
Security of Hedged Fiat–Shamir Signatures under Fault Attacks∗

Diego F. Aranha1, Claudio Orlandi2, Akira Takahashi2, and Greg Zaverucha3

1Department of Engineering, DIGIT, Aarhus University
dfaranha@eng.au.dk

2Department of Computer Science, DIGIT, Aarhus University
orlandi@cs.au.dk, takahashi@cs.au.dk

3Microsoft Research
gregz@microsoft.com

February 24, 2020

Abstract

Deterministic generation of per-signature randomness has been a widely accepted solution to mitigate
the catastrophic risk of randomness failure in Fiat–Shamir type signature schemes. However, recent
studies have practically demonstrated that such de-randomized schemes, including EdDSA, are vulnerable
to differential fault attacks, which enable adversaries to recover the entire secret signing key, by artificially
provoking randomness reuse or corrupting computation in other ways. In order to balance concerns of both
randomness failures and the threat of fault injection, some signature designs are advocating a “hedged”
derivation of the per-signature randomness, by hashing the secret key, message, and a nonce. Despite the
growing popularity of the hedged paradigm in practical signature schemes, to the best of our knowledge,
there has been no attempt to formally analyze the fault resilience of hedged signatures.

We perform a formal security analysis of the fault resilience of signature schemes constructed via the
Fiat–Shamir transform. We propose a model to characterize bit-tampering fault attacks, and investigate
their impact across different steps of the signing operation. We prove that, for some types of faults,
attacks are mitigated by the hedged paradigm, while attacks remain possible for others. As concrete case
studies, we then apply our results to XEdDSA, a hedged version of EdDSA used in the Signal messaging
protocol, and to Picnic2, a hedged Fiat–Shamir signature scheme in Round 2 of the NIST Post-Quantum
standardization process.

∗An extended abstract appears at EUROCRYPT 2020. This is the full paper.

1

Contents

1 Introduction 3
1.1 Our Contributions . 4
1.2 Related Work . 5
1.3 Paper Organization . 7

2 Preliminaries 8
2.1 Fiat–Shamir type Signature Schemes . 8
2.2 Definitions . 9
2.3 Relation between UF-KOA Security and UF-CMA Security . 12

3 Fault Attacks on Deterministic Fiat–Shamir Signatures 13
3.1 Conceptual Overview of the Attacks . 13
3.2 Applicability to Deterministic Picnic2 . 15

4 Formal Treatment of Hedged Signatures 16
4.1 Security of Hedged Signature Schemes . 16
4.2 Security of Hedged FS Type Signature Schemes Against Fault Adversaries 17

5 Security Analysis of Generic Hedged Fiat–Shamir Type Signatures Against Fault Attacks 19
5.1 Main Positive Result . 21
5.2 Faulting Serialization Input/Output and Response Output . 24
5.3 Faulting Challenge Hash Input . 25
5.4 Faulting Challenge Hash Output . 26
5.5 Faulting Response Input . 27
5.6 Faulting Commitment Output . 28
5.7 Negative Results . 29

6 Analysis of XEdDSA 30

7 Analysis of Picnic2 31
7.1 Preliminaries . 31
7.2 Applying the Results of Section 5 . 33
7.3 Picnic-Specific Results . 34

8 Concluding Remarks 34

A Omitted Proofs 42
A.1 Proof of Lemma 2 . 42
A.2 Proof of Lemma 3 . 43
A.3 Proof of Lemma 6 . 45

B Schnorr-Like Elliptic Curve Signature Schemes 46

C Description of Picnic2 47

2

1 Introduction

Deterministic Signatures and Fault Attacks Some signature schemes require a fresh, secret random
value per-signature, sometimes called a nonce. Nonce misuse is a devastating security threat intrinsic to
these schemes, since the signing key can be computed after as few as two different messages are signed using
the same value. The vulnerability can result from either programming mistakes attempting to implement
non-trivial cryptographic standards, or faulty pseudo-random number generators. After multiple real-world
implementations were found to be surprisingly vulnerable to this attack [fai10, BR18] researchers and practi-
tioners proposed deterministic signature schemes, such as EdDSA [BDL+12], as a countermeasure, in which
per-signature randomness is derived from the message and secret key as a defense-in-depth mechanism. How-
ever, it has been shown that simple low-cost fault attacks during the computation of the derandomized signing
operation can leak the secret key by artificially provoking nonce reuse or by corrupting computation in other
ways [Bae14, Sch16, BP16, ABF+18]. Recent papers have experimentally demonstrated the feasibility of
these attacks [RP17, PSS+18, SB18]. Moreover, [BP18] and [RJH+19] extended such fault attacks to exploit
deterministic lattice-based signature schemes among round two candidates of the NIST Post-Quantum Cryp-
tography Standardization Process [AASA+19]. Despite these attacks, deterministic signature generation is
still likely a positive outcome in improving security, since fault attacks are harder to mount.

In general, fault analysis consists of an invasive side-channel attack where the adversary corrupts compu-
tation to obtain some advantage in breaking a cryptographic implementation, such as forcing it to produce
faulty results which reveal internal state or bits of a secret key. Faults can be either ephemeral, as in the case
of the forced nonce reuse attacks described above, or persistently damage cryptographic implementations.

While (differential) fault analysis was already proposed as an attack methodology against symmetric-key
cryptography [BS97] and some signature/identification schemes [BDL97], it became clear only more recently
that it also poses a severe threat to modern signature schemes. This is especially relevant in the context
of post-quantum signature schemes subject to standardization, in which side-channel resistance is listed as
one of the main security requirements by NIST. In particular, the published evaluation criteria indicate that
candidates that admit side-channel protection at minimal cost have a clear advantage.

Fault Resilience of Hedged Signatures In order to balance concerns of both nonce reuse and the
threat of fault injection, some signature designs are advocating deriving the per-signature randomness from
the secret key sk, message m, and a nonce n. The intention is to re-introduce some randomness as a
countermeasure to fault injection attacks, and gracefully handle the case of poor quality randomness, to
achieve a middle-ground between fully-deterministic and fully-probabilistic schemes. We call constructions
following this paradigm hedged signatures. Despite the growing popularity of the hedged paradigm in practical
signature schemes (such as in XEdDSA, VXEdDSA [Per16], qTESLA [BAA+19], and Picnic2 [ZCD+19]),
to the best of our knowledge, there has been no attempt to formally analyze the fault resilience of hedged
signatures in the literature. While the hedged construction intuitively mitigates some fault attacks that
exploit the deterministic signatures, it does add a step where faults can be injected, and it has not been
shown if faults to the hedging operation allow further attacks, potentially negating the benefit. Therefore,
we set out to study the following question within the provable security methodology:

To what extent are hedged signatures secure against fault attacks?

Concretely, we study fault attacks in the context of signature schemes constructed from identification
schemes using the Fiat–Shamir transform [FS87]. We propose a formal model to capture the internal func-
tioning of signature schemes constructed in the hedged paradigm, and characterize faults to investigate their
impact across different steps of the signature computation.

We prove that for some types of faults, attacks are mitigated by the hedged paradigm, while for others, at-
tacks remain possible. This provides important information when designing fault-tolerant implementations.
We then apply our results to hedged EdDSA (called XEdDSA) and the Picnic2 post-quantum signature
scheme [ZCD+19], both designed using the hedged construction. The XEdDSA scheme is used in the Sig-
nal protocol [CCD+17] which is in turn used by instant messaging services such as WhatsApp, Facebook
Messenger and Skype.

3

Threat Model We consider a weaker variant of the standard adversary assumed in the fault analysis
literature [JT12], who is typically capable of injecting a fault into an arbitrary number of values. Our
adversary is capable of injecting a single-bit fault each time a signature is computed. We further restrict
the faults to be injected at the interfaces between the typical commit, challenge, and response phases of
Fiat–Shamir signatures, i.e., only those function inputs and outputs can be faulted. This models transient
faults injected into registers or memory cells, but does not fully capture persisting faults that permanently
modify values in key storage, voltage glitches to skip instructions or micro-architectural attacks to modify
executed instructions (such as RowHammer and variants [KDK+14]).

We argue that, even if our model does not capture all possible fault attacks, it provides a meaningful
abstraction of a large class of fault attacks, and thus our analysis provides an important first step towards un-
derstanding the security of hedged signatures in the presence of faults. This way, designers and implementers
can focus on protecting the portions of the attack surface that are detected as most relevant in practice.
We observe that the effects of fault attacks found in the literature targeting deterministic signatures can
be essentially characterized as simple bit-tampering faults on function input/output, even though some of
actual experiments cause faults during computation [BP18]. This is a result of the lower budget, timing
constraints and precision required for the attack to be effective [KSV13, JT12]. Moreover, an abstract model
is needed to prove general results, and the general functions common to all Fiat–Shamir signatures are a
natural candidate for abstraction.

We consider two single-bit tampering functions to set or flip individual bits, respectively: flip_biti(x)
to perform a logical negation of the i-th bit of x, and set_biti,b(x) to set the i-th bit of x to b. This
captures both stuck-at and bit-flip fault injection attacks [KSV13], introduced as data flows through the
implementation. Such attacks are practically targeted at various components of the device, e.g., memory
cells, processor registers, or data buses.

1.1 Our Contributions

The main results of this paper are summarized as follows.

A new security model for analyzing fault attacks. We establish a formal security model tailored
to Fiat–Shamir type signatures (hedged, deterministic or fully probabilistic). We survey the literature on
fault attacks, showing that our model captures many practical attacks. As a first step, we abstract real-world
hedged signature schemes, basing our formalization on Bellare and Tackmann’s nonce-based signatures [BT16]
and Bellare, Poettering and Stebila’s de-randomized signatures [BPS16]. We call this security notion unforge-
ability under chosen message and nonce attacks UF-CMNA. In this security experiment, when submitting a
message to the signing oracle, the adversary may also choose the random input to the hedged extractor, a
function that derives the per-signature randomness from a nonce, the secret key, and the message.

Then we extend UF-CMNA to include resilience to fault attacks. In this security experiment the adversary
plays a game similar to the UF-CMNA game, but the signing oracle also allows the attacker to specify a fault
to be applied to a specific part of the signing algorithm. We identify eleven different fault types that the
adversary can apply to the signing algorithm, and we denote them by by f0, . . . , f10. For example, fault
type f1 applies set_bit or flip_bit to the secret key input to the hedged extractor. This notion is called
unforgeability under faults, chosen message and nonce attacks, and is denoted F -UF-fCMNA where F is a set
of fault types.

Fault resilience of hedged Fiat–Shamir signatures. We then prove that hedged Fiat–Shamir signature
schemes are secure against attacks using certain fault types. Of the eleven fault types in our model, we found
that the generic hedged Fiat–Shamir signature scheme is resilient to six of them (summarized in Fig. 1). As
our model gives the attacker nearly full control of the RNG by default, our main results indicate that the
hedged scheme can resist additional faults even in this (usually dire) scenario. The only constraint is that
message-nonce pairs do not repeat as otherwise the scheme degenerates to a pure deterministic construction
and attacks become trivial. When the underlying ID scheme has an additional property that we call subset
revealing, the corresponding hedged signature scheme is secure against attacks that use eight of the eleven
fault types. Informally, an ID scheme is subset revealing if the response to the challenge reveals a subset of

4

HE Com H Resp CSF
sk 7
n
m 3

pk
σ

3
7
7

3

N

F

3

ρ
7

a
33

St
F

e
33

z
3

3
3

3

Figure 1: Overview of our results for hedged Fiat–Shamir type signature schemes. 3 indicates security
against 1-bit fault on the corresponding wire value, and 7 indicates an attack or counterexample. A F (resp.
N) indicates that security only holds for the schemes derived from subset-revealing ID (resp. input-delayed
ID) protocols. The function components HE,Com,H,Resp, and CSF stand for hedged extractor, commitment,
hash function, response, and canonical serialization function, respectively (see Sections 2 and 4 for the formal
definitions).

the state computed during the preparation of the first message, and does not depend on the secret key (for
instance, Schnorr is not subset-revealing while Picnic is).

Overall, our results give a full characterization of which fault attacks are mitigated as intended by the
hedged construction, and which fault attacks remain. Our conclusion is that hedging is never worse than the
deterministic construction with respect to faults, plus it has the additional benefit of hedging against poor
randomness.

Fault resilience of XEdDSA and Picnic2. We use the Schnorr signature scheme throughout the paper
as an example. As an application of our results, we show that hedged Schnorr resists attacks for six of the
eleven fault types in our model. One implication is that the hedged scheme XEdDSA does provide better
resistance to fault attacks than (deterministic) EdDSA. In particular, XEdDSA resists all fault injection
attacks against EdDSA described in the literature that rely on nonce reuse without skipping nonce generation
entirely [BP16, RP17, ABF+18, PSS+18, SB18]. We also show to what extent the Picnic2 signature scheme
is secure against the fault attacks in our model. Because it is subset-revealing, resistance to eight of the
eleven fault types is immediately established by our results for generic ID schemes. For the remaining three,
we prove security for one (using specific details of Picnic2), and show attacks for the other two.

1.2 Related Work

To the best of our knowledge, ours is the first work considering fault attacks on hedged constructions.
However, the modeling and construction of secure cryptographic schemes in the presence of faults or tampering
attacks has received plenty of attention in recent years. We survey some of this work below. Related work
on fault attacks to deterministic signature schemes is given in Section 3.

De-randomized and Hedged Constructions. Bellare and Tackmann [BT16] studied cryptography that
is hedged against randomness failures. Signing is made deterministic, and takes a long-term secret called the
seed, and a per-signature random value called a nonce. Security is assured if either (1) the seed is secret, or (2)
the nonce is unpredictable (in addition to the signing key remaining secret, and the signature scheme must be
UF-CMA secure to begin with). They also describe the “folklore construction”, where instead of a separate
secret seed, the signing key and message to be signed are used to derive the per-signature randomness,
and additional randomness may or may not be included in the derivation. Some special cases have been

5

analyzed (for UF-CMA security): Schnorr signatures by M’Raihi et al. [MNPV99] and ECDSA by Koblitz
and Menezes [KM15].

A generic version of the folklore derandomization construction was proven UF-CMA secure by Bellare,
Pottering and Stebila [BPS16]. The proof is tight when the per-signature randomness is derived from a
random oracle (independent of any other ROs used in the signature scheme). They also showed that the
underlying randomized signature scheme need not even satisfy the traditional UF-CMA security, and it is only
required to have a weaker property called “unique unforgeability” (abbreviated to UUF-CMA), meaning the
scheme is unforgeable with the restriction that the adversary gets only one signature per message. This arises
naturally when modeling derandomized signatures, where at most one signature is created per message.

Other works on hedged cryptography include [RY10] and [BBN+09, BH15, BPS17, HLC+18] when con-
sidering hedged public-key encryption in particular.

Fault Attacks and Tamper-Resilient Signatures. Tamper-resilient cryptography has received plenty
of attention, both in the context of theoretical and practical cryptographic research, dating back at least to
the early paper of Boneh, Demillo and Lipton [BDL97] considering fault attacks on RSA signatures (here
it is noted that some attacks fail when a random padding is used, since it ensures that the same message
is never signed twice). Later Coron and Mandal [CM09] proved that RSA-PSS is protected against random
faults, and Barthe et al. [BDF+14] extends this to non-random faults as well. All of the above works
contain examples of how randomization improves the security of signature schemes against fault attacks (in
a provable way).

Other early work includes Gennaro et al. [GLM+04] that provides an early framework for proving tamper
resilience, and Ishai et al. [IPSW06] which proposes generic transformation for tamper-resilient circuits. In
a later work by Faust et al. [FPV11] a different and incomparable model was considered, which in particular
guarantees security against tampering with arbitrary number of wires. We note that our model is similar to
theirs since it also considers adversaries that are allowed to flip or reset each bit in the circuit. Similar ideas
are also used in practice when considering fault resilient masking (e.g., [DAN+18]).

In our model the adversary is only allowed to tamper with part of the computation. Similar limitations
have been considered before in the literature to circumvent impossibility results, in particular in the so called
split-state model [DPW18]. Several constructions have been proposed in this model including: non-malleable
codes (Dziembowski, Pietrzak and Wichs [DPW18]), signature schemes (Faonio et al. [FNSV18]), and more
(Liu and Lysyanskaya [LL12]).

Other related work on tamper resilient signature schemes include the work of: Faonio and Venturi [FV16]
(that presented a generic way to construct bounded tamper resilient signatures in the standard model),
Fujisaki and Xagawa [FX16] (who among other things proved impossibility of non-persistent tamper-resilient
signatures against arbitrary class of tampering functions, even in the presence of self-destruct and key-
updating mechanisms), Austrin et al. [ACM+17] (who considered p-tampering attacks that tamper with
each bit of the random tapes of cryptographic algorithms) and Damg̊ard et al. [DFMV17] (who proved the
bounded tamper resilience of Σ-protocols against the arbitrary class of tampering functions, considering the
faults on the witness and public parameters).

Most of this previous work has focused on constructing novel tamper resilient signature schemes, or
understanding the limits of tamper resilience, in theory. Instead, we focus on analyzing the tamper resilience
of a popular transformation used in practice. Moreover, some of the previous work must restrict the tampering
to a bounded amount, since they allow for arbitrary polynomial time tampering functions. In our case, we
restrict the tampering capabilities to realistic functions, motivated by surveying the state of the art in fault
attacks against real-world signatures, but instead we do not assume any upper-bound on the number of faulty
signing queries.

Related key attacks (RKA) can be seen as a special case of tampering, and we thus mention some related
work. Bellare and Kohno [BK03] initiated the formal study of related-key attacks and several primitives where
later studied: Bellare, Cash and Miller [BCM11] showed that RKA-secure signatures can be constructed from
RKA-secure PRG; Patterson, Schuldt and Sibborn [PSS14] considered related randomness attacks against
public key encryption; Morita et al. [MSM+16] analyzed RKA security of Schnorr signatures.

6

Ineffective Fault Attacks (IFA) and Countermeasures. In this paper we consider not only flip_bit

fault attacks, but also set_bit faults for the following reason. Clavier [Cla07] proposed ineffective fault
attacks (IFA), in which the adversary forces a certain intermediate bit value to be stuck at 0 or 1, and tries
to recover the secret internal state by observing whether the correct output is obtained (i.e., the injected
fault was ineffective). IFA is very powerful, and works even if the target algorithm contains typical coun-
termeasures against fault attacks, such as a correctness check after redundant operations [BCN+06] and the
infective countermeasure [YJ00]. IFA has been recently superseded by statistical ineffective fault attacks
(SIFA) [DEK+18, DEG+18], that use statistical analysis to enable mounting IFA with low-precision bit-
fixing, random or bit-flip faults. Daemen et al. [DDE+19] provided several practical countermeasures against
SIFA, and their abstract adversarial model is close to ours in the sense that the adversaries are allowed to
flip or set a single bit wire value in the circuit per query, though their security argument does not follow the
provable security methodology.

Formal Methods. Some previous works that analyze security of cryptography against fault attacks use
formal methods. The promise of formal methods is that they allow many classes of faults to be considered
with less manual effort. They could also allow implementers to easily test the effectiveness of countermeasures,
without repeating the analysis manually. There can be many possible (fault type, fault location) pairs to
consider, each potentially requiring a separate proof. So far, approaches based on formal methods have
arguably not delivered this type of strong result.

In one study, Rauzy and Guilley [RG14] analyzed the security of multiple implementations of RSA-CRT
against data faults at any point in the computation. Their tool proved the security of one implementation,
and found attacks on the others. The security guarantee is weaker than a reduction-based proof, since it only
rules out a certain class of attacks. Some drawbacks of [RG14] is that their tool is custom, and not general
in that it only works for RSA-like cryptosystems, that are deterministic.

A different use of formal methods is by Barthe et al. [BDF+14], who prove the security of RSA-PSS
against non-random faults. They use the EasyCrypt computer-aided framework to formally verify their
(hand-written) security proof (and also find a mistake in the proof of [CM09]). Notably, this required
significant changes to EasyCrypt itself, outside the scope of [BDF+14].

Moro et al. [MHER14] create a build-time transformation that replaces a program’s machine instructions
with an equivalent sequence that executes correctly even with instruction skip fault attacks. This counter-
measure is formally proven to to be effective using a model-checking tool, and relies on the assumption that
performing two faults on instructions separated by a small number of clock cycles is infeasible.

Concurrent Work. An independent work by Fischlin and Günther [FG20] proposes a memory fault model
for digital signatures and authenticated encryption. Their main result about a generic hedged signature
scheme is two-fold: it is provably secure when the nonce is fully faulted, or when the message, nonce, and
hedged extractor output are all differentially faulted in each signing query. The former essentially coincides
with our Lemma 3, but with a different proof technique. For the latter, the outcome diverges because the
adversarial power in our model is different in the following ways: 1. the adversary can locally inject a fault
into sk as a hedged extractor input, 2. the adversary can inject a bit-fixing fault, not only a bit-flip (i.e.,
differential) fault, 3. the adversary has nearly full control over the nonce, instead of assuming nonces are
randomly generated and subject to bit flips later on, but 4. the adversary cannot inject multi-bit faults into
multiple variables in a query. We additionally consider fault attacks on other various intermediate values
inside the signing operation. Our treatment is then more fine-grained and successfully captures typical
existing attacks on deployed deterministic schemes (like attacks that fault the challenge hash), while [FG20]
does not. The upside of the generic approach in [FG20] is that the result applies to more signature schemes.

1.3 Paper Organization

In Section 2 we provide basic definitions related to digital signature schemes derived from the Fiat–Shamir
transform. Section 3 surveys recent fault attacks against deterministic Fiat–Shamir type signature schemes,
to classify and characterize types of fault adversaries found in the literature. We then formally define hedged
signature schemes in Section 4 together with their security notion against fault adversaries. In Section 5, we
present our main result with formal security proofs, and clarify against which kind of fault attacks hedged

7

Fiat–Shamir signature schemes remain secure. Then Sections 6 and 7 apply our results to concrete instances
of hedged signature schemes, the XEdDSA scheme (§ 6) and Picnic2 (§ 7). Finally, Section 8 discusses some
fault attacks that are not covered by our model, to illustrate the limitations of our analysis, and indicate an
interesting direction for future work.

2 Preliminaries

Notation The notation | · | denotes two quantities depending on the context: |S| denotes the cardinality of
a set S, and |s| denotes the length of a bit string s. The notation x←$X means that an element x is sampled
from the set X uniformly at random. We often use the notation [n] as a short hand for a set {1, . . . , n} where
n ∈ N. When we explicitly mention that an algorithm A is randomized, we use the notation A(x; ρ) meaning
that it is executed on input x with random tape ρ.

2.1 Fiat–Shamir type Signature Schemes

This paper studies the robustness of Fiat–Shamir type signature schemes against fault attacks. Some concrete
examples of schemes in this category that we consider are given here. A relevant signature algorithm that is
not constructed with the Fiat–Shamir transform is ECDSA, but RFC 6979 [Por13, Section 3.6] describes a
derandomized implementation and includes a variant that matches the hedged construction we study in this
paper.

Schnorr and EdDSA Signatures The Schnorr signature scheme [Sch91] is one of the most well-known
signature schemes using the Fiat–Shamir transform. The original paper instantiates the scheme in a finite
field, but easily generalizes to other groups where the discrete logarithm problem is hard. Later work used
the group of points on an elliptic curve, and a recently standardized [JL17] variant gaining popularity is
EdDSA [BDL+12]. Appendix B gives the details of these algorithms. One notable feature of EdDSA is that
it is deterministic, signatures are derandomized by deriving the per-signature random value from a secret key
and the message to be signed. Applying the hedging strategy from this paper to EdDSA is simple, and it
has been already employed in the XEdDSA signing algorithm used in the Signal protocol [Per16]. The only
drawback (that we are aware of) is that the test vectors of [JL17] are no longer applicable.

Picnic Signatures Picnic [CDG+17] is a signature scheme that is designed to provide security against
attacks by quantum computers (in addition to attacks by classical computers). The scheme is a second
round candidate for the NIST Post-Quantum Cryptography project [AASA+19]. Here we provide a brief
description based on the design document [Pic19b], and in Appendix C we give more details. The scheme
uses a zero-knowledge proof system and is based on symmetric-key primitives like hash functions and block
ciphers with conjectured post-quantum security. In particular, Picnic does not rely on number-theoretic or
algebraic hardness assumptions.

The proof system is one of ZKBoo [GMO16], ZKB++ [CDG+17] or KKW [KKW18]; all designed for
zero-knowledge proofs on arbitrary circuits. These proof systems build on the MPC-in-the-head paradigm of
Ishai et al. [IKOS07], that we describe only informally here. The multiparty computation protocol (MPC) will
implement the relation, and the input is the witness. For example, the MPC could compute y = SHA-256(x)
where players each have a share of x and y is public. The idea is to have the prover simulate a multiparty
computation protocol “in their head”, commit to the state and transcripts of all parties, then have the verifier
“corrupt” a random subset of the simulated parties by seeing their complete state. The verifier then checks
that the opened parties performed the correct computation, and if so, he has some assurance that the output
is correct. Iterating this for many rounds then gives the verifier high assurance that the prover knows the
witness. To make this non-interactive, the rounds are done in parallel, and the challenge is computed with
the Fiat–Shamir transform. In the Picnic signature scheme, the secret key sk (the witness) is the key to a
block cipher, and the public key (the relation) is a plaintext-ciphertext pair created by sk.

Clearly, while Picnic’s design is based on Fiat–Shamir, it is much different from Schnorr signatures. We
chose to analyze it in part to validate the generality of our results. It is also a relatively new scheme that
has had little analysis with respect to fault attacks and we hope that our results will guide future analysis,
by ruling out some classes of attacks.

8

ExpUF-CMA
SIG (A)

M ← ∅; HT← ∅

(sk, pk)← Gen(1λ)

(m∗, σ∗)← AOSign,H(pk)

v ← Verify(pk,m∗, σ∗)

return (v = 1) ∧m∗ /∈M

OSign(m)

ρ←$Dρ

σ ← Sign(sk,m; ρ)

M ←M ∪ {m}
return σ

H(x)

If HT[x] = ⊥ :

HT[x]←$DH

return HT[x]

Figure 2: Standard UF-CMA experiment in the random oracle model

Prover(sk; ρ) Verifier(pk)

(a, St)← Com(sk; ρ) a

e e←$DH

z ← Resp(sk, e, St) z 0/1← V(a, e, z, pk)

Figure 3: Canonical identification protocol ID, executed with random tape ρ ∈ Dρ. The set DH may be
bitstrings, or have more structure (e.g., a list of integers).

2.2 Definitions

In this subsection we recall several basic definitions related to digital signatures constructed from the iden-
tification protocols. Since this paper deals with Fiat–Shamir signatures, we always assume that the signing
algorithm of digital signature schemes takes some randomness as input.

Definition 1 (Digital Signature Scheme). A digital signature scheme, denoted by a tuple of algorithms
SIG = (Gen,Sign,Verify), is defined as follows.

• Gen(1λ), where λ is a security parameter, outputs a key pair (sk, pk). We assume that a key pair defines
the set Dρ ⊆ {0, 1}`ρ from which a randomness ρ of length `ρ-bit is sampled.

• Sign(sk,m; ρ), where sk is a signing key, m is a message, and ρ ∈ Dρ is a random value, outputs a
signature σ.

• Verify(pk,m, σ), where pk is a public key, outputs 1 (i.e., accept if the signature is valid) or 0 (i.e.,
reject if the signature is invalid).

We say that SIG is correct if for every key pair (pk, sk) output by Gen, and for every m ∈ {0, 1}∗ and ρ ∈ Dρ,
the corresponding signature σ = Sign(sk,m; ρ) satisfies

Pr[Verify(pk,m, σ) = 1] = 1.

We tailor our definition of UF-CMA security to the random oracle model since our analysis will always
model the hash function used in Sign as a random oracle, and all Fiat–Shamir-type signature schemes in this
paper use a hash function.

Definition 2 (UF-CMA Security in the Random Oracle Model). A signature scheme SIG = (Gen,Sign,Verify)
is said to be UF-CMA (unforgeability against chosen message attacks) secure in the random oracle model, if
for any probabilistic polynomial time adversary A, its advantage

AdvUF-CMA
SIG (A) := Pr

[
ExpUF-CMA

SIG (A) = 1
]

9

Gen(1λ)

(pk, sk)← IGen(1λ)

return (pk, sk)

H(x)

If HT[x] = ⊥ :

HT[x]←$DH

return HT[x]

Sign(sk,m; ρ)

(a, St)← Com(sk; ρ)

e← H(a,m, pk)

z ← Resp(sk, e, St)

σ ← CSF(a, e, z)

return σ

Verify(pk,m, σ)

(a, e, z)← CDF(σ, pk)

return V(a, e, z, pk)
?
= 1

∧ H(a,m, pk)
?
= e

Figure 4: The Fiat–Shamir transform applied to canonical ID with serialization CSF, to construct the sig-
nature scheme FS[ID,CSF] = (Gen,Sign,Verify). The function H : {0, 1}∗ → DH is constructed with a
cryptographic hash function which we model as a random oracle.

is negligible in λ, where ExpUF-CMA
SIG (A) is described in Fig. 2. Moreover, SIG is said to be UF-KOA (unforge-

ability against key-only attack) secure if A makes no signing queries to OSign in ExpUF-CMA
SIG (A).

We now define a three-round public-coin identification protocol, the basis of Fiat–Shamir-type signatures.
The definition below essentially follows the formalization of [KLS18] unless explicitly stated.

Definition 3 (Canonical Identification Protocol). A canonical identification protocol, denoted by a tuple of
algorithms ID = (IGen,Com,Resp,V)and depicted in Fig. 3, is a three-round protocol defined as follows:

• IGen(1λ), where λ is a security parameter, outputs a key pair (sk, pk). In the context of identification
protocols, pk and sk are sometimes called statement and witness. We assume that IGen defines a hard-
relation, and that pk defines the parameters of the scheme including: randomness space Dρ, commitment
space A, challenge space DH and response space Z.

• Prover invokes a committing algorithm Com on a secret key sk and randomness ρ ∈ Dρ as input, and
outputs a commitment a ∈ A and state St.

• Verifier samples a challenge e from the challenge space DH ⊆ {0, 1}∗.

• Prover executes a response algorithm Resp on (sk, e, St) to compute a response z ∈ Z ∪ {⊥}, where
⊥ /∈ Z is a special symbol indicating failure. On top of this standard formalization, we further require
that Resp returns ⊥ whenever it receives a malformed challenge ẽ /∈ DH , as such a simple sanity check
is performed in most practical implementations.

• Verifier executes a verification algorithm V on (a, e, z, pk) as input, to output 1 (i.e., accept) or 0 (i.e.,
reject).

We call a triple (a, e, z) ∈ A×DH × Z ∪ {⊥,⊥,⊥} a transcript, and it is said to be valid with respect to pk
if V(a, e, z, pk) = 1. We say that ID is correct if for every pair (pk, sk) output by IGen, for every ρ ∈ Dρ, and
for every transcript (a, e, z) from an honest execution of the protocol between Prover(sk; ρ) and Verifier(pk),

Pr[V(a, e, z, pk) = 1] = 1.

Remark The response algorithm in the above definition does not explicitly take a commitment a as input.
We decided to do so since a is generally not required to compute z, such as in the Schnorr identification
scheme and, if needed, we assume that St contains a copy of a.

The following definition is adapted from [HL10, Chapter 6]. We explicitly differentiate three flavors of the
special HVZK property depending on a level of indistinguishability, following the approach found in [Gol07,
Chapter 4]. Note that εHVZK below is equal to 0 for special perfect HVZK.

10

Definition 4 (Special c/s/p-HVZK). Let ID = (IGen,Com,Resp,V) be a canonical identification protocol.
ID is said to be special computational/statistical/perfect honest-verifier zero knowledge (special c/s/p-HVZK)
if there exists a probabilistic polynomial-time simulator M, which on input pk and e outputs a transcript
of the form (a, e, z) that is computationally/statistically/perfectly indistinguishable from a real transcript
between an honest prover and verifier on common input pk. Formally, for every pair (pk, sk) output by IGen,
and every e ∈ DH it holds that

{M(pk, e)}sk,pk,e
c/s/p
≡ {〈Prover(sk; ρ),Verifier(pk, e)〉}sk,pk,e

where
c/s/p
≡ means that two families of random variables are computationally/statistically/perfectly indis-

tinguishable, {M(pk, e)}sk,pk,e denotes the output distribution of simulator M upon input pk and e, and
{〈Prover(sk; ρ),Verifier(pk, e)}sk,pk,e denotes the transcript distribution of an honest execution between Prover
and Verifier, in which we assume that Prover receives uniformly sampled randomness ρ ∈ Dρ. We also denote
by εHVZK the upper bound on the advantage of all probabilistic polynomial-time distinguishing algorithms.

In our security analysis of specific hedged-signature schemes in the presence of faults we will provide a
concrete bound on the min-entropy of the associated ID scheme. But here we present a useful lemma stating
that the commitment message a of any secure identification scheme must have high min-entropy. The lemma
might be folklore but we were unable to find a reference to it, so we include it for completeness.

Lemma 1. Let ID be a canonical identification protocol as in Definition 3, satisfying special-soundness and
HVZK (as in Definition 4). Then, the min-entropy α of the commitment message a (given the public key) is
at least α = ω(log(λ))

Proof. We construct an adversary that, given the public key pk of the ID scheme, recovers the secret key sk
if α < ω(log(λ)), thus contradicting the property that IGen generates a hard relation with security parameter
λ. The adversary simply runs the HVZK simulator M on input M(pk, ei) for different challenge values
e1, . . . , et ∈ DH , for a t polynomial in λ. Then, the adversary checks if there are any two equal commitment
messages in the generated transcripts ai = aj and, if so, outputs the secret key sk using the extractor
guaranteed from the special soundness property. We analyze the success probability of this adversary. First
of all, let ε (negligible in λ) be the HVZK parameter of the system. Then, using hybrid arguments, we can
argue that the probability of the attack succeeding when using simulated transcripts is at least (1− tε) times
the probability that the attack succeeds when using real transcripts (for which the special-soundness property
is defined). Then, we note that the attack succeeds (if it was run with real transcripts) only if there is at least
a collision between the observed a’s, and this happens with probability O(t22−α). So, all in all, our adversary
can recover the secret key running in time t with probability O((1− tε)t22−α) which is non-negligible in λ if
α < ω(log(λ)).

Definition 5 (Subset Revealing Identification Protocol). Let ID = (IGen,Com,Resp,V) be a canonical iden-
tification protocol. We say that ID is subset revealing if ID satisfies the following.

• St is a set of c states {St1, . . . , Stc}.

• Resp first derives an index set I ⊂ [c] using only e as input, and outputs Sti for i ∈ I as z.

• The number of states c and size of the challenge space |DH | are both polynomial in λ.

Remark. Similar definitions were previously given by Kilian et al. [KMO90] and Chailloux [Cha19], where
they make zero-knowledge or identification protocols simply reveal a subset of committed strings. Our
definition generalizes their notion so that it can cover some protocols that reveal arbitrary values other than
committed strings. Also notice that the Resp function of subset revealing ID schemes does not use sk at
all. The above definition includes the Picnic2 identification protocol (discussed in more detail in Section
7), and many classic three-round public-coin zero-knowledge proof protocols, such as the ones for graph
isomorphism, Hamilton graphs, and 3-colorable graphs [GMW86]. We also emphasize that |St| and |DH |
need to be restricted for efficiency reasons. For instance, the Schnorr ID scheme and its variants usually have
an exponential size challenge space |DH | = 22λ. Without the above restriction, they could also be described as

11

subset revealing identification protocols by precomputing all possible responses ρ+sk, ρ+2 ·sk, . . . , ρ+2λ ·sk
in the Com step, storing them in St, to output one in Resp. However, this is clearly not efficiently computable
and we therefore rule out such inefficient constructions by bounding the size of St.

Serialization of Transcripts. For efficiency purposes, most Fiat-Shamir based signature schemes do not
include the entire transcript of the identification protocol as part of the signature. Instead, redundant parts
are omitted and recomputed during the verification phase. Different signature schemes omit different parts
of the transcript: in some cases a is omitted and in others e is omitted. To capture this in our framework
without loss of generality we introduce a serialization function that turns the transcript of an identification
protocol into a signature.

Definition 6 (Canonical Serialization Function). Let ID = (IGen,Com,Resp,V) be a canonical identification
protocol, and let pk be a public key output by IGen. We call a function CSF : {0, 1}∗ → {0, 1}∗ a canonical
serialization function if CSF is efficiently computable and deterministic, and satisfies the following basic
properties: 1) it is valid, meaning that there exists a corresponding de-serialization function CDF which
satisfies the following: for any transcript (a, e, z) ∈ A ×DH × Z ∪ {⊥,⊥,⊥} such that V(a, e, z, pk) = 1, it
holds that CDF(CSF(a, e, z), pk) = (a, e, z), and 2) it is sound with respect to invalid responses, meaning that
it returns ⊥ upon receiving z = ⊥ as input.

Definition 7 (Commitment-recoverable Identification [KLS18]). Let ID = (IGen,Com,Resp,V) be a canonical
identification protocol, let pk be a public key output by IGen, and let (a, e, z) be a transcript such that
V(a, e, z, pk) = 1. We call ID commitment-recoverable, if there exists a public function Recover(pk, e, z) that
outputs a.

Definition 8 (Fiat–Shamir Transform). The Fiat–Shamir transform, denoted by FS, takes a canonical
identification protocol ID and canonical serialization function CSF as input, and outputs a signature scheme
FS[ID,CSF] = (Gen,Sign,Verify) defined in Fig. 4. For convenience, this paper refers to such schemes as
Fiat–Shamir type signature schemes.

Remarks By construction, it holds that if ID is correct, then FS[ID,CSF] is a correct signature scheme.
We assume ID is correct throughout the paper. In Fig. 4, the verification condition may appear redundant.
However, the above definition allows us to capture several variations of the Fiat–Shamir transform. For
instance, a type of Fiat–Shamir transform found in some papers e.g., Ohta–Okamoto [OO98] and Abdalla
et al.[AABN02] can be obtained by letting CSF(a, e, z) output σ := (a, z) and letting CDF(σ, pk) call e ←
H(a,m, pk) inside to reconstruct the whole transcript. In contrast, if ID is commitment-recoverable [KLS18],
one can instantiate its serialization as follows: CSF(a, e, z) outputs σ := (e, z) and CDF(σ, pk) calls a ←
Recover(pk, e, z) inside to reconstruct the transcript. Finally, we could also consider a trivial (de)serialization
where CSF is an identity function and CDF returns the input except pk.

Strictly speaking, these variants of Fiat–Shamir signatures are not equivalently secure without assuming
some additional properties of commitment recovering function [BBSS18], but most of the analyses in this
paper (especially in Section 5) will only focus on the simulation of signing oracles, where the difference
between instances of serialization does not affect the results.

2.3 Relation between UF-KOA Security and UF-CMA Security

The security notion unforgeability against key-only attacks (UF-KOA), is the same as UF-CMA, but with the
restriction that the adversary is only given the public key, and no Sign oracle. The following result is a
mild generalization of [KMP16, Lemma 3.8]: the original lemma only covers perfect HVZK and does not
include the serialization function which we use in this work. The proof is very similar to the original one and
is provided in Appendix A.1 for completeness. In Section 5, we extend this result, showing that for some
signature schemes security against key-only attacks implies security against certain fault attacks.

Lemma 2 (UF-KOA→ UF-CMA). Let ID be a correct canonical identification protocol and CSF be a canonical
serialization function for ID. Suppose ID satisfies the following:

• ID is special c/s/p-HVZK with efficient distinguishers’ advantage being at most εHVZK .

12

• ID has α-bit min-entropy.

If FS := FS[ID,CSF] is UF-KOA secure, then FS is UF-CMA secure in the random oracle model. Concretely,
given a UF-CMA adversary A against FS running in time t, and making at most Qs queries to OSign, Qh
queries to H, one can construct another adversary B against FS such that

AdvUF-CMA
FS (A) ≤ AdvUF-KOA

FS (B) +
(Qs +Qh)Qs

2α
+Qs · εHVZK ,

where B makes at most Qh queries to its random oracle, and runs in time t.

3 Fault Attacks on Deterministic Fiat–Shamir Signatures

In this section we survey some recent attacks on deterministic signature schemes like EdDSA [BDL+12],
Dilithium [LDK+19] and qTESLA [BAA+19]. For the lattice based signatures (Dilithium and qTESLA) our
results later in the paper do not directly apply since they are not following the standard Fiat–Shamir paradigm
defined in Section 2, rather they follow the Fiat–Shamir with aborts due to Lyubashevsky [Lyu09, Lyu12].
Still, the fundamental attack strategies against them are quite similar to ones against Schnorr-like schemes,
and the types of fault attacks surveyed here are captured by our model. We also note that qTESLA now
offers randomized variants [qTE19], using the hedged construction studied in this paper.

3.1 Conceptual Overview of the Attacks

In recent years, several papers presented differential fault attacks against deterministic Fiat–Shamir-type
schemes. This section briefly reviews the ideas of those previous attacks. Their attacks are summarized in
Table 1, together with the specific fault injection technique employed in the attack.

The literature presents many examples of fault injection using different choices of technology and attack
vectors [KSV13], ranging from interfering with the program counter through clock glitching, to more expensive
and sophisticated optical fault injection targeting individual bits. The intended effects include preventing
computations critical for security to be performed, changing or fixing individual bits. In several attacks
employing bit-flips, all that is necessary is a single bit-flip introduced in a specific wire value at any position.
These uncontrolled attacks are easier to mount, as they do not require much precision from the adversary,
while controlled attacks aim at a specific interval of bits within an intermediate value and typically need post-
processing across candidates through exhaustive search to discover what position was changed [ABF+18].
The same classification applies to instruction skipping attacks, which can be coarse-grained and affect any
instructions inside a larger computation (e.g. an entire hash function), or involve more synchronization to
carefully skip a single instruction (e.g. a function call).

Other than the locations to which a fault is injected, we observe that each attack falls into one of the
following categories of attacks, which we describe below. The first two attacks are especially frequent and
benefit most from the deterministic nature.

Special Soundness Attack (SSND) This type of attack exploits the k-special soundness property of the
underlying canonical identification protocol. That is, there exists an efficient algorithm that extracts the
witness sk corresponding to the statement pk, given k accepting transcripts (a, e1, z1), . . . , (a, ek, zk), where
ei 6= ej if i 6= j [GMO16]. Note in fact that it is easier to extract the secret key for an attacker than for
a knowledge extractor in a proof of security, since the attacker can assume that the prover honestly follows
the protocol while the special soundness property considers possibly cheating provers. For example, when
attacking deterministic Schnorr schemes like EdDSA, which is 2-special sound, the adversary can assume
that the response z is of the form ρ+ e · sk. Then a fault attack can recover the secret key in a deterministic
scheme by making two queries with the same message. First, the adversary asks for a non-faulty signature
on some message m, to obtain a legitimate signature (e1, z1). Second, recall that deterministic signatures use
the same ρ when signing the same message m. In that case, if the attacker modifies the hash input or output
values with a fault injection technique, the attacker can obtain another signature using a different challenge

13

Table 1: Overview of the recent fault attacks on deterministic Fiat–Shamir-type signatures. The column Fault
Type indicates which fault type from our model (defined in §4) was used in the attack. The column Attack
Vector indicates the specific fault injection technique in use. CBF refers to Controlled Bit-Flip, a controlled
fault introduced in a pre-determined range within a value. UBF refers to Uncontrolled Bit-Flip, when a value
needs to be faulted in any position. CIS and UIS refer to Controlled and Uncontrolled Instruction Skipping,
respectively, the corresponding analogues for corrupting computation in a more or less controlled manner
within the signature computation.

Fault Attack Attack
Paper Type Type Vector Target Description

[BP16]-1 f4 SSND UBF EdDSA Faulty ã as hash input.
[BP16]-2 f7 LRB CBF EdDSA Faulty ρ̃ = ρ+ ∆ with small ∆.
[RP17] f6 SSND UBF EdDSA Faulty hash output ẽ.
[ABF+18]-1 – SSND UBF EdDSA Faulty EC base point to get a faulty

ã as hash input.

[ABF+18]-2 f5 SSND CBF EdDSA Faulty p̃k as hash input.
[ABF+18]-3 f2 LRB CBF EdDSA Faulty ρ̃ = ρ+ ∆ with small ∆.
[ABF+18]-4 f2 RR UIS EdDSA Fixed ρ.
[ABF+18]-5 f4 SSND UIS EdDSA Faulty commitment computation to

get a faulty ã as hash input.
[ABF+18]-6 f6 SSND CBF EdDSA Faulty hash output ẽ.
[ABF+18]-7 f6 SSND CIS EdDSA Fixed hash output.
[ABF+18]-8 – IR CIS EdDSA Instruction skipping during the

response computation.

[PSS+18] f5 SSND UBF EdDSA Faulty hash input ã, m̃ or p̃k.
[SB18] f4 SSND UBF/UIS EdDSA Faulty commitment computation to

get a faulty ã as hash input.
[BP18]-1 f5 SSND UBF/UIS Dilithium/qTESLA Faulty hash input or output.
[BP18]-2 f4 SSND UBF Dilithium/qTESLA Faulty commitment computation to

get a faulty ã as hash input.
[BP18]-3 f4 SSND UBF Dilithium/qTESLA Faulty sk as commitment input.
[BP18]-4 f2 LRB CBF Dilithium/qTESLA Faulty ρ̃ = ρ+ ∆ with small ∆.
[RJH+19] – IR CIS Dilithium/qTESLA Instruction skipping during the

response computation.

e2, but with the same per-signature randomness ρ. As a result, the attacker gets two signatures satisfying

z1 = ρ+ e1 · sk mod q

z2 = ρ+ e2 · sk mod q

where the the former was computed correctly and the latter is faulty. Then one can easily extract sk by
computing (z1 − z2)/(e1 − e2) mod q, which is essentially what the knowledge extractor for the underlying
identification protocol does. For Schnorr variants that output (a, z) as a signature, including EdDSA (see
Appendix B), the attack is slightly more involved since the adversary cannot directly obtain e1 and e2, and
thus would have to somehow guess these values by simulating the faulty hash computation. However, the
essential idea of the attack is same as above. For practical details, see e.g., [RP17].

We also remark that the fault attacker doesn’t necessarily require k faulty signatures to break k-special
sound signatures. For instance, ZKB++ [CDG+17] is a canonical ID protocol with HVZK and 3-special
soundness, and it can be turned into a secure signature scheme; if its randomness generation is deterministic,
collecting 2 faulty signatures on the same message would be sufficient to extract the witness, as the fault
attacker can assume that the signer is honestly simulating the MPC protocol.

14

Large Randomness Bias Attack (LRB) This attack slightly modifies the randomness ρ to ρ′ = ρ + ∆
using, e.g., flip_bit fault. The attack highly relies on the deterministic property because the adversary
knows that all signatures on the same message m use the same ρ, and if ρ is slightly perturbed by some
sufficiently small ∆, he can find ∆ with an exhaustive search. Then the adversary can recover the secret
key by querying two deterministic signatures on the same message, which were computed using correlated
randomness ρ and ρ + ∆. For example, when attacking the deterministic Schnorr scheme and its variants
such as EdDSA, the adversary obtains the following:

z1 = ρ+ e1 · sk mod q

z2 = (ρ+ ∆) + e2 · sk mod q

where e1 6= e2 with overwhelming probability because the second challenge was obtained by hashing the result
of faulty commitment Com(sk; ρ+∆). Thus the adversary can extract sk by computing (z2−z1−∆)/(e2−e1)
mod q for all possible ∆ and checking whether each secret key candidate corresponds to pk or not.

Randomness Reuse Attack (RR) This attack forces the randomness ρ to be a certain constant by, e.g.,
skipping the execution of PRF completely. It does not exploit the deterministic nature of the scheme and
works for randomized signatures as well.

Invalid Response Attack (IR) This attack causes a fault during the computation of the response z. For
instance, Schnorr signatures have z = e · sk + ρ, and if the addition of ρ is skipped, the faulty response z′

ends up being e · sk, from which the recovery of the secret sk is trivial. It does not exploit the deterministic
nature of the scheme either and works for randomized signatures as well.

3.2 Applicability to Deterministic Picnic2

The attacks surveyed above are general enough to apply to Fiat–Shamir signatures other than EdDSA,
qTESLA and Dilithium. To demonstrate this, we apply them to a deterministic version of Picnic2, a Fiat–
Shamir signature scheme with a significantly different design. The Picnic2 specification [Pic19a] recommends
implementations be probabilistic, but allows implementations to omit the random value when deriving the
per-signature random value from the secret key and message. In this section we use the notation defined in
the description of Picnic2, in Appendix C.

SSND Unlike its predecessor ZKB++ proof system, the Picnic2 ID scheme is not special-sound, since from
any pair of accepting transcripts it is not always possible to extract sk. However, in the context of SSND fault
attacks, the challenge in the second transcript is always a random value (not a value chosen adversarially as
in the definition of special soundness). Therefore, with probability at least τ/M the pair of challenges has an
MPC instance j in common, and the corresponding unopened party pj differs in both challenges. Therefore,
in instance j, all parties are opened, and we can recover sk. For the L1 parameter set, with two transcripts
we can extract a witness with probability greater than 0.078, and this probably increases quickly with more
transcripts.

LRB This attack does not directly apply, since ρ is first input to a PRG to derive seeds, then the seeds are
used to derive the random tapes for each for each party. If instead the already expanded random tapes are
faulted (more analogous to EdDSA, which uses ρ directly), then it is possible to recover a single secret key
bit by zeroing one of the random bits at the beginning of the tape. Since the random tape bits are used
to share the bits of the secret key as input to the MPC protocol, if we know the unopened party’s share is
zero at bit i, we can recover a secret key bit i. The probability of faulting a tape that is used in an online
execution, and belongs to an unopened party, so that a secret key bit may be recovered is τ/(Mn). For the
L1 parameter set, this requires about 800 signature queries to recover each secret key bit (with probability
close to 1).

IR If the response is changed to output the secret state of all n parties in MPC instance j ∈ C instead of
only n− 1, this is an invalid response that leaks the secret key. Whether this is possible with a fault attack
seems highly dependent on details of the implementation.

15

4 Formal Treatment of Hedged Signatures

In this section, we give formal definitions for a hedged signature scheme and its security notion, based
on Bellare–Tackmann’s nonce-based signatures [BT16, §5] and Bellare–Poettering–Stebila’s de-randomized
signatures [BPS16, §5.1]. Then we define our new security notion for hedged Fiat–Shamir signature schemes,
which guarantees resilience against 1-bit faults on function inputs/outputs.

HSign(sk,m, n)

ρ← HE(sk, (m,n))

σ ← Sign(sk,m; ρ)

return σ

ExpUF-CMNA
HSIG,HE (A)

M ← ∅; HET← ∅

(sk, pk)← Gen(1λ)

(m∗, σ∗)← AOHSign,HE(pk)

v ← Verify(m∗, σ∗)

return (v = 1) ∧m∗ /∈M

OHSign(m,n)

σ ← HSign(sk,m, n)

M ←M ∪ {m}
return σ

HE(sk′, (m′, n′))

If HET[sk′,m′, n′] = ⊥ :

HET[sk′,m′, n′]←$Dρ

return HET[sk′,m′, n′]

Figure 5: Hedged signature scheme HSIG = R2H[SIG,HE] = (Gen,HSign,Verify) and UF-CMNA experiment.
Key generation and verification are unchanged.

4.1 Security of Hedged Signature Schemes

We now consider a simple transformation R2H, which converts a randomized signature scheme to a so-called
“hedged” one, and its security notion UF-CMNA (unforgeability against chosen message and nonce attacks).
See Fig. 5 for the full details. Parts of the transformation appear in the literature independently, but by
combining them, we can model the concrete hedged signature schemes of interest. We now describe the
differences and similarities between R2H and the transformations that appeared in previous works.

• On one hand, a hedged signing algorithm HSign takes a nonce n along with a message m, and derives
the randomness ρ ∈ Dρ (of length `ρ bits) with a hedged extractor HE with (sk, (m,n)) as input. We do
not specify how the nonces are generated here, but in practice they are the output of a pseudorandom
number generator. As we will see soon, low entropy nonces do not really degrade the security of hedged
signatures as long as the underlying randomized signature scheme is secure. The hedged construction
we presented is essentially based on the approach taken in [BT16]. Note that HE is in practice a
cryptographic hash function, that we will model as a random oracle. Therefore R2H is also similar to
the construction “randomized-encrypt-with-hash” for public-key encryption of Bellare et al. [BBN+09].
Bellare and Tackmann also considered HE in the standard model, but we focus on random oracle version
in this paper since the Fiat–Shamir transform already relies on the random oracle model.

• On the other hand, we use the signing key sk as the key for the hedged extractor, whereas Bellare and
Tackmann used a separately generated key (which they called the “seed”), that must be stored with
sk. We chose to do so in order to model concrete hedged Fiat–Shamir type schemes, such as XEdDSA
and Picnic2. In fact, the security of the deterministic construction that hashes sk and m to derive ρ
(with no nonce) was formally treated by Bellare–Poettering–Stebila [BPS16], and our security proof in
the next section extends their result.

• Moreover, the signing oracle OHSign in our UF-CMNA experiment takes m and n as input adaptively
chosen by the adversary A. This can be regarded as the strongest instantiation of the oracle provided in
[BT16], where nonces are derived via what they call a nonce generator (NG). Indeed, one of their results
for nonce-based signatures (Theorem 5.1) does not impose any restrictions on NG, and it implicitly
allows adversaries to fully control how the nonces are chosen in the signing oracle.

Now we formally define a security notion for hedged signature schemes, as a natural extension of the
standard UF-CMA security definition. We also give a tweaked version of Theorem 4 in [BPS16], where they
only consider the signing oracle that doesn’t take adversarially chosen nonces. Note that Lemma 3 applies to
any secure signature schemes and hence it may be of independent interest. We give a proof in Appendix A.2
for completeness.

16

ExpUF-fCMA
FS (A) ExpUF-fCMNA

HFS,HE (A)

M ← ∅; HT← ∅; HET← ∅

(sk, pk)← Gen(1λ)

(m∗, σ∗)← AOFaultSign,H(pk)

(m∗, σ∗)← AOFaultHSign,H,HE(pk)

v ← Verify(m∗, σ∗)

return (v = 1) ∧m∗ /∈M

OFaultHSign(m,n, j, φ)

fj := φ; fk := Id for k 6= j

FaultHSign

ρ← f2(HE(f1(sk), f0(m,n)))

(a, St)← f4(Com(f3(sk; ρ)))

â, m̂, p̂k ← f5(a,m, pk)

e← f6(H(â, m̂, p̂k))

z ← f8(Resp(f7(sk, e, St)))

σ ← f10(CSF(f9(a, e, z)))

M ←M ∪ {m̂}
return σ

OFaultSign(m, j, φ)

fj := φ; fk := Id for k 6= j

FaultSign

ρ←$Dρ; ρ← f2(ρ)

(a, St)← f4(Com(f3(sk; ρ)))

â, m̂, p̂k ← f5(a,m, pk)

e← f6(H(â, m̂, p̂k))

z ← f8(Resp(f7(sk, e, St)))

σ ← f10(CSF(f9(a, e, z)))

M ←M ∪ {m̂}
return σ

Figure 6: UF-fCMNA and UF-fCMA security experiments and faulty signing oracles for both hedged (HFS)
and plain (FS) Fiat–Shamir signature schemes. Id stands for the identity function. The function H and HE
(not shown), are the same as in Fig. 4 and Fig. 5, respectively. A dashed box indicates that the instructions
inside correspond to the actual faulty signing operation.

Definition 9 (UF-CMNA). A hedged signature scheme HSIG = (Gen,HSign,Verify) is said to be UF-CMNA
secure in the random oracle model, if for any probabilistic polynomial time adversary A, its advantage

AdvUF-CMNA
HSIG,HE (A) := Pr

[
ExpUF-CMNA

HSIG,HE (A) = 1
]

is negligible in security parameter λ, where ExpUF-CMNA
HSIG,HE (A) is described in Fig. 5.

Lemma 3 (UF-CMA→ UF-CMNA). Let SIG := (Gen,Sign,Verify) be a randomized digital signature scheme,
and let HSIG := R2H[SIG,HE] = (Gen,HSign,Verify) be the corresponding hedged signature scheme with HE
modeled as a random oracle. If SIG is UF-CMA secure, then HSIG is UF-CMNA secure. Concretely, given a
UF-CMNA adversary A against HSIG running in time t, and making at most Qs queries to OHSign and Qhe
queries to HE, one can construct an adversary B against SIG such that

AdvUF-CMNA
HSIG,HE (A) ≤ 2 ·AdvUF-CMA

SIG (B),

where B makes at most Qs queries to its signing oracle, and has running time t plus Qhe invocations of Sign
and Verify.

4.2 Security of Hedged FS Type Signature Schemes Against Fault Adversaries

1-bit Transient Fault on Function Input/Output To model transient fault attackers on data flow,
recall that we consider the following 1-bit tampering functions:

flip_biti(x) : Does a logical negation of the i-th bit of x

set_biti,b(x) : Sets the i-th bit of x to b

Using flip_biti(x) (for instance, with a random position i), we can model a typical bit-flip induced from
fault injection to the memory cells, CPU register values, or data buses of the target device. Beyond faults,
we also wish to capture the case in which the randomness has a 1-bit bias, which has been shown to be
a serious threat for some Fiat–Shamir type signatures [AFG+14]. We can model this using set_biti,b:
when this function is applied to ρ, we can ensure that the first bit of ρ is “stuck” at zero by setting i = 0
and b = 0 to model 1-bit bias. Moreover, set_bit is a typical way to achieve so-called ineffective fault
attacks [Cla07, DEK+18]. Our formalization covers many fault attacks found in the surveyed literature in
Section 3, as they rely only on low precision faults like random bit flips of the function input or output.

17

As a notable difference between our fault adversary model and actual attacks, some surveyed papers
caused faults on several bits/bytes of function input or output when performing fault attack experiments.
This is not to take advantage of multiple-bit faults, but rather because reliably causing a fault on a specific
target memory cell is difficult in practical experiments. In fact, the attacks we classified as SSND and LRB can
be achieved with uncontrolled 1-bit flip faults, and hence our model at least seems to capture the essence of
previous attacks exploiting the deterministic nature of signing.

A natural generalization is to allow set_bit to work on multiple bits, for example to model word faults, or
word zeroing faults. We can also model stronger attacks that are uncommon in the literature, such as setting
words to arbitrary values. However, we focus on 1-bit faults in this paper as a first attempt to perform the
formal analyses. We leave the security analysis against multi-bit faults for future work. (Along with other
generalizations listed in Section 8.)

Equipping UF-CMNA Adversaries with Faults Now we are ready to define security against fault adver-
saries using the above tampering functions. In Fig. 6, we give the modified hedged signing oracle OFaultHSign,
which additionally takes a tampering function φ ∈ {set_biti,b, flip_biti, Id} and j ∈ [0, 10] as input, where
Id is the identity function. This way, the adversary can specify for each query the tampering function (φ) as
well as the target input/output position (j) within the signing operation to be faulted. For example, when
j = 6, φ is applied to the output of the hash function H, and when j = 5 it is applied to the input to H. The
other positions are not faulted. Notice that we also allow the adversary to set φ := Id in arbitrary signing
queries, so OFaultHSign includes the behavior of the non-faulty oracle OHSign as a special case.
A generalization we considered but decided against, is allowing faults on multiple wire values per sign query.
The combinatorial complexity of security analysis in this setting is daunting, and we did not find this to be
relevant in practice, based on our survey of practical attacks.

Definition 10 (UF-fCMNA). A hedged Fiat–Shamir signature scheme

HFS := R2H[FS[ID,CSF],HE] = (Gen,HSign,Verify)

is said to be F -UF-fCMNA secure, if for any probabilistic polynomial time adversary A who makes queries to
OFaultHSign with a fault function fj ∈ F ⊆ {f0, . . . , f10} for each query (called F -adversary), its advantage

AdvUF-fCMNA
HFS,HE (A) := Pr

[
ExpUF-fCMNA

HFS,HE (A) = 1
]

is negligible in security parameter λ, where ExpUF-fCMNA
HFS,HE (A) is described in Fig. 6.

In the next section, we also use the following intermediate security notion, which essentially guarantees
the security of plain randomized Fiat–Shamir signature scheme against fault adversaries.

Definition 11 (UF-fCMA). A Fiat–Shamir signature scheme

FS := FS[ID,CSF] = (Gen,Sign,Verify)

is said to be F -UF-fCMA secure, if for any probabilistic polynomial time adversary A who makes queries to
OFaultSign with a fault function fj ∈ F ⊆ {f2, . . . , f10} per each query (called F -adversary), its advantage

AdvUF-fCMA
FS (A) := Pr

[
ExpUF-fCMA

FS (A) = 1
]

is negligible in security parameter λ, where ExpUF-fCMA
FS (A) is described in Fig. 6.

We now give several remarks regarding our security model.

Trivial Faults on the Root Input Wire Values We remark the existence of two faults on the left most
input wires in Fig. 1, which we do not explicitly consider in our model, but its (in)security can be proven
trivially. First, faulting message m before it is loaded by the signing oracle can be regarded as a situation
where the adversary queries a faulty message m̂ to begin with, since the oracle stores m̂ in M . Hence we
can just treat such a query as one to non-faulty signing oracle (OSign). Second, the adversary could easily

18

recover the entire secret key after roughly |sk| signing queries by injecting set_bit faults to sk before it is
loaded by the signing oracle, and the faulty secret key s̃k is globally used throughout the signing operation:
for example, if the most significant bit of sk is set to 0 at the very beginning of signing and its output still
passed the verification, then the adversary can conclude that sk has 0 in the most significant bit with high
probability. In doing so, the adversary iteratively recovers sk bit-by-bit if the fault is transient. The attack
above is essentially a well-known impossibility result by Gennaro et al. [GLM+04] and such an attack can
be practically achieved with ineffective faults. To overcome this issue, one would require an additional strict
assumption on the upper-bound of faulty signing queries [DFMV17], or the signing algorithm needs to have
some sophisticated features like self-destruct or key-updating mechanisms, which, however, are not yet widely
implemented in real-world systems and are beyond the scope of this paper.

Winning Condition of Fault Adversaries As described in Fig. 6, the UF-fCMNA experiment keeps
track of possibly faulty messages m̂ instead of queried messages m, and it does not regard σ∗ as valid forgery
if it verifies with m̂ that A caused in prior queries. This may appear artificial, but we introduced this
condition to rule out a trivial forgery “attack”: if the experiment only keeps track of queried message mi in
i-th query, and adversaries target f5 at mi as hash input, they obtain a valid signature σ̂i on message m̂i,
yet m̂i is not stored in a set of queried messages M . Hence the adversary can trivially win UF-fCMNA game
by just submitting (σ̂i, m̂i), which of course verifies. This is not an actual attack, since what A does there
is essentially asking for a signature on m̂i from the signing oracle, and hence outputting such a signature as
forgery should not be considered as a meaningful threat.

Note that the OFaultHSign oracle in Fig. 6 stores all queried messages in the same set M , whether the
adversary A decides to inject a fault (i.e., φ ∈ {set_biti,b, flip_biti}) or not (i.e., φ := Id), and so a
forgery (m∗, σ∗) output by A is not considered valid even if m∗ was only queried to OFaultHSign to obtain
a faulty invalid signature. For some signature algorithms and fault types this is required; for example with
Fiat–Shamir type signatures (derived from a commitment recoverable identification [KLS18]), one can query
OFaultHSign to get a signature (e, z) with a single bit-flip in z, and create a valid forgery by unflipping the
bit.

Validity of Oracle Output The signature output by OFaultHSign does not need to verify, but it may
need to be well-formed in some way. Typically we show with a hybrid argument that OFaultHSign can
be simulated without use of the private key, in a similar way to OHSign. In order for simulated outputs of
OFaultHSign to be indistinguishable from real outputs, simulated signatures must be correctly distributed. In
[BDF+14, CM09], the security proof shows that the faulty signature is statistically close to a value drawn from
the uniform distribution, so OFaultHSign can output a random value. For the Fiat–Shamir type signature
schemes we study this is not the case, for some fault types the real output of OFaultHSign verifies with
an appropriately faulted hash function, and our proofs must take care to maintain these properties when
simulating OFaultHSign.

UF-KOA against Fault Adversaries Finally, note that we do not explicitly define the notion of UF-KOA
security under fault attacks. Since we only consider faults during signing, and there is no signing oracle a in
key-only attack, security against fault attacks is immediate in the context of UF-KOA security.

5 Security Analysis of Generic Hedged Fiat–Shamir Type Signa-
tures Against Fault Attacks

In this section we establish the (in)security of the class of hedged Fiat–Shamir signatures schemes R2H[FS[ID,
CSF],HE]. Table 2 summarizes these results (and also those related to XEdDSA and Picnic2, presented in
§6 and §7). We give here a short overview of the main intuition behind the results in Table 2: f0 faults (on
the (message, nonce) pair which is input to the hedged-extractor) cannot be tolerated since they allow the
adversary to get two signatures with the same randomness. On the other hand f1 faults (on the secret key
input to the hedged-extractor) can be tolerated since they do not significantly change the distribution input
to the hedged-extractor. If the adversary faults the output of the hedged extractor (using f2), we cannot
prove security in general (and we can list concrete attacks e.g., against the Schnorr signature schemes), but

19

Table 2: Summary of results for UF-fCMNA security of the hedged Fiat–Shamir type construction, for all
fault types. 3 indicates a proof of UF-fCMNA security, and 7 indicates an attack or counterexample.

Fault type ID is subset-revealing ID not subset-revealing XEdDSA Picnic2
f0 7 Lemma 11 7 7

f1 3 Lemma 4 3 Corollary 1 3 Corollary 3
f2 7 Lemma 13 7 3 Lemma 19
f3 7 Lemma 12 7 7 §7
f4 3 Lemma 10 7 Lemma 15 7

3 Corollary 3
f5 3 Lemma 7

3 Corollary 1
f6 3 Lemma 8
f7 3 Lemma 9 7 Lemma 14

f8, f9, f10 3 Lemma 6

we can prove security for the specific case of Picnic2, since the output of the hedged-extractor is not used
directly, but is given as input to a PRG – thus the small bias is “absorbed” by PRG security. We remark that,
while present, this attack is much less devastating than the large randomness bias LRB attack on deterministic
schemes (described in Section 3). With the LRB attack, the adversary only needs two signatures to recover
the full key, while the attack we will show on Schnorr signature requires a significant amount of faulty biased
signatures as input in practice. This indicates that hedged constructions do, to some extent, mitigate the
effect of faults on the synthetic randomness.

The hedged approach does not help when the adversary faults the input to the commitment function
(via f3), since in this case the adversary can attempt to set the bits of the secret key one at the time and
check if the output signature is valid or not. Note that in some kinds of ID schemes like Schnorr (known
as input-delayed protocols [CPS+16]) the secret key is not used in the commitment function. Faulting the
input of the commitment function can still lead to insecurity, e.g., in Schnorr the adversary can bias the
randomness, which in turns leads to a total break of the signature scheme. Next, the adversary can fault
the output of the commitment function (via f4): this leads to insecurity in general, e.g., in Schnorr this also
leads to randomness bias. However, for a large class of ID schemes (which we call subset-revealing), including
Picnic2, this fault does not lead to insecurity: intuitively either the adversary faults something that will be
output as part of the response (which can easily be simulated by learning a non-faulty signature and then
applying the fault on the result), or it is not part of the output and therefore irrelevant. Attacking the input
or the output of the random oracle used to derive the challenge (f5 and f6) does not lead to insecurity, since
the distribution of the random oracle does not change due to the fault (note that this would not be the case
for deterministic signatures, where this kind of fault would be fatal). Faults against the input of the response
function (via f7) can break non-subset revealing signatures (once again, we can show that this fault can be
used to break Schnorr signatures), but do not help the adversary in the case of a subset-revealing signature
like Picnic2: similar to the case of f4 faults, we use the fact that if the response function only outputs subsets
of its input, faulting part of the input either has no effect or can be efficiently simulated given a non-faulty
signature. Similarly, faults against the output of the response function or the input/output of the serialization
function (fault types f8, f9, f10) can also be easily simulated from a non-faulty signature.

We expand this high-level intuition into full proofs by carefully measuring the concrete security loss in the
reductions which is introduced by the different kind of faults. More precisely, we present a concrete reduction
from UF-KOA to {f1, f4, . . . , f10}-UF-fCMNA security for schemes derived from subset-revealing ID schemes,
and to {f1, f5, f6, f8, f9, f10}-UF-fCMNA when ID is non-subset-revealing. Our theorems generalize and adapt
results from [BPS16] and [KMP16] without introducing significant additional concrete security loss. Then in
Section 5.7, we describe attacks for the remaining fault types (f0, f2 and f3), completely characterizing the
security of generic R2H[FS[ID,CSF],HE] signature schemes for fault types f0, . . . , f10. As we will show in
Section 7, for specific signature schemes we may be able to prove a stronger result, we show that Picnic2 is
secure for fault type f2, where the generic result does not hold.

20

5.1 Main Positive Result

Theorem 1 (UF-KOA → UF-fCMNA). Let ID be a canonical identification protocol and CSF be a canonical
serialization function for ID. Suppose ID satisfies the same properties as in Lemma 2 and it is subset revealing,
and moreover, let us assume that A does not query the same (m,n) pair to OFaultHSign more than once.
Then if FS := FS[ID,CSF] is UF-KOA secure, HFS := R2H[FS,HE] is {f1, f4, . . . , f10}-UF-fCMNA secure in
the random oracle model. Concretely, given {f1, f4, . . . , f10}-adversary A against HFS running in time t,
and making at most Qs queries to OFaultHSign, Qh queries to H and Qhe queries to HE, one can construct
another adversary B against FS such that

AdvUF-fCMNA
HFS,HE (A) ≤ 2 ·

(
AdvUF-KOA

FS (B) +
(Qs +Qh)Qs

2α−1
+Qs · εHVZK

)
,

where B makes at most Qh queries to its hash oracle, and has running time t plus Qhe · |sk| invocations of
Sign and Verify of FS. Moreover, if we do not assume the subset-revealing property of ID and assume all the
other conditions above, then we have that HFS is {f1, f5, f6, f8, f9, f10}-UF-fCMNA secure.

Proof. The proof is two-fold. See Lemmas 4 and 5.

For the rest of this section we will assume that ID satisfies the properties in Lemma 2. As a first step,
we give a reduction from UF-fCMA to UF-fCMNA security, and then we later give a reduction from UF-KOA
to UF-fCMA. We observe that the UF-CMA-to-UF-CMNA reduction in Lemma 3 is mostly preserved, even in
the presence of 1-bit faults on sk as a hedged extractor key. However, our proof shows that such a fault does
affect the running time of the adversary because the reduction algorithm needs to go through all secret key
candidates queried to random oracle and their faulty bit-flipped variants.

Lemma 4 (F -UF-fCMA → F ∪ {f1}-UF-fCMNA). Suppose the fault adversary A does not query the same
(m,n) pair to OFaultHSign more than once. If FS := FS[ID,CSF] is F -UF-fCMA secure, then HFS :=
R2H[FS,HE] is F ′-UF-fCMNA secure in the random oracle model, where F ′ = F ∪ {f1}. Concretely, given
an F ′-adversary A against HFS running in time t, and making at most Qs queries to OFaultHSign, Qh queries
to H and Qhe queries to HE, one can construct F -adversary B against FS such that

AdvUF-fCMNA
HFS,HE (A) ≤ 2 ·AdvUF-fCMA

FS (B),

where B makes at most Qs queries to its signing oracle OFaultSign and Qh queries to its hash oracle, and
has running time t′ ≈ t+Qhe · |sk|.

Proof. We present the code-based game-playing proof [BR06], and the basic structure of our proof closely
resembles the reduction from UUF-CMA to UF-CMA for deterministic signature schemes [BPS16]. Let us
consider two identical-until-bad games described in Fig. 7: G0(A) (without boxed code) and G1(A) (with
boxed code). We assume wlog that A does not repeat the same HE query. Notice that G0(A) is identical to
ExpUF-fCMNA

HFS,HE (A) in Fig. 6 (on condition that A is not allowed to query the same (m,n) to OFaultHSign), and

therefore AdvUF-fCMNA
HSIG,HE (A) = Pr[G0(A)]. Now we obtain the following by simple transformation (where the

inequality follows from the fundamental lemma of game-playing [BR06]):

AdvUF-fCMNA
HSIG,HE (A) = Pr[G0(A)] = Pr[G1(A)] + (Pr[G0(A)]− Pr[G1(A)])

≤ Pr[G1(A)] + Pr[G1(A) sets bad].

Our goal is to construct the adversary B breaking UF-fCMA security of a plain randomized Fiat–Shamir
scheme FS such that

Pr[G1(A)] ≤ AdvUF-fCMA
FS (B) and Pr[G1(A) sets bad] ≤ AdvUF-fCMA

FS (B).

We now construct B as follows. The full description of the algorithm is given in Fig. 8.

Preparation of Public Key Upon receiving pk in UF-fCMA game, B forwards pk to A.

21

G0(A), G1(A)

M ← ∅;N ← ∅; HET← ∅; HT← ∅

(sk, pk)← Gen(1λ)

(m∗, σ∗)← AOFaultHSign,H,HEb(pk)

v ← Verify(m∗, σ∗)

return (v = 1) ∧m∗ /∈M

HE0(sk′, (m′, n′)), HE1(sk′, (m′, n′))

If HET[sk′,m′, n′] 6= ⊥ :

bad← true

HET[sk′,m′, n′]←$Dρ

Else: HET[sk′,m′, n′]←$Dρ

return HET[sk′,m′, n′]

H(x)

If HT[x] = ⊥ :

HT[x]←$ {0, 1}l

return HT[x]

OFaultHSign0(m,n, j, φ), OFaultHSign1(m,n, j, φ)

If (m,n) ∈ N : return ⊥
N ← N ∪ {(m,n)}
fj := φ; fk := Id for k 6= j

FaultHSign

If HET[f1(sk),m, n] 6= ⊥ :

bad← true

HET[f1(sk),m, n]←$Dρ

Else: HET[f1(sk),m, n]←$Dρ

ρ← f2(HET[f1(sk),m, n])

(a, St)← f4(Com(f3(sk; ρ)))

â, m̂, p̂k ← f5(a,m, pk)

e← f6(H(â, m̂, p̂k))

z ← f8(Resp(f7(sk, e, St)))

σ ← f10(CSF(f9(a, e, z)))

M ←M ∪ {m̂}
return σ

Figure 7: Two identical-until-bad games G0(A) and G1(A). The game G1(A) executes the boxed code, while
G0(A) does not. The dashed box indicates that the instructions inside correspond to the actual faulty signing
operation.

Simulation of Oracle Queries The adversary B perfectly simulates A’s view in G1(A) as follows.

• Sim-OFaultHSign1 simulates OFaultHSign1 by forwarding faulty signing queries to OFaultSign, the oracle
in UF-fCMA game. Notice that this simulation is perfect since both OFaultHSign1 and OFaultSign use
freshly generated randomness for every signing query.

• Sim-HE1 simulates the HE1 but keeps track of candidate secret keys queried by A in S.

• Sim-H directly returns the result of hash queries in UF-fCMA game.

Evaluation of B’s Success Probability Suppose A wins the game G1(A), i.e., A outputs its forgery
(m′, σ′) that passes the verification and m′ /∈ M = {m̂i : i ∈ [Qs]}. This means that the reconstructed
transcript (a′, e′, z′)← CDF(σ′, pk) satisfies

V(a′, e′, z′, pk) = 1 and H(a′,m′, pk) = e′.

Also note that the sets of (possibly faulty) messages M and random oracle entries are both identical between
UF-fCMNA and UF-fCMA experiments. This implies (m′, σ′) is a valid forgery in UF-fCMA game as well, so
that B can win UF-fCMA game, i.e.,

Pr[G1(A)] ≤ AdvUF-fCMA
FS (B).

Otherwise, B picks some message m∗ /∈M and tries to sign with all secret key candidates sk∗ and “faulty
bit-flipped candidates” (i.e., flip_biti(sk

∗) for i ∈ [|sk|]). Below we will see why this strategy guarantees
that B generates a valid forgery as long as bad is set in G1(A), i.e.,

Pr[G1(A) sets bad] ≤ AdvUF-fCMA
FS (B).

22

BOFaultSign,H(pk)

M ← ∅;N ← ∅; HET← ∅;S ← ∅
(m′, σ′)← ASim-OFaultHSign1,Sim-H,Sim-HE1(pk)

If Verify(m′, σ′) = 1 ∧m′ /∈M :

return (m′, σ′)

Pick some m∗ /∈M
ρ∗ ←$Dρ

For sk∗ ∈ S :

σ∗ ← Sign(sk∗,m∗; ρ∗)

If Verify(m∗, σ∗) = 1 :

return (m∗, σ∗)

For i ∈ [|sk|] :

σ∗ ← Sign(flip_biti(sk
∗),m∗; ρ∗)

If Verify(m∗, σ∗) = 1 :

return (m∗, σ∗)

return (⊥,⊥)

Sim-OFaultHSign1(m,n, j, φ)

If (m,n) ∈ N : return ⊥
N ← N ∪ {(m,n)}
σ ← OFaultSign(m, j, φ)

M ←M ∪ {m̂}
return σ

Sim-HE1(sk′, (m′, n′))

S ← S ∪ {sk′}
ρ←$Dρ

return ρ

Sim-H(x)

return H(x)

Figure 8: Description of the reduction B. If the adversary uses the fault f5 that applies to m, M stores the
faulty message m̂, which is defined as described in Fig. 7.

Here we show that if bad is set either by OFaultHSign1 or HE1, then A must have queried HE1 with
(sk∗, (m∗, n∗)) such that sk∗ = f1(sk) for some f1 ∈ {set_biti,b, flip_biti, Id}, and for some (m∗, n∗).
First, if bad is set by OFaultHSign1, it must be due to a previous query to HE1 with (sk′, (m′, n′)) such that
sk′ = f1(sk) holds, since we assumed that A is not allowed to repeat the same (m,n) query to OFaultHSign.
Second, we consider the case bad is set by HE1. Since we assumed that A does not repeat the same HE query,
if a query (sk′, (m′, n′)) to HE1 sets bad then HET[sk′,m′, n′] must have been defined by OFaultHSign1.
Here notice that we have sk′ = f1(sk) for some f1 due to the definition of OFaultHSign1. Thus if bad is set
in G1(A) then for some sk∗ ∈ S there exists a faulty function f1 ∈ {set_biti,b, flip_biti, Id} such that
sk∗ = f1(sk) holds. By checking the validity of signatures generated with each sk∗ ∈ S and its faulty version
flip_biti(sk

∗), for each bit position i, B eventually finds the true secret key sk that leads to a valid forgery.
We finally observe that the total running time of B is upper bounded by A’s running time t plus Qhe · |sk|

times the running time of Sign and Verify due to the above double for-loop operations.

Remarks. Our reduction above crucially relies upon the assumption that adversaries are not allowed to
query the same (m,n) pair. Without this condition, OFaultHSign must return a faulty signature derived
from the same randomness ρ if the same (m,n) is queried twice, and thus one could not simulate it using
OFaultSign as an oracle, since OFaultSign uses the fresh randomness even if queried with the same message
m. In fact, by allowing the same (m,n) query the hedged construction HFS degenerates to a deterministic
scheme and thus the SSND or LRB type fault attacks would become possible as we saw in Section 3. For the
same reason, once we allow the adversaries to mount a fault f0 on (m,n) right before HE is invoked during
the signing query, the security is completely compromised. We will revisit this issue as a negative result in
Lemma 11.

Lemma 5 (UF-KOA → UF-fCMA). Suppose ID is subset revealing. If FS := FS[ID,CSF] is UF-KOA se-
cure, then FS is {f4, . . . , f10}-UF-fCMA secure in the random oracle model. Concretely, given {f4, . . . , f10}-
adversary A against FS running in time t, and making at most Qs queries to OFaultSign, Qh queries to H,
one can construct another adversary B against FS such that

AdvUF-fCMA
FS (A) ≤ AdvUF-KOA

FS (B) +
(Qs +Qh)Qs

2α−1
+Qs · εHVZK ,

where B makes at most Qh queries to its hash oracle, and has running time t. If we do not assume the subset-

23

revealing property of ID and assume all the other conditions above, then we have that FS is {f5, f6, f8, f9, f10}-
UF-fCMA secure.

Proof. We obtain the results by putting together Lemmas 6 to 10 for FS derived from subset-revealing ID,
and Lemmas 6 to 8 for FS derived from non-subset-revealing ID.

Our proof extends the UF-KOA-to-UF-CMA reduction in [KMP16]. We show that UF-KOA security of
a randomized Fiat–Shamir signature scheme FS can be broken by a successful UF-fCMA adversary A by
constructing an adversary B that uses A as a subroutine and simulates OFaultSign without using sk. We
denote the random oracle and hash table in UF-fCMA experiment (resp. UF-KOA experiment) by H and HT
(resp. H′ and HT′).

Preparation of Public Key Upon receiving pk in the UF-KOA game, B forwards pk to A.

Simulation of Random Oracle Queries Upon receiving a random oracle query H(a,m, pk) from A, B
forwards the input (a,m, pk) to its own random oracle (H′ from the UF-KOA game) and provides A with the
return value.

Simulation of Faulty Signing Queries Suppose A chooses to use a fault function fji in each faulty
signing oracle query i ∈ [Qs]. Then B answers i-th query by simulating the signature on mi (or m̂i if A
chooses to apply f5 to the message as hash input) using only pk as described in the lemma for fji . Notice
that the simulations are independent except they share the random oracle H and the set M storing (possibly

faulty) queried messages. The hash input (âi, m̂i, p̂k) in each signature simulation has at least (α − 1) bits
of min-entropy (see the simulation in Lemma 7). Because HT has at most Qh + Qs existing entries, B
fails to program the random oracle with probability at most (Qh + Qs)/2

α−1 for each query. Moreover,
A distinguishes the simulated signature from the one returned by the real signing oracle OFaultHSign with
probability at most εHVZK for each query, since we use the special c/s/p-HVZK simulator M to derive a
signature in every simulation.

Recalling that the number of signing queries is bounded by Qs, and by a union bound, A overall distin-
guishes its simulated view from that in UF-fCMA game with probability at most

(Qh +Qs)Qs
2α−1

+Qs · εHVZK .

Forgery Suppose that at the end of the experiment A outputs its forgery (m∗, σ∗) that verifies and m∗ /∈
M = {m̂i : i ∈ [Qs]}. (Recall from Fig. 6 that M stores possibly faulty messages m̂i here instead of
queried messages mi, and thus A cannot win the game by simply submitting a signature on some faulty
message that has been used for random oracle programming.) This means that the reconstructed transcript
(a∗, e∗, z∗)← CDF(σ∗, pk) satisfies

V(a∗, e∗, z∗, pk) = 1 and H(a∗,m∗, pk) = e∗.

Here we can guarantee that the HT[a∗,m∗, pk] has not been programmed by signing oracle simulation since
m∗ is fresh, i.e., m∗ 6∈ M . Hence we ensure that e∗ = HT[a∗,m∗, pk] has been directly set by A, and
e∗ = HT′[a∗,m∗, pk] holds due to the hash query simulation. This implies (m∗, σ∗) is a valid forgery in the
UF-KOA game as well.

5.2 Faulting Serialization Input/Output and Response Output

As a warm-up, we begin with the simplest analysis where faults do not have any meaningful impact on the
signing oracle simulation. As we will show below, faulting with f8, f9 and f10 has no more security loss than
the plain UF-KOA-to-UF-CMA reduction [KMP16] does. The proof is provided in Appendix A.3.

Lemma 6 (UF-KOA→ {f8, f9, f10}-UF-fCMA). If FS := FS[ID,CSF] is UF-KOA secure, then FS is {f8, f9, f10}-
UF-fCMA secure in the random oracle model. Concretely, given an {f8, f9, f10}-adversary A against FS run-
ning in time t, and making at most Qs queries to OFaultSign, Qh queries to H, one can construct another

24

adversary B against FS such that

AdvUF-fCMA
FS (A) ≤ AdvUF-KOA

FS (B) +
(Qs +Qh)Qs

2α
+Qs · εHVZK ,

where B makes at most Qh queries to its random oracle, and has running time t.

Remark As we briefly remarked after Definition 8, Lemma 6 holds for any instantiation of serialization as
long as CSF and CDF are efficiently computable.

5.3 Faulting Challenge Hash Input

Recall that f5 is the fault type that allows the attacker to fault the input (a,m, pk) to the hash function used to
compute the challenge. Here we prove that randomized Fiat–Shamir signature schemes are secure against this
type of fault attack, under the same conditions required for the plain UF-KOA-to-UF-CMA reduction [KMP16].
Note that the proof of lemma below introduces a slight additional security loss compared to the plain UF-KOA-
to-UF-CMA reduction because set_bit faults to the hash input increase the failure probability of random
oracle programming.

Lemma 7 (UF-KOA → {f5}-UF-fCMA). If FS := FS[ID,CSF] is UF-KOA secure, then FS is {f5}-UF-fCMA
secure in the random oracle model. Concretely, given an {f5}-adversary A against FS running in time t,
and making at most Qs queries to OFaultSign and Qh queries to H, one can construct another adversary B
against FS such that

AdvUF-fCMA
FS (A) ≤ AdvUF-KOA

FS (B) +
(Qs +Qh)Qs

2α−1
+Qs · εHVZK ,

where B makes at most Qh queries to its hash oracle, and has running time t

Proof. The overall proof structure follows Lemma 5. The preparation of the public key, simulation of hash
queries, and forgery phase are the same as before. The proof diverges at signing oracle simulation.

Simulation of Faulty Signing Queries For each i ∈ [Qs], B answers a faulty signing request from A by
simulating the signature on mi as follows:

1. B first samples ei from DH uniformly at random.

2. B invokes the special c/s/p-HVZK simulator M of ID on input pk and ei and on freshly generated
randomness every time, to obtain an accepting transcript (ai, ei, zi).

3. Let (âi, m̂i, p̂k) := f5(ai,mi, pk). If HT[âi, m̂i, p̂k] is already set (via A’s previous hash or signing

queries) and HT[âi, m̂i, p̂k] 6= ei, B aborts. Otherwise, B programs the random oracle so that

HT[âi, m̂i, p̂k] := ei.

4. If random oracle programming is successful, B gives A a serialized transcript:

σi := CSF(ai, ei, zi).

Now we evaluate the probability that A distinguishes the simulated signing oracle above from the real one.
There are essentially two cases.

• B aborts at the third step in the above simulation with probability at most (Qh +Qs)/2
α−1 per query.

First, (ai,mi, pk) has α bits of min-entropy (since mi is chosen by the adversary and has zero bits,
pk is public and has zero bits, and ai has α bits due to α-bit min-entropy of ID). Now suppose f5 is

set_bit. Then the min-entropy of the faulty input to the hash function (âi, m̂i, p̂k) is at least (α− 1)

bits: if f5 applies to ai then the min-entropy of âi is reduced to (α− 1) bits, and otherwise (âi, m̂i, p̂k)

still has α-bit min-entropy. If f5 is flip_bit or Id (i.e., A chose not to mount any fault), (âi, m̂i, p̂k)
still has α bits of min-entropy. Finally, HT has at most Qh + Qs existing entries and we thus obtain
the upper bound of the overall probability that B fails to program the random oracle.

25

• After the fourth step, A distinguishes σi from the one returned by the real signing oracle OFaultHSign
with probability at most εHVZK per query, since we used the special c/s/p-HVZK simulator to derive
(ai, ei, zi) and CSF is deterministic.

Recalling that the number of signing queries is bounded by Qs, and by a union bound, A overall distinguishes
its simulated view from that in UF-fCMA game with probability at most

(Qh +Qs)Qs
2α−1

+Qs · εHVZK .

5.4 Faulting Challenge Hash Output

Recall that f6 is the fault type that allows the attacker to fault the challenge hash function output, i.e.,
he can fault the bit string e = H(a,m, pk). We show that, unlike the fault with f5, this type of fault does
not introduce any additional loss in concrete security as long as the Resp function fails for invalid challenges
outside the challenge space DH .

Lemma 8 (UF-KOA → {f6}-UF-fCMA). If FS := FS[ID,CSF] is UF-KOA secure, then FS is {f6}-UF-fCMA
secure in the random oracle model. Concretely, given an {f6}-adversary A against FS running in time t,
making at most Qs queries to OFaultSign and Qh queries to H, one can construct another adversary B against
FS such that

AdvUF-fCMA
FS (A) ≤ AdvUF-KOA

FS (B) +
(Qs +Qh)Qs

2α
+Qs · εHVZK ,

where B makes at most Qh queries to its hash oracle, and has running time t.

Proof. The overall proof structure follows Lemma 5. The preparation of public key, simulation of hash queries
and forgery phase are same as before. The proof diverges at signing oracle simulation.

Simulation of Faulty Signing Queries For each i ∈ [Qs], B answers a faulty signing request from A by
simulating the signature on mi as follows:

1. B first samples ei from DH uniformly at random.

2. Let ẽi := f6(ei) be a faulty challenge. If ẽi /∈ DH , then B returns ⊥. Otherwise B invokes the special
c/s/p-HVZK simulator M of ID on input pk and ẽi and on freshly generated randomness every time,
to obtain an accepting transcript (ãi, ẽi, z̃i).

3. If HT[ãi,mi, pk] is already set (via A’s previous hash or signing queries) and HT[ãi,mi, pk] 6= ei, B
aborts. Otherwise, B programs the random oracle so that

HT[ãi,mi, pk] := ei.

4. If random oracle programming is successful, B gives A a serialized transcript:

σ̃i := CSF(ãi, ẽi, z̃i).

Now we evaluate the probability that A distinguishes the simulated signing oracle above from the real one.
There are essentially two cases.

• B aborts at the third step in the above simulation with probability at most (Qh + Qs)/2
α per query.

This is because the input (ãi,mi, pk) to H has α bits of min-entropy (since mi is chosen by the adversary
and has zero bits, pk is public and has zero bits, and ãi has α bits due to α-bit min-entropy of ID), and
HT has at most Qh +Qs existing entries.

• After the fourth step, A distinguishes σ̃i from the one returned by the real signing oracle OFaultHSign
with probability at most εHVZK per query, since we used the special c/s/p-HVZK simulator to derive
(ãi, ẽi, z̃i) and CSF is efficiently computable.

26

Recalling that the number of signing queries is bounded by Qs, and by a union bound, A overall distinguishes
its simulated view from that in UF-fCMA game with probability at most

(Qh +Qs)Qs
2α

+Qs · εHVZK .

Remarks The above lemma relies on the fact that faulty ẽi is necessarily a “well-formed” challenge. For
example, the challenge in some subset-revealing schemes has a specific structure (e.g., a list of pairs (ci, pi)
where the ci are distinct, as in Picnic2). Computing Resp with a malformed challenge may cause σ to leak
private information. This is why we required Definition 3 to have the condition that Resp validates ẽi ∈ Dh

and otherwise returns ⊥. This way, the signing algorithm does not leak information when a malformed
challenge is input to the response phase, and eventually outputs ⊥ as a signature because CSF is sound with
respect to invalid response (see Definition 6).

Note that the proof can be generalized to the multi-bit fault setting. More specifically, the random oracle
programming becomes unnecessary for output replacement faults (i.e., f6 applies set_bit to every bit of e)
because in that case the fault adversary would no longer be able to observe any relation between faulty ẽi
and the original, unfaulty e.

5.5 Faulting Response Input

Next we prove the security against tampering function f7, which lets an attacker fault the input (sk, e, St)
to the Resp function. We only guarantee security assuming that the signature scheme is based on a subset
revealing identification protocol (see Definition 5), and Resp and CSF make sure to rule out invalid challenge
and response, respectively. As we will see in the next section, Picnic2 satisfies these additional properties.

Lemma 9 (UF-KOA → {f7}-UF-fCMA). Suppose ID is subset revealing. If FS := FS[ID,CSF] is UF-KOA
secure, then FS is {f7}-UF-fCMA secure in the random oracle model. Concretely, given an {f7}-adversary
A against FS running in time t, and making at most Qs queries to OFaultSign, Qh queries to H, one can
construct another adversary B against FS such that

AdvUF-fCMA
FS (A) ≤ AdvUF-KOA

FS (B) +
(Qs +Qh)Qs

2α
+Qs · εHVZK ,

where B makes at most Qh queries to its hash oracle, and has running time t

Proof. The overall proof structure follows Lemma 5. The preparation of public key, simulation of hash queries
and forgery phase are same as before. The proof diverges at signing oracle simulation.

Simulation of Faulty Signing Queries If f7 is targeted at e, the situation is essentially the same as
tampering with f6 and thus the simulation strategy is identical to Lemma 8, except that CSF this time
receives (ãi, ei, z̃i) (i.e., simulated transcript with unfaulted challenge value) instead of (ãi, ẽi, z̃i). Moreover,
f7 targeting sk has no effect on the signing operation since we assume the subset revealing property of ID.
Below we consider the case when f7 is targeted at Stι ∈ St. For each i ∈ [Qs], B answers a faulty signing
request from A by simulating the signature on mi as follows:

1. B first samples ei from DH uniformly at random.

2. B invokes the special c/s/p-HVZK simulator M of ID on input pk and ei and on freshly generated
randomness every time, to obtain an accepting transcript (ai, ei, zi).

3. If HT[ai,mi, pk] is already set (via A’s previous hash or signing queries) and HT[ai,mi, pk] 6= ei, B
aborts. Otherwise, B programs the random oracle so that

HT[ai,mi, pk] := ei.

4. If random oracle programming is successful, B derives from ei an index set I as Resp of the real signing
oracle would do.

27

• If ι ∈ I, then B searches the corresponding entry Stι in zi and replaces it with S̃tι := f7(Stι). Let
z̃i be a faulty response modified as above.

• If ι ∈ I, then B does not modify a response, i.e. z̃i = zi.

Then B gives A a serialized transcript

σ̃i := CSF(ai, ei, z̃i).

Now we evaluate the probability that A distinguishes the simulated signing oracle above from the real one.
There are essentially two cases.

• B aborts at the third step in the above simulation with probability at most (Qh + Qs)/2
α per query.

This is because the input (ai,mi, pk) to H has α bits of min-entropy (since mi is chosen by the adversary
and has zero bits, pk is public and has zero bits, and ai has α bits due to α-bit min-entropy of ID), and
HT has at most Qh +Qs existing entries.

• After the fourth step, A distinguishes σ̃i from the one returned by the real signing oracle OFaultHSign
with probability at most εHVZK per each query, since we used the special c/s/p-HVZK simulator to
derive (ai, ei, zi), CSF is efficiently computable, and B modified zi in the same way that the real faulty
signing operation would.

Recalling that the number of signing queries is bounded by Qs, and by a union bound, A overall distinguishes
its simulated view from that in UF-fCMA game with probability at most

(Qh +Qs)Qs
2α

+Qs · εHVZK .

Remark Intuitively, subset revealing ID schemes are secure against faults on St because the adversary
only obtains what they could have computed by changing non-faulty signatures by themselves. On the other
hand, the Schnorr signature scheme is not secure against tampering with f7 and we describe concrete fault
attacks in Lemma 14.

As we remarked after Definition 5, one can consider a highly inefficient version of Schnorr signature
that enumerates all possible responses in St and opens one of them. In doing so, the Resp function avoids
any algebraic operations involving sk and ρ, and we can mitigate the risk of faulty response input attacks
described above. This countermeasure is of course impractical since the challenge space is too large, but it
illustrates a concrete case where subset revealing ID schemes are more robust against fault attacks, in our
model.

5.6 Faulting Commitment Output

Recall that a fault of type f4 allows the attacker to fault the output of Com(sk; ρ), the commitment function
in the first step of the ID scheme. Here we prove that randomized Fiat–Shamir signature schemes are secure
against this type of fault attack, under the same conditions as ones in Lemma 9.

Lemma 10 (UF-KOA → {f4}-UF-fCMA). Suppose ID is subset revealing. If FS := FS[ID,CSF] is UF-KOA
secure, then FS is {f4}-UF-fCMA secure in the random oracle model. Concretely, given an {f4}-adversary A
against FS running in time t, and making at most Qs queries to OFaultSign and Qh queries to H, one can
construct another adversary B against FS such that

AdvUF-fCMA
FS (A) ≤ AdvUF-KOA

FS (B) +
(Qs +Qh)Qs

2α−1
+Qs · εHVZK ,

where B makes at most Qh queries to its hash oracle, and has running time t

Proof. If f4 is targeted at ai per query i ∈ [Qs], the proof is essentially a special case of Lemma 7, where f5

is applied to ai, and CSF receives (âi, ei, zi) instead of (ai, ei, zi); if f4 is targeted at St, the proof directly
follows Lemma 9. Putting both cases together, we obtain the statement.

28

5.7 Negative Results

Here we show that fault attacks of type f0, f2 and f3 are not mitigated by the hedged construction for an
ID scheme with the same properties as in Theorem 1.

Lemma 11. There exist canonical ID schemes such that R2H[FS[ID,CSF],HE] is UF-CMNA-secure, but not
{f0}-UF-fCMNA secure.

Proof. We consider the Schnorr scheme that returns (e, z) as a signature (see Algorithm 1), for which
FS[ID,CSF] is known to be UF-CMA secure and therefore R2H[FS[ID,CSF],HE] is UF-CMNA secure due to
Lemma 3. Our {f0}-adversary’s strategy is as follows. The adversary first calls OFaultHSign with some (m,n)
without fault (i.e., φ = Id) to obtain a legitimate signature (e, z). Next, the adversary calls OFaultHSign
with φ = flip_biti, j = 0 and (m′, n), where m′ is identical to m except at the i-th bit. This way, it can
fault m′ back to m before the invocation of HE and hence the signature is derived from the same ρ as in
the previous query, while the challenge and response are different since e′ = H(a,m′, pk) and z = ρ+ e′ · sk
mod q. Hence we can recover sk with the SSND attack in Section 3 and break the scheme.

Lemma 12. There exist canonical ID schemes such that R2H[FS[ID,CSF],HE] is UF-CMNA-secure, but not
{f3}-UF-fCMNA secure.

Proof. We describe a simple attack that works for the Picnic ID scheme. Recall that f3 is applied to input
of Com(sk; ρ). When querying OFaultHSign, the attacker uses set_bit to set the i-th bit of sk, denoted ski
to 0, then observes whether the signature output is valid. If so, then the true value of ski is 0, and if not,
then ski is one. By repeating this for each of the secret key bits, the entire key may be recovered. Some ID
schemes may include internal checks and abort if some computations are detected to be incorrect relative to
the public key, in this case the attacker checks whether OFaultHSign aborts.

Note that Lemma 12 only applies to ID schemes where sk is used by the Com function. For the Schnorr
scheme and other so-called input delayed protocols [CPS+16], sk is only used by the Resp function. In this way
subset-revealing ID schemes and input delayed ID schemes have the opposite behavior, since subset-revealing
schemes do not use sk in the Resp function, but they must use it in the Com function.

The sensitivity of ephemeral randomness ρ in Schnorr-like schemes is well known, and once the attacker
obtains sufficiently many biased signatures, the secret key can be recovered by solving the so-called hidden
number problem (HNP) [BV96]. Previous works have shown that even a single-bit bias helps to recover sk by
making use Bleichenbacher’s solution to HNP [Ble00, AFG+14]. However, the currently known algorithms for
the HNP do not give an asymptotically efficient attack, they only reduce the concrete security of the scheme
sufficiently to allow a practical attack on some parameter sets. For instance, with the current state-of-the-art
algorithm based on Bleichenbacher’s attack found in the literature [TTA18, Theorem 2], one can practically
break 1-bit biased signatures instantiated over 192-bit prime order groups, using 229.6 signatures as input,
and with 229.6 space and 259.2 time, which is tractable for computationally well-equipped adversaries as of
today.

To attack Schnorr-like schemes with f3, the adversary would instead target the randomness ρ to cause a
single-bit bias in it, and this situation is essentially same as faulting with f2. Such an attack would be also
powerful enough to recover the entire signing key, which we describe below.

Lemma 13. Relative to an oracle for the hidden number problem, there exist a non-subset revealing canon-
ical ID scheme such that R2H[FS[ID,CSF],HE] is UF-CMNA-secure, but neither {f2}-UF-fCMNA nor {f3}-
UF-fCMNA secure.

Proof. We describe an attack that works for the Schnorr signature scheme. Recall that both f2 and f3 can
tamper with ρ in Schnorr, as its St contains the randomness ρ. If f2 or f3 is set_bit and always targets at
the most significant bit of ρ to fix its value, the attacker can introduce 1-bit bias in ρ.

Relative to an oracle for the HNP, the Schnorr scheme with unbiased ρ remains secure, however, the
scheme with biased ρ is broken. We must assume here that the HNP oracle does not help an attacker break
the Schnorr scheme with unbiased nonces (otherwise the Theorem is trivial). It is easy to see that the HNP
with uniformly random nonces does not give a unique solution – the adversary is given a system of Qs
equations with Qs + 1 unknowns, so a direct application of the HNP oracle does not help. However, there
may be other ways to use the HNP oracle, so we must make the assumption.

29

We remark that, despite the existence of the above attack, it is much less devastating than the large
randomness bias (LRB) attack on deterministic schemes described in Section 3. With the LRB attack, the
adversary only needs two signatures to recover the full key, while the above attack relying on a HNP solver
requires a significant amount of faulty biased signatures as input in practice. This indicates that hedged
constructions do, to some extent, mitigate the effect of faults on ρ. For fault types f7 and f4, we have
shown that R2H[FS[ID,CSF],HE] is secure assuming ID is subset-revealing. The following two lemmas give
counterexamples when ID is not subset revealing, showing that canonical ID schemes are not generically
secure for faults f7 and f4.

Lemma 14. There exist non-subset-revealing canonical ID schemes such that R2H[FS[ID,CSF],HE] is
UF-CMNA-secure, but not {f7}-UF-fCMNA secure.

Proof. We describe two attacks that work for the Schnorr signature scheme.

• If f7 is set_bit and targeted at sk, the adversary can use the strategy of Lemma 12 to learn each bit
of sk by checking whether the faulty signatures pass verification.

• If f7 is flip_bit and targeted at the most significant bit of St = ρ, the adversary obtains (e, z′) such
that z′ = e · sk + f7(ρ), and he can recover the “faulty” commitment a′ = [f7(ρ)]G. Recall that the
non-faulty commitment a = [ρ]G satisfies H(a,m, pk) = e, so the adversary can learn 1-bit of ρ by
checking whether H(a′ + [2`ρ−1]G,m, pk) = e or H(a′ − [2`ρ−1]G,m, pk) = e holds, where `ρ is the bit
length of ρ. Since we now have the most significant bit of ρ, we use the same argument as in Lemma 13
to show the scheme is vulnerable to fault attacks.

Lemma 15. There exist non-subset-revealing canonical ID schemes such that R2H[FS[ID,CSF],HE] is
UF-CMNA-secure, but not {f4}-UF-fCMNA secure.

Proof. Recall that f4 is applied to (a, St), the output of Com. In the Schnorr signature scheme, St contains
the per-signature ephemeral value ρ, which is the output of the hedged extractor. Therefore, the same attack
as described in Lemma 14 for f7-faults can be mounted with an f4-fault.

6 Analysis of XEdDSA

In this section we apply the results of Section 5 to the XEdDSA signature scheme. The scheme is presented
in Appendix B. The associated ID scheme is the Schnorr ID scheme (denoted ID-Schnorr). Then we define
Schnorr := FS[ID-Schnorr,CSF] and XEdDSA := R2H[Schnorr,HE], where CSF returns (a, z). We start
by establishing some well-known properties of ID-Schnorr. As noted in Section 2 ID-Schnorr is not subset-
revealing.

Lemma 16. ID-Schnorr is perfect HVZK (therefore εHVZK = 0) and has 2λ bits of min-entropy.

Proof. Proof of HVZK is given in [KMP16, Lemma 5.2]. The commitment a is a random group element, in a
group of order at least 2λ bits (to provide λ-bit security against key recovery attacks using generic algorithms
for the discrete logarithm problem [Sho97, Nec94]).

UF-KOA Security Let AdvUF-KOA
Schnorr (A) be the (concrete) UF-KOA security of Schnorr against an adversary

A running in time t. As non-hedged XEdDSA is identical to Schnorr in the UF-KOA setting, the concrete
analysis for Schnorr of [KMP16, Lemmas 3.5-3.7] and [PS00, Lemma 8] are applicable. We do not repeat
those results here (as they are lengthy and don’t add much to the present paper), but instead state our results
in terms of AdvUF-KOA

Schnorr (A). We can now apply the results of Section 5.

Corollary 1. XEdDSA is {f1, f5, f6, f8, f9, f10}-UF-fCMNA secure.

Proof. We’ve shown above that ID-Schnorr is perfect HVZK (so εHVZK = 0) and has α = 2λ bits of min-
entropy. Then we can apply Theorem 1, to obtain

AdvUF-fCMNA
XEdDSA (A) ≤ 2

(
AdvUF-KOA

Schnorr (B) +
(Qs +Qh)Qs

22λ−1

)

30

Remaining fault types. We now consider the faults of type f0, f2, f3, f4, and f7 where we can’t prove
security. For each of these, we have given an attack elsewhere in the paper, for Schnorr signatures, but that
also applies to XEdDSA. For type f0 see Lemma 11, for types f2 and f3 see Lemma 13, for type f4 see
Lemma 15 and for type f7 see Lemma 14.

7 Analysis of Picnic2

In this section we analyze the Picnic2 variant of the Picnic signature scheme using our formal model for fault
attacks. Since Picnic is constructed from a subset-revealing ID scheme, more of the results from Section
5 apply, reducing our effort in this section. We use ID-Picnic2 to denote the ID scheme, and Picnic2 :=
FS[ID-Picnic2,CSF] and HS-Picnic2 := R2H[Picnic2,HE] to denote the randomized and hedged signature
schemes. The signature scheme is described in some detail in Appendix C, and complete details are in the
Picnic design document [Pic19b] and specification [Pic19a].

7.1 Preliminaries

In this section we state (and prove) some general properties of Picnic2 that will then be used when proving
resistance to fault attacks.

ID-Picnic2 is a subset-revealing ID scheme. Note that its St consists of

{hj , h′j , seed∗j , {ẑj,α}, statej,i, comj,i,msgsj,i}j∈[M],i∈[n]

and Resp simply reveals a subset of it depending on a challenge C and P.

The Picnic2 specification is an instance of R2H. The specification recommends a hedging construction
that is an instance of the R2H construction from Section 4. In this case, the salt and random seeds are
derived deterministically from sk‖m‖pk‖n where n is a 2λ-bit random value (acting as the nonce in the
notation of Section 4). The function HE is instantiated with the SHA-3 based derivation function SHAKE.
The security analysis in [Pic19b] applies to the randomized version of the signature scheme, so we must use
Lemma 3 to establish UF-CMNA security of the hedged variant.

Lemma 17. For security parameter λ, ID-Picnic2 has α ≥ 2λ+ 256 bits of min-entropy.

Proof. The first message a is a list of commitments (of length 2M), output by a hash function modeled
as a random oracle (having 2λ-bit outputs). In a fully randomized version of ID-Picnic2, the inputs to the
commitments contain randomly chosen seeds (each of length λ bits).

When using the optimizations and salt described in the specification, the seeds are generated with a
PRG, whose input includes the signer’s secret key (λ bits), an initial λ-bit seed, chosen per-signature, and
a random 256-bit salt. Since a secure PRG must be a (nearly) injective function this preserves the entropy
in the outputs. Similarly, when computing commitments with a random oracle, the entropy in the 2λ-bit
commitments preserves the entropy of the λ-bit seeds.

The next corollary shows that Picnic2 is secure against key-only attacks, and it follows from the unforge-
ability security proof of Picnic2 from [Pic19b].

Corollary 2. The signature scheme Picnic2 is UF-KOA secure, when the hash functions H0, H1, H2 and G
are modeled as random oracles with 2λ-bit outputs, and key generation function Gen is (t, εOW)-one-way.

Proof. Theorem 6.2 of the Picnic design document [Pic19b] gives a concrete analysis of the UF-CMA security
of the randomized scheme. This immediately implies UF-KOA security, with the same bound. Concretely,
for all PPT adversaries A, we have

AdvUF-KOA
Picnic2 (A) ≤ O(qs · τ · εPRG) +O

(
(q0 + q1 + q2 +Mnqs)

2

2λ

)
+ 2εOW + 2qG · 2−λ, (1)

31

and A’s runtime is ≈ t. Here qs is the number of signing queries, and q0, q1, q2 and qG are the number
queries to H0, H1, H2 and G respectively. Note here that we’ve replaced the quantity ε(M,n, τ) from the
Picnic design document with 2−λ, since all parameter sets choose (M,n, τ) so that ε(M,n, τ) ≤ 2−λ.

Security of the PRG is not required in a key-only attack, as the PRG is only used during signing, and some
of the loss of tightness comes from simulating the signing oracle, in Experiments 3–6 (of [Pic19b, Theorem
6.2]). When we remove the adversary’s signing oracle from the proof, and replace O-notation with concrete
analysis, the bound simplifies to

AdvUF-KOA
Picnic2 (A) ≤ 3Qh

2

22λ
+ 2εOW +

Qh
2λ

where Qh = q0 + q1 + q2 + qG.

Honest-Verifier Zero-Knowledge Here we prove that ID-Picnic2 is special computational honest-verifier
zero-knowledge (c-HVZK). The Picnic design document proves security of HS-Picnic2 directly, and does not
first prove HVZK of ID-Picnic2. In [KKW18], it is shown that a variant of ID-Picnic2 with randomized
commitments is HVZK, but in the specified version no additional randomness is included (in order to make
the opening information smaller). Because of this optimization, the proof is somewhat different.

Lemma 18. ID-Picnic2 is a special c-HVZK proof, under the following assumptions: the hash functions
H0, H1 and H2 are modeled as random oracles, and the PRG is (t, εPRG)-secure. Simulated transcripts
are computationally indistinguishable from real transcripts, and all polynomial-time distinguishing algorithms
succeed with probability at most

εHVZK ≤ (n+ 2)τ · εPRG +
q0τ + q2M

2λ
.

where q0 and q2 are the number of queries to H0 and H2, λ is the security parameter, and (M,n, τ) are
parameters of the scheme.

Proof. Proof that the protocol is HVZK is similar to the one given in [KKW18, Theorem 2.2], but accounts
for the change to remove additional randomness from commitments.

Let Π denote the MPC protocol, and SimΠ denote a simulator for Π. Recall that Π has semi-honest
security (for corruption of any n− 1 parties).

We now describe a simulator that creates transcripts for the interactive version of the protocol in Figures
11 and 12 that are computationally indistinguishable from real transcripts, using a hybrid argument. Game
0 is the real protocol, and each subsequent game will change the protocol until it no longer uses the witness.
We write Gi to denote the probability that an adversary is a successful distinguisher in Game i.

Game 1 We change the prover so that it first chooses the challenge (C,P) at random instead of the verifier
doing so. The challenge has the exact distribution as the challenge chosen by the verifier (who is honest by
assumption), so games 0 and 1 produce identically distributed transcripts. In the case of special HVZK, the
challenge is provided as input, and we use it directly (the simulation below works for all challenge values).

Game 2 We change the prover to choose random {seedj,i}ni=1 for all j ∈ C, rather than using the PRG. We
have G2 − G1 = nτ · εPRG (recall that |C| = τ).

Game 3 In each j ∈ C, we change the prover to choose random bits to be used in the MPC protocol by
party pj (the unopened party), instead of deriving them from seedj,pj with the PRG. Recall that there are
a total of τ unopened parties. Since the seeds are random values committed to as comj,pj = H0(seedj,pj),
this goes undetected except with probability q0τ

2λ
, where q0 is the number of queries to H0. Therefore

G2 − G3 ≤ τ · εPRG + q0τ
2λ

.

32

Game 4 We change the prover, for each j ∈ [M]\C, to choose uniform h′j (i.e., without querying H2). The
input to H2 when computing h′j is I := ({ẑj,α},msgsj,1, . . . ,msgsj,n) Since {ẑj,α} is computed from the first
λ bits of each party’s random tape, and pj ’s tape is chosen uniformly at random (as of Game 3), and not
used elsewhere, I has at least λ bits of min-entropy. Therefore G4−G3 is the probability that I is queried to
H2 at another point in the game, and G4 − G3 ≤ q2 ·M · 2−λ.

Game 5 We change the prover, for each j ∈ C, to compute comj,pj as a commitment to a random value.
Since seedj,pj is no longer used (as of Game 4), computing comj,pj in this way is consistent with the rest of
the transcript, and so G4 = G5.

Game 6 We change the prover, for j ∈ C, to use SimΠ to generate the views of the parties (excluding pj), in
an execution of Π when evaluating C with output 1. This results in values {statej,i}i 6=pj , masked input-wire
values {ẑj,α}, and msgspj . From the respective views, {msgsj,i}i6=pj can be computed, and hj and h′j can
be computed as well. Since j ∈ C, only n − 1 parties are opened, and the simulated transcripts for Π are
distributed exactly as real transcripts, under the semi-honest security of Π, therefore Games 5 and 6 produce
identically distributed outputs. The security of Π (proven in Section 6.1 of [Pic19b]), holds assuming the
PRG used to generate the random tapes is secure, therefore G6 − G5 = τ · εPRG .

In Game 6 the witness is no longer used, and the simulated transcripts are computationally indistinguish-
able from real transcripts, concluding proof of the HVZK property.

7.2 Applying the Results of Section 5

In Section 5 we proved that a class of hedged FS signature schemes are UF-fCMNA secure for faults of type
f1, and f4, . . . , f10. Here we apply those results to the HS-Picnic2 signature scheme. Recall that HS-Picnic2
denotes R2H[FS[ID-Picnic2,CSF],HE].

Corollary 3. HS-Picnic2 is {f1, f4, . . . , f10}-UF-fCMNA secure.

Proof. Recall that by Corollary 2, Picnic2 is UF-KOA secure with

AdvUF-KOA
Picnic2 (A) ≤ 3Qh

2

22λ
+ 2εOW +

Qh
2λ

and the min-entropy α is 2λ+ 256 as shown in Lemma 17.
We can apply Theorem 1, to obtain

AdvUF-fCMNA
HS-Picnic2 (A) ≤ 2 ·AdvUF-KOA

Picnic2 (B) +
(Qs +Qh)Qs

2α−2
+ 2Qs · εHVZK

=
6Qh

2

22λ
+ 4εOW +

2Qh
2λ

+
(Qs +Qh)Qs

22λ+254
+ 2Qs · εHVZK ,

where εHVZK , given in Lemma 18, is

εHVZK ≤ (n+ 2)τ · εPRG +
q0τ + q2M

2λ
.

Discussion Our model places the restriction on OFaultHSign that the challenge supplied by the adversary
must be in the challenge space defined by the signature scheme. This is natural from a theoretical modeling
perspective but an f6-fault attack may make the challenge for HS-Picnic2, (C,P), be any value of the correct
length. The integers in C and P may be out of range, in this case we can reasonably expect most imple-
mentations to fail, since the values are used to index into data structures maintained by the signer. The
other case is that C may not be a set, for example if a byte of the output is randomly corrupted, with some
probability two values in C will match. If so, there is an efficient attack. Suppose c1 and c2 from C are the
same, and the corresponding values in P are different. Then the signer will reveal the state of all parties in
the MPC simulation, which leaks the signing key.

33

Our model and analysis surfaces a required implementation countermeasure for protecting against fault
attacks, which corresponds to the sanity check of challenge format we mentioned in Definition 3. Implemen-
tations must ensure that each MPC instance is opened only once. A natural way to achieve this is to iterate
over the MPC instances, rather than the challenge values.

7.3 Picnic-Specific Results

We’ve shown that security against fault types f2 and f3 do not hold in general. In this section we prove that
HS-Picnic2 is {f2}-UF-fCMNA secure, and discuss possible mitigations to fault attacks of type f3.

Fault type f2 Recall that f2 is a fault on ρ, the output of the hedged extractor. Intuitively, HS-Picnic2 is
{f2}-UF-fCMNA secure since ρ is not used directly, ρ is the list of seed∗j values, which are used as input to a
PRG when deriving the seedi,j values. Applying a 1-bit fault to a seed∗j value reduces the min-entropy by at
most one bit, so only a small change to the security proof and analysis is required. Concretely we have:

Lemma 19. HS-Picnic2 is {f2}-UF-fCMNA secure. AdvUF-fCMNA
HS-Picnic2 (A) is the same as given in Corollary 3,

except that α is reduced by 1.

Fault type f3 Recall that f3 faults are applied to Com(f3(sk; ρ)). An f3 fault that changes ρ is equivalent
to an f2 fault, so without loss of generality we consider only f3-faults to sk. The generic attack described
above also applies to HS-Picnic2: the attacker sets the i-th bit of sk, denoted ski to 0, then observes whether
the signature output is valid. If so, then the true value of ski is 0, and if not, then ski is one. By repeating
this for each of the secret key bits, the entire key may be recovered.

A generic mitigation to this attack (in software implementations) is for the signer to always ensure the
signature being output is valid. For example, verifying the signature, then if it fails, re-loading the private
key and recomputing the signature. To make this constant time the implementation must always compute
two signatures and one verification. In the one-fault model, two signatures is always sufficient.

With Picnic this mitigation can be nearly free of cost, because a fault to sk can be detected without
verifying a whole signature. After completing the online MPC simulation (Step 1.3) for the first MPC
instance (j = 1), the signer can check whether the simulation is correct by comparing the output to part of
pk (by comparing λ-bit strings). If simulation has failed, the signer can re-load and re-share the private key,
then repeat the simulation, this time with the correct sk. Repeating the MPC simulation for a single MPC
instance is less than 1/M of the total signing cost, and the range of M values in [Pic19a] is 343–803.

8 Concluding Remarks

This paper explored the effects of bit-tampering fault attacks on various internal values in hedged Fiat–
Shamir signing operations, within the provable security methodology. Our security model is general enough
to capture a large class of signatures, but also fine-grained enough to cover existing attacks surveyed in
Section 3. In this section we describe some fault attacks that are not covered by our model, to illustrate the
limitations of our analysis. Each of these issues makes an interesting direction for future work.

Use of the random oracle model Since the adversary does not have a description of the hash function,
he cannot specify a fault in the hash function implementation, only the inputs and outputs can be faulted. For
an example of how this limitation may be exploited, consider the PRG in Picnic2, modeled as a random oracle,
used to expand a short seed into a random tape of length t bytes. The call is something like tape = PRG(seed,
t). Since t is a constant, the attacker can fault the high bit to zero, replacing t with t′ = t− 2blog2 tc. In the
faulted execution, tape′ = PRG(seed, t′) and the PRG outputs 2blog2 tc fewer random bytes than expected,
and the signature is computed with uninitialized memory (zero or low-entropy depending on the system and
implementation) and the signature leaks the signing key with high probability (when the tape belongs to the
unopened party).

Removing this limitation appears to be difficult. One could add the length parameter to the random
oracle and model this specific attack, but other hash function internal computations are still not modeled. If

34

we allowed faults on the hash function internals, after any fault it becomes unclear what high-level properties
(such as collision resistance) the faulted hash function still provides, preventing many security reductions.

Faulting global parameters Most cryptographic algorithms depend on global parameters, for example,
the parameters of an elliptic curve in EdDSA [ABF+18], or the round constants of the LowMC block cipher
in Picnic2. Injecting a fault to these parameters causes the signing algorithm to compute a different function
of sk and m, and the resulting output may leak information about sk. Our model does not include these
parameters, so implementers must evaluate whether faults to these parameters lead to attacks for each specific
algorithm.

Multiple bit and word faults Picnic computes commitments to random seeds, for example, C = H(seed)
where seed is a 128-bit value, with two 64-bit halves, seed = seedlow‖seedhigh. There may be other public
inputs to H, which we can ignore for the moment. If the fault attacker can zero a 64-bit machine word, then
get C ′ = H(0||seedhigh), he can find seedhigh by brute force with 264 hash computations, then find seedlow

with 264 work as well. This generalizes to fewer than 64 bits – if n-bit faults are allowed, then seed recovery
is a factor 2n cheaper. This also generalizes to other functions with private input and public output.

Faults within the Com and Resp functions Our model only allows faults to the inputs and outputs of
functions that describe the R2H[FS[ID,CSF],HE] construction. However, in typical ID schemes significant
computation happens inside the Com and Resp functions, and a real-world attacker may be able to fault
these computations. For Picnic2, one example is injecting faults in the random tape, this is within the Com
function, so it’s outside our model. By faulting the random tape of an unopened party, it is possible to learn
something about that party’s share. Because the sharing is bitwise, given one bit of the unopened party’s
share means we get one bit of the secret key.

Multiple faults per signature query In our model, the attacker must choose a single fault type fi per
query to OFaultHSign. In practice, it may be possible for an attacker to introduce two faults in a signature
computation, of different types. It is likely that allowing combinations of fault types leads to attacks, or that
the security analysis we give here does not hold.

Instruction skip attacks With this type of fault attack, the attacker causes specific instructions in the
signing code to be skipped. For example, the attacker can cause RNG calls to be skipped, causing signatures
to use degenerate random values. Or the attacker may skip the assignment of a variable, causing execution
to proceed with a zero value. This could be modeled with a generalization of our model where faults may
set variables to arbitrary values, or zero them.

Persisting faults Referring to the definition of OFaultHSign in Figure 6, suppose fault f1 is applied to m.
In our model, the fault specified by f1 to m is only effective in the HE function, then later uses of m, say in H,
are unfaulted. An alternative model could have the fault introduced by f1 persist throughout OFaultHSign.
Which model is more realistic depends on the implementation, and how faults are injected. The persistent
fault option may be more realistic if the fault is injected to memory, and all functions read the value from
memory. On the other hand, if faults are injected to values once they are in registers, or if the implementation
copies values to the different functions, then faults would not be persistent. We briefly mention an example
to show that this aspect of the model can lead to different conclusions. The attacker mounts the SSND

attack, by first calling OFaultHSign(m,n) with no faults, then calling OFaultHSign(m′, n, 1, flip_bit) where
m = f1(m′), i.e., the second call makes m′ equal to m when input to HE. The inputs to HE are the same,
and so ρ is the same. If the faults are not propagated, e will differ in the two signatures, allowing the SSND

attack to succeed (as described in Lemma 11), while if faults are propagated, both signatures are the same
and the attack fails.

Fiat–Shamir with Aborts In this paper, we tailored our definitions to schemes based on the standard
Fiat–Shamir transform. However, a few recent fault attack papers [BP18, RJH+19] targeted deterministic

35

lattice-based signatures following the Fiat–Shamir with aborts paradigm [Lyu09, Lyu12], which has an addi-
tional rejection sampling phase after the response, forcing the response output z to follow some probability
distribution independent of the secret key (typically the discrete Gaussian distribution centered at 0, or the
uniform distribution in a certain interval). We leave for future work the extension of our formal analysis
to signatures of Fiat–Shamir with aborts family, so as to clarify to what extent the hedged version of such
schemes could mitigate the risk of bit-tampering fault attacks.

Acknowledgments. This research was supported by: the Concordium Blockchain Research Center, Aarhus
University, Denmark; the Carlsberg Foundation under the Semper Ardens Research Project CF18-112 (BCM);
the European Research Council (ERC) under the European Unions’s Horizon 2020 research and innovation
programme under grant agreement No 803096 (SPEC); the Danish Independent Research Council under
Grant-ID DFF-6108-00169 (FoCC). We thank anonymous reviewers for their valuable comments and sugges-
tions.

References

[AABN02] Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Namprempre. From identification
to signatures via the Fiat-Shamir transform: Minimizing assumptions for security and forward-
security. In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 418–433.
Springer, Heidelberg, April / May 2002.

[AASA+19] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh Dang, Yi-Kai Liu,
Carl Miller, Dustin Moody, Rene Peralta, et al. Status report on the first round of the NIST
post-quantum cryptography standardization process. 2019.

[ABF+18] Christopher Ambrose, Joppe W. Bos, Björn Fay, Marc Joye, Manfred Lochter, and Bruce Murray.
Differential attacks on deterministic signatures. In Nigel P. Smart, editor, CT-RSA 2018, volume
10808 of LNCS, pages 339–353. Springer, Heidelberg, April 2018.

[ACM+17] Per Austrin, Kai-Min Chung, Mohammad Mahmoody, Rafael Pass, and Karn Seth. On the im-
possibility of cryptography with tamperable randomness. Algorithmica, 79(4):1052–1101, 2017.

[AFG+14] Diego F. Aranha, Pierre-Alain Fouque, Benôıt Gérard, Jean-Gabriel Kammerer, Mehdi Tibouchi,
and Jean-Christophe Zapalowicz. GLV/GLS decomposition, power analysis, and attacks on
ECDSA signatures with single-bit nonce bias. In Palash Sarkar and Tetsu Iwata, editors, ASI-
ACRYPT 2014, Part I, volume 8873 of LNCS, pages 262–281. Springer, Heidelberg, December
2014.

[BAA+19] Nina Bindel, Sedat Akleylek, Erdem Alkim, Paulo S. L. M. Barreto, Johannes Buchmann, Ed-
ward Eaton, Gus Gutoski, Juliane Kramer, Patrick Longa, Harun Polat, Jefferson E. Ricardini,
and Gustavo Zanon. qTESLA. Technical report, National Institute of Standards and Technology,
2019. available at https://csrc.nist.gov/projects/post-quantum-cryptography/round-

2-submissions.

[Bae14] Maarten Baert. Ed25519 leaks private key if public key is incorrect #170. https://github.

com/jedisct1/libsodium/issues/170, 2014.

[BBN+09] Mihir Bellare, Zvika Brakerski, Moni Naor, Thomas Ristenpart, Gil Segev, Hovav Shacham, and
Scott Yilek. Hedged public-key encryption: How to protect against bad randomness. In Mitsuru
Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 232–249. Springer, Heidelberg,
December 2009.

[BBSS18] Matilda Backendal, Mihir Bellare, Jessica Sorrell, and Jiahao Sun. The Fiat-Shamir Zoo: Relat-
ing the Security of Different Signature Variants. In Nils Gruschka, editor, NordSec 2018, Lecture
Notes in Computer Science, pages 154–170. Springer, 2018.

36

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://github.com/jedisct1/libsodium/issues/170
https://github.com/jedisct1/libsodium/issues/170

[BCM11] Mihir Bellare, David Cash, and Rachel Miller. Cryptography secure against related-key attacks
and tampering. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073
of LNCS, pages 486–503. Springer, Heidelberg, December 2011.

[BCN+06] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire Whelan. The
sorcerer’s apprentice guide to fault attacks. Proceedings of the IEEE, 94(2):370–382, 2006.

[BDF+14] Gilles Barthe, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, Mehdi Tibouchi,
and Jean-Christophe Zapalowicz. Making RSA-PSS provably secure against non-random faults.
In Lejla Batina and Matthew Robshaw, editors, CHES 2014, volume 8731 of LNCS, pages
206–222. Springer, Heidelberg, September 2014.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of checking cryp-
tographic protocols for faults (extended abstract). In Walter Fumy, editor, EUROCRYPT’97,
volume 1233 of LNCS, pages 37–51. Springer, Heidelberg, May 1997.

[BDL+12] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed
high-security signatures. Journal of Cryptographic Engineering, 2(2):77–89, September 2012.

[BH15] Mihir Bellare and Viet Tung Hoang. Resisting randomness subversion: Fast deterministic and
hedged public-key encryption in the standard model. In Elisabeth Oswald and Marc Fischlin, ed-
itors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 627–656. Springer, Heidelberg,
April 2015.

[BK03] Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS,
pages 491–506. Springer, Heidelberg, May 2003.

[Ble00] Daniel Bleichenbacher. On the generation of one-time keys in DL signature schemes. Presentation
at IEEE P1363 working group meeting, 2000.

[BP16] Alessandro Barenghi and Gerardo Pelosi. A note on fault attacks against deterministic signature
schemes. In Kazuto Ogawa and Katsunari Yoshioka, editors, IWSEC 16, volume 9836 of LNCS,
pages 182–192. Springer, Heidelberg, September 2016.

[BP18] Leon Groot Bruinderink and Peter Pessl. Differential fault attacks on deterministic lattice
signatures. IACR TCHES, 2018(3):21–43, 2018. https://tches.iacr.org/index.php/TCHES/
article/view/7267.

[BPS16] Mihir Bellare, Bertram Poettering, and Douglas Stebila. From identification to signatures,
tightly: A framework and generic transforms. In Jung Hee Cheon and Tsuyoshi Takagi, edi-
tors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 435–464. Springer, Heidelberg,
December 2016.

[BPS17] Alexandra Boldyreva, Christopher Patton, and Thomas Shrimpton. Hedging public-key encryp-
tion in the real world. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part III,
volume 10403 of LNCS, pages 462–494. Springer, Heidelberg, August 2017.

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-
based game-playing proofs. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of
LNCS, pages 409–426. Springer, Heidelberg, May / June 2006.

[BR18] Michael Brengel and Christian Rossow. Identifying key leakage of bitcoin users. In RAID, volume
11050 of Lecture Notes in Computer Science, pages 623–643. Springer, 2018.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems. In Burton S.
Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 513–525. Springer, Heidelberg,
August 1997.

37

https://tches.iacr.org/index.php/TCHES/article/view/7267
https://tches.iacr.org/index.php/TCHES/article/view/7267

[BT16] Mihir Bellare and Björn Tackmann. Nonce-based cryptography: Retaining security when ran-
domness fails. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part I,
volume 9665 of LNCS, pages 729–757. Springer, Heidelberg, May 2016.

[BV96] Dan Boneh and Ramarathnam Venkatesan. Hardness of computing the most significant bits of
secret keys in Diffie-Hellman and related schemes. In Neal Koblitz, editor, CRYPTO’96, volume
1109 of LNCS, pages 129–142. Springer, Heidelberg, August 1996.

[CCD+17] Katriel Cohn-Gordon, Cas J. F. Cremers, Benjamin Dowling, Luke Garratt, and Douglas Stebila.
A formal security analysis of the signal messaging protocol. In EuroS&P, pages 451–466. IEEE,
2017.

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher, Christian
Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-quantum zero-knowledge and signatures
from symmetric-key primitives. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 2017, pages 1825–1842. ACM Press, October / November 2017.

[Cha19] André Chailloux. Quantum security of the Fiat-Shamir transform of commit and open protocols.
Cryptology ePrint Archive, Report 2019/699, 2019. https://eprint.iacr.org/2019/699.

[Cla07] Christophe Clavier. Secret external encodings do not prevent transient fault analysis. In Pascal
Paillier and Ingrid Verbauwhede, editors, CHES 2007, volume 4727 of LNCS, pages 181–194.
Springer, Heidelberg, September 2007.

[CM09] Jean-Sébastien Coron and Avradip Mandal. PSS is secure against random fault attacks. In
Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 653–666. Springer,
Heidelberg, December 2009.

[CPS+16] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi, and Ivan Visconti.
Improved OR-composition of sigma-protocols. In Eyal Kushilevitz and Tal Malkin, editors,
TCC 2016-A, Part II, volume 9563 of LNCS, pages 112–141. Springer, Heidelberg, January
2016.

[DAN+18] Lauren De Meyer, Victor Arribas, Svetla Nikova, Ventzislav Nikov, and Vincent Rijmen. M&M:
Masks and macs against physical attacks. IACR TCHES, 2019(1):25–50, 2018. https://tches.
iacr.org/index.php/TCHES/article/view/7333.

[DDE+19] Joan Daemen, Christoph Dobraunig, Maria Eichlseder, Hannes Gross, Florian Mendel, and
Robert Primas. Protecting against statistical ineffective fault attacks. Cryptology ePrint Archive,
Report 2019/536, 2019. https://eprint.iacr.org/2019/536.

[DEG+18] Christoph Dobraunig, Maria Eichlseder, Hannes Groß, Stefan Mangard, Florian Mendel, and
Robert Primas. Statistical ineffective fault attacks on masked AES with fault countermeasures.
In Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part II, volume 11273 of
LNCS, pages 315–342. Springer, Heidelberg, December 2018.

[DEK+18] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard, Florian Mendel, and
Robert Primas. SIFA: Exploiting ineffective fault inductions on symmetric cryptography. IACR
TCHES, 2018(3):547–572, 2018. https://tches.iacr.org/index.php/TCHES/article/view/
7286.

[DFMV17] Ivan Damg̊ard, Sebastian Faust, Pratyay Mukherjee, and Daniele Venturi. Bounded tamper
resilience: How to go beyond the algebraic barrier. Journal of Cryptology, 30(1):152–190, January
2017.

[DPW18] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. J. ACM,
65(4):20:1–20:32, 2018.

[fai10] fail0verflow. Console hacking 2010 – PS3 epic fail. 27th Chaos Communications Congress, 2010.

38

https://eprint.iacr.org/2019/699
https://tches.iacr.org/index.php/TCHES/article/view/7333
https://tches.iacr.org/index.php/TCHES/article/view/7333
https://eprint.iacr.org/2019/536
https://tches.iacr.org/index.php/TCHES/article/view/7286
https://tches.iacr.org/index.php/TCHES/article/view/7286

[FG20] Marc Fischlin and Felix Günther. Modeling memory faults in signature and authenticated en-
cryption schemes. In Stanislaw Jarecki, editor, CT-RSA 2020, volume 12006 of LNCS, pages
56–84. Springer, 2020.

[FNSV18] Antonio Faonio, Jesper Buus Nielsen, Mark Simkin, and Daniele Venturi. Continuously non-
malleable codes with split-state refresh. In Bart Preneel and Frederik Vercauteren, editors,
ACNS 18, volume 10892 of LNCS, pages 121–139. Springer, Heidelberg, July 2018.

[FPV11] Sebastian Faust, Krzysztof Pietrzak, and Daniele Venturi. Tamper-proof circuits: How to trade
leakage for tamper-resilience. In Luca Aceto, Monika Henzinger, and Jiri Sgall, editors, ICALP
2011, Part I, volume 6755 of LNCS, pages 391–402. Springer, Heidelberg, July 2011.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages
186–194. Springer, Heidelberg, August 1987.

[FV16] Antonio Faonio and Daniele Venturi. Efficient public-key cryptography with bounded leakage
and tamper resilience. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016,
Part I, volume 10031 of LNCS, pages 877–907. Springer, Heidelberg, December 2016.

[FX16] Eiichiro Fujisaki and Keita Xagawa. Public-key cryptosystems resilient to continuous tampering
and leakage of arbitrary functions. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASI-
ACRYPT 2016, Part I, volume 10031 of LNCS, pages 908–938. Springer, Heidelberg, December
2016.

[GLM+04] Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal Rabin. Algorithmic
tamper-proof (ATP) security: Theoretical foundations for security against hardware tampering.
In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages 258–277. Springer, Heidelberg,
February 2004.

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo: Faster zero-knowledge for
boolean circuits. In Thorsten Holz and Stefan Savage, editors, USENIX Security 2016, pages
1069–1083. USENIX Association, August 2016.

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity
and a methodology of cryptographic protocol design (extended abstract). In 27th FOCS, pages
174–187. IEEE Computer Society Press, October 1986.

[Gol07] Oded Goldreich. Foundations of Cryptography, volume 1. Cambridge University Press, 2007.

[HL10] Carmit Hazay and Yehuda Lindell. Efficient Secure Two-Party Protocols - Techniques and
Constructions. Information Security and Cryptography. Springer, 2010.

[HLC+18] Zhengan Huang, Junzuo Lai, Wenbin Chen, Man Ho Au, Zhen Peng, and Jin Li. Hedged nonce-
based public-key encryption: Adaptive security under randomness failures. In Michel Abdalla
and Ricardo Dahab, editors, PKC 2018, Part I, volume 10769 of LNCS, pages 253–279. Springer,
Heidelberg, March 2018.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure
multiparty computation. In David S. Johnson and Uriel Feige, editors, 39th ACM STOC, pages
21–30. ACM Press, June 2007.

[IPSW06] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David Wagner. Private circuits II: Keeping
secrets in tamperable circuits. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of
LNCS, pages 308–327. Springer, Heidelberg, May / June 2006.

[JL17] S. Josefsson and I. Liusvaara. Edwards-curve digital signature algorithm (EdDSA). RFC 8032,
2017. https://tools.ietf.org/html/rfc8032.

39

https://tools.ietf.org/html/rfc8032

[JT12] Marc Joye and Michael Tunstall. Fault analysis in cryptography, volume 147 of Information
Security and Cryptography. Springer, 2012.

[KDK+14] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji-Hye Lee, Donghyuk Lee, Chris Wilkerson,
Konrad Lai, and Onur Mutlu. Flipping bits in memory without accessing them: An experimental
study of DRAM disturbance errors. In ISCA, pages 361–372. IEEE Computer Society, 2014.

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-interactive zero knowledge
with applications to post-quantum signatures. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 525–537. ACM Press, October
2018.

[KLS18] Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete treatment of Fiat-Shamir
signatures in the quantum random-oracle model. In Jesper Buus Nielsen and Vincent Rijmen,
editors, EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 552–586. Springer, Heidel-
berg, April / May 2018.

[KM15] Neal Koblitz and Alfred J. Menezes. The random oracle model: a twenty-year retrospective.
Designs, Codes and Cryptography, 77(2-3):587–610, 2015.

[KMO90] Joe Kilian, Silvio Micali, and Rafail Ostrovsky. Minimum resource zero-knowledge proofs (ex-
tended abstract). In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 545–546.
Springer, Heidelberg, August 1990.

[KMP16] Eike Kiltz, Daniel Masny, and Jiaxin Pan. Optimal security proofs for signatures from identi-
fication schemes. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II,
volume 9815 of LNCS, pages 33–61. Springer, Heidelberg, August 2016.

[KSV13] Dusko Karaklajic, Jörn-Marc Schmidt, and Ingrid Verbauwhede. Hardware designer’s guide to
fault attacks. IEEE Trans. VLSI Syst., 21(12):2295–2306, 2013.

[LDK+19] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe, Gregor Seiler,
and Damien Stehlé. CRYSTALS-DILITHIUM. Technical report, National Institute of Stan-
dards and Technology, 2019. available at https://csrc.nist.gov/projects/post-quantum-

cryptography/round-2-submissions.

[LL12] Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in the split-state model. In
Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages
517–532. Springer, Heidelberg, August 2012.

[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based
signatures. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 598–
616. Springer, Heidelberg, December 2009.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In David Pointcheval and Thomas
Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 738–755. Springer, Hei-
delberg, April 2012.

[MHER14] Nicolas Moro, Karine Heydemann, Emmanuelle Encrenaz, and Bruno Robisson. Formal verifi-
cation of a software countermeasure against instruction skip attacks. Journal of Cryptographic
Engineering, 4(3):145–156, September 2014.

[MNPV99] David M’Räıhi, David Naccache, David Pointcheval, and Serge Vaudenay. Computational alter-
natives to random number generators. In Stafford E. Tavares and Henk Meijer, editors, SAC
1998, volume 1556 of LNCS, pages 72–80. Springer, Heidelberg, August 1999.

[MSM+16] Hiraku Morita, Jacob C. N. Schuldt, Takahiro Matsuda, Goichiro Hanaoka, and Tetsu Iwata.
On the Security of the Schnorr Signature Scheme and DSA Against Related-Key Attacks. In
Soonhak Kwon and Aaram Yun, editors, ICISC 2015, Lecture Notes in Computer Science, pages
20–35. Springer, 2016.

40

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

[Nec94] V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm. Mathematical
Notes, 55(2):165–172, 1994.

[OO98] Kazuo Ohta and Tatsuaki Okamoto. On concrete security treatment of signatures derived from
identification. In Hugo Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 354–369.
Springer, Heidelberg, August 1998.

[Per16] Trevor Perrin. The XEdDSA and VXEdDSA Signature Schemes. Signal, 2016. Revision 1,
https://signal.org/docs/specifications/xeddsa/.

[Pic19a] The Picnic Design Team. The Picnic Signature Algorithm Specification, July 2019. Version 2.1,
Available at https://microsoft.github.io/Picnic/.

[Pic19b] The Picnic Design Team. The Picnic Signature Scheme Design Document, March 2019. Version
2.0, Available at https://microsoft.github.io/Picnic/.

[Por13] Thomas Pornin. Deterministic usage of the digital signature algorithm (DSA) and elliptic
curve digital signature algorithm (ECDSA). RFC 6979, 2013. https://tools.ietf.org/html/
rfc6979.

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind sig-
natures. Journal of Cryptology, 13(3):361–396, June 2000.

[PSS14] Kenneth G. Paterson, Jacob C. N. Schuldt, and Dale L. Sibborn. Related randomness attacks
for public key encryption. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages
465–482. Springer, Heidelberg, March 2014.

[PSS+18] Damian Poddebniak, Juraj Somorovsky, Sebastian Schinzel, Manfred Lochter, and Paul Rosler.
Attacking Deterministic Signature Schemes using Fault Attacks. In Euro S&P 2018, pages
338–352. IEEE, 2018.

[qTE19] The qTESLA Team. Submission to NIST’s post-quantum project (2nd round): lattice-based
digital signature scheme qTESLA, August 2019. Version 2.7, Available at https://qtesla.org/.

[RG14] Pablo Rauzy and Sylvain Guilley. A formal proof of countermeasures against fault injection
attacks on CRT-RSA. Journal of Cryptographic Engineering, 4(3):173–185, September 2014.

[RJH+19] Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chattopadhyay, and Shivam
Bhasin. Exploiting Determinism in Lattice-based Signatures: Practical Fault Attacks on Pqm4
Implementations of NIST Candidates. In Asia CCS 2019, Asia CCS ’19, pages 427–440. ACM,
2019.

[RP17] Y. Romailler and S. Pelissier. Practical Fault Attack against the Ed25519 and EdDSA Signature
Schemes. In FDTC 2017, pages 17–24, September 2017.

[RY10] Thomas Ristenpart and Scott Yilek. When good randomness goes bad: Virtual machine re-
set vulnerabilities and hedging deployed cryptography. In NDSS 2010. The Internet Society,
February / March 2010.

[SB18] Niels Samwel and Lejla Batina. Practical fault injection on deterministic signatures: The
case of EdDSA. In Antoine Joux, Abderrahmane Nitaj, and Tajjeeddine Rachidi, editors,
AFRICACRYPT 18, volume 10831 of LNCS, pages 306–321. Springer, Heidelberg, May 2018.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, January 1991.

[Sch16] Benedikt Schmidt. [curves] EdDSA specification. https://moderncrypto.org/mail-archive/
curves/2016/000768.html, 2016.

41

https://signal.org/docs/specifications/xeddsa/
https://microsoft.github.io/Picnic/
https://microsoft.github.io/Picnic/
https://tools.ietf.org/html/rfc6979
https://tools.ietf.org/html/rfc6979
https://qtesla.org/
https://moderncrypto.org/mail-archive/curves/2016/000768.html
https://moderncrypto.org/mail-archive/curves/2016/000768.html

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Heidelberg, May
1997.

[TTA18] Akira Takahashi, Mehdi Tibouchi, and Masayuki Abe. New Bleichenbacher records: Fault
attacks on qDSA signatures. IACR TCHES, 2018(3):331–371, 2018. https://tches.iacr.

org/index.php/TCHES/article/view/7278.

[YJ00] Sung-Ming Yen and Marc Joye. Checking before output may not be enough against fault-based
cryptanalysis. IEEE Trans. Computers, 49(9):967–970, 2000.

[ZCD+19] Greg Zaverucha, Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian
Ramacher, Christian Rechberger, Daniel Slamanig, Jonathan Katz, Xiao Wang, and Vlad-
mir Kolesnikov. Picnic. Technical report, National Institute of Standards and Technology,
2019. available at https://csrc.nist.gov/projects/post-quantum-cryptography/round-

2-submissions.

A Omitted Proofs

A.1 Proof of Lemma 2

Lemma 2 (UF-KOA→ UF-CMA). Let ID be a correct canonical identification protocol and CSF be a canonical
serialization function for ID. Suppose ID satisfies the following:

• ID is special c/s/p-HVZK with efficient distinguishers’ advantage being at most εHVZK .

• ID has α-bit min-entropy.

If FS := FS[ID,CSF] is UF-KOA secure, then FS is UF-CMA secure in the random oracle model. Concretely,
given a UF-CMA adversary A against FS running in time t, and making at most Qs queries to OSign, Qh
queries to H, one can construct another adversary B against FS such that

AdvUF-CMA
FS (A) ≤ AdvUF-KOA

FS (B) +
(Qs +Qh)Qs

2α
+Qs · εHVZK ,

where B makes at most Qh queries to its random oracle, and runs in time t.

Proof. The proof is essentially same as UF-KOA-to-UF-CMA reduction in [KMP16], but we also consider the
case ID is only non-perfect HVZK. We show that UF-KOA security of a randomized Fiat–Shamir signature
scheme FS can be broken by letting B simulate OSign without using sk. We denote the random oracle and
hash table in UF-CMA (resp. UF-KOA) by H and HT (resp. H′ and HT′).

Preparation of Public Key Upon receiving pk in UF-KOA game, B forwards pk to A.

Simulation of Random Oracle Queries Upon receiving a random oracle query H(a,m, pk) from A, B
forwards the input (a,m, pk) to its own random oracle and provides A with the return value of H′(a,m, pk).

Simulation of Faulty Signing Queries For each i ∈ [Qs], B answers a faulty signing request from A by
simulating the signature on mi as follows:

1. B first samples ei from DH uniformly at random.

2. B invokes the special c/s/p-HVZK simulator M of ID on input pk and ei and on freshly generated
randomness every time, to obtain an accepting transcript (ai, ei, zi).

42

https://tches.iacr.org/index.php/TCHES/article/view/7278
https://tches.iacr.org/index.php/TCHES/article/view/7278
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

3. If HT[ai,mi, pk] is already set (via A’s previous hash or signing queries) and HT[ai,mi, pk] 6= ei, B
aborts. Otherwise, B programs the random oracle so that

HT[ai,mi, pk] := ei.

Notice that programming makes H’s output inconsistent with that of the external random oracle H′,
but as we will see later it doesn’t make a difference since a forgery must use a previously unqueried m.

4. If random oracle programming is successful, B gives A a serialized transcript

σi := CSF(ai, ei, zi).

Now we evaluate the probability that A distinguishes the simulated signing oracle above from the real one.
There are essentially two cases.

• B aborts at the third step in the above simulation with probability at most (Qh + Qs)/2
α per each

query. This is because the input (ai,mi, pk) to H has α bits of min-entropy (since mi is chosen by the
adversary and has zero bits, pk is public and has zero bits, and ai has α bits due to α-bit min-entropy
of ID), and HT has at most Qh +Qs existing entries.

• A after the forth step distinguishes σi from the one returned by the real signing oracle OSign with
probability at most εHVZK per each query, since we used the special c/s/p-HVZK simulator to derive
(ai, ei, zi) and CSF is efficiently computable.

Recalling that the number of signing queries is bounded by Qs, and by a union bound, A overall distinguishes
its simulated view from that in UF-CMA game with probability at most

(Qh +Qs)Qs
2α

+Qs · εHVZK .

Forgery Suppose that at the end of the experiment A outputs its forgery (m∗, σ∗) that passes the verifica-
tion and m∗ /∈M = {mi : i ∈ [Qs]}. This means that the reconstructed transcript (a∗, e∗, z∗)← CDF(σ∗, pk)
satisfies

V(a∗, e∗, z∗, pk) = 1 and H(a∗,m∗, pk) = e∗.

Here we can guarantee that the HT[a∗,m∗, pk] has not been programmed by signing oracle simulation since
m∗ is fresh, i.e., m∗ 6∈ M . Hence we ensure that e∗ = HT[a∗,m∗, pk] has been directly set by A, and
e∗ = HT′[a∗,m∗, pk] holds due to the hash query simulation. This implies (m∗, σ∗) is a valid forgery in
UF-KOA game as well.

A.2 Proof of Lemma 3

Lemma 3 (UF-CMA→ UF-CMNA). Let SIG := (Gen,Sign,Verify) be a randomized digital signature scheme,
and let HSIG := R2H[SIG,HE] = (Gen,HSign,Verify) be the corresponding hedged signature scheme with HE
modeled as a random oracle. If SIG is UF-CMA secure, then HSIG is UF-CMNA secure. Concretely, given a
UF-CMNA adversary A against HSIG running in time t, and making at most Qs queries to OHSign and Qhe
queries to HE, one can construct an adversary B against SIG such that

AdvUF-CMNA
HSIG,HE (A) ≤ 2 ·AdvUF-CMA

SIG (B),

where B makes at most Qs queries to its signing oracle, and has running time t plus Qhe invocations of Sign
and Verify.

Proof. We rely on the code-based game-playing proof [BR06], and the basic structure of our proof is essentially
same as the reduction from UUF-CMA to UF-CMA for deterministic signature schemes [BPS16]. Let us
consider two identical-until-bad games described in Fig. 9: G0(A) (without boxed code) and G1(A) (with
boxed code). We assume wlog that A does not repeat the same HE query. Notice that G0(A) is identical to

43

G0(A), G1(A)

M ← ∅; ST← ∅; HET← ∅

(sk, pk)← Gen(1λ)

(m∗, σ∗)← AOHSign,HE(pk)

v ← Verify(m∗, σ∗)

return (v = 1) ∧m∗ /∈M

HE0(sk′, (m′, n′)), HE1(sk′, (m′, n′))

If HET[sk′,m′, n′] 6= ⊥ :

bad← true

HET[sk′,m′, n′]←$Dρ

Else: HET[sk′,m′, n′]←$Dρ

return HET[sk′,m′, n′]

OHSign0(m,n), OHSign1(m,n)

If ST[m,n] 6= ⊥ : return ST[m,n]

HSign(sk,m, n)

If HET[sk,m, n] 6= ⊥ :

bad← true

HET[sk,m, n]←$Dρ

Else: HET[sk,m, n]←$Dρ

ρ← HET[sk,m, n]

σ ← Sign(sk,m; ρ)

M ←M ∪ {m}
ST[m,n]← σ

return σ

Figure 9: Two identical-until-bad games G0(A) and G1(A). The game G1(A) executes the boxed code, while
G0(A) does not. The dashed box indicates that the instructions inside correspond to the actual hedged
signing operation.

ExpUF-CMNA
HSIG,HE (A) in Fig. 6 and therefore AdvUF-CMNA

HSIG,HE (A) = Pr[G0(A)]. Now we obtain the following by simple
transformation:

AdvUF-CMNA
HSIG,HE (A) = Pr[G0(A)] = Pr[G1(A)] + (Pr[G0(A)]− Pr[G1(A)])

≤ Pr[G1(A)] + Pr[G1(A) sets bad].

Our goal is to construct the adversary B breaking UF-CMA security of a plain randomized signature scheme
SIG such that

Pr[G1(A)] ≤ AdvUF-CMA
SIG (B) and Pr[G1(A) sets bad] ≤ AdvUF-CMA

SIG (B).

The description of B is given in Fig. 10. The adversary B perfectly simulates A’s view in G1(A) as follows.

• Sim-OHSign1 simulates OHSign1 by forwarding signing queries to OSign, the oracle in UF-CMA game.
Notice that this simulation is perfect since both OHSign1 and OSign use freshly generated randomness
for every signing query, except when the same (m,n) pair is queried.

• Sim-HE1 simulates the HE1 but keeps track of candidate secret keys queried by A in S.

If the adversary A wins the game G1(A), this implies that B receives a valid forgery (m′, σ′) from A so that
B can win UF-CMA game, i.e., Pr[G1(A)] ≤ AdvUF-CMA

SIG (B). Otherwise, B picks some message m∗ /∈M and
tries to sign with all secret key candidates sk∗. Below we will see why this strategy guarantees B to generate
a valid forgery as long as bad is set in G1(A), i.e., Pr[G1(A) sets bad] ≤ AdvUF-CMA

SIG (B).
Here we show that if bad is set either by OHSign1 or HE1, thenAmust have queried HE1 with (sk∗, (m∗, n∗))

for some (m∗, n∗) such that sk∗ = sk. First, if bad is set by OHSign1, it must be due to a previous query to
HE1 with (sk′, (m′, n′)) such that sk′ = sk holds, since OHSign, without invoking HSign, returns previously
generated signature σ stored in ST whenever the same (m,n) pair is queried. Second, we consider the case
bad is set by HE1. Since we assumed that A does not repeat the same HE query, if a query (sk′, (m′, n′)) to
HE1 sets bad then HET[sk′,m′, n′] must have been defined by OHSign1. Here notice that we have sk′ = sk
due to the definition of OHSign1. Thus if bad is set in G1(A) then for some sk∗ ∈ S, sk∗ = sk holds. By
checking the validity of signatures generated with each sk∗ ∈ S, B eventually finds the true secret key sk
that leads to a valid forgery.

We finally observe that the total running time of B is upper bounded by A’s running time t plus Qhe
times the running time of Sign and Verify due to the above for-loop operations.

44

BOSign(pk)

M ← ∅; ST← ∅; HET← ∅;S ← ∅
(m′, σ′)← ASim-OHSign1,Sim-HE1(pk)

If Verify(m′, σ′) = 1 ∧m′ /∈M :

return (m′, σ′)

Pick some m∗ /∈M
ρ∗ ←$Dρ

For sk∗ ∈ S :

σ∗ ← Sign(sk∗,m∗; ρ∗)

If Verify(m∗, σ∗) = 1 :

return (m∗, σ∗)

return (⊥,⊥)

Sim-OHSign1(m,n)

If ST[m,n] 6= ⊥ : return ST[m,n]

σ ← OSign(m)

M ←M ∪ {m}
ST[m,n]← σ

return σ

Sim-HE1(sk′, (m′, n′))

S ← S ∪ {sk′}
ρ←$Dρ

return ρ

Figure 10: Description of B

A.3 Proof of Lemma 6

Lemma 6 (UF-KOA→ {f8, f9, f10}-UF-fCMA). If FS := FS[ID,CSF] is UF-KOA secure, then FS is {f8, f9, f10}-
UF-fCMA secure in the random oracle model. Concretely, given an {f8, f9, f10}-adversary A against FS run-
ning in time t, and making at most Qs queries to OFaultSign, Qh queries to H, one can construct another
adversary B against FS such that

AdvUF-fCMA
FS (A) ≤ AdvUF-KOA

FS (B) +
(Qs +Qh)Qs

2α
+Qs · εHVZK ,

where B makes at most Qh queries to its random oracle, and has running time t.

Proof. We denote the random oracle and hash table in UF-fCMA experiment (resp. UF-KOA experiment) by
H and HT (resp. H′ and HT′).

Preparation of Public Key Upon receiving pk in the UF-KOA game, B forwards pk to A.

Simulation of Random Oracle Queries Upon receiving a random oracle query H(a,m, pk) from A, B
forwards the input (a,m, pk) to its own random oracle (H′ from the UF-KOA game) and provides A with the
return value.

Simulation of Faulty Signing Queries For each i ∈ [Qs], B answers a faulty signing request from A by
simulating the signature on mi as follows:

1. B first samples ei from DH uniformly at random.

2. B invokes the special c/s/p-HVZK simulator M of ID on input pk and ei and on freshly generated
randomness every time, to obtain an accepting transcript (ai, ei, zi).

3. If HT[ai,mi, pk] is already set (via A’s previous hash or signing queries) and HT[ai,mi, pk] 6= ei, B
aborts. Otherwise, B programs the random oracle so that

HT[ai,mi, pk] := ei.

Notice that programming makes H’s output inconsistent with that of the external random oracle H′,
but as we will see later it doesn’t make a difference since a forgery must use a previously unqueried m.

45

4. If random oracle programming is successful, B gives A an incorrectly serialized transcript depending
on a fault position ji and tampering function φi:

σ̃i := CSF(ai, ei, f8(zi)) if ji = 8

σ̃i := CSF(f9(ai, ei, zi)) if ji = 9

σ̃i := f10(CSF(ai, ei, zi)) if ji = 10

σ̃i := CSF(ai, ei, zi) if φj = Id.

Now we evaluate the probability that A distinguishes the simulated signing oracle above from the real one.
There are essentially two cases.

• B aborts at the third step in the above simulation with probability at most (Qh + Qs)/2
α per query.

This is because the input (ai,mi, pk) to H has α bits of min-entropy (since mi is chosen by the adversary
and has zero bits, pk is public and has zero bits, and ai has α bits due to α-bit min-entropy of ID), and
HT has at most Qh +Qs existing entries.

• After the fourth step, A distinguishes σ̃i from the one returned by the real signing oracle OFaultHSign
with probability at most εHVZK per query, since we used the special c/s/p-HVZK simulator to derive
(ai, ei, zi) and f8, f9, f10 and CSF are efficiently computable.

Recalling that the number of signing queries is bounded by Qs, and by a union bound, A overall distinguishes
its simulated view from that in UF-fCMA game with probability at most

(Qh +Qs)Qs
2α

+Qs · εHVZK .

Forgery Suppose that at the end of the experiment A outputs its forgery (m∗, σ∗) that passes the verifica-
tion and m∗ /∈M = {m̂i : i ∈ [Qs]}. This means that the reconstructed transcript (a∗, e∗, z∗)← CDF(σ∗, pk)
satisfies

V(a∗, e∗, z∗, pk) = 1 and H(a∗,m∗, pk) = e∗.

Here we can guarantee that the HT[a∗,m∗, pk] has not been programmed by the signing oracle simulation
since m∗ is fresh, i.e., m∗ 6∈ M . Hence we ensure that e∗ = HT[a∗,m∗, pk] has been directly set by A, and
e∗ = HT′[a∗,m∗, pk] holds due to the hash query simulation. This implies (m∗, σ∗) is a valid forgery in
UF-KOA game as well.

B Schnorr-Like Elliptic Curve Signature Schemes

Here we present the Schnorr signature and two popular variants, all instantiated with elliptic curve groups.
The base point of order q on the elliptic curve is denoted G. Functions H, H′ and H′′ are cryptographic hash
functions, H and H′ have 2λ-bit digests, and H′′ has 4λ-bit digests.

In EdDSA, a single initial secret value k is used to derive the secret key sk, and a key K used to derive
the per-signature random value ρ. In XEdDSA (Algorithm 2), a single secret key is used for both computing
ρ and in the signing equation (matching our formalization of hedging in Fig. 5). The specification [Per16]
contains a conversion step (called calculate_key_pair) at the beginning of signing, that converts a bitstring
to sk and recomputes pk from sk. Since this step is both expensive and the same for every signature, we
expect all implementations would cache the result and omit this step (matching our presentation here).

46

Algorithm 1 EC-Schnorr signing

Input: sk ∈ Z/qZ: signing key

m ∈ {0, 1}∗: message to be signed

Output: a signature σ
1: ρ←$Dρ

2: (a, St)← ([ρ]G, ρ) // (a, St)← Com(sk; ρ)
3: e← H(a,m)
4: z ← ρ+ e · sk mod q // z ← Resp(sk, e, St)
5: σ ← (e, z) // σ ← CSF(a, e, z)
6: return σ

Algorithm 2 XEdDSA signing

Input: sk ∈ Z∗q : signing key

pk = [sk]G: public key

m ∈ {0, 1}∗: message to be signed

n ∈ {0, 1}512 : random value

Output: a signature σ
1: ρ← H′(sk,m, n)
2: (a, St)← ([ρ]G, ρ) // (a, St)← Com(sk; ρ)
3: e← H(a,m, pk)
4: z ← ρ+ e · sk mod q // z ← Resp(sk, e, St)
5: σ ← (a, z) // σ ← CSF(a, e, z)
6: return σ

Algorithm 3 EdDSA signing

Input: k ∈ {0, 1}2λ : the secret key

m ∈ {0, 1}∗: message to be signed

Output: a signature σ
1: (sk,K)← H′′(k)
2: pk ← [sk]G
3: ρ← H′(K,m)
4: (a, St)← ([ρ]G, ρ) // (a, St)← Com(sk; ρ)
5: e← H(a,m, pk)
6: z ← ρ+ e · sk mod q // z ← Resp(sk, e, St)
7: σ ← (a, z) // σ ← CSF(a, e, z)
8: return σ

C Description of Picnic2

Figure 11 shows Picnic2 signing and Figure 12 shows verification. The Picnic2 ID scheme is obtained by undo-
ing the Fiat–Shamir transform. There are a few differences with respect to the Picnic specification [Pic19a],
made here for simplicity.

In particular the specification includes a per-signature, 256-bit salt value, chosen by the signer, and
included in all hash computations. The specification also derives the per-instance seeds {seed∗j}Mj=1, from a
single root seed, using a tree construction. Similarly, the per-party, per-instance seeds {seedi,j} are derived
from seed∗j using the same tree construction. Since most of the seeds are revealed, the signer can reduce the
signature size by revealing intermediate nodes in the tree. Another optimization omitted here is that the
commitments to the views h′j are formed using a Merkle tree, and the root of the tree is input to G. For
the values h′j not recomputed by the verifier, the signer includes the path from h′j to the root. Again this
reduces the signature size significantly.

The specification also recommends a hedging construction that is an instance of the R2H construction
from Section 4. In this case, the salt and random seeds are derived deterministically from sk‖m‖pk‖n where
n is a 2λ-bit random value (acting as the nonce in the notation of Section 4).

Gen(1λ) In the presentation below, the key pair is (pk, sk) = (C,w), a circuit C and an input w such that

C(w) = 1. Concretely, the circuit is Ew(p)
?
= c, where E is the LowMC block cipher with λ-bit key and block

size, p is a random λ-bit plaintext and c is a ciphertext. If the input w is a block cipher key that maps p to
c, the circuit outputs 1.

47

Picnic2 Sign(m; ρ)

Values (M,n, τ) are parameters of the protocol.

Parse ρ as (seed∗1, . . . , seed∗M), where each value is λ bits long.

Com(w; ρ) For each j ∈ [M]:

1. Use seed∗j to generate values seedj,1, . . ., seedj,n with a PRG. Also compute auxj ∈ {0, 1}|C| as
described in the text. For i = 1, . . . , n− 1, let statej,i := seedj,i; let statej,n := seedj,n‖auxj .

2. For i ∈ [n], compute comj,i := H0(statej,i).

3. The signer runs the online phase of the n-party protocol Π (as described in the text) using
{statej,i}i, beginning by computing the masked inputs {ẑj,α} (based on w and the {λj,α} de-
fined by the preprocessing). Let msgsj,i denote the messages broadcast by Si in this protocol
execution.

4. Let hj := H1(comj,1, . . . , comj,n) and let h′j := H2({ẑj,α},msgsj,1, . . . ,msgsj,n).

Let a := (h1, h
′
1, . . . , hM , h

′
M).

Let St := {seed∗j}, {comj,i}, {statej,i}, {hj}, {h′j} for j ∈ [M], i ∈ [n].

Challenge Compute (C,P) := G(a,m), where C ⊂ [M] is a set of size τ , and P is a list {pj}j∈C with
pj ∈ [n]. Let e := (C,P).

Resp(w, e, St) Initialize the output list z. For each j ∈ [M] \ C, add seed∗j , h
′
j to z. Also, for each j ∈ C,

add {statej,i}i 6=pj , comj,pj , {ẑj,α}, and msgsj,pj to z.

Serialize Output (e, z).

Figure 11: The signing algorithm in the Picnic2 signature scheme.

Picnic2 Verification Verify(σ,m)

Parse the signature σ = (e, z) as (C,P, {seed∗j , h
′
j}j 6∈C , {{statej,i}i 6=pj , comj,pj , {ẑj,α},msgsj,pj}j∈C). Ver-

ify the signature as follows:

1. For every j ∈ C and i 6= pj , set comj,i := H0(statej,i); then compute the value hj :=
H1(comj,1, . . . , comj,n).

2. For j 6∈ C, use seed∗j to compute hj as the signer would.

3. For each j ∈ C, run an execution of Π among the parties {Si}i 6=pj using {statej,i}i 6=pj , {ẑα},
and msgsj,pj ; this yields {msgsi}i6=pj and an output bit b. Check that b

?
= 1. Then compute

h′j := H2({ẑj,α} msgsj,1, . . . ,msgsj,n).

4. Output 1 (valid) if (C,P)
?
= G(m,h1, h

′
1, . . . , hM , h

′
M), otherwise output 0 (invalid).

Figure 12: The verification algorithm in the Picnic2 signature scheme.

48

	Introduction
	Our Contributions
	Related Work
	Paper Organization

	Preliminaries
	Fiat–Shamir type Signature Schemes
	Definitions
	Relation between UF-KOA Security and UF-CMA Security

	Fault Attacks on Deterministic Fiat–Shamir Signatures
	Conceptual Overview of the Attacks
	Applicability to Deterministic Picnic2

	Formal Treatment of Hedged Signatures
	Security of Hedged Signature Schemes
	Security of Hedged FS Type Signature Schemes Against Fault Adversaries

	Security Analysis of Generic Hedged Fiat–Shamir Type Signatures Against Fault Attacks
	Main Positive Result
	Faulting Serialization Input/Output and Response Output
	Faulting Challenge Hash Input
	Faulting Challenge Hash Output
	Faulting Response Input
	Faulting Commitment Output
	Negative Results

	Analysis of XEdDSA
	Analysis of Picnic2
	Preliminaries
	Applying the Results of section:generic
	Picnic-Specific Results

	Concluding Remarks
	Omitted Proofs
	Proof of lem:koa-to-cma
	Proof of lemma:cma-to-cmna
	Proof of lemma:f8-10

	Schnorr-Like Elliptic Curve Signature Schemes
	Description of Picnic2

