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Abstract—In this work, we advance the conceptual and technical
aspects of Secure Multiparty Computation (SMC). We approach
SMC as a computational problem and propose a novel formulation
of this problem in terms of trust boundaries. From this formulation,
we derive a general framework that enables a more comprehensive
characterization of both the SMC problem and its solutions. Existing
SMC solutions are commonly seen as diametrically different and
incompatible, but we show how they can be mapped to particular
instances of our framework, hence enabling their analysis under a
common and unified basis. In this framework, the core component of
an SMC solution is a distributed homomorphic cryptosystem. We show
that the features this cryptosystem provides determine the need for
interaction and overall efficiency of the corresponding SMC solutions.
Based on this analysis, we introduce a practical instantiation of our
framework by proposing a distributed version of the Brakerski-
Fan-Vercauteren (BFV) lattice-based homomorphic cryptosystem.
We analyze the security, noise overhead, and computational costs
of this scheme. Due to its conceptual simplicity and efficiency, our
solution has great potential for addressing highly relevant scenarios,
such as secure data-sharing and machine-learning. Hence, this
work constitutes a step forward in secure computation, by enabling
computation across trust boundaries.

Index Terms—Secure Multiparty Computation, Distributed
Homomorphic Cryptography, Distributed Systems

I. INTRODUCTION

In a secure multiparty computation (SMC) setting, a group of par-
ties are able to securely carry out computations over their joint inputs.
Although the exact definition of security depends on how the adversary
is modeled, the most common requirement, input privacy, informally
states that parties should not obtain more information about the other
parties’ inputs than what can be deduced from the computation output.
Interestingly, an SMC setting can model almost any secure interactive
protocol, due to the generality of its formulation. Combining this gen-
erality with strong security guarantees, SMC is highly relevant, both
from an academic and a technical perspective. In fact, the last decade
has seen this established theoretical field evolve into an applied one, no-
tably due to its potential in securing data-sharing scenarios in the finan-
cial [1]–[3], biomedical [4]–[6], and law enforcement [7], [8] sectors.

However, the cultural and expertise gaps between cryptographic
research and its application domains remain significant obstacles to
this transition. One potential reason could be the community’s focus
on making SMC protocols efficient, to address what has long been
their most criticized aspect. Although being a successful endeavor,
this had the downside of leaving the potential users of these protocols
with a fragmented and intricate design space that comprises many
highly-optimized yet specialized protocols, ultimately making their
integration and implementation difficult for non-experts. In response
to this issue, several code-to-protocol compilers were proposed in
order to provide a technical layer of abstraction [9]–[12] on top of
complex MPC protocols. But, as Hastings et al. point out, these tools

are themselves research projects that do not yet provide the required
level of usability for non-expert end-users [13]. As a result, and
despite substantial efforts in improving the bandwidth and overall
interaction requirements of SMC protocols, their integration in
concrete systems remains a significant challenge.

In this work, we take a different approach by proposing a set of
conceptual abstractions for SMC solution. We propose an abstract,
general-purpose SMC framework and show its potential to unify
existing solutions in the SMC design space. We also propose a
concrete instantiation of this framework, at the core of which
lies a distributed version of the Brakerski-Fan-Vercauteren (BFV)
homomorphic cryptosystem [14] that we introduce. This instantiation,
as we demonstrate, has great potential to be adopted in privacy
engineering, due to its efficiency and conceptual simplicity.

Approach and Outline

We view SMC settings as particular instances of a computational
problem that we refer to as the secure-multiparty-computation problem
(formalized in Section IV-A). In particular, we carefully distinguish
between the SMC problem and its existing solutions, sometimes
directly and ambiguously referred to as multiparty computation or
MPC. The benefit of a problem-centric formulation is to account
for both the general and recursive nature of SMC: we can use this
definition to model a broad range of well-known SMC instances,
ranging from simple oblivious transfer to large scale data sharing, but
also to model the less-obvious ones, such as simple secret message
exchange, key agreement, or privacy-preserving cloud computing.
As another example, the scenario of evaluating a smart contract over
private inputs [15] that are provided by at least two mutually distrusting
parties instantiates an SMC problem [16]. We illustrate the recursive
nature of SMC problems in Section IV, where we consider examples
of how SMC problems can be reduced to other, simpler, ones.

We introduce the concept of trust boundary as trust-modeling
primitive that can abstract a cryptographic setting, and relate the SMC
problem to making data cross these trust boundaries. This formulation
enables a novel view on the known theoretical impossibility of a
purely centralized SMC solution [16], where a single party would
obliviously carry out the computation on behalf of the other parties.

We show how this view naturally leads to the somewhat less
acknowledged yet generic SMC solution that relies on distributed
homomorphic encryption to protect input data. Such a solution uses
secret-sharing techniques [17] to distribute the secret encryption key
among the parties. We formalize this approach as a generic framework
for SMC solutions. Interestingly, we show that the predominant
approach, consisting in directly secret-sharing the input data, can
be seen as specific instance of this framework.

We demonstrate how the characteristics of the distributed
homomorphic cryptosystem determine the efficiency of the
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corresponding framework instance. For this purpose, we introduce
a distributed version of the Brakerski-Fan-Vercauteren homomorphic
cryptosystem [14] that, based on the Ring Learning With Errors
(R-LWE) assumptions, supports computation across trust boundaries.
We make the following contributions:
• We introduce the concept of trust boundary and reformulate

the secure multiparty computation problem in terms of this new
primitive (Section III).

• We formulate a generic SMC framework based on distributed
homomorphic encryption and show both its conceptual and
technical relevance (Section IV).

• We propose a distributed version of the BFV scheme [14], as a
concrete realization of the general SMC framework (Section V).

• We analyze the effect of transitioning from a centralized to a
distributed cryptosystem in terms of noise growth (Section VI).

• We provide security proofs for the protocols that define the
distributed cryptosystem (Section VII).

• We implement our scheme and provide an evaluation of its core
functions (Appendix A).

In this paper, we bridge a gap between the SMC research community
and its application domains, by providing a framework that is exten-
sible, flexible, and strongly consistent across its abstraction levels.

II. SMC BACKGROUND

In the last decade, a substantial amount of concrete software
solutions to SMC problem instances were proposed [13],
demonstrating the evolution of a consolidated, mostly theoretical
field into an applied one. Oblivious-transfer based solutions, such
as garbled circuits, are a good example of ideas that date back to the
late eighties [18]–[20] and that are now applied in concrete, usable
frameworks [21], [22]. Garbled circuits enable two parties to privately
compute an arbitrary function over their inputs but are not directly
applicable, in an efficient way, to the generalN-party case.

We identify and briefly introduce three main categories or
approaches inN-party SMC solutions that have emerged as outcomes
from cryptographic research. These solutions are often perceived
and positioned as diametrically different, which might stem from
the lack of a common qualitative comparison basis. Therefore, we
examine their actual differences when considering them as instances
of our framework, in Section IV-E.

(a) Data-Level Secret Sharing: The first and predominant category
of techniques, sometimes viewed as the de-facto approach when
referring to SMC solutions, consists in applying secret-sharing [17]
to input data. Archer et al. surveyed state-of-the-art systems based on
this approach [23] and their concrete applications. In these approaches,
the evaluation of arithmetic circuits is generally enabled by the
homomorphism of the secret-sharing scheme [24], or by making use
of protocols based on multiplication-triplets protocols [25] when no
such homomorphism exists for the multiplication. These techniques
are computationally efficient, but they impose a significant overhead
on the network, as the execution of an interactive protocol is required
for each multiplication gate in the circuit. Moreover, the triplet-based
multiplication protocol requires prior distribution of one-time triplets,
which can be performed either by a trusted third-party or by the
parties themselves. Interestingly, the latter can also be formulated
as a smaller SMC problem, which demonstrates its recursive nature.

(b) Multi-key Encryption Schemes: Unlike the previous approach,
categories (b) and (c) both make use of an homomorphic scheme
to encrypt and exchange the computation data, which can then be
operated on, in a non-interactive way, by using encrypted arithmetic.

The idea of homomorphic encryption as a means of reducing the
volume of interaction in SMC can be traced back to a work by Franklin
and Haber [26], later improved on by Cramer et al. [27]. However, at
the time, the lack of homomorphic schemes that preserve two distinct
algebraic operations ruled out complete non-interactivity at the evalua-
tion phase. This changed in 2009, when Gentry proposed the first fully
homomorphic encryption (FHE) scheme [28]. The main difference
between approaches (b) and (c) lies in the key(s) under which the
computation is performed, and thus in their decryption procedure.

The approach (b) uses a multi-key homomorphic encryption
scheme, as introduced by López-Alt et al. [29]. It enables the parties
to provide their input data encrypted under their own locally generated
key, and to operate on them directly (in a non-interactive way). As
a consequence of the scheme being both message-homomorphic
and key-homomorphic, the computation result is encrypted under
an on-the-fly joint key, thus requiring the collaboration only between
the involved parties at the decryption phase. Although conceptually
appealing, the on-the-fly feature of multi-key HE comes at prohibitive
performance cost, both in terms of time and space, limiting its
applicability in real use-cases. Notably, current multi-key schemes
lack the compactness property: the size of their ciphertexts and the
timing of arithmetic operations are, respectively, linear and quadratic
in the number of keys in the input. Furthermore, they require
significant interactive pre-computation of potentially large keys
[30], [31] (usually growing quadratically or cubically in the number
of parties). Hence, multi-key approaches, although conceptually
appealing, are not yet practical for many concrete SMC scenarios.

(c) Distributed Encryption Schemes: The third SMC approach uses
only one encryption key that is secret-shared among the parties. The
decryption of the input and output data then requires a collaboration
between the parties. We use the term distributed cryptosystem when
referring to this construction. This is the idea behind the joint line
of work by Asharov et al. [32], [33] and López-Alt et al. [34] that
is highly related to our technical contribution. These authors construct
a distributed cryptosystem based on the Learning With Errors (LWE)
problem [35], along with the SMC solution it enables. Unfortunately,
this whole line of work could not find its echo in applications, and
has remained, until now, of only theoretical interest. One possible
reason is the lack, at the time, of available and practical LWE-based
scheme implementations. This would have required system designers
to become familiar with the fairly recent and fast-moving research
field of lattice-based cryptography. Today, however, multiple ongoing
efforts aim at standardizing homomorphic encryption [36] and at
making it available to a broader public [37]–[40]. This new generation
of homomorphic cryptosystems is mostly based on the hardness of
the Ring Learning With Errors (R-LWE) problem [41]. Interestingly,
one of the most important improvements brought to the approach
(a), known as the SPDZ protocol [42], actually relies on the approach
(c) to solve the Beaver-triples generation subproblem.

On the system research side, we notice that, in order to benefit
from the SMC security guarantees and to cope with the protocols
overhead, many proposed system models increase (trust splitting) or
reduce (trust delegation) the number of parties to two [5], [23], [43],
[44]. This is often achieved at the cost of introducing auxiliary actors
(e.g., two-cloud model [5], [45] or decryption proxies [46]), new
assumptions (e.g. non-collusion), and complexity in the trust models
of these systems, thus rendering them less realistic and difficult to
integrate, hence severely harming adoption. However, these solutions
have, so far, remained predominantly based on approach (a). [23].

We argue that, on the other hand, approach (c) deserves more
than theoretical interest. Not only does its evolution directly benefit
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SPDZ-like solutions, which are still extensively studied [47], [48], it
also enables scenarios where an interactive circuit evaluation does not
fit the system model (e.g., parties going offline during evaluation), or
cannot be supported by the network capacity. Additionally, we argue
that approach (c) is conceptually natural in solving SMC problem
instances, which we now demonstrate throughout Sections III and IV.

III. TRUST BOUNDARIES

In this section, we introduce the concept of trust boundaries as a
primitive for modeling the trust setting in systems that handle sensitive
data. We focus the definition of this concept to the context of the SMC
problem so that we can rely on the introduced terminology and ab-
stractions throughout the rest of this work. We show how this leads to
a novel SMC problem formulation: computing across trust boundaries.

A. Tracing Trust boundaries
We define a trust boundary as the perimeter of an information do-

main that is enforced by some access control mechanism. We refer to
the delimited information domain as a trust domain. The first and most
natural trust boundary is physical: In theory, it is possible to control the
entirety of a system’s information-domain by controlling its inputs and
outputs. However, such physical compartmentalization is not possible
in today’s fundamentally inter-connected systems, where data might
need to transit through, or be processed in, untrusted environments. In
this work, we are mainly interested in cryptography, that offers a log-
ical way of extending a trust domain to these untrusted environments.

We can consider the ciphertext space of an encryption scheme as
an information domain, whereas the knowledge of the secrets param-
eterizing the scheme represents the necessary condition to read infor-
mation from that domain. Thus, the key generation algorithm of this
scheme creates a trust domain for which the access conditions (i.e., the
trust boundary enforcement) are specific to the cryptosystem and its pa-
rameters. For example, the ciphertext space defined by a symmetric en-
cryption scheme instantiates a trust boundary for which read and write
access both require the knowledge of a secret key. In other words, mul-
tiple parties willing to read/write data from/to this trust domain need
to trust each other in the complete enforcement of its boundary. Asym-
metric encryption, however, enables further granularity, in the sense
that a secret-key holder can derive a public gadget (the public key)
that grants its recipient the write operation to the trust domain. These
gadgets must not leak the secrets on which the boundary enforcement
is based on; i.e., they should not grant read access to the trust domain.
For homomorphic cryptosystems, these gadgets are not limited to en-
abling encryption, but can also enable evaluation of arithmetic circuits,
through the so-called evaluation keys, directly on the encrypted data.

Although describing trust models by ownership of cryptographic
keys can be adequate for simple systems, it quickly becomes difficult
to reason about when considering schemes with complex encryption or
decryption structures such as distributed, attribute-based or even multi-
key cryptosystems. In the context of secure multiparty computation, a
trust domain also needs to provide evaluation capabilities, which can
make this trust model even more complex. In data-level secret sharing
approaches, the actions of writing, evaluating and reading in trust
domains are expressed in a different way. The trust boundary concept
enables reasoning about a system’s trust model by abstracting away
the specifics of the cryptographic primitive (or even the protection
mechanism) in use. Therefore, we propose to trace the trust boundaries
as a preliminary step in designing a multiparty system; only then
should cryptographic protocols (or other mechanisms) be defined
and shown to be enforcing the desired trust boundaries. Picturing the

(a) (b)

Fig. 1: Van Dijk and Juels’ classes of private cloud computing
applications [16]: (a) depicts the single-client class, where only
one trust domain is involved in the computation, and (b) shows the
multi-client class, which contains the solutions to SMC problems.

boundaries of existing or work-in-progress designs can nevertheless
be useful for exposing their potential weakest-links or undesirable
trust relationships, and can also unveil instances of the SMC problem.

Note that, although this work focuses on cryptography, the trust
boundary concept is flexible enough to model other data protection
mechanisms such as digital signatures and differential privacy.

B. Computing across Trust Boundaries
In a different context and formulation, Van Dijk and Juels intro-

duced a classification of private cloud-computing applications [16], by
defining two classes: single-client and multi-client. They consider a
honest-but-curious cloud provider that, provided with the encrypted in-
put data of its multiple clients, is tasked to homomorphically carry out
the computation of some function on these data, and output the result.
Their functionality and privacy requirements, although formulated for
secure cloud-computing, are the requirements of a secure two- and
multi-party computation problem. We can characterize these classes
in terms of cross-trust boundary computation, as illustrated in Figure 1.
In the first class (Figure 1a), the cloud is tasked to compute a function
where both input and output lie in the same trust domain: that of the
computation result receiver. This is a typical and straightforward use of
homomorphic encryption, as it implies only one trust domain in which
the clients have to provide their input data, by encrypting them with
the domain’s public key. These encryptions can be safely provided
to the computing party (the cloud), which can obliviously evaluate
the required function and output the result to its intended recipient.
However, this is insufficient to fulfill the input privacy requirement
of SMC: A collusion between the cloud provider and the recipient
of the result (which is part of the passively-secure SMC threat model)
would enable decryption of the input ciphertexts. The second class
(Figure 1b), which is hypothetical, would permit the clients to provide
their inputs to the cloud encrypted under their own key. The cloud,
without interacting with the clients any further, would output the result
in the trust boundary of its intended recipient. Hence, this class would
contain applications that could solve SMC problem instances using a
single centralized computer. However, this class is shown to be theoret-
ically impossible to realize in a general way, even with access to an hy-
pothetical, perfect, homomorphic scheme. As the emulation of a single
computing node is the target of any SMC solution, the conclusions of
Van Dijk and Juels are pivotal. Using our terminology, they conclude
that, for a majority of useful functionalities, achieving SMC requires
the parties to have access to a commonly trusted information domain.
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We extend this result by means of our framework, described in
Section IV, and we argue that, in the absence of a physical common
trust-domain, the involved parties have to instantiate and enforce a
logical trust-domain, for which the trust boundary provides sufficient
guarantees. These guarantees can be given to a party only when
a trust-boundary crossing of data is formulated as an interactive
protocol in which the party chooses whether to participate or not;
indeed, any non-interactive kind of access control would trivially
realize the impossible multi-client class.

The actions of instantiating and enforcing trust boundaries have
a particular conceptual meaning for privacy, and this meaning is
well conveyed by our new formulation. Ultimately, the proposed
abstraction makes an SMC problem easier to isolate, and makes its
solution easier to integrate in larger designs.

IV. SMC FRAMEWORK

We introduce a novel framework in which various SMC solutions,
in particular the approaches (a), (b) and (c) described in Section II, can
be modeled and compared. At the center of this framework is the tight,
yet somewhat misunderstood, connection between homomorphic
encryption and the SMC problem, that we tackle in this section: We
first formalize the SMC problem and its parameters in Section IV-A.
We define distributed cryptosystems (Section IV-B) and the basic
framework for SMC solutions these cryptosystems enable (Section
IV-C). Then, we discuss how this framework is adapted depending on
the features offered by the cryptosystem (Section IV-D), and how this
can unify the existing approaches to SMC solutions (Section IV-E).

A. The SMC Problem
Our approach considers a problem-centric formulation of secure

multiparty computation, which we view as particularly suited to
capture its general and recursive nature.

Definition 1. Let P = {P1, P2, ... , PN} be a set of N parties
respectively holding inputs (x1, x2, ... , xN) and let A be an
adversary, which can have a non-empty intersection with P. Let
f(x1,x2,...,xN)=(y1,y2,...,yN) be a function (ideal functionality)
over the parties’ inputs, where yi denotes the output for party Pi.
The Secure Multiparty Computation Problem consists in computing
f(x1,x2,...,xN), while preserving specific security properties in the
presence ofA.

The solution to an SMC problem is a protocol πf realizing the
problem’s ideal functionality f(). We observe that Definition 1
intentionally leaves aside the concrete definition ofA, and, therefore,
the nature (e.g., set of corrupted parties, external eavesdropper,...) and
behavior (e.g., active, passive, rational,...) of the adversary. Whereas
the sough security properties (e.g., correctness, input/output privacy,...)
will define the control that an acceptable solution should enact on the
inputs/outputs (e.g., exact/approximate outputs, zero/limited leakage
of inputs and outputs).

In this work, we instantiate this problem and consider a semi-honest
adversary A that is assumed capable of statically corrupting up
to N−1 parties (we slightly abuse notation by using A∩P also
as the set of corrupted parties). Our security property is that of a
cryptographic approach: it states that A must learn nothing more
about {xi,yi}Pi/∈A than what can be deduced from its own input
and output {xi,yi}Pi∈A. Equivalently, it requires that the execution
of πf emulates an ideal setting where parties are provided with an
incorruptible environment that, given their inputs, will carry out the
computation of f and that will provide them with their respective

outputs. This naturally translates into our trust-boundary formulation,
by seeing each party input as belonging to the party’s trust domain.
The functional and security requirements come from Van Dijk and
Juels’ result: The ideal scenario assumes the existence of a commonly
trusted trust-domain that the real system needs to emulate.

Definition 1 does not specify any system or network model, so we
define one for the scope of this work. We assume that the parties have
access to a reliable and authenticated broadcast channel to the other
parties in P. The parties are assumed to have access to a uniformly
random Common Reference String (CRS) [49].

B. Distributed Homomorphic Cryptosystems

A distributed (or threshold) cryptosystem ES securely splits
the secret key of a cryptosystem E among a group of N parties,
according to a secret-sharing scheme S [50]. Hence, operations
interacting with this secret key are formulated as multiparty protocols
in the distributed scheme. Definition 2 formalizes this intuition, using
our terminology, for an asymmetric encryption scheme.

Definition 2. Let E = (SecKeyGen,PubKeyGen,Enc,Dec)
be an encryption scheme and let S = (Share,Combine) be an
N-party secret sharing scheme.
The associated distributed cryptosystem is defined as the tuple
ES=(πSecKeyGen,πPubKeyGen,E.Enc,πDec) of multiparty protocols
for which the ideal functionalities for party Pi are

fi,πSecKeyGen(λ)=S.Share(
∼
sk=E.SecKeyGen(λ))=ski,

fi,πPubKeyGen(sk1,sk2,. . .,skN)=E.PubKeyGen(
∼
sk),

fi,πDec(sk1,sk2,. . .,skN ,ct)=E.Dec(
∼
sk,ct),

where
∼
sk=S.Combine(sk1,. . .,skN) is the ideal secret key: the

operations that depend on it are implemented in the real world as
SMC protocols.

A direct consequence from Definition 2 is that E and ES are
compatible: secret-sharing a valid secret key forE results in a valid
instantiation of ES that can decrypt ciphertexts produced by E.
Conversely, reconstructing the ideal secret key ofES yields a valid
secret key for E that can decrypt ciphertexts of ES. Additionally,
the output of the πPubKeyGen, denoted cpk or collective public key,
is a valid public key for E. We rely on this property in our general
SMC protocol in Section IV-C.

Since the S.Combine operation has to be embedded in fπDec , the
secret-sharing scheme defines an access structure [17] that directly
characterizes the access structure ofES. For example, using additive
secret-sharing of the secret key results in a scheme where all parties
must collaborate to decrypt a ciphertext (i.e., to use the secret key),
whereas only a threshold number of them would be required when
using Shamir secret-sharing [17].

In this work, we consider distributed homomorphic cryptosystems1,
so we augment E and ES with the Eval procedure that enables
encrypted arithmetic on their ciphertexts. Hence, by using this
augmented scheme

E∗=(πSecKeyGen,πPubKeyGen,E.Enc,πDec,E.Eval),

1We use additive secret-sharing of the keys, so the threshold is set to N . Hence,
we use the term distributed cryptosystem to avoid ambiguities with respect to the more
general threshold cryptosystems.
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the parties are able to emulate an ideal environment whereE can be
used to encrypt and operate on data, whereas decryption is achieved
through collaboration, according to the access structure defined by S.

In terms of trust boundaries, the formulation is very intuitive:
By relying on E∗, the parties are able to instantiate a collectively
enforced trust boundary where computation is allowed. We show next
that realizing E∗ is theoretically sufficient to solve any instance of
the SMC problem. In Section V, we construct a distributed version of
the Brakerski-Fan-Vercauteren somewhat-homomorphic encryption
scheme [14], where the secret key is additively shared among the
parties.

C. Generic SMC Protocol Overview

Protocol 1: Generic_SMC

Public input: f
Private input: xi for each Pi∈P
Output for Pi: yi=f(x1,x2,...,xN)

1) The parties create a jointly enforced, publicly writable trust
boundary

ski=E
∗.πSecKeyGen(λ),

cpk=E∗.πPubKeyGen(sk1,...,skN),

2) each Pi writes its input in the trust boundary as

ci=E
∗.Encrypt(cpk,xi),

3) any party can compute the required encrypted outputs

(c′1,c
′
2,...,c

′
n)=E∗.Eval(f,c1,c2,...,cn),

4) for each c′i, the parties execute the decryption protocol

yi=E
∗.πDec(sk1,...,skN ,c

′
i).

We introduce the generic SMC protocol arising from the definition
of the distributed cryptosystem E∗. First, we present the protocol
as defined in [27], [33], but formulated using our trust boundaries
abstraction. Then, we explain how this protocol can be adapted
based on the characteristics of its underlying cryptosystem E∗. By
following this approach, we achieve a two-fold effect: We unify
seemingly different SMC techniques, and we make the framework
more flexible from an application point of view.

Protocol 1 describes the generic SMC protocol, and Figure 2
illustrates its trust-boundary representation. Step 1 is a setup phase
that instantiates the common trust boundary; to do so, the parties run
the πSecKeyGen protocol to create a ciphertext space for which each
party knows only one share ski of the ideal secret key

∼
sk. Then, they

use the πPubKeyGen protocol to derive a collective public key cpk
associated to the ideal secret key. Given a choice of parameters and a
set of players P, this step is independent of the rest of the protocol, as
it has to be run only once for a given set of parties (the case of dynamic
sets is addressed by our extended framework). Hence, the produced
key is not limited to one function evaluation, as garbled circuits would
be. The complexity of this step does not depend on the number of
circuit evaluations to be performed, contrarily to the Beaver-triples
generation, but only on the circuit complexity of f . This is because
E∗ has to be instantiated with a scheme parameterized with sufficient
homomorphic capacity to support the evaluation of the circuit.

In Step 2, the parties use the public (i.e., non-interactive, due to the
existence of the public key cpk) encryption procedure ofE∗ to write

Fig. 2: Trust-boundary based representation of the extended
General_SMC protocol, where a distributed homomorphic
cryptosystemE∗ is used by the parties to instantiate a common trust
domain with evaluation capabilities.

data within the trust domain. Then, the parties can send the encrypted
input values to the entity/entities performing the next step (evaluation).

Step 3 consists in the evaluation of the ideal functionality, by
exploiting the homomorphic property of the scheme to carry out
the computation of the required encrypted outputs. This step is
non-interactive and can be performed by any entity, even outside
of P. Consequently, expensive homomorphic computations can be
outsourced to an untrusted (yet semi-honest) infrastructure, such
as a cloud-computing provider. Hence, this feature opens up this
SMC solution to a broader variety of computing scenarios requiring
input privacy (e.g., smart contracts evaluation on sensitive, multiparty
inputs). Note that this step illustrates how the trust domain concept
brings this general SMC protocol conceptually closer to the ideal-
world scenario where parties receive help from a trusted third party.

Step 4 enables the parties to decrypt their respective outputs.
Indeed, this requires collaboration according to the access structure
defined by the sharing of the ideal secret key. Hence, when the
outputs are different for each party, this phase corresponds toN runs
of the πDec multiparty protocol, each of them outputting yi to Pi (and
nothing to the other parties). This can be considered as collectively
authorized read operations from the common trust-domain.

We highlight that, ifE∗ is a distributed homomorphic encryption
scheme as defined in Section IV-B, the Generic_SMC protocol
is nearly optimal in terms of communication, as only those steps
related to trust boundary creation and crossing (steps 1 and 4) require
interaction. Further message exchanges might be required by the
sought functionality itself, and thus are in exact correspondence with
those of an equivalent insecure system not using encryption. Hence,
this general protocol confines the need for interaction to the actual
problem it solves: the protection of a trust domain.

D. Extended General SMC Protocol

We discuss how the Generic_SMC protocol can be adapted
according to the feature set provided by E∗. More precisely, we
discuss how more interaction can compensate for cryptosystems that
do not provide a public encryption algorithm (1) and/or homomorphic
arithmetic covering the sought functionality (2). We also discuss how
the outsourced SMC scenario is modeled within our framework (3).

1) Interactive vs. Public Encryption: For cryptosystems that have
no public key (i.e., symmetric schemes), the encryption algorithm
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of Step 2 must also be replaced by a secure multiparty protocol.
Such an encryption protocol can also be used when the message
to be encrypted is secret-shared among the encrypting parties, thus
providing a way to transform a secret-shared value (e.g., from an
SMC solution using approach (a) in Section II) in a secure way, in
order to process it under homomorphic encryption.

2) Interactive vs. Public Evaluation: Non-interactive processing
in Step 3 is only possible ifE∗ supports the sufficient homomorphic
arithmetic to execute the required functionality. When this requirement
is not completely met, interaction can be used to compensate for
it. That is the case, for example, of the well-known multiplication
protocol for additive homomorphic schemes described in [27].
This observation eventually relates the need for interaction during
Step 3 to the cryptosystem’s inability to keep the dimension of its
key-space constant throughout the function evaluation: In Cramer’s
protocol example, the product between two encryptions in an
additively homomorphic cryptosystem could be interpreted as a set
of encryptions in an increased key space, where the original keys
are combined with additional ephemeral secrets (which can only be
removed by Cramer’s interactive protocol). In other words, the need
of interaction in Step 3 is driven by the ability (commonly referred to
as relinearization) ofE∗ to evaluate parts of its decryption function
homomorphically, for the higher dimensions of the key-space that
result from arithmetic operations. This idea is illustrated in Section
IV-E for the case of traditional data-level secret sharing, and in
Section V-E for the specific example of our distributed BFV scheme.

3) Outsourced SMC: It is common to find SMC propositions
where parties holding the input data delegate the SMC protocol
execution to a different, usually smaller, set of nodes. These scenarios,
often referred to as outsourced SMC settings [23], [51], [52]
differentiate between the parties that provide the inputs (input parties)
and those that evaluate the function and output its result (computing
parties). This is relevant from a performance point of view, as it
enables the use of SMC solutions that would not scale to a large
number of parties. Also, it enables system models where the input
parties can go offline after providing their inputs, and do not need
to be themselves capable of running secure computation. However,
such delegation of SMC tasks introduces the new assumption that
the computing parties will not collude (in attacking the input parties’
data), hence that they have to be collectively trusted by the input
parties (consistently with Van Dijk and Juels’ impossibility result).
Thus, in terms of trust model, introducing the role of input party
does not make the framework more general; conversely, it simply
introduces a new assumption that indeed reduces generality.

4) General Trust-Boundary Crossing: Another common SMC sce-
nario considers an output party (the receiver) that receives the compu-
tation result, without providing any private input. This scenario could
also be viewed as a larger SMC problem by extending the set of parties
with the receiver (which would have the empty bit-string as input). In
the simple SMC framework, the receiver would then hold a share of
the collective secret key that would thus involve her in the decryption
protocol execution. However, such solution involves the receiver in
the enforcement of a trust boundary in which she wrote no data.

A more appropriate solution would be to enable the computing
parties to transfer the computation output from their collectively-
enforced trust domain directly to the receiver’s trust-domain. In
cryptographic terms, we require the cryptosystem E∗ to provide a
key switching protocol πCKS, which enables the parties to re-encrypt a
ciphertext that originally decrypts under a shared secret key sk into a
new ciphertext that decrypts under the receiver’s secret key sk′. This
protocol generalizes πDec; i.e., decryption (or the ability to decrypt)

maps to the particular case of setting sk′=0 (or any publicly known
value). Given that pk′ is a public key for the secret key sk′, the ideal
functionality of key switching,

fCKS=E.Encrypt(pk′,E.Decrypt(sk,ct))

can be computed with no secret input from the receiver, hence fully
decoupling this party from the secure multiparty computation problem.

Consequently, by considering general trust boundary crossing
in our extended framework, we make it more general (from the
trust-model point of view) than the simple one. This has technical
benefits too, as the computing parties can now execute the πCKS
protocol and, at a later point in time, the receiver can come online
and retrieve her result with only a single interaction with a computing
party holding the key-switched ciphertext. Our concrete distributed
cryptosystem proposition (see Section V) features such general trust
boundary crossing, thus enabling outsourced SMC scenarios.

E. Unifying SMC Solutions
As we highlighted in Section II, solutions based on data-level

secret-sharing (approach (a) in Section II) and those based on
homomorphic encryption (approaches (b) and (c)), are usually seen
as diametrically different. But they could, in fact, be constructed as
specific instances of our framework. We illustrate that by discussing
(1) how our framework is instantiated with a multi-key homomorphic
scheme and (2) how data-level secret sharing can be seen as a special
case of this instantiation. Explicitly representing garbled-circuits
solutions is also a promising extension of this work.

1) Multi-key Cryptosystems: A multi-key homomorphic
cryptosystem enables the parties to send their input encrypted
under their own locally generated key. Hence, Step 1 in protocol 1
becomes non-interactive. This would be conceptually ideal from a
system design point of view, but comes with prohibitive costs for all
existing multi-key schemes [30]: (i) The multi-key ciphertext length
grows linearly or quadratically with the number of parties N . (ii)
Multi-key arithmetic operations require evaluation keys whose size
is quadratic or cubic inN . (iii) The homomorphic capacity decreases
exponentially inN [29], limiting practical use of these schemes.

Hence, while multi-key schemes are of high theoretical relevance,
we argue that they are still too costly for what they bring to concrete
practical applications. We underline that, in fact, this framework
instantiation only delays the complexity of establishing the necessary
common trust-domain to the trust-boundary crossing step (Step 4),
at the cost of a more complex decryption function.

2) Data-level Secret Sharing: SMC solutions based on secret-
sharing of the data (approach (a)) can be expressed as instances
of our framework. In the scope of this work, we provide a concise
and thus relatively informal sketch for this reduction for an additive
secret-sharing scheme over Zq.

We proceed by instantiating our framework withE∗ being a secret-
shared one-time-pad. Let m ∈ Zq be a message and k ∈ Zq be a
one-time key, both known to party P1∈P. The ciphertext c=m+k
mod q can be disclosed and operated on in a multi-key fashion, pro-
vided that a multiparty decryption protocol exists. Such decryption pro-
tocol will require the key k, and all other one-time-keys involved in the
computation, to be known collectively by the parties, in order to allow
trust-boundary crossing. This is achieved by secret-sharing this key, as

S={k1,k2,...,kN} s.t.m=c+
∑
S

ki mod q,

which is equivalent to the sharing S′ = {c+k1,k2,...,kN} of m,
where P1 simply stores his share as its partial decryption of c, instead
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of storing them both separately. Thus, sharing S′ corresponds to a
traditional sharing of the valuem.

Due to the one-time key nature ofE∗, each ciphertext is encrypted
under a new key, which makes this approach inherently multi-
key. This instantiation, although computationally efficient due to its
simple integer arithmetic, suffers from heavy bandwidth requirements
needed to compensate for its lack of homomorphic properties. More
specifically, the used E∗ is only additively homomorphic: decryption
of a sum requires the sum of the involved keys (one element of Zq per
party). However, no public relinearization key exists for the on-the-fly
key that results from a product operation, which requires interactive
relinearization to be performed using Beaver’s protocol. This yields an
interesting analogy between the pre-computed evaluation keys in multi-
key schemes and the Beaver-triples reserve in SPDZ-like approaches.

F. Discussion

We have shown the central role of the distributed encryption
scheme within the proposed SMC framework, and highlighted several
properties that are crucial for this scheme to realize an efficient SMC
solution. In particular,E∗ should enable:
• public-key generation,
• two distinct encrypted arithmetic (ring) operations,
• public (non-interactive) ciphertext-space relinearization,
• general and efficient trust-boundary crossing.
Additionally, from a system model perspective, these properties

have to scale to realistic numbers of parties N (at least up to the
scale at which the secret key access structure still represents realistic
scenarios). By deliberately giving away the multi-key feature, we
require parties to interact in order to create a commonly enforced trust
boundary. However, as we show in Appendix A, this interaction can
be very efficient, and it can substantially reduce the complexity of the
SMC problem posed by the decryption (i.e., the delivery) of the result.

V. DISTRIBUTING THE BFV SCHEME

In this section, we introduce a distributed version of the
Brakerski-Fan-Vercauteren (BFV) cryptosystem [14] that features
the properties of Section IV-F. Hence, it can be used to instantiate
the SMC framework described in Section IV. The BFV cryptosystem
is a Ring Learning with Errors (R-LWE) [41] scheme that supports
both additive and multiplicative homomorphic operations. Due to its
practicality, it has been implemented in most of the emerging lattice-
based cryptographic libraries [37], [39], [40] and is also included as
part of the current standardization effort of homomorphic encryption
[36]. It is worth noting that, although formulated for the BFV scheme,
the introduced protocols can be straightforwardly adapted to other
R-LWE-based cryptosystems, such as BGV [53], or the more recent
CKKS [54], that enables homomorphic approximate arithmetic.

A. Notation

We denote [·]q the reduction of an integer modulo q and d·e,
b·c, b·e the rounding to the next, previous, and nearest integer.
When applied to polynomials, these operations are performed
coefficient-wise. We use regular letters for integers and polynomials;
and bold letters for vectors of integers and of polynomials. aT
denotes the transpose of a vector a. Given a probability distribution
α over a ring R, a←α denotes the sampling of an element a∈R
according to α, and a←R denotes uniform sampling in R. For a
polynomial a we denote ‖a‖ its infinity norm.

TABLE I: BFV Parameters
Parameter Description

q Coefficient modulus in ciphertext space
t Coefficient modulus in plaintext space
n Polynomial degree
w Intermediary relinearization base
σ Error standard deviation
B Error-norm upper bound

TABLE II: BFV Symbols
Symbol Description

∆ Quotient of the integer division of q by t
rt(q) Remainder of the integer division of q by t
Rq Ciphertext space ring Zq[X]/(Xn+1)
Rt Plaintext space ring Zt[X]/(Xn+1)
R3 Key space ring Z3[X]/(Xn+1)
l Length dlogw(q)e of the base-w decomposition of a∈Rq

χ Error distribution, discrete normalN(0,σ2) over [−B,B]

Scheme 1: BFV

BFV.SecKeyGen(1λ): Sample s←R3. Output: sk=s

BFV.PubKeyGen(sk):
Let sk=s. Sample p1←Rq, and e←χ. Output:

pk=(p0,p1)=(−(sp1+e),p1)

BFV.RelinKeyGen(sk, w):
Let sk=s. Sample r1←Rlq, e←χl. Output:

rlk=(r0,r1)=(s2w−sr1+e,r1)

BFV.Encrypt(pk,m):
Let pk=(p0,p1). Sample u←R3 and e0,e1←χ. Output:

ct=(∆m+up0+e0 , up1+e1)

BFV.Decrypt(sk, ct):
Let sk=s, ct=(c0,c1). Output:

m′=[b t
q

[c0+c1s]qe]t

BFV.Add(ct, ct′):
Let ct=(c0,c1) and ct′=(c′0,c

′
1) Output:

ctadd =(c0+c′0,c1+c′1)

BFV.Multiply(ct, ct′):
Let ct=(c0,c1) and ct′=(c′0,c

′
1) Output:

ctmul =[b t
q

(c0c
′
0 , c0c

′
1+c′0c1 , c1c

′
1)e]q

BFV.Relinearize(ct, rlk):
Let ct=(c0,c1,c2), rlk=(r0,r1)

Express c2 in base w s.t. c2=
∑l
b=0c

(b)
2 wb and output:

ctrelin =(c0+

l∑
b=0

r0,bc
(b)
2 , c1+

l∑
b=0

r1,bc
(b)
2 )

B. The Brakerski-Fan-Vercauteren Encryption Scheme
We first recall the original (centralized) BFV encryption scheme

[14], in its most common instantiation. The ciphertext space is
Rq =Zq[X]/(Xn+1), the quotient ring of the polynomials with
coefficients in Zq modulo (Xn+1), where n is a power of 2. We
use [−q2 ,

q
2) as the set of representatives for the congruence class

modulo q. Unless otherwise stated, we consider the arithmetic in
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Rq, and polynomial reductions are omitted in the notation. The
relinearization operation requires an intermediary base w < q,
in which ciphertexts are temporarily decomposed. We write
l=dlogw(q)e and w=(w0,w1,...,wl)T .

Let the plaintext space be the ringRt=Zt[X]/(Xn+1) for t<q.
Messages are elements inRt, and the encrypted arithmetic operations
preserve the plaintext arithmetic. We denote ∆=bq/tc, the integer
division of q by t.

In practical instantiations of its normal form, the scheme
is based on two kinds of secrets, commonly sampled from
small-normed yet different distributions. The key distribution is
denoted R3 =Z3[X]/(Xn+1), where coefficients are uniformly
distributed in {−1,0,1}. The R-LWE error distribution χ over Rq
has coefficients distributed according to a centered discrete Gaussian
with standard deviation σ and truncated support over [−B,B].

The security of BFV is based on the hardness of the R-LWE
problem [41], that is informally stated as follows: Given a uniformly
random ring element a←Rq, a secret s←R3, and an error term
e←χ, it is computationally hard for an adversary that does not know
s and e to distinguish between the distribution of (sa+e,a) and that
of (b,a) where b←Rq.

Table I summarizes the cryptosystem parameters, and Table II
summarizes the various symbols used in the encryption scheme
formulation. The cryptosystem operations are detailed in Scheme 1.
We can map this set of functionalities to the formulation introduced in
Section III: The trust-domain instantiation comprises three procedures:
BFV.SecKeyGen creates the trust-boundary across which public
writes are enabled by the output of BFV.PubKeyGen. The
BFV.Add and BFV.Multiply operations permit public, non-
interactive evaluation of functions within the delimited trust domain.
Public relinearization is enabled by the BFV.Relinearize
operation and its associated relinearization key (rlk). We use the
more specific relinearization key term instead of evaluation key: This is
to emphasize that, even though the multiplication operation produces
a ciphertext inR3

q, decryption of higher-dimensional ciphertexts is,
at some cost, still possible (similarly as in multi-key schemes).

In the BFV scheme, decryption can be seen as a two-step process.
The first and main step performs the trust boundary crossing and
requires the secret key to compute

[c0+sc1]q=∆m+ect, (1)

where ect is the ciphertext overall error, or ciphertext noise. In the
second step, the message is decoded from the noisy term by rescaling
and rounding

[b t
q

(∆m+ect)e]t=[bm+at+ve]t, (2)

where m∈Rt, a has integer coefficients, and v has coefficients in
Q. Provided that ‖v‖< 1

2 , Eq. (2) outputsm. Hence, the correctness
of the scheme is conditioned on the noise magnitude ‖ect‖, which
must be kept below q

2t throughout the homomorphic computation,
notably by choosing a sufficiently large q. This choice depends on
the operations to be performed, and thus on the application.

C. The Distributed BFV Scheme

We construct a distributed cryptosystem based on the BFV scheme.
We use additive secret-sharing to distribute the BFV secret key,

denoted as s in what follows, among theN parties in P. We denote
si the secret key share of party Pi, thus

s=

[∑
Pi∈P

si

]
q

. (3)

Hence, ciphertexts in our scheme can be decrypted only through
the collaboration of all parties. Our scheme hence tolerates up to
N−1 colluding corrupted nodes in the passive adversary model.

To emphasize its purpose, we refer to the original centralized
scheme as the ideal scheme: the ideal centralized functionality that
needs to be emulated in a distributed setting. By extension, we also
refer to s as the ideal secret key, to emphasize that it exists as such
only through interaction between the parties. We reformulate the
operations of the original BFV scheme that involve this key into
secureN-party protocols.

1) Ideal-Secret-Key Generation: We propose a simple ideal-
secret-key generation procedure, in which each party independently
samples its own share as si = BFV.SecKeyGen(1λ). Thus, the
ideal secret-key is generated in a non-interactive way. Observe that,
although Eq. (3) applies, this is not a usual sharing of s, in the
sense that the shares’ distribution is not uniform in Rq. This is not
a concern because, as discussed in Section VII, the security of our
scheme does not rely on this property. It might be possible to design
more complex protocols resulting in proper additive shares of s in
the original ternary key-distribution. These would be compatible with
our protocols and would represent interesting extensions.

2) Collective-Key Generation (CKG): The Collective Key
Generation, detailed in Protocol 2, emulates the BFV.PubKeyGen
procedure. Besides the public parameters of the cryptosystem (which
we will omit in the following), the procedure requires a public
polynomial p1, uniformly sampled in Rq, to be agreed upon by all
the parties. For this purpose, they can sample its coefficients from
the CRS, which is easily achieved in the passive adversary model.

Protocol 2: CKG

Public Input: p1
Private Input for Pi: si=ski
Output: cpk=(p0,p1)

Each party Pi:
1) samples ei←χ and broadcasts p0,i=[−(p1si+ei)]q

2) waits for p0,j from every Pj, and
outputs cpk=([

∑
Pj∈Pp0,j]q , p1)

After the execution of the CKG protocol, each party has access
to a copy of the collective public key

cpk=([
∑
Pi∈P

p0,i]q, p1)=([−(p1
∑
Pi∈P

si+
∑
Pi∈P

ei)]q, p1), (4)

which has the same form as the ideal public key pk in Scheme 1,
with different worst-case norms ‖s‖ and ‖e‖. The ciphertext noise
growth (detailed in Section VI) is only linear inN . Hence, very large
number of parties can be practically accommodated by choosing
an appropriate modulus q for the sought bit-security [36]. This is
a significant advantage over the existing multi-key schemes, where
this dependency is exponential [29], hence limitingN to very small
values. Another notable feature of the CKG protocol is that it would
apply to any kind of additive sharing of s, including traditional
uniformly random ones. In fact, in our scheme, the magnitude of
the secret key shares is irrelevant, only their sum inRq is.
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Protocol 3: RKG

Public Input: a∈Rlq, w
Private Input of Pi: sk=si
Output: rlk=(r0,r1)

Each party Pi:
1) samples e0,i←χl, ui←R3 and

broadcasts hi=−uia+siw+e0,i

2) waits for hj from all Pj,
samples e1,i,e2,i←χl and
broadcasts

h′0,i=si
∑
Pj∈P

hj+e1,i and h′1,i=sia+e2,i

3) waits for h′0,j,h
′
1,j from all Pj,

sets h′0=
∑
Pj∈Ph

′
0,j and h′1=

∑
Pj∈Ph

′
1,j,

samples e3,i←χl and
broadcasts h′′i =(ui−si)h′1+e3,i

4) waits for h′′j from all Pj and
outputs rlk=(r0,r1)=(h′0+

∑
jh
′′
j , h

′
1)

3) Relinearization-Key Generation (RKG): In order to support
public and non-interactive relinearization within a trust-domain, our
distributed scheme enables the parties to generate a relinearization
key rlk associated with a given collective secret key s. Protocol 3
(RKG) emulates the centralized BFV.RelinKeyGen; for this, it
produces pseudo-encryptions of s2wb for each power b= 0...l of
the decomposition basis w. The protocol requires a public input a,
uniformly sampled in Rlq by the parties, using the CRS. We use
vector notation to express that these pseudo-encryptions are generated
in parallel for every element of w=(w0,w1,...,wl)T .

Asharov et al. proposed a method to produce relinearization
keys for distributed schemes based on the LWE problem [33].
This method could be adapted to our scheme, but would result in
significantly increased noise in the rlk (thus, resulting in more
noise to be introduced in relinearized ciphertexts) with respect to
the centralized scheme. One cause for this extra-noise is the use of
the public encryption algorithm to produce the pseudo-encryptions
of s2. Therefore, based on the observation that using the public key
is unnecessary when the secret key is collectively known, we propose
Protocol 3 as an improvement on Asharov et al.’s approach (we
compare both approaches in Appendix B).

After completing Protocol 3, the N parties have access to a
relinearization key of the form

rlk= (r0,r1)

=(−s2a+s2w+se0+e1+(u−s)e2 , sa+e2)

=(−sb+s2w+se0+e1+ue2+e3 , b)

=(−sb+s2w+erlk , b), (5)

which, similarly as for the cpk, has the same form as rlk in the
original scheme, although with larger ‖erlk‖ for each component, and
can be used to perform the BFV.Relinearize operation. We
analyze the resulting relinearization noise in Section VI.

A convenient feature of the proposed RKG protocol is its
independence from the actual decomposition basis w: it is compatible
with other decomposition techniques, such as the one used for type

II relinearization [14], or those based on the Chinese Remainder
Theorem, as proposed by Bajard et al. [55].

4) Collective Key-Switching: As discussed in Section IV-D, the
key-switching functionality extends the general SMC framework
by allowing the computation result to be re-encrypted under an
arbitrary key. This, we recall, enables the receiver of a multiparty
computation to be decoupled from the SMC problem. Hence, given a
ciphertext ct decrypting under some input key s and an output key s′,
the key-switching procedure produces ct′ such that Dec(s,ct)=
Dec(s′,ct′). The instantiation of the procedure, in our distributed
setting, depends on whether the parties performing re-encryption
are (collectively) entrusted with the output secret key, or only with
its corresponding public-key. Therefore, we provide protocols that
perform key-switching from s to s′ for these two trust models:

a) Protocol 4 (CKS) is used when s′ is collectively known,
b) Protocol 5 (PCKS) is used when only a public key is known.
Both protocols require some fresh noise terms to be sampled from

a special noise distribution χCKS that depends on the ciphertext
being key-switched. This fresh noise implements the smudging
technique, as introduced by Asharov et al. [33], the need and
implementation of which we discuss in Section V-D. This technique
assumes that the system keeps track of the ciphertext noise-level
throughout the General_SMC protocol, which should be the case
anyway to ensure correctness of the computation. Given a ciphertext
ct, we denote var(ct) the variance of its noise term (see Eq. (1)).

a) Collective Key-Switching (CKS): Protocol 4 details the steps
for key switching under the assumption that input parties collectively
know the output secret key s′. In the SMC setting, this means the
output party provided the input parties with shares of its key s′, which
is safe for the receiver, as long as she trusts at least one input party
(e.g., in anytrust types of models). The CKS protocol can also be
used to handle the case of parties leaving and joining the system.

Protocol 4: CKS

Public input: ct=(c0,c1) with var(ct)=σ2ct
Private input for Pi: si, s′i
Public output: ct′=(c′0,c1)

Each party Pi:
1) samples ei←χCKS(σct) and

broadcasts hi=[(si−s′i)c1+ei]q

2) waits for hj from every Pj and
outputs ct′=(c′0,c1)=([c0+

∑
jhj]q,c1)

Protocol 5: PCKS

Public input: pk′=(p′0,p
′
1),

ct=(c0,c1) with var(ct)=σ2ct
Private input for Pi: si
Public output: ct′=(c′0,c

′
1)

Each party Pi:
1) samples ui←R3, e0,i←χCKS(σct), e1,i←χ and

broadcasts

h0,i=[sic1+uip
′
0+e0,i]q andh1,i=[uip

′
1+e1,i]q

2) waits for h0,j, h1,j from every Pj and
outputs ct′=(c′0,c

′
1)=([c0+

∑
jh0,j]q,[

∑
jh1,j]q)
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After the execution of the CKS protocol on an input ciphertext
ct = (c0,c1), for which c0 + sc1 = ∆m+ ect, the parties have
access to ct′ satisfying

BFV.Dec(s′,ct′)=b t
q

[c′0+s′c1]qe

=b t
q

[c0+
∑
j

(
(sj−s′j)c1+ej

)
+s′c1]qe

=b t
q

[c0+(s−s′)c1+eCKS+s′c1]qe

=b t
q

[∆m+ect+eCKS]qe=m, (6)

where eCKS =
∑
j ej, and the last equality holds, provided that

‖ect+eCKS‖<q/(2t). Hence, the correctness property holds as long
as the output ciphertext noise is kept within decryptable bounds.

Consistently with our framework definition, the decryption protocol
is simply a special case of the CKS protocol where s′j=0∀Pj∈P.
In the SMC problem instance we consider, the computation output
must be private, which is achieved by asserting that only the output
party is provided with all the decryption shares. In a setting where the
output party is inP, it is enough that she does not reveal its own share.

b) Collective Public-Key Switching (PCKS): Protocol 5 details
the steps for key switching when the input parties only know a public
key for the output secret key s′. Contrarily to the CKS protocol,
the output party does not need to make any assumption about the
presence of an honest input party in P. This covers the scenario of
our SMC framework extension described in Section IV-D, where
the output party can be outside of the set of input parties.

After the execution of the PCKS protocol on an input ciphertext
ct=(c0,c1) for which c0+sc1=∆m+ect, and a target public key
pk=(p′0,p

′
1) such that p′0 =−(s′p′1+epk), the parties have access

to ct′ satisfying

BFV.Dec(s′,ct′)=b t
q

[c′0+s′c′1]qe

=b t
q

[c0+
∑
j

(
sjc1+ujp

′
0+e0,j

)
+s′
∑
j

(
ujp
′
1+e1,j

)
]qe

=b t
q

[c0+sc1+up′0+s′up′1+e0+s′e1]qe

=b t
q

[∆m+ect+ePCKS]qe=m, (7)

where ed =
∑
j ed,j for d= 0,1, u=

∑
juj, and the total added

noise ePCKS=e0+s′e1+uepk depends on both the protocol-induced
and the public key noises. The last equality holds if ‖ect+ePCKS‖<
q/(2t). Observe that the PCKS protocol is more costly than CKS: It
involves two more polynomial multiplications per party, and requires
N more ring elements to be sent and aggregated. It also introduces
more noise, as it emulates the public encryption algorithm. This is
the price for removing the anytrust assumption in CKS.

D. Smudging

R-LWE-based cryptosystems have the fundamental property
of decrypting to noisy plaintext messages (Eq. (1)), that are then
decoded by the decryption algorithm (Eq. (2)). As the noise depends
on the evaluation circuit and its intermediate values (this dependency
is characterized in section VI), this cryptosystem family does not
ensure circuit privacy. This has an important implication for our
distributed scheme, where Equations (6) and (7) show that both

CKS and PCKS allow error terms to cross trust boundaries. Two
important facts must be considered: (a) The hardness assumption
for the cryptosystem only holds if the error in the R-LWE samples is
unknown to the adversary; and (b) the key-switched ciphertext-noise
distribution depends on the source secret key, and can depend on
the plaintext messages when the ciphertext is not fresh (see Section
VI). Exploiting the aforementioned dependencies, an attacker with
read access to the output trust-boundary (i.e., with knowledge of the
output key) could attempt to extract information about the input key
or some intermediate plaintext values in the computation.

We address this problem by means of Smudging techniques, as intro-
duced by Asharov et al. [33]. Conceptually, smudging with a noise dis-
tributionχCKS ensures that the decryption of a key-switched ciphertext,
before quantization and rounding, is indistinguishable from the decryp-
tion of a fresh one, that was encrypted using χCKS as error distribution.
This is achieved by sampling part of the noise introduced during the
CKS and PCKS protocols from aχCKS(σct) distribution, which must
have significantly larger variance σ2smg than that of the input ciphertext
noise distribution (represented by σ2ct). Concretely, choosing

σ2smg =2λσ2ct (8)

guarantees that this is the case. As for the fresh noise distribution,
the smudging noise can also be drawn from a truncated Gaussian.

As opposed to the method of Asharov et al. that introduce
smudging noise also during evaluation, we introduce smudging noise
exclusively during the CKS protocols (i.e., at the trust-boundary
crossing), where it is a single additive term in the c′0 term. We detail
the corresponding security argument in Section VII-C.

E. Discussion

Our distributed scheme is flexible and has the potential to be
extended. We showcase this flexibility by sketching how our protocols
can support a variety of system models and extensions.

1) Generalized Trust-Boundary Crossing: The ability to perform
some form of key-switching is a requirement for an SMC solution
(see Section IV-D). In simple scenarios involving no external receiver,
a decryption procedure, which we view as a particular case of
key switching in our extended SMC framework, suffices. This is
also a special case of our CKS protocol, where each party can
set its destination key share s′i to 0. Conversely, CKS can also be
particularized into a distributed encryption protocol, by means of
which the parties obtain the BFV encryption of a secret-shared
message. Hence, as for πCKS in our general SMC framework, the
CKS protocol implements trust-boundary crossing in a general way.

2) Dynamic Systems: The versatility of our key-switching
procedures can be very useful from a system design standpoint, to
enable parties to dynamically join or leave the system. We consider
the case of transferring data from the collective trust boundary ofP to
that of P′. If P⊂P′, the PCKS protocol can be used to re-encrypt
data under the new collective key. Conversely, if P′⊂P, the CKS
protocol can be used with s′i=0 for each departing Pi. More efficient
solutions are also possible under more stringent trust assumptions;
e.g., a leaving party could additively share its collective secret-key
share among the remaining participants.

3) Generalized Ciphertext Space: In our protocols, we consider
ciphertexts comprising two ring elements, which corresponds to
their definition in the original BFV cryptosystem. In fact, the BFV
ciphertext space can be generalized as the ringRq[S] of polynomials
in S with coefficients inRq. The encrypted arithmetic operations then
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correspond to the ring operations inRq[S]. The decryption of a cipher-
text ct, encrypted under key s, is performed asm=[b tq [ct(s)]qe]t,
i.e., its evaluation in S=s (followed by quantization and rounding).
Thus, ciphertexts are allowed to grow during evaluation, which
increases the flexibility in choosing when to apply a costly and
noisy relinearization step. For this reason, this possibility is offered
in most of the available BFV scheme implementations.

Our distributed scheme also features this flexibility; we chose not
to integrate it directly into the protocol formulation for the sake of
conciseness. More specifically, we can generalize our protocols in
the following way: (a) The key-switching protocols can be extended
to support ciphertexts of degree d≥2 (i.e., ciphertexts of d+1 ring
elements), and (b) the RKG procedure can be extended to produce re-
linearization keys for these ciphertexts (i.e., pseudo-encryptions of sd).

a) Degree-d Key-Switching: The trust-boundary crossing of
an arbitrary size ciphertext (c0,c1,...,cd) can be achieved using the
CKS protocol, by observing that its Step 1 can be iterated over (with
intermediate aggregation) to raise the term in s to the appropriate
powers. Then, this augmented protocol can be used to perform
collective decryption for each pair (c0,ci) i= 2...d and the usual
CKS protocol for (c0,c1), thus cancelling the terms in higher powers
of s. Notice how the result of this augmented protocol is equivalent
to performing d− 2 interactive relinearization steps followed by
the actual trust boundary crossing. The possibility of interactive
relinearization also provides ways to trade-off noise growth against
computational and network overhead.

b) Degree-d Relinearization-Key: Relinearization keys for a
degree-d polynomial of the ideal secret (i.e., ciphertexts) key can
be generated using the RKG protocol (Protocol 3), by iterating d−1
times its Step 2 (with intermediate aggregation) to raise the initial
pseudo-encryption of s to the appropriate powers. Notice that this
would indeed increase the noise in the produced relinearization key.

4) Flexible Network-Topology: We assumed a public broadcast-
based communication, thus formulating the protocols in a way that
abstracts the communication patterns and network topology. We
observe that this also has the interesting side effect of leaving total
flexibility for the implementation of efficient communication patterns.

For example, the N parties could be arranged in a tree-like
topology, where each node in the tree would interact solely with its
parent and children. We observe that, for all the protocols, the shares
are always combined by computing their sum, which is commutative.
Hence, for a given party in our protocols, a round would consist in

1) Receiving a message from the parent,
2) Forwarding it to its children while computing its share,
3) Aggregating its children’s share and sending the result up the

tree to its own parent.
Such network topology enables parallel computation of the shares

and significantly reduces network traffic with respect to a naive
broadcast approach. As for the ciphertexts, the public nature of
protocols’ transcripts also enable the parties to securely outsource the
storage of intermediate values in the protocols’ execution (e.g., to a
cloud provider). Doing so, communication in our protocols becomes
asynchronous, which yields a significant fault tolerance advantage.

5) Fault-Tolerant Access Structures: The secret-sharing scheme
we chose for our distributed scheme requires that all parties interact at
the decryption phase. This is by design: in an anytrust model, we want
to protect against collusion of up toN−1 corrupted parties. However,
for large systems, this guarantee would be too strong with respect
to the risk of faulty nodes going offline for an undefined period. A
threshold version of our distributed scheme using T -out-of-N Shamir

secret-sharing [17] to share the secret key would enable such fault-
tolerance capabilities, by allowing subsets of T parties to perform
key-switching. This would indeed cover less strict trust models, by
relaxing the constraints on trust-boundary crossing. Although the
computational cost of such a scheme would be higher, we believe
it would be acceptable, for two main reasons: (a) As opposed to
data-level secret-sharing approaches, the additional complexity would
be confined to trust-boundary creation and enforcement (i.e., it would
not affect the circuit evaluation phase). (b) Even though combining
the shares introduces an overhead quadratic in N (compared to a
linear one in the additive case), the extrapolation of the results from
Appendix A suggests that the scheme would remain efficient.

Note that, regardless of the secret-sharing scheme, our approach
requires a single, asynchronous, interaction per-party, once the
non-interactive evaluation phase finishes. Hence, our approach has
a signifiant advantage over online SMC-solutions, by gracefully
tolerating nodes going offline for a limited amount of time.

VI. NOISE ANALYSIS

We now analyze the behavior of the distributed version of the BFV
cryptosystem in terms of noise growth. We recall that our public-
and relinearization-keys only differ from the original scheme in the
magnitude of the noise they contain. Hence, the analysis of [14]
still applies, with a larger worst-case error norm that we express as a
function of the number of partiesN . The derivations for the equations
presented in this section can be found in Appendix C.

We represent ciphertexts as elements ofRq[S] (see Section V-E3).
The infinity norm of a polynomial p (i.e., its largest coefficient in
absolute value) is denoted ‖p‖ (‖p‖≤q/2 for p∈Rq). We also recall
that, since the polynomial modulus in Rq is a degree-n power of
2 cyclotomic, we have ‖ab‖≤n‖a‖‖b‖. We consider an instantiation
of our distributed BFV scheme withN parties.

As a result of the secret-key generation procedure, where each
si is sampled from R3 (see Section V-C1), we know that ‖s‖≤N .
It must be noted that, by assuming a trusted dealer or a more complex
key-generation protocol, we could lower or completely remove the
factorN , so we keep the norm of s as a parameter in the following,
for the sake of generality. As a result of our CKG protocol, the
collective public key noise is ecpk =

∑N
i=1ei (see Eq. (4)), which

implies that ‖ecpk‖≤NB, where B is the worst-case norm for an
error term sampled from the R-LWE error distribution χ.

A. Fresh Encryption
Let ct= (c0,c1) be a fresh encryption of a message m under

cpk, such that tq (c0+sc1)=m+vfresh; we have

‖vfresh‖≤−
rt(q)

q
‖m‖+ t

q
B(nN+n‖s‖+1), (9)

where rt(q) denotes the remainder of the division of q by t. Thus, for
a key generated by the CKG protocol, the worst-case fresh ciphertext
noise is linear in the numberN of parties.

B. Arithmetic Operations
We consider ct1 and ct2, two encryptions such that

t
q [cti(s)]q=mi+vi with ‖vi‖<Bi for i=1,2.

Let ctadd be the homomorphic sum of ct1 and ct2, such that
t
q [ctadd(s)]q=m1+m2+vadd with

‖vadd‖≤B1+B2+t
rt(q)

q
(madd−[madd]t),
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wheremadd =m1+m2, and the last term is non-zero only in the case
where ‖madd‖>t. This follows directly from the analysis in [14].

Let ctmul be the homomorphic product of ct1 and ct2, such
that tq [ctmul(s)]q=[m1m2]t+vmul. Then, by relying on the upper
bound given by Lemma 2 in [14], we have

‖vmul‖<nt(B1+B2)(n‖s‖+1)+2t2n2(‖s‖+1).

As for the homomorphic addition, the additional noise depends
only on the operands’ inherent noise and the magnitude of the secret
key (there is no additional noise source). Therefore, the homomorphic
multiplication noise-growth before relinearization does not directly
depend on the number of parties. However, it does, indirectly, when
s is the sum ofN elements ofR3, as proposed in Section V-C1.

C. Relinearization (Type I)
We analyze the noise resulting from a Type I relinearization

[14] performed using a key generated by the RKG protocol
(Protocol 3). Thus, for a ciphertext ct = (c0, c1, c2), we can
write its 2-component equivalent as ctrelin = (c′0, c

′
1), where

t
q [ctrelin(s)]q=m+vfresh+vrelin with

‖vrelin‖≤
wnt

2q
(l+1)((n‖s‖+2)N+nN2)B. (10)

Therefore, the noise introduced by relinearization increases by
a factor that is quadratic in N ; this factor stems from the noise
introduced in the relinearization key (see Eq. (14)). This result is
consistent, as the relinearization keys generated by our RKG protocol
only differ from those of the centralized scheme in the magnitude
of the noise term, in their r0 component. Analogously to the original
scheme, the noise introduced by the relinearization is independent
of the noise already present in the input ciphertext.

D. Collective Key-Switching
Let ct=(c0,c1) be an encryption ofm under the collective secret

key s, and ct′=(c′0,c1) be the output of the CKS protocol on ct
with target key s′. Then, tqct

′(s′)=m+vfresh+vCKS with

‖vCKS‖≤
t

q
BsmgN, (11)

where Bsmg is the bound of the smudging distribution. We observe
that the additional noise does not depend on the destination key s′.

E. Public Collective Key-Switching
Let ct=(c0,c1) be an encryption ofm under the collective secret

key s, and ct′ = (c′0,c
′
1) be the output of the PCKS protocol on

ct and target public key pk′=(p′0,p
′
1), such that p′0=−sp′1+epk′ .

Then, tqct
′(s′)=m+vfresh+vPCKS with

‖vPCKS‖≤
t

q
N(nBpk′ +n‖s′‖B+Bsmg) (12)

where ‖epk′‖≤Bpk′ , andBsmg is the bound on the smudging noise.
Note that in this case, the smudging noise should dominate this term.

F. Discussion
The noise analysis shows that our distributed scheme, in contrast

to multi-key schemes, keeps the noise within manageable bounds
even for a large number of parties. The worst overhead is quadratic
inN , in the case of relinearization. However, this operation is carried
out after a multiplication that has a significantly larger impact on
the ciphertext noise already in the original scheme.

VII. SECURITY ANALYSIS

In this section, we analyze the security of the proposed scheme in
the passive adversary model. LetA denote the adversary, defined as a
subset of at mostN−1 corrupted parties in P. We prove the security
of our multiparty protocols in the ideal/real simulation paradigm
[56]. That is, for every possible A, we prove by construction that
there exists a simulator program S that, when provided only withA’s
input and output, can simulateA’s view in the protocol. To achieve
the privacy requirement of SMC, we require thatAmust not be able
to distinguish the real view (generated from the honest parties’ inputs)
from the simulated one (generated with the adversary’s input only).
For a given value x, we denote x̃ its simulated equivalent. Unless
otherwise stated, we consider computational indistinguishability
between distributions, denoted x̃

c≡x.
Our threat model implies that at least one honest player exists,

which we denote Ph. The choice for Ph when multiple honest parties
exist is irrelevant and does not reduce generality. It does, however,
help simplify the formulation of the security argument. We denote
H the set P\(A∪{Ph}) of all other honest parties. Hence, the tuple
(A,H) can represent any partition of P \{Ph}. In particular, both
A andH can be empty in the following arguments.

A. Collective-Key Generation
We consider an adversary A, attacking the CKG protocol as

defined in Protocol 2. Along with si, we consider ei as private inputs
to the protocol for each party Pi (as if they were sampled before
the protocol started). Thus, we model the functionality of the CKG
protocol as fCKG({si,ei | Pi∈P})=cpk, where cpk=(p0,p1) is
the output for all parties, as defined in Eq. (4).

We observe that the view of each party in the execution of the
CKG protocol consists in the tuple (p0,1,p0,2, ... ,p0,N) of all the
players’ shares, which corresponds to an additive sharing of p0. S
can simulate these shares by randomizing them under two constraints:
(1) the simulated shares must sum up to p0 and (2) the adversary
shares must be equal to the real ones (otherwise, it could distinguish
from the real ones). S can compute this sharing as

p̃0,i=


[−(sip1+ei)]q Pi∈A
←Rq Pi∈H
[p0−

∑
Pj∈A∪H

p̃0,j]q Pi=Ph.

To show that (p̃0,1, p̃0,2, ... , p̃0,N)
c≡ (p0,1, p0,2, ... , p0,N), we

observe that any probabilistic polynomial time A distinguishing,
with non-negligible advantage, between real and simulated shares
of those players in H would directly yield a distinguisher for the
decision-R-LWE problem [41]. For the share of player Ph, we
consider two cases: (1) WhenH 6=∅, the share p0,h is a uniformly
random element in Rq because [

∑
Pj∈Hp0,j]q is itself so, and the

same indistinguishability argument as above applies. (2) In the
presence ofN−1 adversaries,H=∅ and S computes the real value
for the honest party’s share, hence outputting the real view.

B. Collective Relinearization-Key Generation
The private input for each party Pi in the RKG protocol consists in

the tuple xi=(si,ui,e0,i,e1,i,e2,i,e3,i): its ideal secret-key share, its
ephemeral secret, and the error terms added in each round. The output
for each party is f(x1,...,xN)=(r0,r1), the generated relinearization
key defined in Eq. (5). Throughout the protocol execution, the parties
compute the public values h, h′ = (h′0,h

′
1) and h′′. These values
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can be simulated, with the constraints r0 = h′0 +h′′ and r1 = h′1.
For every round, the parties’ view in the protocol comprises additive
sharings of these values, which S can simulate as

h̃i=

{
[−uia+siw+e0,i]q Pi∈A
←Rlq Pi /∈A

,

h̃′0,i=

{
[sih̃+e1,i]q Pi∈A
←Rlq Pi /∈A

,

h̃′1,i=


[sia+e2,i]q Pi∈A
←Rlq Pi∈H
[r1−

∑
Pj∈A∪H

h̃′1,j]q Pi=Ph
,

h̃′′i =


[(ui−si)h̃′1+e3,i]q Pi∈A
←Rlq Pi∈H
[r0−h̃′0−

∑
Pj∈A∪H

h̃′′j ]q Pi=Ph
.

We first show that the simulated view cannot be distinguished
from the real one, by considering the combined view of the adversary, h

h′0
h′1
h′′

=

 −ua+sw+e0
−sua+s2w,+se0+e1

sa+e2
(u−s)sa+(u−s)e2+e3

.
We show that given a, this view is indistinguishable from the

uniform distribution over R4×l
q . As h′0−h′′ ≈ s2a+s2w, this is

equivalent to Assumption 1.

Assumption 1. Let a←Rq, s1,s2←R3 be two R-LWE secrets and
e1,e2,e3,e4←χ be four R-LWE error terms. The distribution

(a, s1a+e1, s2a+e2, s2s1a+e3, s21a+e4) (13)

is computationally indistinguishable from the uniform distribution
overR5

q for any adversary not knowing the secrets and error terms.

Hence, the security of the RKG protocol relies on similar
assumptions as the original, centralized, BFV scheme. More
specifically, the first two elements of Eq. (13) correspond to a public
key with secret key s= s1, and the next two together can be seen
as an encryption of 0 under this key, with randomness u=s2. The
last element, approximated as h′0−h′′ in the protocol, corresponds to
the reasonable assumption that indistinguishability holds, even when
generating further samples with higher degrees of the secret key.

C. Collective Key-Switching
The security argument for the CKS protocol is inherently more

complex than the previous ones, as the real protocol output only
approximates the ideal one. As we show below, this enables us to
formally express and characterize the need for smudging in distributed
lattice-based schemes, often formulated as an ad-hoc security measure.
Due to space limitations, we show the analysis only for the CKS pro-
tocol. However, the argument is very similar for its public key version
and directly applies to the special case of s′=0 (collective decryption).

Given a ciphertext ct = (c0,c1) decrypting under s the ideal
functionality of the CKS protocol (Protocol 4) is to compute
ct′=(c′0,c1) decrypting under secret key s′. We can formulate this
functionality implicitly, as the computation of c′0 satisfying

c0+sc1−e=c′0+s′c1−e′,

where e and e′ are the noise terms resulting from decryptions of
ct and ct′, respectively. Hence, we consider its explicit form as an
equivalent and minimal ideal multiparty functionality f̂CKS, such that

ĥ= f̂CKS({si,s′i,e′i|∀Pi∈P})=c′0−c0=(s−s′)c1−ê+e′,

where c0, c1 are considered public, s=
∑
isi, s

′=
∑
is
′
i, and ê=e is

an ideal error term cancelling e. This is because, ideally, the output ci-
phertext should look fresh, even for an adversary that knows all shares
of s′, which is allowed in theCKS protocol. As this term cannot be effi-
ciently computed in practice, the real output differs from the ideal one.
Simulation-based proofs allow this difference, as long as we prove that
the ideal and real outputs are undistinguishable for the adversary (Prop-
erty 1). This formalizes the need of smudging within the security argu-
ment. Then, we show that, even when having access to the real output,
the adversary cannot distinguish the simulated view from the real one
(Property 2). Therefore, showing both Properties (1) and (2) implies

(h̃1,h̃2,...,h̃N , ĥ)
c≡(h1,h2,...,hN ,h),

i.e., that the CKS protocol securely computes its functionality.
1) Output indistinguishability: We want to show that

(s+s′)c1−ê+e′=ĥ
c≡ h=(s+s′)c1+e′,

where h denotes the real protocol output. As the adversary is allowed
to know s′, we cannot rely on computational indistinguishability of
the R-LWE-like structure of h. More specifically, such an adversary
can extract the noise from the decryption of the key-switched
ciphertext, as e+e′= c′0+h+s′c1−∆m. Hence, we require this
extracted noise to be statistically indistinguishable from that of the
ideal output, where it is fresh:

e′=e−ê+e′≡e+e′.

As e is the key-switched ciphertext error, it follows a centered Gaus-
sian distribution whose variance we denote σ2ct. Whereas, e′ is the
sum of all the noise terms protecting the key switching shares, which
are sampled according to the χCKS(σct) distribution that has variance
σ2CKS. Thus, as long as the ratio σ2ct/σ

2
CKS is negligible, the two dis-

tributions are statistically indistinguishable, which implies that ĥ
c≡h.

2) View indistinguishability: The view of any party in the CKS
protocol is an additive sharing (h1,h2,...,hN) of h, which S can
simulate as

h̃i=


[(−si+s′i)c1+e′i]q Pi∈A
ai←Rq Pi∈H
[h−

∑
Pi∈A∪H

h̃i]q Pi=PH.

When considering the distribution of the simulated and real views
alone, the usual decision-R-LWE assumption suffices: (−sic1+e′i,c1)
is undistinguishable from (a←Rq,c1) for an adversary that does not
know si and e′i. However, we need to consider this distribution jointly
with that of the real output. We recall that an adversary having access
to s′ can extract e+e′ from the output, and might be able to estimate
e′i for i /∈A. Hence, we need to make sure that the uncertainty the
adversary has in estimating e′i is sufficiently large to protect each share
hi in theCKS protocol. This is formalized in the following assumption.

Assumption 2. An input ciphertext (c0,c1) to the CKS protocol
is such that c0+sc1 = ∆m+ect where ect = eA+eh includes a
term eh that is unknown to, and independent from, the adversary.
Furthermore eh follows a distribution according to the R-LWE
hardness assumptions.
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If Assumption 2 holds, we know that A can only approximate
the term eh up to an error ect,h, which is enough to make (hh,c1)
indistinguishable from (a←Rq,c1), even if the adversary controls
N−1 parties. We remark that as long as all parties provide at least
one input (for which the noise is fresh) to the homomorphic function
evaluation, the requirement of Assumption 2 is satisfied.

VIII. CONCLUSIONS

In this work, we have introduced a novel perspective on the Secure
Multiparty Computation Problem and proposed a general framework
for its solutions. The concept of trust boundary assumes a crucial
role in modeling multiparty trust settings, and enables the isolation
and characterization of the SMC problem in a way that abstracts the
specifics of the protection mechanisms.

We have proposed a view in which distributed cryptosystems are
at the core of an SMC solution, and have formalized this view into a
generic SMC framework. We showed that this framework is capable
of modeling and analyzing the characteristics of SMC solutions that
are often seen as fundamentally different and difficult to compare. By
formulating existing SMC solutions (such as those based on secret-
sharing the computation data) as particular instances of our framework,
we extracted the desirable features that a distributed cryptosystem
should offer in order to instantiate an efficient SMC solution.

As an example of such cryptosystem, we have introduced a
distributed version of a widespread lattice-based cryptosystem (BFV),
which can instantiate our framework in an efficient way, even for
very large number of parties. Notably, we have shown that the noise
overhead with respect to the original (centralized) scheme is only
quadratic in the number of parties (in the worst case), which provides a
significant advantage over multi-key schemes, where it is exponential.
We also analyzed the security of its underlying protocols in the passive
adversary model. We have implemented the distributed BFV (see Ap-
pendix A), and demonstrated that, besides being theoretically practical,
our scheme can provide a flexible and efficient SMC solution.

On the technical side, the proposed SMC solution can benefit
complex and highly relevant SMC scenarios, ranging from data
sharing and distributed machine learning to oblivious smart contract
evaluation and efficient generation of Beaver triples for the SPDZ
protocol. We are currently exploring concrete instantiations of our
SMC solution in these application areas. These instantiations comprise
also extensions of our distributed cryptosystem implementation to
other R-LWE variants, such as the recent CKKS scheme [54].

On the conceptual side, it is worth noting that the trust boundary
concept can be extended to other adversarial models and security
mechanisms, hence opening up new possibilities in system and trust
modeling. This can make SMC easier to integrate into larger and
more complex designs, also from a conceptual point of view.

In the near future, cloud-services providers could offer storage
and evaluation services on their clients’ encrypted sensitive data. By
combining our technical and conceptual contributions, these services
could be extended to multi-clients scenarios, hence bridging the gap
between SMC research and its adopters.
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APPENDIX A
EVALUATION

We demonstrate the practicality of a distributed R-LWE
cryptosystem. For this purpose, we implemented both the centralized
and our distributed versions of the BFV scheme using Go language.
Our polynomial arithmetic implementation uses CRT [55] (with
60-bit limbs) and NTT [57] optimizations. For this evaluation, we
time all the operations with no parallelization.

We executed our benchmarks on a 2.5 GHz Intel Core i5-7200U
processor and 8 Gb of memory running Go 1.12 (linux/amd64).
Table III shows the parameter sets used in our benchmarks, all
guaranteeing a security level of 128 bits [36]. These parameters
are application dependent, but their choice represents typical sizes
of q that correspond to different homomorphic capacities (e.g., set
P8192 allows for approximately twice the noise level as P4096).
For relinearization, we use a base w of 60 bits.

For reference, Table IV shows the timings in the centralized
scheme. While still being under development, our implementation is
comparable, in terms of operations timings, to the currently available
C++ libraries. Table V shows the computation time per operation and
per party in our distributed scheme instantiated with two parties. We
observe that the number of parties plays very little role in these timings,
as it only influences the share aggregation that consists in computing
their sum inRq. This is not a costly operation, and depends on the ac-
tual network topology, which could rely on intermediate aggregation as
discussed in Section V-E4. For the same reason, and because they also
depend on the network performance, we omit network-related timings.
In order to evaluate the communication overhead, Table VI shows the
sizes of the output for each step, which correspond to the theoretical
minimum amount of data to be sent, at that step, by each party.

It can be seen that distribution of the scheme is practical, and
that the timings of its operations are comparable to the ones in the
centralized scheme. The fact that the distributed scheme apparently
performs better in generating the cpk and rlk is due to the
experimental setup. The CKS protocol is also comparable with
the centralized Decrypt operation, which is consistent with the
definition of the latter as a special case of key switching.

These results are promising, from an application point of view: The
most costly operations, those of RKG, are naturally parallelizable
for each elements of r0 and r1. Moreover, this procedure, along with
the CKG protocol, needs to be run only once as a part of the trust
boundary creation process. On the other hand, the CKS protocol has
to be run for each result decryption. However, we observe that it is
efficient, and consist in a single round that can be made asynchronous,
by relying on a central storage accessible to each party. We recall that
this storage, along with the computation of homomorphic arithmetic
operation, can be outsourced to a third party without making further
trust assumptions.

Overall, we conclude that, when instantiated with our distributed
scheme, the framework described in Section IV can be an efficient
SMC solution.

TABLE III: Benchmarking parameter sets
Set n log2q

P4096 4096 120
P8192 8192 240
P16384 16384 480
P32768 32756 960

TABLE IV: Centralized BFV Operation timings (ms)
P4096 P8192 P16384 P32768

Encryption

KeyGen 14.52 46.76 162.05 607.86
RelinKeyGen 18.47 138.89 1103.43 8878.57
Encrypt 7.40 17.08 42.65 127.28
Decrypt 0.83 3.66 15.01 63.57

Arithmetic
Add 0.05 0.26 0.82 3.29
Mul 16.11 62.49 259.03 1306.21
Relin 3.37 16.41 93.35 623.81

TABLE V: Distributed BFV Operation timings (ms)
P4096 P8192 P16384 P32768

CKG
Step 1 0.98 2.66 8.00 27.99
Step 2 0.05 0.18 0.73 3.29
Total 1.03 2.84 8.73 31.27

RKG

Step 1 2.00 10.50 63.96 517.00
Step 2 4.04 22.17 140.87 1017.66
Step 3 2.25 13.12 81.64 617.79
Step 4 0.34 2.98 21.85 175.71
Total 8.64 48.77 308.32 2328.16

CKS
Step 1 1.23 3.86 13.21 52.04
Step 2 0.10 0.39 1.64 6.77
Total 1.33 4.24 14.84 58.81

PCKS
Step 1 7.80 18.45 48.55 148.84
Step 2 0.14 0.55 2.38 9.58
Total 7.94 19.00 50.93 158.42

TABLE VI: Distributed BFV Operation output size (kB)
P4096 P8192 P16384 P32768

CKG
Step 1 66 263 1,049 4,195
Step 2 0 0 0 0
Total 66 263 1,049 4,195

RKG

Step 1 66 263 1,049 4,195
Step 2 132 525 2,098 8,389
Step 3 66 263 1,049 4,195
Step 4 0 0 0 0
Total 263 1,049 4,195 16,778

CKS
Step 1 66 263 1,049 4,195
Step 2 0 0 0 0
Total 66 263 1,049 4,195

PCKS
Step 1 132 525 2,098 8,389
Step 2 0 0 0 0
Total 132 525 2,098 8,389
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APPENDIX B
COMPARISON BETWEEN RKG AND SIMPLE_RKG

We first show how to adapt the classic method of [33] to our
scheme, resulting in the Protocol 6.

Protocol 6: SIMPLE_RKG

Public Input: cpk=(p0,p1), w
Private Input for Pi: sk=si
Output:rlk=(r0,r1)

Each party Pi:
1) samples e0,i , e1,i←χl, ui←Rl3 and

broadcasts

h0,i=p0ui+siw+e0,i and h1,i=p1ui+e1,i

2) waits for h0,j, h1,j from all Pj, computes

h0=
∑
Pj∈P

h0,j and h1=
∑
Pj∈P

h1,j

samples e2,i,e3,i←χl , vi←Rl3 and
broadcasts

h′0,i=sih0+p0vi+e2,i and h′1,i=sih1,i+p1vi+e3,i

3) waits for h′0,j, h
′
1,j from all Pj,

outputs rlk=(
∑
jh
′
0,j ,

∑
jh
′
1,j)

After the execution of SIMPLE_RKG, each party holds a copy
of the public rlk corresponding to the collective secret key s.
This enables them and, potentially, other external entities, to use the
BFV.Relinearize algorithm in the trust domain defined by s.
The resulting key is of the form

rlk=(r0,r1)

=(p0(su+v)+s2w+se0+e2 , p1(su+v)+se1+e3)

=(−sb+s2w−(su+v)ecpk+se0+e2 , b+se1+e3),

where b = p1(su+v). Hence, with respect to the key produced
by BFV.RelinKeyGen, rlk holds a significantly increased
noise, not only in the r0, but also in the r1 one that is not noisy when
generated in a centralized way.

By producing a noise-free r1 term and a less noisy r0 term, our
solution significantly improve the simple method. Although it requires
one more round of communication, our protocol has the same volume
of network traffic, and is computationally less expensive, as shown
in Table VII.

TABLE VII: Timing benchmark RKG vs. SIMPLE_RKG (ms)
P4096 P8192 P16384 P32768

SIMPLE_RKG

Step 1 14.84 67.59 338.17 1969.06
Step 2 15.40 68.65 357.19 2194.63
Step 3 0.29 2.51 18.61 156.83
Total 30.54 138.74 713.98 4320.51

RKG

Step 1 2.00 10.50 63.96 517.00
Step 2 4.04 22.17 140.87 1017.66
Step 3 2.25 13.12 81.64 617.79
Step 4 0.34 2.98 21.85 175.71
Total 8.64 48.77 308.32 2328.16

APPENDIX C
DERIVATION OF NOISE-GROWTH EQUATIONS

A. Derivation of Eq. (9)

From the ideal decryption of a fresh encryption of m under the
collective public key cpk=(p0,p1):

t

q
(c0+sc1)=

t

q
(∆m+p0u+e0+sp1u+se1)

=
t

q
(
q−rt(q)

t
m−uecpk+e0+se1)

=m− rt(q)
q

m+
t

q
(−uecpk+e0+se1),

where we substituted the expression of BFV.Encrypt and used
∆= q−rt(q)

t . As ‖u‖=1 and ‖ei‖≤B for i=0,1, Eq. (9) follows.

B. Derivation of Eq. (10)

Let rlk= (r0,r1) be the collectively generated relinearization
key. It has the same form as in the original scheme, except for the
magnitude of its erlk components:

‖e(i)rlk‖<((n‖s‖+2)N+nN2)B. (14)

Thus, the same analysis as in the original scheme applies. Let c2
be the base-w decomposition vector of c2, such that the inner product
c2·w equals c2. We have

t

q
(c′0+sc′1)=

t

q
(c0+c2·r0+s(c1+c2·r1)

=
t

q
(c0+sc1+c2·(r0+sr1))

=
t

q
(c0+sc1+c2·s2w+c2·erlk)

=m+vfresh+
t

q
(c2·erlk),

where the upper bound for the inner product term is derived from
the expression for erlk in Eq. (14), by observing that each of the
l+1 elements in c2 have coefficients in [−w2 ,

w
2 ].

C. Derivation of Eq. (11)

From the decryption expression of ct′,

t

q
(c′0+s′c1)=

t

q
(c0+

∑
j

((−s′j+sj)c1+eCKS,j)+s′c1)

=
t

q
(c0+sc1+

∑
j

eCKS,j)

=m+vfresh+
t

q
(
∑
j

eCKS,j).

As eCKS,j≤Bsmg, Eq. (11) follows.
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D. Derivation of Eq. (12)
From the decryption expression of ct′,

t

q
(c′0+s′c′1)=

t

q

(
c0+

∑
j

(sjc1+ujp
′
0+e0,j)

+s′
∑
j

(ujp
′
1+e1,j)

)
=
t

q
(c0+sc1+up′0+s′up′1+

∑
j

e0,j+se1,j)

=m+vfresh+
t

q
(
∑
j

ujepk′ +e0,j+s
′e1,j),

and Eq. (12) follows.


