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Abstract. Differential Fault Analysis (DFA) intentionally injects some
fault into the encryption process and analyzes a secret key from the math-
ematical relationship between faulty and fault-free ciphertexts. Even
white-box cryptographic implementations are still vulnerable to DFA.
A common way to defend DFA is to use some type of redundancy such
as time or hardware redundancy. However, previous work on software-
based redundancy method can be easily bypassed by white-box attack-
ers, who can access and even modify all resources. In this paper, we
propose a secure software redundancy named table redundancy that ex-
ploits the characteristic of table diversity in white-box cryptography. We
show how to apply this table redundancy technique to a white-box AES
implementation with a 128-bit key. To prevent significant degradation of
performance, the lookup tables which are not under DFA are shared and
table redundancy are applied to the inner rounds under DFA. The out-
puts of the redundant computations are the SubBytes output multiplied
by the MixColumns matrix in the 9-th round and encoded by different
transformations. The XOR operation combines those redundant inter-
mediate values and the combined transformation is canceled out in the
following shared part of the encryption. Our security analysis shows that
a success probability of DFA on our table redundancy is negligible and a
brute-force attack becomes too costly. With three redundant computa-
tions, the total table size and the number of lookups are less than double
compared to a non-protected implementation.

1 Introduction

The idea of inducing errors during the computation of a cryptographic algorithm
to recover the key was first introduced by Boneh et al. [5,6] in 1997. They showed
a successful attack on a CRT-RSA algorithm with both a faulty and a fault-free
signature of the same message. Such attacks are known as fault attacks. Since
then, the fault attack was also applied to the block ciphers by Biham and Shamir
and it was called Differential Fault Analysis (DFA) [2]. After AES was chosen
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to be the successor of DES, Giraud investigated two ways of DFA on AES by
inducing faults in intermediate states or in the AES key schedule [15]. So far,
this attack on AES has been improved by many studies in such a way to require
less brute-force search and faulty ciphertexts [4, 10,20,29,36,37].

Most of countermeasures of DFA can be categorized into detection and infec-
tion. A detection method based on various types of redundancy strongly relies
on the comparison step in general. An infection method, on the other hand,
propagates the effect of faults to a wide range, making the faulty ciphertext un-
exploitable. However, a white-box attacker, who has full privilege of the target
environment, is able to skip and change the flow sequence of the target imple-
mentation so that the detection and infective methods have no effect.

To solve this problem, we focus on white-box cryptography as a software
countermeasure for protecting against DFA performed even in the white-box at-
tack model. Originally, white-box cryptography aims to protect the keys hidden
in cryptographic implementations from white-box attacks. After white-box DES
(WB-DES) [9] and AES (WB-AES) [8] implementations were introduced, sev-
eral vulnerabilities were presented, including algebraic analysis [3,16,24,27,39],
and side-channel analysis [7,35]. In particular, DFA on white-box cryptography
was also demonstrated, where a white-box attacker can precisely inject any fault
anywhere [34]. Here we remark that one of the open problems in white-box cryp-
tography was to find certain techniques of white-box cryptography to improve
the security against fault attacks [19].

In this paper, we present the technique of white-box cryptography to prevent
DFA. To do so, we propose a new type of redundancy aptly named table redun-
dancy using the white-box diversity. We show that DFA is unlikely to reveal the
correct key from our WB-AES implementation, and additional costs of table size
and lookups are less than 2 times, compared to a non-protected WB-AES if we
use three redundant computations. The rest of the paper is organized as follows.
Section 2 provides the basic principle of white-box cryptography with AES-128,
and then explains DFA and previous countermeasures. Section 3 presents our
key idea and proposes our WB-AES implementation. We then analyze its secu-
rity and performance in Section 4. Section 5 concludes this paper and discusses
how to improve white-box cryptography with other issues.

2 Background

In this section, we briefly explain the basic concepts of white-box cryptogra-
phy and DFA. To provide a concrete example, a non-protected WB-AES im-
plementation [8] with a 128-bit key is introduced. We then explain DFA and
countermeasures.

2.1 White-box Cryptography and AES

The current white-box cryptography of block ciphers is mostly implemented
in a table-based manner with nonlinear and linear transformations (the term
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encoding is often used) to hide key-dependent intermediate values. Here, the
lookup table size is problematic to map the set of n-bit plaintexts to the n-bit
ciphertexts under a fixed n-bit key. For example, if n = 128 like in the case of
AES-128, the memory requirement of the entire lookup table would take 2128 ·128
bits. To solve this problem, a lookup table is generated for each step and each
round, and then combined in a networked manner.

Since a white-box attacker using a disassembler/degugger is able to learn the
content of any lookup table, nonlinear and linear transformations are used to
protect the key incorporated in the table. Given a lookup table T , we choose
two transformations f and g (composed of nonlinear and linear transformations)
in order to protect inputs and outputs, respectively, and produce the new table
T ′:

T ′ = g ◦ T ◦ f−1.

To obtain the value of T (x), we input f(x) to T ′ and then apply g−1. If the T out-
put feeds into another table R, then transformations are applied in a networked
manner so that the output transformation of T and the input transformation of
R cancel each other out. For example,

T ′ = g ◦ T ◦ f−1 and R′ = h ◦ R ◦ g−1,

then we have

R′ ◦ T ′ = (h ◦ R ◦ g−1) ◦ (g ◦ T ◦ f−1).

Let’s take a close look at WB-AES. In the initial WB-AES implementation
(with a 128-bit key) proposed by Chow et al. [8], AddRoundKey, SubBytes, and
part of MixColumns are combined into a series of lookup tables by re-writing
AES as follows:

state ← plaintext
for r = 1 · · · 9

ShiftRows(state)

AddRoundKey(state, k̂r−1)
SubBytes(state)
MixColumns(state)

ShiftRows(state)

AddRoundKey (state, k̂9)
SubBytes(state)
AddRoundKey(state, k10)
ciphertext ← state,

where kr is a 4 × 4 round key matrix at round r, and k̂r is the result of applying
ShiftRows to kr. Upon this description, AddRoundKey and SubBytes are first
combined into T-boxes, a series of 160 (one per cell per round) 8×8 lookup tables
as follows:

T r
i,j(x) = S(x⊕ k̂r−1i,j ), for i, j ∈ [0, 3] and r ∈ [1, 9],

T 10
i,j (x) = S(x⊕ k̂9i,j)⊕ k10i,j for i, j ∈ [0, 3].
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Through round 1 to 9, each T-box output is combined with MixColumns by
multiplying a 32×32 matrix MC (representing MixColumns) defined to be:

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02


To avoid huge tables, the MC matrix is divided into four column matrices MCi (i
= 0. . .3) and the multiplication is also performed separately. Let [x0, x1, x2, x3]T

be a column vector of the intermediate state after mapping the round input to
a T-box. By the linearity of a matrix multiplication, we have:

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02



x0
x1
x2
x3


= x0

 02
01
01
03

⊕ x1
 03

02
01
01

⊕ x2
 01

03
02
01

⊕ x3
 01

01
03
02


= x0 ·MC0 ⊕ x1 ·MC1 ⊕ x2 ·MC2 ⊕ x3 ·MC3.

For the right-hand side (say y0, y1, y2, y3), the commonly named Tyi tables
mapping 8-bits to 32-bits are defined as follows:

Ty0(x) = x · [02 01 01 03]T

Ty1(x) = x · [03 02 01 01]T

Ty2(x) = x · [01 03 02 01]T

Ty3(x) = x · [01 01 03 02]T .

As mentioned, linear (“mixing” bijection) and nonlinear transformations are
used to obfuscate the tables. With respect to linear transformation, 8×8 mixing
bijections are used to diffuse T-box inputs, and 32×32 mixing bijections are
applied to Tyi outputs. The nonlinear transformation is performed by two four-
bit concatenated ones to avoid huge exclusive-OR (XOR) lookup tables. When
generating the XOR lookup table, the inverse linear transformations are not
involved as shown in Fig. 1 since the distributive property of multiplication over
addition is satisfied.
In [8], TypeII combines T 1 to T 9 with Tyi. Since the TypeII output is trans-
formed by a 32×32 linear transformation, it is required to replace it with four
8×8 linear transformations. By doing so, a single-byte input to TypeII in the
next round can be simply decoded by the inverse 8×8 linear transformation.
This replacement contributes to the reduced size of TypeII, and is performed by
TypeIII. All of the XOR operations between encoded intermediate values are con-
ducted by TypeIV. This takes two four-bit encoded inputs and provides a four-bit
encoded XOR result of the decoded inputs. This is aptly named TypeIV II when
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used to combine the intermediate values from TypeII. Similarly, it is commonly
named TypeIV III when used to combine the lookup values from TypeIII. Fig. 2
illustrates the overall table lookup between TypeII, TypeIII and TypeIV. In the
case of T 10, its output is a subbyte of the ciphertext and thus it is not protected
unless the external encoding is used. Here, let TypeV denote the final round
lookup table which provides the T 10 output taking an encoded input.

N(in)
4

N(in)
XOR

4
N(out)

Fig. 1: A schematic of TypeIV generation. N: nonlinear transformation.

The external encoding is often used to encode the plaintext and ciphertext, and
TypeI is used to perform these external encodings. However, we do not take into
account because it reduces compatibility with other encryption systems that do
not use external encoding.
There are two security metrics: the white-box diversity and ambiguity [8]. The
white-box diversity is a measure of variability, counting distinct constructions
for a particular table type. The white-box ambiguity of a table, on the other
hand, is a measure of the number of alternative interpretations and counts the
number of distinct constructions producing the same table of that type. In our
proposed method, we exploit the diversity which can produce abundant lookup
tables using the countless transformations.

2.2 DFA on AES

The basic idea of DFA is as follows: (1) running the target cryptographic algo-
rithm and obtaining a fault-free ciphertext. (2) injecting faults during the execu-
tion of the target algorithm with the same input and obtaining faulty ciphertexts.
(3) analyzing the relationship between the faulty-free and faulty ciphertexts to
reduce the search space of the key. An analysis of the relationship depends on the
fault model with respect to the fault location and fault characteristic as follows.
First, if an attacker is able to inject a single bit fault by setting or clearing a
particular bit of the first round key (used in the initial AddRoundKey), each bit
of the key can be recovered for each faulty ciphertext [4]. It is also possible to
inject a single bit fault at the beginning of the final round [15]. In this attack, a
128-bit key can be determined by using less than 50 faulty ciphertexts.
Second, an attacker can inject a single byte or multiple byte fault between the
8-th round output and the 9-th MixColumns input. Because of MixColumns in
the 9-th round, a disturbance in a subbyte of the round input affects four bytes
in the round output. Because the final round does not involve MixColumns,
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(a) TypeII and TypeIV II lookup.

TypeIII TypeIII

TypeIV_III

8

32

TypeIII TypeIII

32
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TypeIV_II

32

8

(b) TypeIII and TypeIV III lookup

Fig. 2: A simple overview of TypeII, TypeIII and TypeIV table lookups.

the difference remains in four bytes at the ciphertext. Among many working
principles of DFA based on this fault propagation, we briefly review a technique
using the four 9-th round differential equations [36].

Suppose that a single byte difference is generated at the first subbyte, say x, of
the 9-th round input. Let denote the difference by δ and the faulty byte by x⊕δ,
where x, δ ∈ GF(28). Then δ is changed to δ′ after SubBytes and the four-byte
difference in the round output is represented by (2δ′, δ′, δ′, 3δ′), where 2, 1,
1, and 3 are the elements of MC0. ShiftRows will move the difference to four
different locations as shown in Fig. 3.

With fault-free and faulty ciphertexts for the same plaintext, DFA can express
the four-byte difference in terms of the key K. Let S−1 denote the inverse Sub-
Bytes, C = C1C2 . . . C16 the fault-free ciphertext, and C̃ = C̃1C̃2 . . . C̃16 the
faulty ciphertext. For example, C̃1 = C1⊕∆1. Then we have the following equa-
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δ δ’ δ’

2δ’

δ’

δ’

3δ’

∆1

∆2

∆3

∆4

∆1

∆2

∆3

∆4

9th round SubBytes 9th round ShiftRows

9th round MixColumns

10th round SubBytes10th Round ShiftRows

Fig. 3: Fault propagation across the last two rounds of AES.

tions, which take as inputs the fault-free and faulty ciphertexts, and each key
candidate.

2δ′ = S−1(C1 ⊕K∗1 )⊕ S−1(C̃1 ⊕K∗1 )

δ′ = S−1(C8 ⊕K∗8 )⊕ S−1(C̃8 ⊕K∗8 )

δ′ = S−1(C11 ⊕K∗11)⊕ S−1(C̃11 ⊕K∗11)

3δ′ = S−1(C14 ⊕K∗14)⊕ S−1(C̃14 ⊕K∗14),

where K∗i ∈ GF(28) means each subkey candidate. These equations are called
9-th round differential equations [36] which will reduce the search space of key
quartet to an expected value of 28. This gives us that only 28 candidates of the
key quartet will satisfy the differential equations. By injecting two such faults
the key quartet can be uniquely determined and the remaining three quartets
can be similarly analyzed.
For DFA on WB-AES [34], the differential equations are still valid though T 10 in
the last round of WB-AES combines two round keys. Thus, DFA can recover the
key from WB-AES in the same way. It may be noted here that we do not take
into account DFA on the AES key schedule since WB-AES is a key-instantiated
implementation. In addition, we assume that there is no external encodings to
apply DFA on WB-AES. In white-box attacker’s DFA, the precise location for
injecting faults can be found by static and dynamic code analysis. To that end,
we can use several techniques including a DBI framework such as PIN [26] and
Valgrind [30] or a scriptable debugger like vtrace and gdb.
Third, an attacker can inject faults between the 7-th round output and the 8-
round MixColumns input. Injecting a single byte fault at this location gives an
additional relationship similar to 9-th round differential equations. They call it
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8-th round differential equations. An attacker with a single faulty ciphertext can
further reduce the search space of the key from 232 to 28 using 8-th and 9-th
round differential equations, with 232 time complexity as each of 232 candidates of
the final round key are tested by set of four equations. Here, this time complexity
can be reduced to 230 by an acceleration technique [36].

There are some multiple byte fault attacks. Authors in [28] present two different
multiple byte fault attacks covering all possible faults on the 9-th round Mix-
Columns input. The first attack supposes that at least one byte of MixColumns
in one column is fault free and requires only 6 faulty ciphertexts in average for
discovering the key. In the second attack, all four bytes of one column are sup-
posed to be faulty and then approximately 1,500 faulty ciphertexts can recover
the key. In [33], a diagonal fault model using multiple byte faults is proposed.
The authors divide the state matrix into four diagonals, each of four bytes of
the state matrix. If faults are injected into one, two, or three diagonals, the key
search space is reduced to 232, 264, or 296, respectively. In the case of injecting
faults into four diagonals, the search space becomes larger than brute force.

Interestingly, the probability of successful attacks is enhanced when an attacker
is capable of injecting a biased fault [11, 13, 32]. These methods often use the
stuck-at model in order to fix a target byte to a particular value. In this case, the
correct key candidate produces small changes in the faulty intermediate value
compared to other wrong key candidates, and thus the search space of the final
round key is steeply reduced. The biased fault can be also used to enhance the
probability of passing the comparison step of the fault detection.

2.3 DFA Countermeasure

Detection-based countermeasures, also known as Concurrent Error Detection
(CED) [21], use additional redundancy to detect fault injection. Previous CED
techniques are classified into four types of redundancy [17]. 1) A information
redundancy is based on error detecting codes such as parity bit and robust
code. 2) A time redundancy is a classical fault tolerance technique in which
a cryptographic operation is computed twice with the same input. If there is
a mismatch of the results, a random ciphertext or an error code is returned.
Assuming that the injected fault is uniformly distributed, an attacker must inject
exactly the same faults in both computations. However, as noted previously, a
biased fault can effectively defeat the time redundancy countermeasure because
of relatively high fault collision probability [32]. 3) In hardware redundancy
techniques, the same inputs are fed into both original and duplicated circuits
and the outputs are compared to each other. 4) A hybrid redundancy combines
the characteristics of the previous CED techniques. For example, a fault can be
detected by comparison of the original plaintext with a decrypted plaintext. In
this case, both encryption and decryption hardware are used on a single chip.
Here we remind that this study focuses on software countermeasures, and the
previous software-based detection can be easily disabled by white-box attacks
intentionally skipping instructions or modifying intermediate values.
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Infective countermeasures, on the other hand, use the diffusion effects of faults
instead of comparative computations to make it impossible to obtain meaning-
ful information from ciphertext. Specifically, Tupsamudre et al. [38] proposed
to use intermediate dummy rounds to overcome the weaknesses of deterministic
diffusion based infective methods [25] and a random variation [14]. Patranabis
et al. [31] modified it in such a way to randomize the order of the redundant and
cipher rounds along with masking the previous round outputs in the consider-
ation of an attacker who can change the flow sequence. However, we note that
these cannot be a solution in the white-box attack model.

3 Proposed Method

In this section, we present our white-box implementation for protecting against
DFA. For this purpose, we propose a new concept, aptly named table redundancy.
Based on this redundancy technique, we replace a detective comparison step with
infective XOR operations. To explain our redundancy design, we divide WB-AES
into three parts as depicted in Fig. 4.

1. From Round 1 to 6
2. From Round 7 to TypeII in Round 9
3. From TypeIV II in Round 9 to Round 10

In order to reduce the total table size and lookups, the part (1) of the first 6
rounds are shared because those are not under the attack in this paper. For
the part (2), we perform redundant computations with different sets of lookup
tables generated using different transformations. This is why we call it table
redundancy. Here we note that TypeII computes the SubBytes output multiplied
by MCi and TypeIV II combines them with the XOR operation. Between the
part (2) and (3), we perform the XOR operation as an infective computation
with the redundant outputs of the part (2). This XOR result will be the input
to the part (3) computing the ciphertext.
Previously, we provided a review of DFA mounted in several rounds. Before
introducing our method we note that single bit fault attacks in the initial Ad-
dRoundKey are excluded from the white-box cryptographic point of view. This
is because there is no guarantee that the difference in a certain bit in the input
leads to a consistent difference in the output due to nonlinear and linear trans-
formations applied to white-box cryptography. For this reason, we assume that
DFA on WB-AES implementations takes place between the 7-th and 9-th round
inputs.

3.1 Key Idea

Table redundancy. For our WB-AES implementation generated with the key
K, let T b (b stands for “begin”) denote a set of shared lookup tables for the part
(1) to be used in the 1 - 6 rounds. For the part (2), we generate two different
sets of lookup tables which are generated using different sets of nonlinear and
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TypeII TypeIV_II TypeIII TypeIV_III

Round 1 - 9

TypeV

Round 10

(a) Normal sequence of table lookup

TypeII TypeIV_II TypeIII TypeIV_III

Round 1 - 6

TypeV

Round 10

TypeII TypeIV_II TypeIII TypeIV_III

Round 7 - 8

TypII

Round 9

TypeIV_II TypeIII TypeIV_III

Round 9

1

2

3

(b) Our partition and table lookup

Fig. 4: Our partition of WB-AES lookup tables.

linear transformations. Due to the white-box diversity, a key can generate dif-
ferent lookup tables using different transformations, and different lookup tables
will output different intermediate values. Let T 0 and T 1 denote these two sets
of lookup tables. Given a plaintext P, the part (1) of the encryption using T b is
followed by the part (2) which is computed twice by T 0 and T 1. Here, we call
the computation and recomputation using T 0 and T 1 original and redundant,
respectively. The lookup values from T 0 and T 1 are then the encoded SubBytes
output multiplied by a column vector of MC in the 9-th round. We denote by
Q0 and Q1 these encoded intermediate values from T 0 and T 1, respectively. In
general, Q0 and Q1 will be provided in a 4×4×4 array because TypeII maps an
8-bit input to a 32-bit output. Fig. 5 briefly describes our table redundancy with
a redundant computation and TABLE 1 explains the other notations used. We
sometimes abuse the notations N i and Li to mean a substitution box of N i and
a binary matrix used in Li, respectively.

Notation Description

T x XOR lookup tables to combine redundant computation results.

N i Nonlinear transformation applied to Qi∈{0,1}

Li Linear transformation applied to Qi

Gi N i ◦ Li

N x Nonlinear transformation applied to Qx

Qx The lookup value from T x

Table 1: Notations for the key idea illustrated in Fig. 5
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Fig. 5: Simple description of our key idea with a redundant computation. f : the
encoding applied to the 6-th round output, g0, g1: the encoding applied to the
9-th round TypeII output.

XOR instead of comparison. The next step is to perform an infective com-
putation with Q0 and Q1 so that fault injection cannot lead to valid differential
equations. To achieve this goal, we replace a normal comparison step with XOR
using a lookup table T x (x stands for “XOR”), a type of TypeIV that contains
a different number of copies. The main advantage of placing the XOR operation
with Q0 and Q1 here is that a four-byte TypeII output is protected by a 32×32
linear transformation and thus a single-byte manipulation by an attacker has an
infectious effect on the other three bytes. Further more, the total table size and
table lookups can be reduced by sharing the part (3).
Now we explain how to pick the 32×32 binary matrices used in T 0, T 1 and T e,
which are denoted by L0, L1 and Le, respectively. Here we recall that

Qi = Gi(yj) = N i ◦ Li(yj),

where i ∈ {0, 1} and yj = Tyj∈{0,1,2,3}(x). Then it is easy to know that T x gives
us Qx:

z = L0 · yj ⊕ L1 · yj = (L0 ⊕ L1) · yj
Qx = N x(z).

In T e (e stands for “end”), after TypeIV II combines the TypeII output in the
9-th round, TypeIII performs Le, the inverse linear transformation applied to yj
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and applies a 8× 8 linear transformation on each byte, as mentioned. Thus,

L0 ⊕ L1 = (Le)−1.

For this reason, Le must be invertible (non-singular) while L0 and L1 do not
necessarily have to be invertible. So we pick those table as follows:

– Generate a 32×32 invertable binary matrix Le.
– Generate a random 32×32 binary matrix L0.
– Compute L1 = (Le)−1 ⊕ L0.

Then TypeIII in the 9-th round is generated with Le, and the remaining TypeIV III
and TypeV compute a ciphertext C.

3.2 Enhancing security with additional redundancy

Suppose that an attacker injects two single byte faults on the 8-th round inputs
in T 0 and T 1, respectively, and tries to make a fault collision, in which two dis-
turbed bytes will be decoded to the same values. The probability of getting valid
differential equations by this event is then 2−8. To further reduce this probability,
we increase the number of redundant computations by n with additional tables
generated using different transformations, depicted as T 2 and T 3 in Fig. 6. If n
= 3, we have three redundant computations as illustrated in Fig. 6b. Here, Ln

is obtained from Le and n random matrices Li∈[0,n−1] as follows:

Ln = (Le)−1 ⊕
n−1⊕
i=0

Li.

In addition, we need more T x tables for the XOR operation of redundant com-
putations. These are aptly named T x0, T x1 and T x2. In the following section, we
analyze the security and performance with n redundant computations in more
detail.

4 Evaluation

The security evaluation in this section analyzes a success probability and com-
plexity of DFA on our method with n redundant computations and the perfor-
mance is evaluated compared to an unprotected WB-AES implementation.

4.1 Security

Now consider a single byte fault injection on the first subbyte of each 9-th (or
8-th) round input in T 0 to T n. The fault collision for obtaining valid differential
equations can be occurred if each of n+1 disturbed bytes is decoded to the same
T-box input, say xf ∈ GF(28). Then the probability of this event is (2−8)n, and
this is negligible as n increases. For example, this is approximately 5 × 10−8 if
n = 3.
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(a) With two redundant computations
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(b) With three redundant computations

Fig. 6: Our proposed method with extended redundancy for enhanced security.

Suppose that a fault collision is not occurred in T i of which Li is a singular
linear transformation. Then there can exist x′ ∈ GF(28) such that

x′ 6= xf but Li(Ty0(x′)) = Li(Ty0(xf ))

due to the property of a singular linear transformation. We call it a transfor-
mation collision. Note that the number of nonsingular m ×m binary matrices
denoted by #GLm(F2) is negligible compared to the number of singular m×m
binary matrices denoted by #Sgm(F2), for m = 32 in the case of L, where

#GLm(F2) =

m−1∏
k=0

(2m − 2k) and #Sgm(F2) = 2m
2

−#GLm(F2).

For this reason, Li∈[0,n] randomly generated is singular with a overwhelming
probability, and thus we take transformation collisions into account. To do so,
we generated 10,000 random singular matrices and counted the number of the
T-box inputs producing transformation collisions for each matrix. As a result, an
average of 1.47 inputs (among 256 elements) caused transformation collisions.
In probability this is less than 2/256. Then, the probability of k ∈ [0, n] fault



14

collisions and n− k transformation collisions can be upper bounded by

n∑
k=0

(2−8)k · [2/256 ·#Sg32/(232)
2
]n−k.

Another leakage of faulty ciphertext also takes place if a directly manipulated
quartet in Qx is feasible. Suppose that an attacker injects a single byte fault
into the first subbyte of the 9-th round inputs in T 0 to T n. Then a disturbed
quartet qx in Qx is said to be feasible if

∃x′ ∈ GF (28) such that (N x)−1(qx) = (Le)−1(Ty0(x′)).

We can easily know that this event happens with a negligible probability of
(2−8)3 due to the fixed coefficient of MC0.
A brute-force attack can fix a target byte in the 8-th round input in T 0 to a par-
ticular value and try every combination of each target byte in T 1 to T n. For each
trial of the combination, the attack is conducted with the 28 key search space
and 230 time complexity as explained previously. In this brute-force attack, the
number of possible combinations is (28)n. Consequently, our table redundancy
method can significantly reduce the success probability of obtaining valid dif-
ferential equations and also steeply increase the number of trials of brute-force
attacks.

4.2 Performance

In the case of an unprotected WB-AES implementation, the table size and the
number of lookups are decided by the original computation with (T b, T 0, T e)
provided that there is no external encoding. These are calculated as shown in
Table 2.

Size (byte) Lookup

TypeII 147,456 144
TypeIV II 110,592 864
TypeIII 147,456 144

TypeIV III 110,592 864
TypeV 4,096 16

Total 520,192 2,032

Table 2: Table size and lookups of an unprotected WB-AES.

We represent the size and the number of lookups of the listed table for each
round using the the following notations:

– s1 : the size of TypeII or TypeIII (for each round)
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– s2 : the size of TypeIV (TypeIV II or TypeIV III )
– s3 : the size of TypeV
– l1 : the number of lookups on TypeII or TypeIII
– l2 : the number of lookups on TypeIV
– l3 : the number of lookups on TypeV.

In the unprotected WB-AES, the total table size is then represented by (9 · 2 ·
s) + s3 = 520,192 bytes and the total number of lookups is by (9 · 2 · l) + l3 =
2,032, where s = s1 + s2 and l = l1 + l2.
In our protected implementation with n redundant computations, the total table
size consists of

– T b : 6 · 2 · s
– T 0 − T n : [2 · 2 · s+ s1] · (n+ 1)
– T x : 4× 4× 4× 2× 128× n = 16,384 ×n
– T e : s1 + 2 · s2 + s3,

and this requires (4 · s + s1 + 16, 384) · n bytes additionally compared to the
unprotected one. For s = 28,672 bytes, the table size will increase by 442,368
bytes if n = 3. This is an increase of about 85 percent in size. Similarly, the
number of table lookups will increase by (4 · l+ l1 + 128) ·n, where l = 112. If n
= 3, the table lookups increase approximately 94 percent. In conclusion, three
redundant computations will increase the table size and number of lookups by
less than twice.

5 Conclusion and Discussion

In this paper, we propose a table redundancy method for protecting against
DFA in the white-box cryptographic implementation. Because additional redun-
dant computations increase the total table size and the number of lookups, we
share the lookup tables of the outer rounds which are not attacked by DFA
in the white-box cryptographic implementation. For the non-shared part of the
encryption, redundant computations are performed from the 7-th round to the
last MixColumns multiplication based on table redundancy generated using dif-
ferent transformations. Then the following XOR operations provide an infective
computation using the intermediate values of table redundancy. The rest part
of the encryption cancels out the combined transformation and computes the
ciphertext. Applying three redundant computations to WB-AES with a 128-bit
key roughly doubles the table size and the number of lookups, compared to an
unprotected WB-AES implementation.
In addition to DFA, there are still several problems to solve for the secure white-
box cryptography. First, a key-leakage preventive transformation is required to
prevent power analysis on white-box cryptography. Previously, a masked white-
box implementation was proposed [22] to protect against power analysis, the
memory requirement is too costly to be adopted in low-cost devices. Second, a
countermeasure of cryptanalysis should be combined to the above key-leakage
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preventive technique. Although there are some commercial products [1, 12, 18]
of white-box cryptography on the market, there is not enough study on the
protection of cryptanalysis [23].
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