̂1 + π̂2

= (f + Fv)>u + (g + Gx)>v + f>Dr̂ + (F>D · r̂)>v̂ + u>FEŝ+

g>Eŝ + x̂>G>Eŝ + (GD∗r̂)>v.

13

After grouping common terms and by using the definition of x̂, û, v̂ in Rand, we can rewrite the
above equation as

= f>(u + Dr̂) + (F(v + FEŝ))>u + (g + G(x + D∗r̂))>v + (Fv̂)>Dr̂ + (g + Gx̂)>Eŝ

= f>û + (Fv̂)>u + (g + Gx̂)>v + (Fv̂)>Dr̂ + (g + Gx̂)>Eŝ

= (f + Fv̂)>û + (g + Gx̂)>v̂.

Finally, by an argument analogous to that proven in (1) we obtain that equation (2) holds as
desired.

Secondly, we show that our algorithm Rand satisfies the second property of Def. 3, namely
that the outcome of decryption is preserved. Let C = ([x]1, [v]2, [π]T), and let Ĉ = ([x̂]1, [v̂]2, [π̂]T)←
$ Rand(pk, C) be its re-randomization with randomness r̂, ŝ. First, notice that Rand adds to x
an encryption of [0]1, therefore if the first line of Dec(sk, C) computes [M]1, the same holds in
Dec(sk, Ĉ).

Second, if C is valid, then π = (f + Fv)>u + (g + Gx)>v and by the same proof given
above, we have that π̂ = (f + Fv̂)>û + (g + Gx̂)>v̂. Hence, π̂ passes the test and thus Ĉ is also
valid and Dec(sk, Ĉ) = Dec(sk, C). Therefore, we are left with showing that if Dec(sk, C) = ⊥
then Dec(sk, Ĉ) outputs ⊥ as well. Assume by contradiction that Dec(sk, Ĉ) 6= ⊥, that is π̂ =
(f + Fv̂)>û + (g + Gx̂)>v̂. For the same proof given above (going backward on the equations)
we obtain that π = (f +Fv)>u+(g+Gx)>v, and thus Dec(sk, C) 6= ⊥, which is a contradiction.

Lastly, we show the third property of Def. 3. We reduce to the experiment in the Corollary 1.
Consider an adversary A that on input pk, produces a ciphertext C such the Dec(sk, C) 6= ⊥
and C 6∈ Cpk. In particular, the second property implies that either (1) it does not exist r
such that u = Dr or (2) it does not exists s such that v = Es. Let us suppose that (1)
occurs (an analogous argument holds for (2)). Then since the ciphertext decrypts we have that
π = (f + Fv)>u + (g + Gx)>v, therefore (π − (g + Gx)>v,u,v) is a valid answer for the
experiment in Corollary 1. Specifically, we can consider an adversary A′ for the experiment of
the corollary that samples all the secret key material, with exception of D,E, f>D,F>D,FE
and set the public key accordingly. In particular, A′ has full knowledge of the vector g and the
matrix G. The adversary A′ forwards the public key pk to A and then receives C. From such
ciphertext and with the knowledge of g,G it can compute its guess.

Security. We prove that the security of the scheme reduces to the Dk-MDDH assumption.
Below we state the main theorem:

Theorem 1. For any matrix distribution Dk such that the Dk-MDDH assumption holds for
the groups G1 and G2 generated by GGen, the Rand-PKE scheme PKE1 described above is
RCCA-secure.

Proof. We start by describing a sequence of hybrid games. For readability purposes, we underline
the main differences between each consecutive hybrid. In hybrids H0 and from H3 until H7 we
progressively change the way the decryption procedure works. In the description of the games,
the changes correpond to the underlined formulae. We summarize the main changes in Fig. 4.

Hybrid H0. This hybrid experiment is equivalent to the RCCA experiment described in Fig. 1
but the oracle Dec� is instantiated with a slightly different decryption procedure. Decryption
proceeds exactly as in the description of the PKE scheme, except that, before setting each
variable M, π1, π2 it additionally checks if the variable was not set already. For future reference,
we label these commands as the decryption rule (*).

Notice that, in this hybrid, this change is merely syntactical, as at each invocation of the
decryption procedure all the three variables are unset. The hybrid H0 is equivalent to the
experiment ExpRCCA

A,PKE(λ) of Fig. 1.

14

Procedure Dec∗(sk, C):

Parse C = ([x]1, [v]2, [π]T) and [x>]1 = ([u>]1, [p]1)
(i) If u ∈ span(D), let u = Dr then

[M]1 ← [p− a>Dr]1;

[π1]T ← [(f>D + v>F>D)r]T ;
(ii) If v ∈ span(E), let v = Es then

[π2]T ← [(g>0 E + x>G>E)s]T ;
(iii) If u 6∈ span(D) and (v − v∗ 6∈ span(E) or v∗ unset) then output ⊥.
(iv) If v 6∈ span(E) and (x− x∗ 6∈ span(D∗) or u∗ unset) then output ⊥.
(v) If x− x∗ ∈ span(D∗) and v − v∗ ∈ span(E) then

M← �;
[π1]T ← [π∗]T + [(f>D + ṽ>F>D)x̃]T
[π2]T ← [(g>0 E + x̃>G>E)x̃]T

(*) If [M]1 is unset set [M]1 ← [p]1 − a>[u];

(*) If [π1]T is unset set [π1]T ← [(f + Fv)>u]T ;

(*) If [π2]T is unset set [π2]T ← [(g0 + Gx)>v]T ;
If [π]T = [π1]T + [π2]T output M else ⊥.

Fig. 4: The decryption procedure in the hybrids experiment. The decryption procedure of the hybrid H0 executes
only the rules (*) and the last decryption check. The decryption procedure of the hybrid H3 additionally executes
(i) and (ii). The decryption procedure of the hybrid H4 additionally executes (iii). The decryption procedure of
the hybrid H5 additionally executes (iv). The decryption procedure of the hybrid H6 additionally executes (v).
The decryption procedure of the hybrid H7 stops to execute the rules (*).

Hybrid H1. The hybrid H1 is the same as H0 but it computes the challenge ciphertext C∗ =
([x∗]1, [v

∗]2, [π
∗]T) by using the secret key. Specifically:

[u∗]1 ← [D]1 · r∗, [p∗]1 ← a> · [u∗]1 + [Mb∗]1 where r∗ ←$ Zkq
[v∗]2 ← [E]2 · s∗ where s∗ ←$ Zkq
[π∗1]T ← e([u∗]1, [f]2 + F · [v∗]2),
[π∗2]T ← e([g]1 + G · [x∗]1, [v∗]2),

where x∗ is ((u∗)>, p∗)> and π∗ = π∗1 + π∗2.
Notice that [π∗1]T and [π∗2]T can be efficiently computed using the secret key and the pairing

function. The only differences introduced are in the way we compute [p∗]1 and [π∗]T . However,
notice that such differences are only syntactical, as, by the correctness of the scheme, we compute
exactly the same values the hybrid H0 would compute.

Hybrid H2. The hybrid H2 is the same as H1 but the challenger, upon challenge mes-
sages [M0]1, [M1]1 ∈ G1, computes the challenge ciphertext C∗ = ([x∗]1, [v

∗]2, [π
∗]T) where x∗

is ((u∗)>, p∗)> by sampling :

u∗ ←$ Zk+1
q \ span(D) v∗ ←$ Zk+1

q \ span(E).

The hybrids H1 and H2 are computationally indistinguishable. This follows by applying the
Dk-MDDH Assumption on [D,u∗]1 in G1 and [E,v∗]2 in G2, respectively, and then a standard
statistical argument to show that sampling u∗ uniformly at random in Zk+1

q is statistically close

to sampling it at random in Zk+1
q \ span(D). The reduction is straightforward and is omitted.

From now on, we prove that each pair of consecutive hybrids is statistically close. In par-
ticular, this means that the hybrids (and in principle also the adversary) are allowed to run in
unbounded time.

Hybrid H3. The hybrid H3 is the same as H2 but adds the following decryption rules that
upon input a ciphertext ([u]1, [p]1, [v]2, [π]T):

15

(i) If u = Dr for some r ∈ Zkq , then compute

[π1]T ← [(f>D + v>F>D)]T · r [M]1 ← [p]1 − [a>D]1 · r

(ii) If v = Es for some s ∈ Zkq , letting x = (u>, p)>, then compute:

[π2]T ← [(g>E + x>G>E)]T · s

Specifically, in the first rule the decryption of M and π1 are computed using the public key
components [a>D]1, [f

>D]T and [F>D]1 instead of the secret key components a, f ,F for all the
ciphertexts with u ∈ span(D). Recall that this strategy is not efficient, but it is possible because
the simulator does not need to run in polynomial time (since we want to argue the games are
statistically close). If v = Es, then by the second rule, the hybrid computes the proof π2 using
only the components [g>E]T and [G>E]2 of the public key.

We notice that, again by correctness of the PKE scheme, the computation of π1, π2 and M

in the hybrids H3 and H2 is equivalent. In particular, let π′1 be the proof as computed in H2,
then [π′1]T = [(f +Fv)>u]T = [(f +Fv)>Dr]T = [(f>D+v>F>D)]T · r = [π1]T . (An equivalent
derivation holds for π2 and M.) The difference is then only syntactical.

Hybrid H4. The hybrid H4 is the same as H3 but adds the following decryption rule, on input
a ciphertext C = ([u]1, [p]1, [v]2, [π]T):

(iii) If u 6∈ span(D) and (v − v∗ 6∈ span(E) or v∗ is unset) then output ⊥.

Recall that the challenge ciphertext is C∗ = ([u∗]1, [p
∗]1, [v

∗]2, [π]T). Notice that we check either if
v−v∗ 6∈ span(E) or v∗ is unset. We do so to handle simultaneously the decryption queries before
and after the challenge ciphertext is computed. In particular, before the challenge ciphertext is
computed the decryption rule simply checks if u 6∈ span(D) (as in the classical Cramer-Shoup
proof strategy).

We show in Lemma 3 that H4 is statistically close to H3. Here we continue describing the
hybrid games.

Hybrid H5. The hybrid H5 is the same as H4 but adds the following decryption rule, on input
a ciphertext C = ([x]1, [v]2, [π]T):

(iv) If v 6∈ span(E) and (x− x∗ 6∈ span(D∗) or x∗ is unset) then output ⊥.

We show in Lemma 7 (Appendix A) that H5 is statistically close to H4. The proof of the
lemma is almost identical to the proof of Lemma 3.

Hybrid H6. The hybrid H6 is the same as H5 but adds the following decryption rule, on input
a ciphertext C = ([x]1, [v]2, [π]T):

(v) If x−x∗ ∈ span(D∗) and v−v∗ ∈ span(E) then let r̃, s̃ be such that x−x∗ = x̃ = Dr̃ and
v − v∗ = ṽ = Es̃, and compute [π1]T , [π2]T as follows:

[π1]T← [π∗]T + [(f>D + ṽ>F>D)x̃]T ,

[π2]T← [(gE + x̃>G>E)ṽ]T ,

This hybrid is equivalent to H5. The conditions of the decryption rule (v) imply that, if the
proof π is correct, then the ciphertext C is a re-randomization of C∗.

Hybrid H7. The hybrid H7 is the same as H6 but its decryption procedure does not execute
the rules (*) introduced in the hybrid H0.

In Lemma 4 we show that H7 and H6 are identically distributed, while in the following we
prove that the challenge bit b∗ is perfectly hidden

in the adversary’s view.

16

Lemma 2. Pr [H7 = 1] = 1
2 .

Proof. We notice that in H7 the decryption procedure does not use the secret key a to perform
the decryption; this can be easily confirmed by inspection of the decryption procedure in Fig. 4.
Notice also that given the value a>D the random variable a> ·u∗ is uniformly distributed. Thus,
both the challenge ciphertext C∗ and the answers of the decryption oracle are independent of
the bit b∗.

Lemma 3. The hybrids H4 and H3 are statistically close.

Proof. We prove the statement with a hybrid argument over the number of decryption queries
of the adversary. Let the hybrid H3,i be the experiment that answers the first i-th oracle queries
as in H4 (namely, considering the decryption rule (iii)) and answers the remaining queries as
in H3. Let QD be the number of decryption queries performed by the adversary A. It is easy to
check that H3,0 ≡ H3 and H3,QD ≡ H4.

On the other hand H3,i and H3,i+1 differ when the (i+1)-th ciphertext C = (([u]1, [p]1) , [v]2, [π]T)
is such that “u 6∈ span(D) and ((v− v∗) 6∈ span(E) or v∗ is unset)”, but the decryption oracle
(as it would be computed in H3) outputs a value different from ⊥. In particular, the latter
implies that the proof [π]T verifies correctly. Let Soundi be such event. To conclude the proof
of the lemma we prove the following proposition. Then a standard union bound gives us that
the statistical distance between H4 and H3 is at most QD/q, which is negligible.

Proposition 1. Pr [Soundi] ≤ 1/q.

Proof. We reduce an adversary A that causes event Soundi to occur into an adversary A′ for the
game of Lemma 1. Namely, we define an adversary A′ for the experiment in the lemma which
internally simulates the experiment H3,i+1 running with the adversary A.

Adversary A′(D,E, f>D,F>D,FE) with oracle access to O:

1. Sample a← $ Zk+1
q ,g← $ Zk+1

q ,G← $ Zk+1×k+2
q .

2. Set the public key as:

pk =

(
[D]1, [E]2, [a

>D]1, [f
>D]T , [F

>D]1,

[g>E]T , [G
>E]2, [GD∗]1, [FE]2

)
as described by the key generation algorithm and set the secret key sk = (a, ·,g, ·,G).

3. Run the adversary A with input the public key pk. Answer the j-th decryption oracle
query with ciphertext C = ([u]1, [p]1, [v]2, [π]T) as follows:

(a) If j ≤ i and u ∈ span(D) compute, let u = Dr:

[M]1 ← [p− a>D · r]1, [π1]T ← [(f>D + v> · F>D)]T · r,
[π2]T ← [(g + G · x)> · v]T

If π = π1 + π2 then answer with [M]1, else anwer ⊥;
(b) If u 6∈ span(D) answer ⊥;
(c) If j = i+ 1 then stop and return (π − (g + Gx)>v,u,v).

4. Eventually, A outputs [M0]1, [M1]1. Sample v∗ ← $ Zk+1
q \ span(E), and sample u∗ ←

$ Zk+1
q \ span(D), query the oracle O with the element v∗ and receive Π = f + F · v∗.

Set p∗ = a>u∗ + Mb∗ and x∗ = ((u∗)>, p∗)>, and:
[π∗]T ←[Π> · u∗ + (g + Gx∗)>v]T (3)

and send to the adversary the challenge ciphertext C∗ = ([c∗]1, [p
∗]1, [v]2, [π

∗]T).

17

5. Answer the j-th decryption oracle query with ciphertext C = ([u]1, [p]1, [v]2, [π]T) as
follows:

(a) If j ≤ i and u ∈ span(D) execute the same as in step 3a.
(b) If j ≤ i and u 6∈ span(D) do as follows:

i. if (v∗ − v) ∈ span(E) let v = v∗ + Eγ, compute

[π1]T ← [(Π + FEγ)>)u]T , [π2]T ← [(g> + Gx)>v]T

if π = π1 + π2 then answer [p− a> · u]1 else answer ⊥.
ii. if (v∗ − v) 6∈ span(E) then output ⊥.

(c) If j = i+ 1 then stop and return (π − (g + Gx)>v,u,v).

We show that the adversary perfectly simulates the hybrid H3,i up to the i-th decryption query.
By inspection, it is easy to check that up to step 3, the simulation is perfect9.

More interestingly, at step 4 the adversary A′ uses its oracle to compute Π = f + Fv∗.
Thanks to this information the adversary can compute the challenge ciphertext exactly as the
hybrid experiment would do as shown in eq. 3. After this step, the adversary A′ can easily
answer the decryption queries whenever j ≤ i and u ∈ span(D) or u 6∈ span(D) and (v∗−v) 6∈
span(E). We show that the answers for the decryption queries where j ≤ i, u 6∈ span(D) and
(v∗ − v) ∈ span(E) are distributed exactly as in the hybrid experiment, in fact:

(Π + FEγ)>u = f>u + (Fv∗)>u + (FEγ)>u

= f>u + (F(v∗ + Eγ))>u

= (f + Fv)>u.

Finally, by definition of Soundi, the adversary A at the (j + 1)-th query outputs a ciphertext
that would correctly decrypt in the hybrid experiment and where u 6∈ span(D) and (v∗ − v) 6∈
span(E) with probability Pr [Soundi]. Since the ciphertext correctly decrypts, it means that
π = (f + Fv)>u + (g + Gx)>v, therefore the output of A′ is a valid guess for the experiment of
Lemma 1. However, the adversary A′ can win with probability at most 1/q, and thus the lemma
follows.

Lemma 4. The hybrids H6 and H7 are identically distributed.

Proof. We prove this lemma by showing that in H6 the decryption procedure never executes the
lines with rules (*). To do this, for any ciphertext queried to the decryption oracle we partition
over all possible cases and show that the decryption procedure used for the oracle queries either
sets the values M, π1, π2 (and thus the rules (*) are not executed) or it stops before reaching
those rules as it outputs ⊥ or �. Let C = ([x]1, [v]2, [π]T) be the ciphertext queried to the oracle,
where [x>]1 = ([u>]1, [p]1). We consider all the possible alternatives:

– u ∈ span(D): notice that in this case, by the rule (i), M and π1 are set;

- v ∈ span(E): notice that in this case, by rule (ii), π2 is also set. Therefore, since in this
branch M, π1, π2 are set, the rules (*) are not executed.

- v /∈ span(E): in this case we enter rule (iv) and thus decryption stops and outputs ⊥. To
see why this rule is entered, notice that either u∗ is unset, or, if it is set, then u∗ /∈ span(D),
and so x− x∗ 6∈ span(D∗).

– u /∈ span(D), in this case the output could be either � or ⊥, more in details:

9 The adversary computes π2 in step 3a as the original decryption procedure would do, but by the modification
in H1 we are assured that this is equivalent.

18

KGen2(prm):
(pk′, sk′)← $ KGen′(prm), crs← Init(prm);
Parse sk′ = (a, f ,F,g,G);
Set sk = (a, crs), pk = (pk′, crs);
Output (pk, sk).

Rand2(pk, C):
Parse C = ([x]1, [v]2, Π),

T ← $ T , (with associated r̂, ŝ ∈ Zkq)
x̂ = x + D∗ · r̂;
v̂ = v + E · ŝ;
Π̂ = ZKEval(crs, T, ([x]1, [v]2), Π);

Output ([x̂]1, [v̂]2, Π̂).

Enc2(pk, [M]1):

r, s← $ Zkq ;
([x]1, [v]2, [π]T)← Enc′(pk, [M]1; r, s);
Π ← $ P(crs, ([x]1, [v]2), ([π]T , r, s));
Output C = ([x]1, [v]2, Π).

Dec2(sk, C):
Parse C = ([x]1, [v]2, Π);
if V(crs, ([x]1, [v]2), Π) = 1

output (−a>, 1) · [x]1;
else output ⊥.

Ver(pk, C) :
Parse C = ([x]1, [v]2, Π);
Output V(crs, ([x]1, [v]2), Π).

Fig. 5: Our publicly-verifiable re-randomizable RCCA encryption scheme PKE2. The NIZK is
for the relation RPKE1 and transformation TPKE1 .

- v∗ is unset: by rule (iii) decryption stops and outputs ⊥.

- v∗ is set and (v − v∗) 6∈ span(E): by rule (iii) decryption outputs ⊥.

- v∗ is set and (v − v∗) ∈ span(E):

- (x − x∗) 6∈ span(D∗): notice that since v∗ 6∈ span(E) then it must be that v 6∈ span(E).
Hence, rule (iv) is entered and decryption outputs ⊥.

- (x − x∗) ∈ span(D∗): rule (v) is entered, decryption outputs �, so M, π1, π2 are set, and
thus the rules (*) are not executed.

4 Our Publicly-Verifiable Rand-RCCA PKE

Here we show that our RCCA scheme from the previous section can be turned into a pub-
licly verifiable one. Very informally, the idea is to append a malleable proof (essentially a GS
proof) that [π]T is well formed. The decryption procedure of the publicly verifiable scheme
can simply check the validity of the proof and then CPA-decrypt the ciphertext [x]1. Let
PKE1 = (KGen1,Enc1,Dec1,Rand1) be the scheme of Sec. 3 and let NIZK = (Init,P,V,ZKEval)
be a malleable NIZK system for membership in the relation defined below:

RPKE1 =
{

([x]1, [v]2), ([π]T , r, s) : [π]T = [(f + Fv)>u + (g + Gx)>v]T

}
,

and with allowable set of transformations:

TPKE1 =

T : ∃r̂, ŝ ∈ Zkq :

Tx([x]1, [v]2) = ([x̂]1, [v̂]2)

Tw([π]T , r, s) = ([π̂]T , r + r̂, s + ŝ)

([x̂]1, [v̂]2, [π̂]T) = Rand1(pk, ([x]1, [v]2, [π]T); r̂, ŝ)

 .

We write T ← $ TPKE1 for the operation that samples the uniquely defined r̂, ŝ associated to
the transformation T . The pv-Rand-PKE scheme PKE2 = (Init,KGen2,Enc2,Dec2,Rand2,Ver)
is described in Fig. 5. We defer the proof of the following theorem in Appendix B.

Theorem 2. If the NIZK is adaptive sound and perfect derivation private then the pv-Rand-
PKE scheme PKE2 described in Fig. 5 is publicly verifiable, perfect re-randomizable and RCCA-
secure.

Malleable NIZK. The equations we would like to prove do not admit Groth-Sahai NIZK
proofs [26], but only NIWI. We overcome this problem by developing a new technique that

19

Exptse-cm
A,Ext,NIZK:

prmG ← $ SetupG(1λ); Set Qw ← ∅;
(crs, tpe, tps)← Init(prmG);

(x, π)← A(crs,R)SIM(); z ← Ext(tpe, x, π,R);
Output 1 if V(crs, x, π) = 1 and either:
(a) z 6= ◦ and ∀w s.t. z = f(w) we have (x,w) 6∈ R or
(b) z = ◦ and ∀x′ ∈ Qx, ∀T ∈ T we have Tx(x) 6= x.

SIM(x,w):
if (x,w) ∈ R then

π ← Sim(tps, x);
Qx ← Qx ∪ {x};

Fig. 6: The security experiments for the NIZK argument system.

extends the class of pairing product equations which admit GS NIZK proofs. This technique is
per se a result of independent interest.

More in detail, we produce an additional commitment to [π]T , using a new commitment type
defined over GT with good bilinear properties. This allows us to construct a NIZK proof that the
ciphertext is valid with perfect completeness and soundness and composable zero-knowledge.
The latter notion refers to the fact that if the common reference string is defined in a “witness
indistinguishable mode”, the proof system is perfect zero-knowledge. By replacing [πT] in the
ciphertext by its commitment, in the witness indistinguishable mode we can simulate a proof
of validity of the ciphertext by setting π = 0 and in an undetectable manner. The proof will be
correctly distributed because of the perfect zero-knowledge property in these modes.

All the details on how to compute the proof are given in Appendix B.1. Beyond GS Proofs,
it also makes use of the QANIZK proof of membership in linear spaces [29,30,33]. The size of
the ciphertexts for the SXDH instantiation of the publicly verifiable scheme is 12|G1|+11|G2|+
4|GT |. The number of pairings for verification is 32 for the GS proof and 14 for the argument
of linear spaces, which can be reduced to 8 + 14 by batch verifying the GS equation using the
techniques of [28].

5 Malleable and True-Simulation Extractable NIZK

In this section we show an application of our Rand-RCCA scheme to build a malleable and true-
simulation extractable NIZK. We start by recalling the notion of true-simulation extractability
and then move to describing our construction.

True-Simulation Extractability. We recall the notion of true-simulation f -extractability (f -
tSE-NIZK, for short) of Dodis et al.[12]. The notion is a weakening of the concept of simulation
extractability where the extractor can compute a function of the witness and the adversary sees
simulated proofs only for true statements. Here, we give a variation of the notion that allows
for re-randomizability (and malleability). Consider the experiment described in Fig. 6, the main
difference respect to the notion of [12], is that the winning condition (b) allows the extractor
to give up and output a special symbol ◦. The restriction is that the extractor can safely do
this without losing the game only when the proof π produced by the adversary is derived from
a simulated proof.

Definition 8. Let f be an efficiently computable function, let NIZK = (Init,P,V) be a NIZK
argument for a relation R, and consider the experiment Exptse-cm described in Fig. 6. We say
that NIZK is true-simulation controlled-malleable f -extractable (f -tSE-cm) iff there exists a
PPT algorithm Ext such that for all PPT A we have that

Advtse−cm
A,Ext,NIZK(λ) := Pr

[
Exptse-cm

A,Ext,NIZK(1λ) = 1
]
∈ negl(λ).

Construction. The construction follows the blueprint of Dodis et al. [12] with the twist that
we use a Rand RCCA-PKE scheme instead of a CCA-PKE scheme. Our compiler works for a

20

Init(prm):
(crs′, tp′s)← Init′(prm);
(pk, sk)← KGen(prm);
crs← (crs′, pk), tpe ← sk,tps ← (pk, tp′s)
Output (crs, tpe, tps).

P(crs, x, w):
C← Enc(pk, f(w); r);
π′ ← P′(crs′, (pk, C, x), (w, r));
Output π = (C, π′).

V(crs, x, π):
Output V′(crs′, (pk, C, x), π′)

ZKEval(crs, T, (x, π)):

Let π = (C, π′), ρ← $ Z`q;
Let T ′ = (ρ, T);
Ĉ← Rand(pk, C; ρ);
π̂′ ← $ ZKEval′(crs′, T ′, (x, π′));
Output (Ĉ, π̂′).

Fig. 7: Our f -tSE-cm NIZK compiler.

special class of tuples, consisting of a function f , an NP relation R and a transformation T ,
that we define below:

Definition 9. A tuple (f,R, T), where f is efficiently computable, R is an NP-relation and T
is an admissible transformation for R, is suitable if:

1. there exists an efficiently computable decision procedure g such that for any (x,w) the func-
tion g(x, f(w)) = 1 if and only if (x,w) ∈ R;

2. For any T ∈ T and any (x,w) ∈ R the transformation of the witness is invariant respect to
the function f , namely f(w) = f(Tw(w)).

The restrictions above still allow for many interesting malleabilities. For example, the condition
(2) clearly applies to re-randomizable NIZKs, as in this case Tw(·) is the identity function.
Condition (1) holds in all those cases where the relation R can be sampled together with a
trapdoor information that allows to compute w from x. The condition (1) applies also to the
NIZKs of [12]. More importantly, the conjunction of (1) and (2) allows to efficiently check the
condition (b) of the security experiment, which makes the tSE-cm NIZK primitive easier to use.

Let PKE = (KGen,Enc,Dec,Rand) be a Rand-RCCA PKE scheme, we additionally assume
there exists an integer ` ∈ N such that the random coins of both the encryption procedure and
the re-randomization procedure are in Z`q and that, for any pk, M, given Rand(pk,Enc(pk, M; ρ0); ρ1) =

Enc(pk, M; ρ0+ρ1) where ρ0, ρ1 ∈ Z`q. Notice that the schemes in Sec. 3 and Sec 4 have this prop-
erty. Let R be a NP relation and T be a set of allowable transformations for the relation R.
Let NIZK′ = (Init′,P′,V′,ZKEval′) be a malleable NIZK argument for R′ with the allowable
set of transformations T ′ as described below:

R′ = {((pk, c, x), (w, ρ)) : (x,w) ∈ R ∧ c = Enc(pk, f(w); ρ)}

T ′ =

{
T ′ : ∃ρ̂, T :

T ′x(pk, c, x) = (pk,Rand(pk, c; ρ̂), Tx(x)),

T ′w(w, ρ) = (Tw(w), ρ+ ρ̂), T ∈ T

}

We also assume that any transformation T ′ ∈ T ′ can be efficiently parsed as a tuple (ρ̂, T) and
viceversa. We define a malleable NIZK argument NIZK = (Init,P,V,ZKEval) for the relation
R with allowable set of transformations T in Fig 7. Notice that the co-domain of the function
f for which we can prove f -tSE soundness is the message space of the underlying Rand-RCCA
PKE scheme. We remark that, although our scheme is presented with a message spaceM = G1,
we could easily extend our construction to encrypt vectors in G`0

1 ×G`1
2 .

Theorem 3. For any suitable (f,R, T) the proof system NIZK is a malleable NIZK for R
with allowable transformations T , and if NIZK′ is perfectly (resp. statistically) derivation
private (Def. 7) and PKE is perfectly re-randomizable (Def. 3) then NIZK is perfectly (resp.
statistically) derivation private.

21

Proof. First we notice that ZKEval is complete. In fact, (f,R, T) is suitable we have that for
any T ∈ T the transformation Tw(·) is invariant respect to the f and therefore the transformed
statement-witness is in the relation R′.

Recall that the adversary A for the derivation privacy of NIZK outputs (x,w, π, T) where
π = (C, π′) is a valid proof of x and T is a allowable transformation for T

We first notice that we can assume that exists M, r such that C ∈ Enc(pk, M; r) by condition
3 of perfect re-randomizability, therefore we can compute, although inefficiently, from C the
randomness r.

Consider an hybrid experiment H1 where once received (x,w, π, T) from the adversary A
we compute r from C and we compute a new proof π′ ← P′(crs′, (pk, Ĉ, x), (w, r + r̂)) where
Ĉ = Rand(pk, C; r̂).

It is easy to see that Exp
der-priv
A,NIZK conditioned on the challenge bit equal to 1 (namely, when

ZKEval is used) and H1 are statiscally close by the statistical derivation privacy of NIZK′. the
reduction B would simply emulate the hybrid outputing ((pk, Ĉ, x), (w, r), T ′ = (T, r̂).

Moreover, we can prove that H1 is distributed equivalently to Exp
der-priv
A,NIZK conditioned on

the challenge bit equal to 0. In fact, the only difference between the two distribution is that in
one case the ciphertext is fresh while in the other case is a re-randomization.

Theorem 4. For any suitable (f,R, T) the proof system NIZK described above is true-simulation
controlled-malleable f -extractable.

We give an intuition for the proof of Theorem 4, which proceeds with a two-steps hybrid
argument. We start with the true-simulation extractability experiment, we can switch to an
experiment where each simulated proof for NIZK contains an encryption of the f(w). This
step can be easily argued using the RCCA security of the scheme. In particular, the guarded
decryption oracle and the suitability of (f,R, T) are necessary to check the winning condition
of the tSE experiment. In the second step, we switch to valid proofs for NIZK′, instead of
simulated proofs, the indistinguishability follows trivially by the zero-knowledge of NIZK′. At
this point we are in an experiment where the proofs provided by the SIM are not simulated,
so the standard adaptive soundness of NIZK′ is sufficient to bound the winning probability of
the adversary.

Proof. We describe both a simulator and an extractor for the tse-cm-NIZK NIZK.

– Let Sim(tps, x) be the simulator that parses tps = (pk, tp′s) and computes C ← $ Enc(pk, ◦)
and π ← Sim′(tp′s, (pk, C, x)) where Sim′ is the simulator of NIZK′.

– Let Ext(tpe, x, π) be the extractor that parses tpe ans sk and π = (C, π′) and outputs
Dec(sk, C).

We consider a sequence of hybrid experiments.

– The first experiment H0 is the Exptse-cm
A,Ext,NIZK, namely, the oracle SIM upon the i-th query

(xi, wi) first checks that (xi, wi) ∈ R and if so it adds xi in Qx and wi in Qw and outputs
Ci ← Enc(pk, ◦) and π′i ← Sim′(tp′s, (pk, Ci, xi)).

– Let H1,j be the same as H0 but where the first j ciphertexts are valid encryption of
f(w). Specifically, the oracle SIM upon the i-th query (xi, wi) if i > j then it behaves
as in H0 otherwise it first checks that (xi, wi) ∈ R and if so adds wi in Qw and outputs
Ci ← Enc(pk, f(wi)) and π′i ← Sim′(tp′s, (pk, Ci, xi)).

– Let H2 be the same as H1,q, where q is the number of queries made by A, but where the proofs
for NIZK′ are not simulated. Specifically, the oracle SIM upon the i-th query (xi, wi) first
checks that (xi, wi) ∈ R and if so adds wi in Qw and outputs Ci ← Enc(pk, f(wi); ri) where
ri ← {0, 1}λ and π′i ← P′(crs′, (pk, Ci, xi), (wi, ri)).

22

Lemma 5. For any j ∈ N, |Pr [H1,j = 1]− Pr [H1,j+1 = 1] | ∈ negl(λ).

Proof. We show a reduction to the RCCA security of the PKE-scheme. Consider an adversary
B for the RCCA-security experiment. The adversary B upon input pk generates the parameter
crs′, tp′s ← Init(prmG) and runs A(crs) where crs = (pk, crs′). At the i-th query (xi, wi) made by
A:

– if i < j, the adversary B returns to the adversary A the values Ci ← Enc(pk, f(wi)) and
π′i ← Sim′(tp′s, (pk, Ci, xi));

– if i = j the adversary B sends the challenge messages (◦, f(wj)) to its own challenger and
receives C∗, it returns to A the values C∗ and π′j ← Sim′(tp′s, (pk, C

∗, xi));

– If i > j, the adversary B returns to the adversary A the values Ci ← Enc(pk, ◦) and π′i ←
Sim′(tp′s, (pk, Ci, xi));

Eventually, the adversary A outputs a tuple x, π where π = (C, π′), the adversary B forwards C

to its own decryption oracle, let z be the answer from the decryption oracle. First the adversary
B checks that the proof π′ verifies and if not output 0. Secondly, the adversary B if z 6= ◦ then
output 1 if and only if g(x, z, ω) = 0, else it outputs 1 if and only if for any w ∈ Qw we have
g(x, f(w), ω) = 0.

We notice that B runs in polynomial time in λ. We check that B perfectly simulates the
H1,i+b experiment when the challenge bit of the RCCA experiment is equal to b. It is easy to
check that the adversary B perfectly simulates the hybrid experiments until the adversary A
outputs x, π. The hybrids output 1 iff the π′ verifies and either z 6= ◦ and for all w such that
f(w) = z we have that (x,w) 6∈ R (which can be efficiently computable by condition (1) of
Def. 9) or z = ◦ and for all w such that w ∈ Qw we have (x,w) 6∈ R (again, it can be efficiently
computable). Notice that if for any (xi, wi) queried to SIM if g(x, Tw(wi), ω) = 0, then for any
T ∈ T , Tx(xi) 6= x. In fact, 1 = g(Tx(xi), f(Tw(wi)), ω) = g(T (xi), f(wi), ω) 6= g(x, f(wi), ω),
and thus T (xi) 6= x. This concludes the proof of the lemma.

Instantiation. For any suitable (f,R, T) where the co-domain of f is G1, we can instantiate the
tSE-cm NIZK scheme with the pv-Rand-RCCA Scheme PKE2. The public verifiability enables
for a simpler malleable NIZK proof for the associated R′. In fact, we can subdivide the proof
in: (1) a malleable GS proof Π1 for R with transformations T , in particular Π1 contains GS
commitments [cw]1 of the witness; (2) a malleable GS proof Π2 to prove that commitments [cw]1
and [cw′]1 open to w,w′ an w′ = f(w); (3) a malleable proof Π3 to prove w′ = (−aT , 1) · [x],
in particular, from the linearity of GS commitments the relation for the last proof is a linear
subspace relationship. The verification checks the proofs Π1, Π2, Π3 and verifies the validity of
the ciphertext C.

For the case where f is the identity function, namely, re-randomizable NIZK, the proof Π2

is trivial as we can set [cw]1 = [cw′]1. The overhead in proof size between a adaptive sound
re-randomizable GS proof for R based on SXDH and an tSE-cm NIZK based on SXDH is equal
to 13|G1|+ 11|G2|+ 4|GT |.

6 An UC-Secure Mix-Net

In this section we propose an application of pv-Rand-PKE schemes with RCCA security to
Mix-Net protocols. Our starting point is a recent work of Faonio and Fiore [16] who build an
UC-secure Optimistic Mix-Net using a new paradigm that relies on a specific re-randomizable
and RCCA-secure PKE scheme. Here we extend the main idea of [16] and use the power of
public verifiability in order to obtain a full fledged Mix-Net protocol (not only optimistic secure).

23

As mentioned in the introduction, our new protocol enjoys an interesting set of features that
compare well with state of the art solutions.

The Universal Composability model. We review some basic notions of the Universal Com-
posability model and the extension to auditable protocols of Faonio and Fiore. In a nutshell, a
protocol Π UC-realizes an ideal functionality F with setup assumption G if there exists a PPT
simulator S such that no PPT environment Z can distinguish an execution of the protocols
Π which can interact with the setup assumption G from a joint execution of the simulator S
with the ideal functionality F . The environment Z provides the inputs to all the parties of the
protocols, decides which party to corrupt (we consider static corruption, where the environ-
ment decides the corrupted parties before the protocol starts), and schedules the order of the
messages in the networks. When specifying an ideal functionality, we use the “delayed outputs”
terminology of Canetti [4]. Namely, when a functionality F sends a public delayed output M
to party PPi we mean that M is first sent to the simulator and then forwarded to PPi only
after acknowledgement by the simulator. Faonio and Fiore consider a variation of the UC model
where, roughly speaking, a bulletin board functionality BB acts as global setup assumption.
More in details, the bulletin board is present in both the ideal world and the real world, so that
the simulator does not have any advantage over the real-world adversary and all the parties of
the protocol can register their message on the board. An auditable protocol is a tuple (Π,Audit)
where Π is a protocol and Audit is a PPT algorithm. The model additionally includes an exter-
nal off-line party, the auditor. The auditor is an incorruptible party which, whenever is called on
an input y′, runs the audit algorithm Audit on this input and the transcript written in the bul-
letin boards and forwards its output to the environment. In the ideal world, the auditor always
replies according to the output of the ideal functionality, for example, if the ideal functionality
has output y and the auditor is called on input y′, the auditor replies with valid if and only if
y = y′.

Defining Mix-Net Protocols. Our protocol UC-realizes the ideal functionality FMix described
in Fig. 8 with setup assumptions: the ideal functionality FTDec for threshold decryption of our
PKE scheme and the ideal functionality for a common-reference string FCRS (and the bulletin
board of the auditable framework of Faonio and Fiore). The functionality FMix (similarly to
[16]) is slightly weaker than the one considered by Wikström in [44,45]. The difference is that
the corrupted senders can replace their inputs, however, they loose this ability when the first
honest mixer sends its message mix. On the other hand, in the ideal functionality of Wikström,
the senders can cast their messages only during the inputs submission phase.

Functionality FMix:

The functionality has n sender parties PSi and m mixer parties PMi :

Input: On message (input, Mi) from PSi (or the adversary if PSi is corrupted) register the index i in the list
of the senders and register the entry (i, Mi) in the database of the inputs. Notify the adversary that the
sender PSi has sent its input.

Mix: On message mix from PMi (or the adversary if PMi is corrupted), register the index i in the list of the
mixers and notify the adversary.

Delivery: If all the senders are in the list of the senders and at least one honest mixer is in the list of the
mixers send a public delayed output O ← Sort(〈Mj〉j∈[n]) to all the mixers.

Fig. 8: Ideal Functionality for Mixing.

Building blocks. The main building blocks of our mix-net construction are:

24

(i) An linear pv-Rand-RCCA PKE scheme PKE . We say that a pv-Rand-RCCA PKE scheme is
linear if there exist a group G (for example G = G1) and parameters `, `′, `′′ ∈ N such that
(1) every key pair (pk, sk) we can parse pk = ([P], p̂k) and sk = (S, ŝk), where [P] ∈ G`×`′′

and S ∈ Z`′×`q , (2) any ciphertext C ∈ C can be parsed as ([y], Ĉ) where [y] ∈ G`, (3) for
any ciphertext C such that Ver(pk, C) = 1 the decryption procedure is linear, i.e., we have
Dec(sk, C) = S · [y] (4) let C′ = Rand(pk, C; r, r) where C′ = ([y′], Ĉ′) be a re-randomization
of C = ([y], Ĉ) and r ∈ Z`′′q then ([y] − [y′]) = [P]r. We notice that both the scheme PKE2
in Sec. 4 and the pv-Rand-RCCA PKE scheme of [34,8] are linear. Indeed, our abstraction is
made to include the three schemes under the same template.

(ii) An All-but-One label-based NIZK. An ABO label-basedNIZKsd = (Initsd,Psd,Vsd) for knowl-
edge of the plaintext of the linear PKE. More in details a ABO label-based NIZK is a NIZK
system with labels where there exists an algorithm ABOInit(prm, τ) which creates a common
reference string crs together with a trapdoor tps such that for any label τ ′ 6= τ the trapdoor
allows for zero-knowledge while for τ the proof system is adaptive sound. A ABO label-based
NIZK in the random-string model can be easily obtained from GS NIZK proof system (c.f.
Appendix ??).

(iii) An adaptive sound NIZK.NIZKmx = (Initmx,Pmx,Vmx) for proving membership in the relation
Rmx = {([P], [y]) : [y] ∈ span([P])}. We recall that GS proof system is in the random-string
model.

(iv) An ideal functionality FTDec for threshold decryption of the pv-Rand-RCCA PKE PKE scheme.
More in details, FTDec (formally defined in Appendix E, Fig 10) takes as parameters the defi-
nition of the PKE scheme and group parameters prm for the key generation. The functionality
initializes a fresh key pair and accepts input of the form (dec, C) from the mixers: when a
mixer sends a message of this kind, we say that the mixer asks for the decryption of C. When
all all the mixers have sent a message of the form (dec, C) the functionality sends a public
delayed output Dec(sk, C): in this case we say that the mixers agreed on the decryption of C.
In Appendix E we show a protocol for the functionality FTDec in the FCRS-hybrid world.

(v) An ideal functionality for the common reference string of the above NIZKs. The functional-
ity initializes m different CRS {crsimx}i=1,...,m, one for each mixer,10 for NIZKmx and a CRS
crssd for NIZKsd. We stress that all the CRSs can be sampled as uniformly random strings
in the real protocol.

Also we recall that our auditable protocol uses a Bulletin Board functionality. We do not mention
it as a “building block” because every auditable protocol, as defined by [16], necessarily needs
a bulletin board as setup assumption.

Our Mix-Net Protocol. Following the design rationale of Faonio and Fiore, given two lists
of ciphertexts L = 〈C1, . . . , Cn〉 and L′ = 〈C′1, . . . , C′n〉, we define the checksum of these lists as
the output of the following procedure:

Procedure CkSum(L,L′):

1. For all j ∈ [n] parse Cj = ([yj], Ĉj) and C′j = ([y′j], Ĉ
′
j);

2. Output
∑

j [yj]− [y′j].

We describe our mix-net protocol Π between n sender parties PSi and m mixer parties PMi

and with resources the ideal functionalities FTDec and FCRS:

10 We could modify our protocol to let the mixers share the same CRS, at the price of requiring NIZKmx be
simulation sound. Since in most applications the number of mixers is small, we go for the simpler option of
one crs per mixer.

25

Inputs Submission. Every sender PSj , with j ∈ [n], encrypts its message Mj by computing
Cj ← Enc(pk, Mj ; r), and creates a NIZK proof of knowledge πsdj ← Psd(crssd, j, (pk, C), (Mj , r))
(the label for the proof is j). The party PSj posts (Cj , π

sd
j) on the bulletin board.

Mix. Once all the senders are done with the previous phase, let L0 = 〈C0,j〉j∈[n] be the list of
ciphertexts they posted on the bulletin board. To simplify the exposition of the result, we
assume that all the NIZK proofs {πsdj }j∈[n] and all the ciphertexts in L0 verify.

For i = 1 to m, the mixer PMi waits for the PMi−1 to complete and does:

1. Sample a permutation τi ← $ Sn;

2. Read from the BB the message (Li−1, πmxi−1) posted by PMi−1 (or read L0 if this is the
first mixer), and parse Li−1 = 〈Ci−1,j〉j∈[n];

3. Build the list Li ← 〈Ci,j〉j∈[n] of shuffled and re-randomized ciphertexts by sampling
randomness rj , rj and computing

Ci,τi(j) ← Rand(pk, Ci−1,j ; rj , rj).

4. Compute a NIZK proof πmxi ← $ Pmx(crs
i
mx, ([P],CkSum(Li−1,Li)),

∑
j rj),

5. Post in the BB the tuple (Li, πmxi)

Verification. Once all mixers are done, with the previous phase,every mixer PMi executes:

1. Read the messages (Li, πmxi) posted by every mixer on the BB, as well as the messages
(C0,j , π

sd
j) posted by the senders;

2. For all i ∈ [m] and for all j ∈ [n] check that Ver(pk, Ci,j) = 1;

3. For all i ∈ [m], check Vmx(crs
i
mx, ([P],CkSum(Li−1,Li)), πmxi) = 1 ;

4. If one of the checks does not verify abort and write invalid in the BB.

Decrypt. All the mixers PMi execute the following in parallel (using the ideal functionality
FTDec to compute decryptions):

1. let Lm = 〈C∗j 〉j∈[n] be the list of ciphertexts returned by the last mixer. For j = 1 to n,
ask FTDec for the decryption of C∗j . Once all the mixers agreed on the decryption, receive
Mj ← Dec(sk, C∗j) from the functionality;

2. Post Sort(〈Mj〉j∈[n]) on the BB.

Audit Message. The mixers PMi post the message valid on the BB.

Algorithm Audit: the algorithm reads from the BB and computes the verification step of the
protocol above (notice that this only relies on public information). The algorithm outputs 1
either if the verification succeeds and valid is posted in the BB or if the verification fails and
invalid is posted in the BB.

Theorem 5. The auditable protocol (Π,Audit) described above UC-realizes FMix with setup as-
sumptions FTDec and FCRS.

A detailed proof appears in Sec. ??, here we give a proof sketch.

Proof. We show a simulator S and we argue that no PPT environment Z can distinguish an
interaction with the real protocol (the real world) from an interaction with the simulator S and
the ideal functionality FMix (the ideal world).

To show the indistinguishability of the ideal and real worlds we give a sequence of hybrid
experiments in which the real world is progressively modified until reaching an experiment that
is identically distributed to the ideal world. Finally, we give a simulator that emulates the last
hybrid.

26

In the proof, we let h∗ be the index of the first honest mixer. Also, we consider two sets Ψin
and Ψhide, both consisting of tuples (X,Y) ∈ G2

1. For Ψin (resp. Ψhide) we define a corresponding
map ψin : G1 → G1 (resp. ψhide) such that

ψin(X) =

{
Y if (X,Y) ∈ Ψin
X else

and analogously for ψhide. We assume that all the NIZK proofs verify and that all the ciphertexts
verify (as otherwise the protocol would abort without producing any output).

Hybrid H1: We generate the CRS crsh
∗

mx of the NIZK NIZKmx using the trapdoor mode
and we simulate the NIZK proof of the first honest mixer PMh∗ . We generate the CRS crsjmx
for j 6= h∗ in perfect sound mode. Moreover, we pick an uniformly random index τ∗ and we
sample the crssd using ABOInit(prm, τ∗). By the composable zero-knowledge property this hybrid
is computationally indistinguishable from the previous one. The label τ∗ is computationally
hidden.

Hybrid H2: Let 〈Ch∗−1,j〉j∈[n] be the list of ciphertexts received by the first honest mixer
PMh∗ . Instead of re-randomizing all ciphertexts, here PMh∗ decrypts and re-encrypts all the
ciphertexts. By perfect re-randomizability, this hybrid and the precedent have are statistically
close. More in details, by public-verifiability (Def. 4), we have that all the ciphertexts are valid,
by perfect-rerandomizability all the ciphertext are in the support of the encryption scheme with
overwhelming probability, so the decrypt and re-encrypt is well defined.

Hybrid H3: Here, instead of re-encrypting the same messages, we re-encrypt new fresh (and
uncorrelated) messages. Namely, instead of creating Ch∗,τh∗ (j) as a re-encryption of Mh∗−1,j ,
this ciphertext is set as an encryption of a random an independent message Hj . Moreover, we
populate the set Ψhide with the pairs (Mh∗−1,j , Hj)j∈[n] to associate Hj with Mh∗−1,j , and then we
simulate the ideal functionality FTDec to output Ψhide(M) instead of M. This way the modification
is not visible by looking at the decrypted ciphertexts. The indistinguishability of H2 and H3

can be reduced to the RCCA security of the PKE.

Hybrid H4: Let Vm (resp. Vh∗) be the decryption of the list of ciphertexts output by the last
mixer PMm (resp. by the first honest mixer PMh∗). The hybrid H4 aborts if Vm 6= Vh∗ . Using
the perfect adaptive soundness of NIZKmx and the RCCA security and the public-verifiability
of our PKE, we can show that this abort can happen only with negligible probability. We adapt
the security argument of Faonio and Fiore [16] to our pv-Rand-PKE and our NIZK proof of
“checksum”.

Lemma 6. Hybrids H3 and H4 are computationally indistinguishable.

Proof (Sketch). We notice that the two hybrids diverge when H4 aborts but H3 does not. When
they diverge necessarily there exists an index j∗ such that Hj∗ ∈ Vh∗ \Vm. Consider the reduction
B which receives input a public key pk and a ciphertext C∗, the latter encrypts Hj∗ (uniformly
chosen and unknown to B). We show how B can compute the message Hj∗ therefore breaking the
RCCA-security. Briefly, the reduction B runs the hybrid H4 and inserts C∗ in the place of Ch∗,j∗

in the list Lh∗ . When the mixing phase terminates, the reduction B queries the ciphertexts in
the lists Lh∗ obtaining Dec(sk, Ch∗,j) for j 6= j∗ and j ∈ [n] and queries the ciphertexts in the
list Lm obtaining Dec(sk, Cm,j) for j ∈ [n]. Notice that all the ciphertexts would be successfully
decrypted by a RCCA-decryption oracle, as the Mix-Net protocol (publicly) checks the validity
of the ciphertexts at each stage. At this point, B checks that Hj∗ 6∈ Vm, it can do so by looking
if the guarded decryption oracle never answered with �, and if so it outputs:∑

j

Dec(sk, Cm,j)−
∑
j 6=j∗

Dec(sk, Ch∗,j).

27

We analyze the winning probability of B. Recall that, for any i ∈ [m] the list Li = 〈Ci,j〉j∈[n] we

can parse Ci,j as ([yi,j], Ĉi,j). Moreover, the proofs πmxi for i 6= h∗ show that
∑

j [yi−1,j]− [yi,j] ∈
span([(1,S)>]1). By taking the conjunction of the statements proved by the proofs πmxh∗+1, . . . , π

mx
m

we can infer that
∑

j [yh∗,j] − [ym,j] ∈ span([(1,S)>), moreover, as all the ciphertexts in
the two the lists are valid, by applying the linearity of the decryption, we can infer that∑

j Dec(sk, Ch∗,j)−
∑

j Dec(sk, Cm,j) = 0. By the derivation above, the output of the reduction
B is correct. The winning probability of B is then the probability of the event Hj∗ ∈ Vh∗ \ Vm,
the event that makes H3 and H4 diverge.

Hybrid H5: Simulate the ideal functionality FTDec in different way. Whenever the mixers
agree on the decryption of a ciphertext C ∈ Lm, simulate the functionality FTDec by outputting
a message chosen uniformly at random (without re-introduction) from the list Vh∗−1. Notice,
we don’t need to compile the list Ψhide anymore as the mixers would only agree to decrypt
ciphertexts from the last list Lm and Vm = Vh∗ = Ψhide(Vh∗−1).

We can prove that H5 and H4 are identically distributed. In fact in H4, after the first honest
mixer outputs Lh∗ , an unbounded environment Z knows that in Ψhide the element Hj for j ∈ [n]
is mapped to some other value in Vh∗−1 but, from its view, it cannot know to which value.
Such information is revealed only during decryption time. In other words, we could sample the
permutation τh∗ (uniformly at random) at decryption time.

It is easy to check that, at this point of the hybrid argument, the list of ciphertexts received
by the first honest mixers is (a permutation of) the output of the protocol. Moreover, the
ordering of the ciphertexts in the former list and in the latter list are uncorrelated.

With the next hybrids we make sure that the inputs of the honest senders are not discarded
along the way from the first mixer to first honest mixer.

Hybrid H6: We introduce the set MH of honest simulated messages and an initially empty
list Ψin. Every message in MH is randomly chosen in G. The list Ψin is populated to map each
simulated honest input inMH to a corresponding real honest input, and we simulate the func-
tionality FTDec by picking a message M chosen uniformly at random (without re-introduction)
from the list Vh∗−1 and outputting ψin(M) instead of M. This hybrid is distributed the same as
the previous one except if at decryption time a message inMH is hit, namely if Vh∗−1∩MH 6= ∅
(in this case the map ψin would modify the returned value). However, since messages in MH

are randomly chosen and are not in the environment’s view, this bad event happens only with
negligible probability.

Hybrid H7: We encrypt the simulated sender inputs M̃j instead of the the honest sender inputs.
This hybrid can be shown indistinguishable from the previous one based on the RCCA security
of the PKE scheme, and the zero-knowledge of NIZKsd. Notice that after this change, the map
ψin takes care of avoiding trivial differences in the output of FTDec. The goal of the changes
done in the last two hybrids is that we can keep track of the every honest ciphertext via its
underlying message M̃j ∈MH , which acts as a unique handle for it.

Hybrid H8: Let V0 be the decryption of the list of ciphertexts received by the first mixer.
If a message M̃j ∈ MH appears more than once in the list V0 then the hybrid aborts. By the
soundness of NIZKsd and the RCCA security, we show that this abort happens only with
negligible probability.

More in details, recall that we introduced in H0 an index τ∗ such that the proofs for this
label are perfectly sound. Let suppose that for an index j ∈ [n] the message M̃j appears twice
in the list V0. Of course, this means that it appears once as decryption of the ciphertext C0,j
and once as a decryption of a ciphertext C0,j′ for j′ ∈ [n] and j′ 6= j. Now we could break

28

the RCCA-security of the PKE scheme in the following way: we set C0,j to be the challenge
ciphertext of the RCCA experiment. As we don’t know the randomness of C0,j , to create the
NIZK proof πsdj we use the simulator of the NIZKsd. The malicious sender PSj′ produces a

ciphertext C0,j′ and a NIZK proof πsdj′ with label j′. One (unfruitful) idea could be to ask the
RCCA decryption oracle for the decryption of C0,j′ , but this won’t be very effective, as the
oracle would answer with �. Our idea is instead to hope that τ∗ = j′ and if so extract the
message [M] from the proof πsdj′ and break the RCCA-security of the PKE scheme. The strategy
works with probability 1/n− negl(λ), as the index τ∗ is only computationally hidden. In other
words the NIZKsd proofs prevent the adversary of sending valid ciphertexts whose messages
are correlated with honest ones.

Hybrid H9: Recall that Vh∗−1 is the decryption of the list of ciphertexts input to the first
honest mixer PMh∗ . If there exist an index j∗ such that the message M̃j∗ ∈MH does not appear
or it appears more than once in the list Vh∗−1 then the hybrid H9 aborts. This check essentially
ensures that none of the inputs of the honest senders has been discarded or duplicated by the
mixers. Using the public verifiability and RCCA security, we can show that abort can happen
only with negligible probability. The argument is almost the same as in H4, but now a message
M̃j∗ might either not appear or, additionally, appear more than once in the list Vh∗−1. Let
J = {j1, . . . , jv} where v 6= 1 such that j ∈ J if and only if Ch∗−1,j decrypts to M̃j∗ . We can
compute M̃j∗ as:

M̃j∗(1− v) = −
∑
j 6=j∗

Dec(sk, C0,j) +
∑
j 6∈J

Dec(sk, Ch∗−1,j)

We are ready to present a simulator such that the execution of the simulator with the ideal
mixing functionality is indistinguishable from H9.

Simulator S:

Initialization: Simulate the ideal functionality FCRS and FTDec by sampling the CRSs
for the NIZK system NIZKsd in ABO-mode on random label τ∗, sampling the crsh

∗
mx

of NIZKmx in trapdoor mode, and by a sampling key pair (pk, sk)← $ KGen(prm).

Honest Senders: On activation of the honest sender PSi where i ∈ [n], simulate it by
executing the code of the honest sender on input the simulated message M̃j chosen
uniformly at random from the message space.

Extraction of the Inputs: Let Lh∗−1 be the list produced by the malicious mixer
PMh∗−1

. For any j, decrypt M̂j ← Dec(sk, Ch∗−1,j) and if M̂j 6∈ MH then submit it as
input to the ideal functionality FMix.

First Honest Mixer: Simulate the first honest mixer by computing Lh∗ as a list of
encryption of random messages Hj and simulating the proof πmxh∗ .

Decryption Phase: Receive from the ideal functionality FMix the sorted output 〈Mo1, . . . , Mon〉.
Whenever the mixers agree on the decryption of a ciphertext, simulate the ideal func-
tionality FTDec by outputting a message from the sorted output randomly chosen
(without reinsertion).

There are few differences between H9 and the execution of the simulator S with the ideal
functionality FMix. The first is that the hybrid compiles the map ψin by setting a correspondence
between the inputs of the honest senders and the simulated ones, and, during the decryption
phase, uses the map ψin to revert this correspondence. On the other hand, the simulator does
not explicitly set the map, as it does not know the inputs of the honest senders (which are
sent directly to the functionality). However, at inputs submission phase the simulator picks
a simulated input for any honest sender, and at decryption phase it picks a message from

29

the ordered list in output, which contains the inputs of the honest senders. By doing so, the
simulator is implicitly defining the map ψin.

The second difference is that the simulator picks the outputs from the list 〈Mo1, . . . , Mon〉 while
the hybrid H9 uses the list ψin(Vh∗−1). However, recall that the simulator extracts the corrupted
inputs from the same list Vh∗−1, and that, by the change introduced in H9, we are assured that
all the inputs of the honest senders will be in the list ψin(Vh∗−1) (once and only once). Therefore
the list of the messages output by the simulator and by the hybrid are the same.

7 Acknowledgements

We would like to thank Patrick Towa Nguenewou for pointing out an error in the counting of
group elements required for the publicly verifiable version of our scheme.

First and second authors are supported by the Spanish Government through the projects
Datamantium (ref. RTC-2016-4930-7), SCUM (RTI2018-102043-B-I00), and ERC2018-092822,
and by the Madrid Regional Government under project BLOQUES (ref. S2018/TCS-4339).
The work of the third author is partially supported by Spanish Government through project
MTM2016-77213-R. The fourth author was supported by a Marie Curie “UPF Fellows” Post-
doctoral Grant and by Project RTI2018-102112-B-I00 (AEI/FEDER,UE).

References

1. S. Bayer and J. Groth. Efficient zero-knowledge argument for correctness of a shuffle. In D. Pointcheval
and T. Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 263–280. Springer, Heidelberg,
Apr. 2012.

2. M. Bellare, K. G. Paterson, and P. Rogaway. Security of symmetric encryption against mass surveillance. In
J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 1–19. Springer,
Heidelberg, Aug. 2014.

3. J. Camenisch, K. Haralambiev, M. Kohlweiss, J. Lapon, and V. Naessens. Structure preserving CCA secure
encryption and applications. In D. H. Lee and X. Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS,
pages 89–106. Springer, Heidelberg, Dec. 2011.

4. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd FOCS,
pages 136–145. IEEE Computer Society Press, Oct. 2001.

5. R. Canetti and S. Goldwasser. An efficient threshold public key cryptosystem secure against adaptive chosen
ciphertext attack. In J. Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 90–106. Springer,
Heidelberg, May 1999.

6. R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based encryption. In C. Cachin
and J. Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 207–222. Springer, Heidelberg,
May 2004.

7. R. Canetti, H. Krawczyk, and J. B. Nielsen. Relaxing chosen-ciphertext security. In D. Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 565–582. Springer, Heidelberg, Aug. 2003.

8. M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. Malleable proof systems and applications.
In D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 281–300.
Springer, Heidelberg, Apr. 2012.

9. R. Chen, Y. Mu, G. Yang, W. Susilo, F. Guo, and M. Zhang. Cryptographic reverse firewall via malleable
smooth projective hash functions. In J. H. Cheon and T. Takagi, editors, ASIACRYPT 2016, Part I, volume
10031 of LNCS, pages 844–876. Springer, Heidelberg, Dec. 2016.

10. R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext secure
public-key encryption. In L. R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 45–64.
Springer, Heidelberg, Apr. / May 2002.

11. I. Damg̊ard, S. Faust, P. Mukherjee, and D. Venturi. Bounded tamper resilience: How to go beyond the
algebraic barrier. In K. Sako and P. Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS,
pages 140–160. Springer, Heidelberg, Dec. 2013.

12. Y. Dodis, K. Haralambiev, A. López-Alt, and D. Wichs. Efficient public-key cryptography in the presence
of key leakage. In M. Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 613–631. Springer,
Heidelberg, Dec. 2010.

30

13. Y. Dodis, I. Mironov, and N. Stephens-Davidowitz. Message transmission with reverse firewalls—secure
communication on corrupted machines. In M. Robshaw and J. Katz, editors, CRYPTO 2016, Part I, volume
9814 of LNCS, pages 341–372. Springer, Heidelberg, Aug. 2016.

14. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In G. R.
Blakley and D. Chaum, editors, CRYPTO’84, volume 196 of LNCS, pages 10–18. Springer, Heidelberg, Aug.
1984.

15. A. Escala, G. Herold, E. Kiltz, C. Ràfols, and J. Villar. An algebraic framework for Diffie-Hellman assump-
tions. In R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 129–147.
Springer, Heidelberg, Aug. 2013.

16. A. Faonio and D. Fiore. Optimistic mixing, revisited. Cryptology ePrint Archive, Report 2018/864, 2018.
https://eprint.iacr.org/2018/864.

17. A. Faonio, D. Fiore, J. Herranz, and C. Ràfols. Structure-preserving and re-randomizable rcca-secure public
key encryption and its applications. Cryptology ePrint Archive, Report 2019/955, 2019. https://eprint.

iacr.org/2019/955.

18. A. Faonio and D. Venturi. Efficient public-key cryptography with bounded leakage and tamper resilience.
In J. H. Cheon and T. Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 877–907.
Springer, Heidelberg, Dec. 2016.

19. P. Fauzi, H. Lipmaa, J. Siim, and M. Zajac. An efficient pairing-based shuffle argument. In T. Takagi and
T. Peyrin, editors, ASIACRYPT 2017, Part II, volume 10625 of LNCS, pages 97–127. Springer, Heidelberg,
Dec. 2017.

20. S. Garg, A. Jain, and A. Sahai. Leakage-resilient zero knowledge. In P. Rogaway, editor, CRYPTO 2011,
volume 6841 of LNCS, pages 297–315. Springer, Heidelberg, Aug. 2011.

21. R. Gennaro and Y. Lindell. A framework for password-based authenticated key exchange. In E. Biham,
editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 524–543. Springer, Heidelberg, May 2003. http:

//eprint.iacr.org/2003/032.ps.gz.

22. P. Golle, M. Jakobsson, A. Juels, and P. F. Syverson. Universal re-encryption for mixnets. In T. Okamoto,
editor, CT-RSA 2004, volume 2964 of LNCS, pages 163–178. Springer, Heidelberg, Feb. 2004.

23. P. Golle, S. Zhong, D. Boneh, M. Jakobsson, and A. Juels. Optimistic mixing for exit-polls. In Y. Zheng,
editor, ASIACRYPT 2002, volume 2501 of LNCS, pages 451–465. Springer, Heidelberg, Dec. 2002.

24. J. Groth. Rerandomizable and replayable adaptive chosen ciphertext attack secure cryptosystems. In
M. Naor, editor, TCC 2004, volume 2951 of LNCS, pages 152–170. Springer, Heidelberg, Feb. 2004.

25. J. Groth. Simulation-sound NIZK proofs for a practical language and constant size group signatures. In
X. Lai and K. Chen, editors, ASIACRYPT 2006, volume 4284 of LNCS, pages 444–459. Springer, Heidelberg,
Dec. 2006.

26. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In N. P. Smart, editor,
EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer, Heidelberg, Apr. 2008.

27. G. Herold, J. Hesse, D. Hofheinz, C. Ràfols, and A. Rupp. Polynomial spaces: A new framework for composite-
to-prime-order transformations. In J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Part I, volume
8616 of LNCS, pages 261–279. Springer, Heidelberg, Aug. 2014.

28. G. Herold, M. Hoffmann, M. Klooß, C. Ràfols, and A. Rupp. New techniques for structural batch verification
in bilinear groups with applications to groth-sahai proofs. In B. M. Thuraisingham, D. Evans, T. Malkin,
and D. Xu, editors, ACM CCS 2017, pages 1547–1564. ACM Press, Oct. / Nov. 2017.

29. C. S. Jutla and A. Roy. Shorter quasi-adaptive NIZK proofs for linear subspaces. In K. Sako and P. Sarkar,
editors, ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages 1–20. Springer, Heidelberg, Dec. 2013.

30. C. S. Jutla and A. Roy. Switching lemma for bilinear tests and constant-size NIZK proofs for linear subspaces.
In J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages 295–312.
Springer, Heidelberg, Aug. 2014.

31. J. Katz and V. Vaikuntanathan. Round-optimal password-based authenticated key exchange. In Y. Ishai,
editor, TCC 2011, volume 6597 of LNCS, pages 293–310. Springer, Heidelberg, Mar. 2011.

32. E. Kiltz. Chosen-ciphertext security from tag-based encryption. In S. Halevi and T. Rabin, editors, TCC 2006,
volume 3876 of LNCS, pages 581–600. Springer, Heidelberg, Mar. 2006.

33. E. Kiltz and H. Wee. Quasi-adaptive NIZK for linear subspaces revisited. In E. Oswald and M. Fischlin,
editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 101–128. Springer, Heidelberg, Apr. 2015.

34. B. Libert, T. Peters, and C. Qian. Structure-preserving chosen-ciphertext security with shorter verifiable ci-
phertexts. In S. Fehr, editor, PKC 2017, Part I, volume 10174 of LNCS, pages 247–276. Springer, Heidelberg,
Mar. 2017.

35. S. Micali, C. Rackoff, and B. Sloan. The notion of security for probabilistic cryptosystems. In A. M. Odlyzko,
editor, CRYPTO’86, volume 263 of LNCS, pages 381–392. Springer, Heidelberg, Aug. 1987.

36. I. Mironov and N. Stephens-Davidowitz. Cryptographic reverse firewalls. In E. Oswald and M. Fischlin,
editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 657–686. Springer, Heidelberg, Apr. 2015.

31

https://eprint.iacr.org/2018/864
https://eprint.iacr.org/2019/955
https://eprint.iacr.org/2019/955
http://eprint.iacr.org/2003/032.ps.gz
http://eprint.iacr.org/2003/032.ps.gz

37. C. Namprempre, P. Rogaway, and T. Shrimpton. Reconsidering generic composition. In P. Q. Nguyen and
E. Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 257–274. Springer, Heidelberg, May
2014.

38. M. Naveed, S. Agrawal, M. Prabhakaran, X. Wang, E. Ayday, J.-P. Hubaux, and C. A. Gunter. Controlled
functional encryption. In G.-J. Ahn, M. Yung, and N. Li, editors, ACM CCS 2014, pages 1280–1291. ACM
Press, Nov. 2014.

39. O. Pereira and R. L. Rivest. Marked mix-nets. In M. Brenner, K. Rohloff, J. Bonneau, A. Miller, P. Y. A.
Ryan, V. Teague, A. Bracciali, M. Sala, F. Pintore, and M. Jakobsson, editors, FC 2017 Workshops, volume
10323 of LNCS, pages 353–369. Springer, Heidelberg, Apr. 2017.

40. D. H. Phan and D. Pointcheval. OAEP 3-round: A generic and secure asymmetric encryption padding. In
P. J. Lee, editor, ASIACRYPT 2004, volume 3329 of LNCS, pages 63–77. Springer, Heidelberg, Dec. 2004.

41. M. Prabhakaran and M. Rosulek. Rerandomizable RCCA encryption. In A. Menezes, editor, CRYPTO 2007,
volume 4622 of LNCS, pages 517–534. Springer, Heidelberg, Aug. 2007.

42. A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In 40th
FOCS, pages 543–553. IEEE Computer Society Press, Oct. 1999.

43. V. Shoup and R. Gennaro. Securing threshold cryptosystems against chosen ciphertext attack. In K. Nyberg,
editor, EUROCRYPT’98, volume 1403 of LNCS, pages 1–16. Springer, Heidelberg, May / June 1998.

44. D. Wikström. A universally composable mix-net. In M. Naor, editor, TCC 2004, volume 2951 of LNCS,
pages 317–335. Springer, Heidelberg, Feb. 2004.

45. D. Wikström. A sender verifiable mix-net and a new proof of a shuffle. In B. K. Roy, editor, ASI-
ACRYPT 2005, volume 3788 of LNCS, pages 273–292. Springer, Heidelberg, Dec. 2005.

46. D. Wikström. Verificatum, 2010. https://www.verificatum.com.

A Missing proofs from Section 3 (Rand-RCCA PKE)

Lemma 7. The hybrids H5 and H4 are statistically close.

The proof of the lemma, as for the proof of Lemma 3, show a reduction to Lemma 1. For
readability we restate the Lemma 3 below using more convenient names for the variables:

Let k be a positive integer. For any matrices E ∈ Zk+1×k
q ,D ∈ Zk+1×k

q and any (possibly
unbounded) adversary A:

Pr

 v 6∈ span(E)

(u− u∗) 6∈ span(D)

z = (g + G′u)>v

∣∣∣∣∣∣∣
g← $ Zk+1

q ,G′ ← $ Zk+1×k+1
q ;

(z,v,u)← $ AO(·)(E,D,E>g,E>G′,G′D)

 ≤ 1/q,

where the adversary outputs a single query u∗ to O(·) which returns g + G′ · u∗.

Proof. We prove the statement with a hybrid argument over the number of decryption queries
of the adversary. Let the hybrid H4,i be the experiment that answers the first i-th oracle queries
as in H5 (namely, considering the decryption rule (iii)) and answers the remaining queries as
in H4. Let QD be the number of decryption queries performed by the adversary A. It is easy to
check that H4,0 ≡ H4 and H4,QD ≡ H5.

On the other hand H4,i and H4,i+1 differ when the (i+1)-th ciphertext C = (([u]1, [p]1) , [v]2, [π]T)
is such that “v 6∈ span(E) and ((u− u∗) 6∈ span(E) or u∗ is unset)”, but the decryption oracle
(as it would be computed in H4) outputs a value different from ⊥. In particular, the latter
implies that the proof [π]T verifies correctly. Let Soundi be such event. To conclude the proof
of the lemma we prove the following proposition. Then a standard union bound gives us that
the statistical distance between H5 and H4 is at most QD/q, which is negligible.

Proposition 2. Pr [Soundi] ≤ 1/q.

Proof. We reduce an adversary A that causes event Soundi to occur into an adversary A′ for the
game of Lemma 1. Namely, we define an adversary A′ for the experiment in the lemma which
internally simulates the experiment H4,i+1 running with the adversary A.

32

https://www.verificatum.com

Adversary A′(E,D,g>E,G′
>

E,G′D) with oracle access to O:

1. Sample a← $ Zk+1
q , f ← $ Zk+1

q ,F← $ Zk+1×k
q .

2. Sample g′ ← $ Zk+1
q , we set implicitly the matrix G = (G′g′) ∈ Zk+1×k+1

q and we

compute G>E and GD∗.
3. Set the public key as:

pk =

(
[D]1, [E]2, [a

>D]1, [f
>D]T , [F

>D]1,

[g>E]T , [G
>E]2, [GD∗]1, [FE]2

)

as described by the key generation algorithm and set the secret key sk = (a, f , ·,F,g′).
4. Run the adversary A with input the public key pk. Answer the j-th decryption oracle

query with ciphertext C = ([u]1, [p]1, [v]2, [π]T) as follows:

(a) If j ≤ i and u 6∈ span(D) return ⊥;
(b) If j ≤ i and v ∈ span(E) compute, let v = Es:

[M]1 ← [p− a>u]1,

[π1]T ← [(f + F · v)> · x]T ,

[π2]T ← [g>E + v> ·G>E]T · s.

If π = π1 + π2 then answer with [M]1, else anwer ⊥;
(c) If v 6∈ span(E) answer ⊥;
(d) If j = i+ 1 then stop and return (π − (f + Fv)>u− p(g′>v),v,u).

5. Eventually, A outputs [M0]1, [M1]1. Sample v∗ ← $ Zk+1
q \ span(E), and sample u∗ ←

$ Zk+1
q \ span(D), set p∗ = a>u∗ + Mb∗ , query the oracle O with the element u∗,

receive Π ′ = g+G′ ·u∗, and set Π ← Π+p∗g′. Set x∗ = ((u∗)>, p∗)>, and compute:

[π∗]T ←[Π> · v∗ + (f + Fv∗)>u∗]T (4)

and send to the adversary the challenge ciphertext C∗ = ([c∗]1, [p
∗]1, [v]2, [π

∗]T).
6. Answer the j-th decryption oracle query with ciphertext C = ([u]1, [p]1, [v]2, [π]T) as

follows:

(a) If j ≤ i and v ∈ span(E) execute the same as in step 4b.
(b) If j ≤ i and v 6∈ span(E) do as follows:

i. if (x∗ − x) ∈ span(D∗) let x = x∗ + Dγ, compute

[π1]T ← [(f> + Fv)>u]T ,

[π2]T ← [(Π + GD∗γ)>v]T

if π = π1 + π2 then set [M′] := [p− a> · u]1 and if [M′]1 ∈ {[M0]1, [M1]1} answer
� else with [M]1.
if π 6= π1 + π2 answer ⊥.

ii. if (v∗ − v) 6∈ span(E) then output ⊥.

(c) If j = i+ 1 then stop and return (π − (f + Fv)>u− p(g′>v),v,u)).

We show that the adversary perfectly simulates the hybrid H4,i up to the i-th decryption
query. By inspection, it is easy to check that up to step 3, the simulation is perfect. More
interestingly, at step 4 the adversary A′ uses its oracle to compute Π = g + G′u∗+ pg′. Thanks
to this information the adversary can compute the challenge ciphertext exactly as the hybrid

33

experiment would do as shown in eq. 4. After this step, the adversary A′ can easily answer the
decryption queries whenever j ≤ i and v ∈ span(E) or v 6∈ span(E) and (x∗ − x) 6∈ span(D∗).
We show that the answers for the decryption queries where j ≤ i, v 6∈ span(E) and (x∗ − x) ∈
span(D∗) are distributed exactly as in the hybrid experiment, in fact:

(Π + GD∗γ)>v = g>v + (G′x∗)>v + (p∗g′)>v + (GD∗γ)>v

= g>v + (Gx∗)>v + (GD∗γ)>v

= g>v + (G(x∗ + D∗γ))>v

= (g + Gx)>v.

Finally, by definition of Soundi, the adversary A at the (j + 1)-th query outputs a ciphertext
that would correctly decrypt in the hybrid experiment and where v 6∈ span(E) and (u∗ − u) 6∈
span(D) with probability Pr [Soundi]. Since the ciphertext correctly decrypts, it means that
π = (f + Fv)>u + (g + Gx)>v, therefore the output of A′ is a valid guess for the experiment
of Lemma 1. However, the adversary A′ can win only with probability 1/q, and thus the lemma
follows.

B Missing proofs from Section 4 (pv-Rand-RCCA PKE)

Proof. We first prove RCCA security. The proof proceeds in three main steps. Define a Rand-
RCCA PKE scheme PKE∗ = (KGen∗,Enc∗,Dec∗) as the scheme that is the same as PKE2 except
that: Enc∗ outputs ([x]1, [v]2, [π]T , Π) (namely it reveals [π]T), and Dec∗ is the algorithm that
upon input the ciphertext C = ([x]1, [v]2, [π]T , Π) runs Dec1(sk, ([x]1, [v]2, [π]T)), the decryption
of the scheme of Sec. 3. We can reduce the security of PKE∗ to the security of PKE1 as follows.
The reduction upon a decryption query C = ([x]1, [v]2, [π]T , Π) forwards ([x]1, [v]2, [π]T) to its
own challenger and answers with the same response; for the challenge, it first forwards the
messages to its challenger, and then uses the zero-knowledge simulator to produce the proof Π∗

to attach to the challenge ciphertext.
As second step, we define a Rand-RCCA PKE scheme PKE∗∗ which is the same as PKE∗

but where the decryption algorithm first parses C = ([x]1, [v]2, [π]T , Π) and then decrypt
([x]1, [v]2, Π) using the algorithm Dec2 described in Fig. 5. By adaptive soundness of the
malleable proof system NIZK an interaction in the RCCA-security experiment with PKE∗
and an interaction in the RCCA-experiment with PKE∗∗ are statistically indistinguishable. We
notice that PKE∗∗ is essentially equivalent to PKE2, with the only difference that the encryp-
tion algorithm of PKE∗∗ outputs [π]T , which, however, is ignored by Dec∗∗. In particular it is
straightforward to show that if PKE∗∗ is secure, then so is PKE2. Combining the three steps
we get that PKE2 is secure assuming so is PKE1.

We prove the three conditions of perfect re-randomizability.

1. For any pk, sk ∈ KGen(prm), any message [M]1, we show that C0 ← $ Enc(pk, [M]1) and C1 ←
$ Rand(pk, C) where C = Enc(pk, [M]1; y, r) and are equivalently distributed.
Consider the hybrid distribution that outputs C′ such that

(a) Parse C as ([y]1, π);
(b) Sample T ← $ TPKE ′ (with associated randomness r̂, ŝ) and compute Π̂ ← $ P(crs, Tx([x]1, [v]), Tw([π]T , r, s));
(c) Compute [x̂]1, [v̂] = Tx([x]1, [v]);
(d) Output [x̂]1, [v̂], Π̂.

By derivation privacy of the NIZK system we can easily prove that C0 and C′ are equivalently
distributed. Moreover, by perfect re-randomizability of the [x]1, [v]2 components, we have
that C′ and C1 are equivalently distributed.

34

2. Trivial, as we re-randomize the [x] by adding a vector D∗r, we remain in the same affine
subspace. Moreover, if the proof Π does not verify, by correctness of ZKEval, neither Π̂ does.

3. The condition trivially holds by the property of malleable NIZK and the perfect re-randomizability
of [x]1, [v]2.

B.1 Details on the Malleable Proof

In this section we give the full details on the modifications we need to do to our RCCA scheme
to make it publicly verifiable. The public key the terms [f>D]T and [g>E]T should be changed
to [f>D]1 and [g>E]2 and the proof is now evaluated as:

[π1]T = e(([f>D]1 · r)>, [1]2) + e([F>D]1 · r, [v]2)

[π2]T = e([1]1, [g
>E]2 · s) + e([x]1, [G

>E]2 · s).

Then, it is sufficient to prove that [π]T = [π1]T +[π2]T satisfies the sum of these pairing product
equations. Notice that these changes do not compromise the security proof. In fact, we use
statistical properties in Lemma 3 and Lemma 7.

Groth-Sahai Proofs can be instantiated under any Dk-MDDH Assumption [15]. The verifi-
cation equation uses a special projecting bilinear map ẽ : Gk+1

1 × Gk+1
2 → Gm

T . For the SXDH
Assumption instantiation, m = 4 and ẽ([a]1, [b]2) = [ab>]. In general, the map ẽ with the
optimal m depends on Dk (not only on k), as was proven [27].

As we said, the main idea to extend the GS proof system so that it allows to prove NIZK
of this particular type of equation, is to commit to [π]T instead of giving it in the clear. Our
commitment to [π]T is defined over Gm

T . The proof Π includes a commitment [cπ]T ∈ Gm
T and

the proof that the value [π]T which is an opening of [cπ]T is of the right form.

To simplify the exposition, we give the details of the proof only for the SXDH instantiation
(k = 1) of the RCCA scheme and of GS proofs. The generalization to other matrix distribu-
tions is straightforward following the description of the GS proof system for any Dk-MDDH
Assumption ([15,27]).

The common reference string of the GS proof system consists of commitment keys [u1]1, [u2]1 ∈
G2

1 (resp. [v1]2, [v2]2 ∈ G2
2) to group elements in G1 (resp. G2). A commitment to an element

[y]1 ∈ G1 is defined as [cy]1 = ([y]1, [0]1)
> + r1[u1]1 + r2[u2]1, r1, r2 ← Zp and similarly for

elements in G2. The prover shows that:

[π]T = e([f>D]1r, [1]2) + e([F>D]1r, [v]2) + e([1]1, [g
>E]2s) + e([x]1, [G

>E]2s) (5)

is satisfied, where [π]T , [f>D]1r, [F>D]1r, [g>E]2r, [G>E]2s are values unknown to the verifier
and which are committed to as part of the proof. More specifically, the proof includes:

1. A commitment to [π]T defined by sampling rij ← Zp and:

[cπ]T =

[(
π 0

0 0

)]
T

+
∑
i,j=1,2

rij [uiv
>
j]T ∈ G4

T ,

2. A commitment [c0]1 ∈ G2
1 to [f>Dr]1 and commitments [c1]1, [c2]1 to the first and second

components of the vector [F>Er]1 (recall we are in the case where k = 1 and [F>Er]1 is a
vector of two group elements),

3. A commitments [d0]2 to [g>Es]2 and commitments [d1]2, [d2]2, [d3]2 ∈ G2
2 to (respectively)

the first, second and third components of [G>Es]2,

4. A GS proof that equation (5) is satisfied,

35

5. A proof that the commitments [c0]1, [c1]1, [c2]1 ∈ G2
1 and [d0]2, [d1]2, [d2]2, [d3]2 ∈ G2

2 are
well formed. This is proven with one proof of membership in linear spaces in each group
[30,33]. For more details, the statement one needs to prove in G1 is:

Dr

c0
c1
c2

1

∈ span(

D 0 0 0 0 0 0

(f>D, 0)> u1 u2 0 0 0 0

((F>D)1, 0)> 0 0 u1 u2 0 0

((F>D)2, 0)> 0 0 0 0 u1 u2

1

,

where (F>D)i denotes the ith coordinate of F>D. For the elements of G2, well-formedness
is proved similarly.

For completeness, what is relevant to note is that the commitment in GT is such that the
commitment keys can be factored out in the terms required for the verification equation. That
is, rij [uiv

>
j]T = ẽ([θ̃ij]1, [vj]2), where, [θ̃ij]1 = [rijui]1. Therefore, if the verification equation is:

ẽ([c0]1, ([1]2, [0]2))+
2∑
i=1

ẽ([ci]1, ([vi]2, [0]2))+ẽ(([1]1, [0]1), [d0]2)+
3∑
i=1

ẽ(([xi]1, [0]1), [di]2)−[cπ]T

=
∑
i=1,2

ẽ([ui]1, [πi]2) +
∑
i=1,2

ẽ([θi]1, [vi]2),

where vi (resp. xi) denotes the ith coordinate of v (resp. x). Then, if [π̂i]2, [θ̂i]1 are proofs
computed as in the original GS proof system for equation (5) ignoring the term [π]T , then
[θi]1 = [θ̂i] + [θ̃1i]1 + [π̃2i]1 and [πi]2 = [π̂]2. We observe that perfect soundness holds because
the commitment keys are chosen to define perfectly binding commitments. The argument is
exactly as in the original paper [26], because by the properties of the tensor product, in this
case the commitment to [π]T is also perfectly binding.

We prove composable zero-knowledge as in [26]. In particular, this means that the zero-
knowledge property is proven in a setting in which the commitment keys are changed to an
indistinguishable set of perfectly hiding keys. By the properties of the tensor product, in this
case the commitment to [π]T is also perfectly hiding. To simulate a proof for equation (5), we
simply take as a witness for satisfiability the trivial solution. The proof is perfectly distributed
as the commitments are perfectly hiding and for every set of commitments, the proof has
the uniform distribution conditioned on satisfying the verification equation. The proof that
[c0]1, [c1]1, [c2]1 ∈ G2

1 and [d0]2, [d1]2, [d2]2, [d3]2 ∈ G2
2 are well formed can be simulated with

the simulator of the argument of membership in linear spaces. The proof is perfectly distributed
because the argument is perfect zero-knowledge and the commitments are perfectly hiding, so
in particular there exists an opening so that the statement is true.

We need to define ZKEval algorithm. We use the homomorphic property of GS proofs. The
idea is that we can add to the commitments of [fTD]1r and [FTD]1r the values [fTD]1 · r̂ and
[FTD]1 · r̂ (similarly for the s components) and refresh the randomness of the commitments.
The commitment [cπ] can also be updated by adding the value [π′]T = [π̂1]T + [π̂2]T where
[π̂1]T = [f>D]T · r̂+e([F>D]1 · r̂, [v̂]2)+e([u]1, [FE]2 · ŝ) and [π̂2]T = [g>E]T · ŝ+e([x̂]1, [G

>E]2 ·
ŝ)+e([GD∗]1 ·r̂, [v]2) (exactly as in the Rand algorithm of Sec. 3) and refreshing the randomness.
The corresponding new GS proof can be computed by the homomorphic property of GS proofs.
Also, the linear subspace argument in step 5 is instantiated with the adaptive sound scheme of
Kiltz and Wee [33] which is homomorphic.

Efficiency. The size of the ciphertexts of the publicly verifiable scheme is 14|G1|+15|G2|+4|GT |.
The number of pairings for verification is 32 for the GS proof and 20 for the argument of linear

36

spaces, which can be reduced to 10+20 by batch verifying the GS equation using the techniques
of [28].

C Missing proofs from Section 5 (tSE-cm NIZK)

Proof. First we notice that ZKEval is complete. In fact, (f,R, T) is suitable we have that for
any T ∈ T the transformation Tw(·) is invariant respect to the f and therefore the transformed
statement-witness is in the relation R′.

Recall that the adversary A for the derivation privacy of NIZK outputs (x,w, π, T) where
π = (C, π′) is a valid proof of x and T is a allowable transformation for T

We first notice that we can assume that exists M, r such that C ∈ Enc(pk, M; r) by condition
3 of perfect re-randomizability, therefore we can compute, although inefficiently, from C the
randomness r.

Consider an hybrid experiment H1 where once received (x,w, π, T) from the adversary A
we compute r from C and we compute a new proof π′ ← P′(crs′, (pk, Ĉ, x), (w, r + r̂)) where
Ĉ = Rand(pk, C; r̂).

It is easy to see that Exp
der-priv
A,NIZK conditioned on the challenge bit equal to 1 (namely, when

ZKEval is used) and H1 are statiscally close by the statistical derivation privacy of NIZK′. the
reduction B would simply emulate the hybrid outputing ((pk, Ĉ, x), (w, r), T ′ = (T, r̂).

Moreover, we can prove that H1 is distributed equivalently to Exp
der-priv
A,NIZK conditioned on

the challenge bit equal to 0. In fact, the only difference between the two distribution is that in
one case the ciphertext is fresh while in the other case is a re-randomization.

Theorem 4. For any suitable (f,R, T) the proof system NIZK described above is true-simulation
controlled-malleable f -extractable.

Proof. We describe both a simulator and an extractor for the tse-cm-NIZK NIZK.

– Let Sim(tps, x) be the simulator that parses tps = (pk, tp′s) and computes C ← $ Enc(pk, ◦)
and π ← Sim′(tp′s, (pk, C, x)) where Sim′ is the simulator of NIZK′.

– Let Ext(tpe, x, π) be the extractor that parses tpe ans sk and π = (C, π′) and outputs
Dec(sk, C).

We consider a sequence of hybrid experiments.

– The first experiment H0 is the Exptse-cm
A,Ext,NIZK, namely, the oracle SIM upon the i-th query

(xi, wi) first checks that (xi, wi) ∈ R and if so it adds xi in Qx and wi in Qw and outputs
Ci ← Enc(pk, ◦) and π′i ← Sim′(tp′s, (pk, Ci, xi)).

– Let H1,j be the same as H0 but where the first j ciphertexts are valid encryption of
f(w). Specifically, the oracle SIM upon the i-th query (xi, wi) if i > j then it behaves
as in H0 otherwise it first checks that (xi, wi) ∈ R and if so adds wi in Qw and outputs
Ci ← Enc(pk, f(wi)) and π′i ← Sim′(tp′s, (pk, Ci, xi)).

– Let H2 be the same as H1,q, where q is the number of queries made by A, but where the proofs
for NIZK′ are not simulated. Specifically, the oracle SIM upon the i-th query (xi, wi) first
checks that (xi, wi) ∈ R and if so adds wi in Qw and outputs Ci ← Enc(pk, f(wi); ri) where
ri ← {0, 1}λ and π′i ← P′(crs′, (pk, Ci, xi), (wi, ri)).

Lemma 8. For any j ∈ N, |Pr [H1,j = 1]− Pr [H1,j+1 = 1] | ∈ negl(λ).

Proof. We show a reduction to the RCCA security of the PKE-scheme. Consider an adversary
B for the RCCA-security experiment. The adversary B upon input pk generates the parameter
crs′, tp′s ← Init(prmG) and runs A(crs) where crs = (pk, crs′). At the i-th query (xi, wi) made by
A:

37

– if i < j, the adversary B returns to the adversary A the values Ci ← Enc(pk, f(wi)) and
π′i ← Sim′(tp′s, (pk, Ci, xi));

– if i = j the adversary B sends the challenge messages (◦, f(wj)) to its own challenger and
receives C∗, it returns to A the values C∗ and π′j ← Sim′(tp′s, (pk, C

∗, xi));

– If i > j, the adversary B returns to the adversary A the values Ci ← Enc(pk, ◦) and π′i ←
Sim′(tp′s, (pk, Ci, xi));

Eventually, the adversary A outputs a tuple x, π where π = (C, π′), the adversary B forwards C

to its own decryption oracle, let z be the answer from the decryption oracle. First the adversary
B checks that the proof π′ verifies and if not output 0. Secondly, the adversary B if z 6= ◦ then
output 1 if and only if g(x, z, ω) = 0, else it outputs 1 if and only if for any w ∈ Qw we have
g(x, f(w), ω) = 0.

We notice that B runs in polynomial time in λ. We check that B perfectly simulates the
H1,i+b experiment when the challenge bit of the RCCA experiment is equal to b. It is easy to
check that the adversary B perfectly simulates the hybrid experiments until the adversary A
outputs x, π. The hybrids output 1 iff the π′ verifies and either z 6= ◦ and for all w such that
f(w) = z we have that (x,w) 6∈ R (which can be efficiently computable by condition (1) of
Def. 9) or z = ◦ and for all w such that w ∈ Qw we have (x,w) 6∈ R (again, it can be efficiently
computable). Notice that if for any (xi, wi) queried to SIM if g(x, Tw(wi), ω) = 0, then for any
T ∈ T , Tx(xi) 6= x. In fact, 1 = g(Tx(xi), f(Tw(wi)), ω) = g(T (xi), f(wi), ω) 6= g(x, f(wi), ω),
and thus T (xi) 6= x. This concludes the proof of the lemma.

D Controlled-Malleable Smooth-Projective Hash Functions

In this section we formalize the technique at the core of our Rand-RCCA PKE scheme, that is a
structure-preserving smooth-projective hash function (SPHF) which allows for a controlled mal-
leability of the instances and tags. We call our primitive Controlled-Malleable Smooth-Projective
Hash Functions.

We formalize our primitive by extending the notion of Malleable Smooth Projective Hash
Functions (mSPHFs) introduced by Chen et al. in [9]. Their framework additionally has the
notion of key-malleability which is not required in our main construction of Sec. 3. However, we
show in this section that we can easily add this property to our mSPHF.

This notion found interesting applications in the context of subversion-resilient cryptography[2];
in particular, it allows to generically instantiate Cryptographic Reverse Firewalls (see Mironov
and Stephens-Davidowitz [36]) for CPA-secure message-transmission protocols and oblivious-
transfer protocols from various assumptions.

Our notion of controlled-malleable SPHFs supports the same functionalities of the mSPHFs
in [9] and, additionally, uses a security notion strictly stronger than the classical smoothness
property.

A smooth projective hash function (with tags) is a tuple of algorithms HF = (Setup,ProjK,
Hash,PHash) where:

– Setup(1λ) generates public parameters pp that contains the descriptions of groupsK,P,X ,Y,W, T .
Moreover, the pp contains the description of a subgroup L ⊂ X . Elements in L can be effi-
ciently sampled together with a witness w ∈ W. All the groups are in additive notations.

– ProjK(k) takes in a hash key k ∈ K and produces a projective key p ∈ P.

– Hash(pp, k, x, t) takes as input a hash key k ∈ K, an instance x ∈ X , and a tag t ∈ T , and
it produces a hash value y ∈ Y.

– PHash(pp, k, x, w, t) takes as input a hash key k ∈ K, an instance x ∈ X , a witness w for x,
and a tag t ∈ T , and it produces a hash value y ∈ Y.

38

A SPHF as above is structure preserving if P,X ,Y, T are all vector spaces of G1 or G2 or GT ,
while K,W are vector spaces of Zq and all the algorithms can be defined via pairing-product
equations.

The classical properties of a SPHF are described below:

Definition 10 (Projective). A HF is projective if for any k ∈ K and p = ProjK(pp, k), for any
x ∈ L with witness w, and for any tag t ∈ T , we have PHash(pp, p, x, w, t) = Hash(pp, k, x, t).

Definition 11 (Smoothness). A HF is smooth if for any x ∈ X \ L the distributions below
are statistically indistinguishable:

(pp, p, x, t,Hash(pp, k, x, t))pp∈Setup, (pp, p, x, t, y)pp∈Setup

where k ← $ K, p = ProjK(pp, k) and y ← $ Y.

Notice that the properties above are information theoretic. Finally, we require a computational
property on the set L.

Definition 12 (Hard Subset Membership Problem). We assume that for all PPT adver-
saries A:

|Pr [A(pp, x) = 1 : x←$ L]− Pr [A(pp, x) = 1 : x←$ X \ L]| ∈ negl(λ),

Chen et al. specialized the notion of SPHF to malleable SPHF. We import their definitions
below. To simplify the exposition, we use a slightly less general syntax which matches more
closely our instantiation. In particular, Chen et al. consider the Gennaro and Lindell [21] (GL-
SPHF) definition for SPHF where the projective hash key can depend on an element of X .
Instead, we consider the Katz and Vaikuntanathan [31] (KV-SPHF) definition, and we extend
their syntax to support tags.

A malleable SPHF HF is a SPHF with the following additional algorithms:

– Setup′(1λ) outputs public parameters pp and a trapdoor parameter td.

– CheckTag(td, t, t′) where t and t′ are tags, outputs a bit b.

– MaulK(pp, p, k′) outputs a mauled projective key p̃.

– RandX(pp, x, w′) outputs a re-randomized element x̂.

– RandT(pp, t, τ) where τ is a randomness, outputs a re-randomized tag t̂.

– RandH(pp, x, t, y, w′, τ) outputs a re-randomized hash value ŷ.

All the algorithms are deterministic PT except for Setup′ which is a PPT algorithm. Notice that
we could alternatively define MaulK,RandX,RandT and RandH as PPT algorithms, keeping the
values k′, w′, τ implicit. However, we prefer to make them explicit, as it is easier to define
correctness. More in details, the algorithm MaulK, indeed, expects to receive as input a fresh
random key k′, the algorithm RandX, which re-randomizes the instance x, expects to receive a
random witness w′, and the algorithm RandT, which re-randomizes the tag t, expect to receive
a random string τ .

A malleable SPHF is structure preserving if the randomness τ is a vector of Zq elements
and all the algorithms can be defined via pairing-product equations.

The definition of Chen et al. considers malleability for both the projection keys and the
elements. Although for the Rand-RCCA scheme in Section 3 we do not need malleability for the
projection keys, we define it for completeness in this section. Looking ahead, our construction
of mSPHF indeed satisfies this property.

39

Experiment ExpEleRand
A,HF (λ):

pp← Setup(1λ), b∗ ← $ {0, 1}
x1, t1, x2, t2 ← A(pp), w′ ← $ W
x̂← RandX(pp, xb∗ , w

′)

t̂← RandT(pp, tb∗ , τ), τ ← $ {0, 1}λ
b′ ← A(pp, x̂, t̂)
return (b′ = b∗)

Experiment ExpCM−SS
A,HF (λ):

pp, td← Setup′(1λ)
k ← $ K, p = ProjK(pp, k)
t∗ ← A(pp, p),

(x, t, y)← A(pp, p)Hash(pp,k,·,t
∗)

return (Hash(pp, k, x, t) = y and x 6∈ L
and CheckTag(pp, td, t, t∗) 6= 1)

Fig. 9: The malleable SPHF experiments.

Definition 13 (Projection Key Malleability). A HF is projection key-malleable iff for any
pp ∈ Setup, any k, k′ ∈ K let p = ProjK(pp, k), any element x ∈ X , (1) MaulK(pp, p, k′) =
ProjK(pp, k + k′) and (2) Hash(pp, k + k′, x) = Hash(pp, k, x) + Hash(pp, k′, x).

The definition of Chen et al. differs from ours in some aspects that we clarify. First, their
definition additionally considers a security game where the adversary wins if it can distinguish
between the re-randomization of two adaptively chosen projection keys. We do not need to
define the same security game because, by (1), by the fact that we restrict on SPHF with an
algebraic structure (namely, all the spaces are groups) and by sampling k′ uniformly at random
from K we obtain a similar (actually stronger) property.

Next, we extend the Element Re-Randomizability property of Chen et al. to the setting with
tags.

Definition 14 (Element and Tag Re-randomizability). A HF is element-rerandomizable
if the following holds:

– Element Indistinguishability. For any PPT adversary A:

AdvEleRand
A,HF (λ) :=

∣∣∣∣Pr
[
ExpEleRand

A,HF (λ) = 1
]
− 1

2

∣∣∣∣ ∈ negl(λ).

where the experiment is defined in Fig. 9.
– (Perfect) Re-randomization Consistency. For any pp ∈ Setup, any k ∈ K, any element
x ∈ X , any witness w′, let x̂ = RandX(pp, x, w′) and t̂ = RandT(pp, t, τ) then

Hash(pp, k, x̂, t̂) = RandH(pp, x, t, y, w′, τ).

– Membership Preservation. For any element x ∈ X and witness w′ let x̂ = RandX(pp, x, w′, r);
then we have ĉ ∈ L if and only if c ∈ L.

– Tag Preservation. For any t ∈ T and randomness τ , we have

CheckTag(pp, t,RandT(pp, t, τ)) = 1.

Finally, we require the following additional properties:

Definition 15. A HF is controlled-malleable simulation-sound if the following holds:

– for any PPT adversary A:

AdvCM−SS
A,HF (λ) := Pr

[
ExpCM−SS

A,HF (λ) = 1
]
≤ 1/|Y|

where the experiment is defined in Fig. 9.

40

– The public parameters as output by Setup and Setup′ are identically distributed.

Some remarks follow. First, our notion extends the syntax of Chen et al. by adding two extra
algorithms, CheckTag and RandT whose semantic is related to adding support for tags. In partic-
ular, RandT allows to re-randomize a tag, while CheckTag allows to check that the re-randomized
tag is computed, indeed, as a re-randomization of the original tag. Second, we consider an extra
setup algorithm that outputs a trapdoor td. Notice that the element indistinguishability prop-
erty does not hold when given the trapdoor (as t̂ can be traced back to either t0 or t1). Finally,
we require that the advantage above is less or equal to 1/|Y| so that the definition is indeed
a strictly stronger notion of smoothness. One could consider a more generous definition where
the advantage above is negligible. However, our construction achieves this stronger notion.

D.1 Our Construction

Consider the following mSPHF HF with parameters `, k ∈ N:

– Setup′(1λ) runs prmG ← GGen(1λ) to generate group parameters and samples D,E← $ Dk,
finds z 6= 0 such that z>E = 0, set K = Zk+1×`+1

q ,P = Gk+2
1 ,X = Gk+1

1 ,Y = GT ,W = Zkq
and T = G`

2 outputs pp = prmG, [D]1, [E]2 and the trapdoor td = z.
– ProjK(pp, k) where k = (f ,F) outputs p = ([f>D,F>D]1, [FE]2).
– Hash(pp, k, x, t) where x = [u]1 and t = [v]2 outputs:

y = e(f> · [u]1, [1]2) + e(F> · [u]1, [v]2).

– PHash(pp, p, x, w, t) where w = r and [x] = [D]r outputs:

y = e([f>D]1 · r, [1]2) + e([F>D]1 · r, [v]2).

– CheckTag(pp, td, t, t′) where td = z, t = [v]2, and t′ = [v′]2 return 1 if and only if z> · [v −
v′]2 = 0.

– MaulK(pp, p, k′) where k′ = f ′,F′ outputs:

[(f + f ′)>D, (F + F′)>D]1, [(F + F′)E]2.

– RandX(pp, x, w′) where w′ = r̂ outputs [u]1 + [D]1 · r̂.
– RandT(pp, t, τ) where τ = ŝ outputs [v]2 + [E]2 · ŝ.
– RandH(pp, x, t, y, w′, τ) outputs:

y + e([f>D]1r̂, [1]2) + e([F>D]1 · r̂, [v + Eŝ])2 + e([u]1, [FE]2 · ŝ)

Theorem 6. The SPHF HF described above is structure preserving, projection key malleable,
element-tag rerandomizable and controlled-malleable simulation sound.

Proof (Sketch.). The proof of projection key-malleability is straightforward. It is easy to prove
also that HF is element-tag re-randomizable, under the Dk assumption for [D]1 and [E]2. In
fact, in an hybrid step we can compute both x̂ = [u]1 + [u∗]1 and t̂ = [v]2 + [v∗]2 where
[u∗]← $ Gk+1

1 and [v∗]2 ← $ G`
2. Once in this new hybrid experiment, the distributions of x̂ and

t̂ are independent of the challenge bit.
Finally, the controlled-malleable simulation soundness follows from Lemma 1. In a lit-

tle bit more of details, the game of the Lemma gives the adversary access to (f + F)v∗

for a v∗ of its choice. Given such information, the reduction can easily simulate the oracle
Hash(pp, (f ,F), ·, [v∗]). Moreover, the check done by CheckTag holds if and only if v − v∗ 6∈
span(E), in fact, if v − v∗ ∈ span(E) then there exists s′ such that z>(v − v∗) = z>Es′ = 0.
On the other hand, E has full rank and thus z|E is a basis for Zk+1

q .

41

E Verifiable Threshold Decryption in the Random String model

We show how we can UC-realize the ideal functionalities for CRS generation and threshold
decryption that are needed by our Mix-Net protocol. In particular, we give a construction that
works for the case when the PKE is our pv-RAND-RCCA PKE scheme. We begin by giving
the definitions of the ideal functionalities.

Functionality FTDec[PKE , prm]:

let PKE = (Init,KGen,Enc,Dec).

Initialization Phase: at the first activation sample pk, sk← $ KGen(prm) and store the tuple (pk, sk);
Public Value: on message pk from a party Pmi , i ∈ [m], (resp. the adversary A) send pk to PMi (resp. the

adversary A).
Decryption Value: on message (dec, C) from party Pmi , i ∈ [m], check that the tuple (C, M, I) exists in the

database, if so update I including the index i else create the new entry (C,Dec(sk, C), {i}) in the database. if
|I| equals m then send a public delayed output (dec, C, M) to the parties PMi for i ∈ [m] ;

Functionality FCRS[Init, prm]:

Initialization Phase: at the first activation sample crs← $ Init(prm) and store it;
Public Value: on message crs from a party PMi , i ∈ [m], (resp. the adversary A) send crs to PMi (resp. the

adversary A).

Fig. 10: Ideal Functionalities for Threshold Decryption and Common Reference String
parametrized by group parameters prm and by a PKE scheme PKE and a NIZK setup Init
respectively.

Building Blocks. Let PKE ′ = (KGen′,Enc′,Dec′) be the inner Rand-CPA PKE scheme de-
rived from our pv-Rand-RCCA scheme PKE2. In particular the algorithm KGen′(prm) produces
[D∗]1,a such that (D∗)> = D>‖Da, the encryption algorithm Enc′ on input [D∗]1 and [M]1
output [x]1, and the decryption algorithm Dec′ on input a and [x]1 outputs (−a>, 1)[x]1. The
building blocks are:

1. An ideal functionality for threshold decryption of PKE ′. Such functionality could be UC-
realized easily by an auditable protocol in the random string model with static corruption.
Notice that this is a generalization of a standard ideal functionality for threshold decryption
for the ElGamal scheme. Since this is straightforward we only sketch the idea. The mixers
at initialization phase compute an additive secret sharing [ai]i of the secret key a; next, to
decrypt a ciphertext [x]1, the mixers compute a decryption share (−a>i , 1)[x]1 together with
a NIZK proof of its consistency.

2. An equivocable commitment COMM = (Init,Com,ECom,EOpen,EInit) for matrices in G1

and in G2 in the random-string model. The scheme is perfectly binding when the reference
string is generated with Init and equivocable when the common referen string in generated
with EInit. Moreover, the CRS generated in binding mode is computationally indistinguish-
able from an uniformly random string.

3. An adaptive sound Groth-Sahai (GS) NIZK NIZK for the knowledge of an opening for the
commitment COMM. More in details the relation proved is RCOMM = {(crsC , c), ([M]i, r) :
= Com(crsC , [M]i, r)}, the proof system needs only to prove knowledge of [M]i, where i ∈
{1, 2}.

4. An ideal functionality for the common-reference string, which generates m different common
reference strings crs1, . . . , crsm for the GS proof system, m different common reference strings

42

crsC2 , . . . , crs
C
m for the commitment scheme, and another crs crs for the malleable proof system

described in Sec. 4 for the pv-Rand PKE scheme. We stress that in the real protocol the
CRSs are sampled as uniformly random strings.

We define the auditable protocolΠTDec that realizes FTDec[PKE2, prm] in the (FTDec[PKE ′, prm],FCRS)-
hybrid model. The idea of the protocol is rather simple and relies on the observation that the
public-secret key pair of our scheme can be constructed with an additive secret sharing using
its linear properties.

The mixer PMj does:

– Initialization Phase: upon first activation, it receives [D∗] from FTDec[PKE ′] and {crsi, crsCi }j=1,...,m

from FCRS, and proceeds as described below:

1. Sample f i,gi ← $ Zkq , and Fi ← $ Zk+1×k+1
q ,Gi ← $ Zk+1×k+2

q ;

2. Compute [f>i D]1, [F
>
i D]1, [g

>
i E]2, [G

>
i E]2 and the values [GD∗]1, [FE]2; We call pki be

the concatenation of all these values; We notice that the values f i,Fi,gi,Gi at this point
can be deleted, as they are not necessary for decryption.

3. Commit the value pki, let ci be such commitment and ri the opening information,
4. Let πi ← P(crsi, (crs

C
i , ci), (pki, ri)) be a NIZK proofs of the knowledge of the opening

of the commitment ci;
5. Post in the bulletin board the message (i, ci, πi).

At next activation, if all the mixers have sent their value and all the NIZK proofs verify
then post in the bulletin board the opening (i, ri) and wait that all the mixers do the same,
the do as described below:

6. For any j ∈ [m], j 6= i, parse pkj = ([̃f j]1, [F̃j]1, [g̃j]2, [G̃j]2, [H̃j]1, [̃Ij]2), and check that:

e([H̃j]1, [E]2) = e([D]1, [G̃j]2) (6)

e([D]1, [̃Ij]2) = e([F̃j]1, [E]2)

Notice that if such conditions hold then the matrices have the right form.
7. Compute the public key pk as:

crs, [D], [E], [D∗],∑
j [f
>
j D]1,

∑
j [F
>
j D]1,

∑
j [g
>
j E]2,

∑
j [G

>
j E]2,∑

j [GjD
∗]1,

∑
j [FjE]2

– Decrypt Value On message (dec, C) the party PMi , check if V(pk, C) = 1 and if so parses C
as ([x]1, [v]2, Π) and forwards (dec, C) to FTDec[PKE ′, prm], when the functionality answers,
forward the answer as its own output.

Audit algorithm: Audit verifies the NIZK proofs π1, . . . , πm and checks the equations (6).

Theorem 7. The auditable protocol (ΠTDec,Audit) UC-realizes the functionality FTDec[PKE].

Proof (Sketch). In this sketch we simply define the simulator S. The indistinguishability of the
ideal and real world are straightforward.

Ideal adversary S:

Initialization received the set of corrupted party C, let h∗ the index of an honest party.
Sample all the common reference string in perfectly binding mode with exception of
crsCh∗ , crsh∗ that are sampled in trapdoor mode. Receive from the ideal functionality
FTDec[PKE] the public key pk.

43

Extraction extract from the NIZK proofs of the corrupted parties obtaining the values:

pkj = [̃f j]1, [F̃j]1, [g̃j]2, [G̃j]2, [H̃j]1, [̃Ij]2

Equivocation the party PPh∗ sends a fake commitment c̃h∗ together with a simulated
proof π̃h∗ ; then if the checks in the equation (6) hold for the pkj where j ∈ C then it
equivocates the commitment c̃h∗ to:

pk−
∑
i 6=h∗

pkj

else it opens the commitment to a validly generated share pkh∗ .
Decrypt Value the simulation of this part is trivial, the simulator follows exactly the

protocol simulating the ideal functionality FTDec[PKE ′] thanks to the outputs of
FTDec[PKE].

F Definitions

F.1 All-but-One label-based NIZK systems

Let NIZK = (Init,P,V) be a NIZK proof system with label space L, and let ABOInit(prm, τ)
an algorithm that upon input prm and a label τ ∈ L outputs a common reference string and
trapdoor information tpe, tps.

We require the following property from ABOInit:

All-but-One Composable Zero-Knowledge. For any τ ∈ L the common reference string
generated by Init(prm) and by ABOInit(prm, τ) are computationally indistinguishable. More-
over, for any τ ′, x, w where τ 6= τ ′ the distributions P(crs, τ ′, x, w) and Sim(tps, τ

′, x, w) are
equivalently distributed.

All-but-One Adaptive Perfect Soundness. There exists an extractor Ext such that any
crs, tps, tpe ← ABOInit(prm, τ) for any (possibly unbounded) adversary (τ, x, π) ← A(crs)
such that V(τ, x, π) = 1 then Ext(tpe, τ, x, π) outputs w such that (x,w) ∈ R.

Construction. Consider the instatiantion of GS Proof system of [15] based on Dk-MDDH. The
common reference string is of the following two forms:

[A‖Aw] Perfect Sound Mode

[A‖Aw − z] Perfect Hiding Mode

where A ← $ Dk, w ← $ Zkq and z 6∈ span(A) is a fixed and public vector. We can consider a
NIZK with label where the common reference string is made by two independent CRSs crs1, crs2,
both the verifier and the prover on input a label τ ∈ Zq derive a CRS crsτ = crs1 + crs1 · τ . We
are ready to define the ABOInit.

ABOInit(prm, τ∗):

1. Sample A1,A2 and w1,w2 and set crs′1 = (A‖Aw1) and crs′2 = (A2‖w2 − z);
2. Set crs1 = crs′1 − crs′2 · τ∗ and crs2 = crs′2;
3. Output crs1, crs2.

The all-but-one composable zero-knowledge comes readily from the Dk-MDDH assumption and
the composable zero-knowledge of GS proofs. The all-but-one adaptive perfect soundness comes
readily from the adaptive perfect soundness of GS proofs, in fact we notice that crsτ∗ = crs′1 −
τ∗crs′2 + τ∗crs′2 = crs′1 which allows for perfectly sound proofs.

44

F.2 Additional Definitions for Malleable NIZK

Definition 16 (Tightness for NIZK). We say that a NIZK has tight proofs if for any
(possibly unbounded) adversary A the following holds:

Pr

π 6∈ P(crs, x, w) ∧ V(crs, x, π) = 1 :

prm← Setup(1λ)

(crs, tpe, tps)← $ Init(prm)

(x,w, π)← A(crs)

 ∈ negl(λ).

45

	Structure-Preserving and Re-randomizable RCCA-secure Public Key Encryption and its Applications
	Introduction
	Preliminaries and Definitions
	Re-randomizable RCCA PKE
	Malleable NIZKs

	Our Rand-RCCA PKE scheme
	Our Publicly-Verifiable Rand-RCCA PKE
	Malleable and True-Simulation Extractable NIZK
	An UC-Secure Mix-Net
	Acknowledgements
	Missing proofs from Section 3 (Rand-RCCA PKE)
	Missing proofs from Section 4 (pv-Rand-RCCA PKE)
	Details on the Malleable Proof

	Missing proofs from Section 5 (tSE-cm NIZK)
	Controlled-Malleable Smooth-Projective Hash Functions
	Our Construction

	Verifiable Threshold Decryption in the Random String model
	Definitions
	All-but-One label-based NIZK systems
	Additional Definitions for Malleable NIZK

