
New Constructions of Hinting PRGs, OWFs with Encryption,

and more

Rishab Goyal∗ Satyanarayana Vusirikala† Brent Waters‡

Abstract

Over the last few years there has been a surge of new cryptographic results, including laconic oblivious
transfer [CDG+17, DGI+19], (anonymous/ hierarchical) identity-based encryption [BLSV17], trapdoor
functions [GH18, GGH19], chosen-ciphertext security transformations [KW19, KMT19], designated-
verifier zero knowledge proofs [LQR+19, QRW19, KNYY19], due to a beautiful framework recently
introduced in the works of Cho et al. [CDG+17], and Döttling and Garg [DG17a]. The primitive
of one-way function with encryption (OWFE) [GH18, GGH19] and its relatives (chameleon encryp-
tion, one-time signatures with encryption, hinting PRGs, trapdoor hash encryption, batch encryp-
tion) [DG17a, DG17b, BLSV17, KW19, DGI+19] have been a centerpiece in all these results.

While there exist multiple realizations of OWFE (and its relatives) from a variety of assumptions
such as CDH, Factoring, and LWE, all such constructions fall under the same general “missing block”
framework [CDG+17, DG17a]. Although this framework has been instrumental in opening up a new
pathway towards various cryptographic functionalities via the abstraction of OWFE (and its relatives),
it has been accompanied with undesirable inefficiencies that might inhibit a much wider adoption in many
practical scenarios. Motivated by the surging importance of the OWFE abstraction (and its relatives),
a natural question to ask is whether the existing approaches can be diversified to not only obtain more
constructions from different assumptions, but also in developing newer frameworks. We believe answering
this question will eventually lead to important and previously unexplored performance trade-offs in the
overarching applications of this novel cryptographic paradigm.

In this work, we propose a new accumulation-style framework for building a new class of OWFE as
well as hinting PRG constructions with a special focus on achieving shorter ciphertext size and shorter
public parameter size (respectively). Such performance improvements parlay into shorter parameters
in their corresponding applications. Briefly, we explore the following performance trade-offs — (1) for
OWFE, our constructions outperform in terms of ciphertext size as well as encryption time, but this
comes at the cost of larger evaluation and setup times, (2) for hinting PRGs, our constructions provide a
rather dramatic trade-off between evaluation time versus parameter size, with our construction leading to
significantly shorter public parameter size. The trade-off enabled by our hinting PRG construction also
leads to interesting implications in the CPA-to-CCA transformation provided in [KW19]. We also provide
concrete performance measurements for our constructions and compare them with existing approaches.
We believe highlighting such trade-offs will lead to a wider adoption of these abstractions in a practical
sense.

1 Introduction

A major goal in cryptography is to study cryptographic primitives that could be used for securely imple-
menting useful functionalities as well as lead to interesting applications. Significant effort in cryptographic
research is geared towards diversifying existing frameworks and constructions for realizing such primitives
to improve efficiency as well as obtain more constructions from a wider set of well-studied assumptions.

∗University of Texas at Austin. Email: rgoyal@cs.utexas.edu. Supported by IBM PhD Fellowship.
†University of Texas at Austin. Email: satya@cs.utexas.edu.
‡University of Texas at Austin and NTT Research. Email: bwaters@cs.utexas.edu. Supported by NSF CNS-1908611,

CNS-1414082, DARPA SafeWare, Packard Foundation Fellowship, and Simons Investigator Award.

1

Over the last few years there has been a surge of new constructions [DG17a, DG17b, GS17, BLSV17,
GH18, GS18, GOS18, DGHM18, GHMR18, KW19, GGH19, KMT19, LQR+19, QRW19, KNYY19, DGI+19,
AMPR19, AMP19, GHM+19] due to a beautiful framework recently introduced in the works of Cho et al.
[CDG+17], and Döttling and Garg [DG17a]. This new wave of cryptographic results, including laconic obliv-
ious transfer [CDG+17, DGI+19], (anonymous/ hierarchical) identity-based encryption [BLSV17], trapdoor
functions [GH18, GGH19], chosen-ciphertext security transformations [KW19, KMT19], designated-verifier
zero-knowledge proofs [LQR+19, QRW19, KNYY19], registration-based encryption [GHMR18, GHM+19]
has been propelled by the primitive of one-way function with encryption (OWFE) [GH18, GGH19] and its
relatives (chameleon encryption, one-time signatures with encryption, hinting PRGs, trapdoor hash encryp-
tion, batch encryption) [DG17a, DG17b, BLSV17, KW19, DGI+19] .

A one-way function with encryption scheme extends the notion of one-way functions to allow a special
form of encryption. During setup one samples public parameters pp that fixes an underlying one-way function
f = fpp. In an OWFE scheme, the encryption procedure is abstracted out into two components — algorithms
E1, E2 which work as follows. Both E1 and E2 share the same random coins ρ, and take as inputs a value
y (that lies in the image space of f), an index-bit pair (i, b), and parameters pp. Algorithm E1 is used to
compute the “ciphertext” ct, whereas E2 computes the encrypted KEM key k. The decryption algorithm
D on input a ciphertext ct, pre-image string x, and parameters pp, outputs a decrypted KEM key k′. For
correctness it is important that if the string x is such that y = fpp(x) and xi = b, then the KEM keys should
match, i.e., k′ = k. While for security, other than the unpredictability of the OWF f , it is required that the
ciphertext does not leak the KEM key trivially. That is, given an input x, parameters pp, and a ciphertext
ct, the associated KEM key k must be indistinguishable from random as long as the encryption is performed
for some value y = fpp(x) and any index-bit pair of the form (i, 1− xi).

Intuitively, an OWFE scheme is simply a one-way function f equipped with matching encryption-
decryption procedures such that encryption allows to encrypt messages with respect to an OWF output
string y and a pre-image bit (i, b), while decryption requires a pre-image x such that f(x) = y and xi = b.

The “Missing Block” Framework. While there exist multiple realizations of OWFE (and its relatives)
from a variety of assumptions such as CDH, Factoring, and LWE, all such constructions fall under the
same general “missing block” framework [CDG+17, DG17a]. To illustrate the aforementioned framework
we sketch a DDH-based variant of the OWFE construction provided by Garg and Hajiabadi [GH18]. The
public parameters consists of 2n randomly sampled group generators {gi,b}(i,b)∈[n]×{0,1}, where n is the

input length of the OWF. The function output is computed by performing subset-product on the public
parameters, where the subset selection is done as per the input bits. Concretely, on an input x ∈ {0, 1}n,
the output is f(x) =

∏
i gi,xi . The ciphertext structurally looks like the public parameters, that is it also

consists of 2n group elements {ci,b}i,b. Here to encrypt to pre-image bit (i∗, b∗) under randomness ρ, the

encryption algorithm E1 simply sets ci,b = gρi,b for all (i, b) 6= (i∗, 1 − b∗), with the (i∗, 1 − b∗)th term not
being set (i.e., ci∗,1−b∗ = ⊥). Pictorially, this can be represented as follows (where i∗ = 2 and b∗ = 0):

pp =
g1,0 g2,0 g3,0 · · · gn,0
g1,1 g2,1 g3,1 · · · gn,1

Encryption−−−−−−−−−→
E1(pp,(2,0);ρ)

ct =
gρ1,0 gρ2,0 gρ3,0 · · · gρn,0
gρ1,1 × gρ3,1 · · · gρn,1

The KEM key is simply computed by the encryptor as yρ, where y is the output of the OWF. The decryptor
on the other hand does not know the randomness ρ, thus given the ciphertext ct and a valid pre-image x, it
computes the subset-product on ct (followed by applying the hardcore predicate), where the subset selection
is done as per x. That is, decryptor computes the key as

∏
i ci,xi .

This notion of not setting up the (i∗, 1 − b∗)th term in the ciphertext is what we refer to as adding a
“missing block”. The intuition behind this is that the ciphertext should only be decryptable using pre-images
x such that xi∗ = b∗, thus the ciphertext component corresponding to the pre-image bit (i∗, 1 − b∗) can be
omitted. Here the omission of the (i∗, 1− b∗)th block is very crucial in proving the security of encryption.

Limitations of the framework. Although the “missing block” framework has been instrumental in
opening up a new pathway towards various cryptographic functionalities via the abstraction of OWFE (and

2

its relatives), it has been accompanied with undesirable inefficiencies that have led to large system parameters
in most of the applications. In particular, the OWFE described above in this framework leads to large
“ciphertexts” where the size grows linearly with the input length n of the OWF. Now this inefficiency gets
amplified differently in each of its applications. For instance, large OWFE ciphertexts lead to large public
parameters of a trapdoor function (/deterministic encryption) [GH18, GGH19], since the public parameters
as per those transformations consist of a polynomial number of OWFE ciphertexts which themselves grow
linearly with n. Similar situations arise when we look at a related primitive called Hinting PRG (introduced
by Koppula and Waters [KW19]), where the existing constructions via the “missing block” framework leads
to much worse public parameters, and the performance overhead gets significantly amplified if we look at its
application to chosen-ciphertext security transformations [KW19].1

Motivated by the surging importance of the abstraction of one-way function with encryption and its
relatives, a natural question to ask is whether the existing approaches can be diversified to not only obtain
more constructions from different assumptions, but also in developing newer frameworks. We believe an-
swering this question will eventually lead to important and previously unexplored performance trade-offs in
the overarching applications of this novel cryptographic paradigm.

1.1 Our Approach

In this work, we develop a new framework for building a new class of one-way function with encryption (as well
as hinting PRG) constructions with a special focus on achieving shorter ciphertext size (and shorter public
parameter size, respectively), which will parlay into shorter parameters in their corresponding applications.2

Concretely, we explore the following performance trade-offs. For OWFE, our constructions based on
this new framework outperform the existing ones in terms of ciphertext size as well as encryption time,
but this comes at the cost of larger evaluation and setup times. In terms of applications of OWFE to
deterministic encryption, this trade-off translates to a scheme with much smaller public parameters and
setup time, but larger encryption/decryption times. For hinting PRGs, our constructions provide a rather
dramatic trade-off between evaluation time versus parameter size compared to prior schemes, with our
construction leading to significantly shorter public parameter size. In terms of applications of hinting PRG
to chosen-ciphertext security transformations, the trade-off between public parameter size and evaluation
time in the hinting PRG constructions carries forward to a trade-off between encryption key/ciphertext sizes
and encryption/decryption times in the resultant CCA-secure construction. Next, we describe the main
ideas behind our constructions, and later we give some concrete performance metrics.

OWF with Encryption from Φ-Hiding Assumption. We begin by sketching our Φ-Hiding based
construction and security proof. Recall that the the Φ-Hiding assumption states that given an RSA modulus
N and a prime e, no polynomial time adversary can distinguish whether e divides φ(N) or not. Our
construction is summarized as follows:

• The public parameters pp of our OWFE scheme consist of an RSA modulus N , n pairs of λ-bit primes
{ei,b}(i,b)∈[n]×{0,1}, and a generator g ∈ Z∗N . (Here n is the input length.)

• For any input x ∈ {0, 1}n, the one-way function fpp(x) is computed as gH(x)·
∏
i ei,xi (mod N), where H

is a pairwise independent hash function sampled during setup.

• The encryption algorithm E1 on input a pre-image bit (i∗, b∗) and randomness ρ, outputs ciphertext as
ct = gρ·ei∗,b∗ (mod N).3 The corresponding KEM key is set as k = yρ(mod N), where y is the output
of the OWF.

1Roughly speaking, a hinting PRG is same as a regular PRG, except that it has a stronger pseudorandomness property in
the sense that the adversary must not break pseudorandomness even when given a hint about the preimage of the challenge
string.

2We call our framework “accumulator style” due to a similarities in our algebraic structure to earlier number-theoretic works
on cryptographic accumulators [BdM93, BP97, STY00, CL02, GR04, Ngu05, CKS09, ATSM09, CF13]. However, neither the
definition nor concept of the accumulator will be used in this work.

3Technically, the ciphertext should also include the index i∗ but we drop it for ease of exposition.

3

• Lastly, the decryption procedure given a ciphertext ct and a pre-image x such that fpp(x) = y and

xi∗ = b∗, computes the key as k′ = ct
∏
i6=i∗ ei,xi (mod N). Next, we briefly sketch the main arguments

behind the security of this construction.

For security, we will need to show (1) that the function is one way, (2) that encryption security holds
and (3) that an additional smoothness property holds. We will sketch the arguments for the first two here.
The final smoothness property is only needed for some applications. This involves a more nuanced number
theory to prove which we defer to the main body.

The one-wayness argument proceeds as follows — suppose an adversary finds a collision x 6= x′, i.e.
fpp(x) = fpp(x

′), then a reduction algorithm can sample the λ-bit primes in such a way that, as long as n
is larger than logN + λ, it can break RSA assumption for one of the primes sampled as part of the public
parameters.

For proving security of encryption we need to slightly modify the construction wherein we need to apply
an extractor on the KEM key to prove it looks indistinguishable from random, that is k = Ext(s, yρ) where
Ext is a strong seeded extractor and seed s is sampled during setup. Recall that security of encryption requires
that for any index-bit pair (i∗, b∗) and input x such that xi∗ 6= b∗, given a ciphertext ct = E1(pp, (i∗, b∗); ρ)
the associated KEM key k = E2(pp, fpp(x), (i∗, b∗); ρ) must be indistinguishable from random.

The idea behind proving the same for the above construction is the following — a ciphertext looks like
ct = gρ·ei∗,b∗ whereas the key is computed as k = Ext(s, gρ·

∏
i ei,xi). Since b∗ 6= xi∗ , thus the key can be re-

written as k = Ext(s, (ct
∏
i ei,xi)e

−1
i∗,b∗). Now under the Φ-hiding assumption, we can argue that an adversary

can not distinguish between the cases where ei∗,b∗ is co-prime with respect to φ(N), and when ei∗,b∗ divides
φ(N). Note that in the latter case, there are ei∗,b∗ many distinct ethi∗,b∗ roots of ct

∏
i ei,xi . Thus, by strong

extractor guarantee we can conclude that key k looks uniformly random to the adversary as the underlying
source has large (λ bits of) min-entropy.

Comparing with DDH-based constructions. Comparing the asymptotic efficiency of our Φ-Hiding based
OWFE construction with the existing DDH-based constructions, we observe the following: (1) the size
of the public parameters grows linearly with the input length n in both constructions, (2) both OWF
evaluation and decryption operations require O(n) group operations and O(n) exponentiations (with λ-bit
exponents) respectively, (3) for the Φ-hiding based construction, both E1 and E2 algorithms perform single
exponentiation, and outputs a ciphertext and key containing just one group element; whereas for DDH-
based construction, the E1 algorithm performs O(n) exponentiations and outputs a ciphertext containing
O(n) group elements.

We implemented the above construction and observed that, at 128-bit security level, our Φ-hiding based
construction has ∼80x shorter ciphertext size over the existing DDH-based construction [GH18]. Also, the
E1 algorithm of our Φ-hiding based construction is ∼14x faster than the DDH baseline. A detailed efficiency
comparison for other security levels is discussed in Section 8.2.

Hinting PRGs from Φ-Hiding Assumption. We also provide a hinting PRG [KW19] construction
based on Φ-hiding that leads to similar performance trade-offs. Let us briefly recall the notion of hinting
PRGs. It consists of two algorithms — Setup and Eval, where the setup algorithm generates the public
parameters pp, and the PRG evaluation algorithm takes as input the parameters pp, a seed s ∈ {0, 1}n
and a block index i ∈ {0, 1, . . . , n}. The Hinting PRG security requirement is that for a randomly choosen
seed s ∈ {0, 1}n, the following two distributions over {ri,b}(i,b)∈[n]×{0,1} are indistinguishable: in the first

distribution, ri,si = Eval(pp, s, i) and ri,1−si is sampled uniformly at random for every i; whereas in the
second distribution, all ri,b terms are sampled uniformly at random.

Our hinting PRG construction is based on our OWFE construction, where the setup algorithm is identical,
that is the public parameters pp consist of an RSA modulus N , n pairs of λ-bit primes {ei,b}(i,b)∈[n]×{0,1},

a generator g ∈ Z∗N , and a pairwise independent hash H. And, the evaluation algorithm also bears strong

resemblance with the one-way function f described previously. Concretely, the i∗th block of the PRG output,
i.e. Eval(pp, s, i∗), is computed as gH(s)·

∏
i6=i∗ ei,si (mod N). Proving security of this construction follows in

a similar line to our OWFE construction. More details on this are provided later in Section 4.

4

Comparing with DDH-based constructions. Comparing the asymptotic efficiency of our Φ-Hiding based
hinting PRG construction with the existing DDH-based constructions, we observe the following: (1) the
public parameters consists of 2n (λ-bit) prime exponents along with the RSA modulus, extractor seed, group
generator, and a hash key; whereas in the DDH-based constructions, it contains O(n2) group elements, (2)
for evaluating a single hinting PRG block, the evaluator needs to perform O(n) exponentiations in our
new construction; whereas in the DDH case it performs O(n) group operations. Additionally, using an
elegant Dynamic Programming style algorithm (described in Section 4.1), we can reduce the number of
exponentiation operations needed per block to grow only logarithmically in n. The intuition behind such an
improvement is that we show how to re-use various intermediate exponentiations obtained during a single
hinting PRG block evaluation for accelerating the PRG evaluation for other blocks.

We implemented the above construction and observed that, at 128-bit security level, our Φ-hiding based
construction has ∼80x shorter ciphertext size over the existing DDH-based construction [GH18]. Also, the
E1 algorithm of our Φ-hiding based construction is ∼14x faster than the DDH baseline. A detailed efficiency
comparison for other security levels is discussed in Section 8.2.

Limitations of Φ-Hiding based constructions. A quick glance shows that these new constructions
lead to much shorter ciphertext size (in the case of OWFE) and public parameters (in the case of hinting
PRGs), therefore they will lead to better parameters in their corresponding applications such as deterministic
encryption [GGH19] and chosen-ciphertext security transformations [KW19]. However, looking more closely
we observe that our Φ-hiding based construction has an undesirable consequence which is the hinting PRG
seed length (or equivalently input length for OWF) n is much larger for our Φ-hiding based scheme when
compared with its DDH counterpart. This is due to the fact because of number field sieve attacks, the
recommended RSA modulus length (and thereby the input/seed length n) increases super linearly with
target security level for the Φ-based construction. While the recommended field size (and thereby the
input/seed length n) will increase only linearly for the elliptic curve DDH-based constructions.

Fortunately, the notion of accumulators has been well studied in prime order group setting [Ngu05,
CKS09, ATSM09, CF13] as well, thus this gives us a different type of number theoretic accumulator. Pivoting
to such accumulators, we show how to achieve performance improvements similar to that in the Φ-hiding
setting while keeping the input/seed length n close to that in their existing counterparts. Next, we provide
our OWFE construction which uses bilinear maps in the prime order group setting.

OWF with Encryption from DBDHI. Let us start by recalling the Decisional Bilinear Diffie-Hellman
Inversion (DBDHI) assumption [BB04]. The strength of the assumption is characterized by a parameter

`, and it states that given a sequence of group elements as follows — (g, gα, gα
2

, . . . , gα
`

), where g is a
random group generator and α is a randomly chosen non-zero exponent, no PPT adversary should be able to
distinguish e(g, g)1/α from a random element in the target group. Below we describe our OWFE construction
in which we directly include the sequence of elements as described above as part of the public parameters.

Concretely, the public parameters pp consist of n + 1 group elements (g, gα, . . . , gα
n

) for a random
exponent α and group generator g, and a pairwise independent hash H. (Here n is the input length.) Given
an input x ∈ {0, 1}n, the one-way function fpp(x) is computed in two stages. First, the evaluator symbolically
evaluates (i.e. simplifies) the polynomial p(z) = H(x)·

∏
i(z+2i+xi). Let p(z) =

∑n
j=0 cjz

j be the evaluated

polynomial. Next, the evaluator sets the output of the OWF as
∏
j(g

αj)cj . The encryption algorithm E1 on

input a pre-image bit (i∗, b∗) and randomness ρ, outputs ciphertext as ct = (gα+2i∗+b∗)ρ.4 The corresponding
KEM key is set as k = e(gρ, y), where y is the output of the OWF. Lastly, the decryption procedure given
a ciphertext ct and a pre-image x such that fpp(x) = y and xi∗ = b∗, also takes a two step approach where

first it symbolically evaluates the polynomial p′(z) = H(x) ·
∏
i 6=i∗(z + 2i + xi). Let p′(z) =

∑n−1
j=0 c

′
jz
j be

the evaluated polynomial. Lastly, the decryptor computes the key as k′ = e(ct,
∏
j(g

αj)c
′
j).

The proof of one-wayness is similar to that in the case of Φ-hiding where if an adversary finds a collision
x 6= x′, i.e. fpp(x) = fpp(x

′), then a reduction algorithm can set the public parameters appropriately

4Technically, the ciphertext should also include the index i∗ but we drop it for ease of exposition.

5

such that, as long as n is large enough, it can be used to not only distinguish the DBDHI challenge but
also directly compute the DBDHI challenge. The proof of encryption security is also quite similar, where
the main idea can be described as follows: the ciphertext looks like ct = (gα+2i∗+b∗)ρ whereas the key is

computed as k = e(gρ,
∏
j(g

αj)cj). Whenever b∗ 6= xi∗ , then the key can be re-written such that it is of the

form k = e(g, g)c
′/β · e(g,

∏
j(g

βj)c
′
j) for some constants c′, c′1, . . . , c

′
n−1, and where β linearly depends on α.

By careful analysis, we can reduce this to the DBDHI assumption. Lastly, the proof of smoothness for this
construction is significantly simpler than that of its Φ-hiding based counterpart. This is primarily because
in this case, we can directly prove that the function H(x) ·

∏
i(α+ 2i+ xi)(mod p), where p is the order of

the group is an (almost) 2-universal hash function, therefore by applying LHL, we can argue smoothness of
the OWF. More details are provided later in Section 7.

We implemented the above construction and observed that, at 128-bit security level, our DBDHI-based
construction has ∼340x shorter ciphertext size over the existing DDH-based construction [GH18] and ∼4x
over our Φ-hiding based construction. Also, the E1 algorithm of our DBDHI-based construction is ∼300x
faster than the DDH baseline and ∼22x faster than our Φ-hiding construction. Note that even though
Φ-hiding and DBDHI-based constructions have nearly identical asymptotic complexity, DBDHI-based con-
struction still performs better as the recommended group size for the elliptic curve groups is smaller than
that for RSA.

Hinting PRGs from DDHI and OWFE without Bilinear Maps. Again to emphasize the general ap-
plicability of our accumulation-style framework, we provide a hinting PRG construction based on the DDHI
assumption as well. The translation from OWFE to hinting PRG is done analogous to that for Φ-hiding
based constructions, except in our hinting PRG construction we do not require the bilinear map function-
ality. Briefly, this is because (unlike OWFE schemes) hinting PRGs do not provide any decryption-like
functionality, and for evaluating the hinting PRG, standard group operations are sufficient. Our construc-
tion is described in detail later in Section 5. We also point out that in Appendix B we provide an OWFE
construction in the prime order group setting without using bilinear maps, but the caveat is that it does not
lead to better performance when compared with existing DDH-based constructions.

We implemented the above schemes and observed that, at 128-bit security level, the setup algorithm of our
Φ-hiding and DDHI-based HPRGs are ∼1.35x and ∼200x respectively faster than the DDH baseline [KW19].
Our constructions also have ∼ 105x and ∼2100x shorter public parameters respectively than DDH baseline.
However, our schemes have less efficient Eval algorithm, and thereby offer a noticeable trade-off between
efficiency of Setup and Enc algorithm when used in chosen-ciphertext security transformation of [KW19].
More details are provided later in Section 8.1.

Recent Work in Trapdoor Functions. One of the applications of our result is in constructing trapdoor
functions (TDFs) with smaller parameter sizes. Building on the work of [GH18], Garg, Gay, and Haji-
abadi [GGH19] show how OWF with encryption gives trapdoor functions with image size linear in the input
size. However, their construction requires a quadratic number of group elements. Plugging in either our
bilinear map or φ-hiding constructions will reduce the public parameter size to O(n) group elements. (Since
our OWFE schemes also satisfy the smoothness criteria, thus the resulting TDF also leads to a construction
of deterministic encryption.)

In a concurrent work, Garg, Hajiabadi, and Ostrovsky [GHO19] using different techniques give new
constructions for “trapdoor hash functions” [DGI+19] with small public key size. Among other applications,
this also gives an injective trapdoor function whose public key contains O(n) group elements. They prove
security from the q-power DDH assumption and use other ideas to also reduce the evaluation time. From
bilinear maps, however, the work of Boyen and Waters [BW10] provides TDF constructions secure under the
Decisional Bilinear Diffie-Hellman (DBDH) assumption in which the public keys also have only O(n) group
elements.

One interpretation is that the primitive of OWF with encryption can perhaps serve a broader range of
applications, but to squeeze out better performance for a particular, more narrow set of applications a more
specialized abstraction such as trapdoor hash functions might be more useful. This mirrors our experience

6

with hinting PRGs, where our direct constructions had efficiency benefits. Finally, we emphasize that part
of our contribution is to provide concrete experimental performance measurements of our constructions.

Roadmap. We recall the notions of Hinting PRG and OWFE in Section 2. We then present number-
theoretic techniques introduced in this work in Section 3. We describe our HPRG constructions based on
Φ-hiding and DDHI assumptions in Sections 4 and 5. We then present our OWFE constructions based on
Φ-hiding, DBDHI and DDHI assumptions in Sections 6 and 7 and Appendix B. In Appendix A, we describe
how to construct Hinting PRG generically from OWFE. Finally, we implement our schemes and analyze
their performance in Section 8.

2 Preliminaries

Notations. Let PPT denote probabilistic polynomial-time. We denote the set of all positive integers up
to n as [n] := {1, . . . , n}. Throughout this paper, unless specified, all polynomials we consider are positive
polynomials. For any finite set S, x ← S denotes a uniformly random element x from the set S. Similarly,
for any distribution D, x← D denotes an element x drawn from distribution D. The distribution Dn is used
to represent a distribution over vectors of n components, where each component is drawn independently
from the distribution D. We call any distribution on n-length bit strings with minimum entropy k as a (k, n)
source.

2.1 One Way Function with Encryption

Here we recall the definition of recyclable one-way function with encryption from [GH18, GGH19]. We adapt
the definition to a setting where the KEM key is an `-bit string instead of just a single bit. A recyclable
(k, n, `)-OWFE scheme consists of the PPT algorithms K, f,E1, E2 and D with the following syntax.

K(1λ)→ pp: Takes the security parameter 1λ and outputs public parameters pp.

f(pp, x)→ y: Takes a public parameter pp and a preimage x ∈ {0, 1}n, and deterministically outputs y.

E1(pp, (i, b); ρ)→ ct: Takes public parameters pp, an index i ∈ [n], a bit b ∈ {0, 1} and randomness ρ, and
outputs a ciphertext ct.

E2(pp, y, (i, b); ρ) → k: Takes a public parameter pp, a value y, an index i ∈ [n], a bit b ∈ {0, 1} and
randomness ρ ∈ {0, 1}r, and outputs a key k ∈ {0, 1}`. Notice that unlike E1, which does not take y
as input, the algorithm E2 does take y as input.

D(pp, ct, x)→ k: Takes a public parameter pp, a ciphertext ct, a preimage x ∈ {0, 1}n, and deterministically
outputs a key k ∈ {0, 1}`.

We require the following properties.

Correctness. For security parameter λ, for any choice of pp ∈ K(1λ), any index i ∈ [n], any preim-
age x ∈ {0, 1}n and any randomness value ρ, the following holds: letting y := f(pp, x), and ct :=
E1(pp, (i, xi); ρ), we have E2(pp, y, (i, xi); ρ) = D(pp, ct, x).

Definition 2.1 ((k, n)-One-wayness.). For any PPT adversary A, there exists a negligible function negl(·)
such that for all λ ∈ N, we have

Pr
[
f(pp,A(pp, y)) = y : S ← A(1λ), pp→ K(1λ);x← S; y = f(pp, x)

]
≤ negl(λ).

Here, the adversary is constrained to output only a (k, n)-source.

7

Definition 2.2 (Security for encryption.). For any PPT adversary A, there exists a negligible function
negl(·) such that for all λ ∈ N, we have

Pr

A(pp, x, ct, kb) = b :
(x, i)← A(1λ); pp← K(1λ);

b← {0, 1}; ρ← {0, 1}r; ct← E1(pp, (i, 1− xi); ρ);
k0 ← E2(pp, f(pp, x), (i, 1− xi); ρ); k1 ← {0, 1}`

 ≤ 1/2 + negl(λ).

Definition 2.3 ((k, n)-Smoothness.). We say that (K, f,E1, E2, D) is (k, n)-smooth if for any PPT adver-
sary A, there exists a negligible function negl(·), such that for all λ ∈ N, we have

Pr

[
A(pp, y) = b :

(S0, S1)← A(1λ); pp← K(1λ);
b← {0, 1};x0 ← S0;x1 ← S1; y = f(pp, xb)

]
≤ 1/2 + negl(λ).

where the distributions S0 and S1 output by the adversary A are constrained to be (k, n)-sources.

2.2 Hinting PRG

Next, we review the definition of Hinting PRG proposed in [KW19]. Let n(·) and `(·) be some polynomials.
An (n, `)-hinting PRG scheme consists of two PPT algorithms Setup, Eval with the following syntax.

Setup(1λ) → (pp, n): The setup algorithm takes as input the security parameter λ, and length parameter
`, and outputs public parameters pp and input length n = n(λ).

Eval(pp, s ∈ {0, 1}n, i ∈ [n] ∪ {0}) → y ∈ {0, 1}`: The evaluation algorithm takes as input the public
parameters pp, an n-bit string s, an index i ∈ [n] ∪ {0} and outputs an ` bit string y.

Definition 2.4. An (n, `)-hinting PRG scheme (Setup,Eval) is said to be secure if for any PPT adversary
A, there exists a negligible function negl(·) such that for all λ ∈ N, the following holds:

Pr

A(pp, yβ0 , {yβi,b}i∈[n],b∈{0,1}

)
= β :

(pp, n)← Setup(1λ); s← {0, 1}n;
β ← {0, 1}; y0

0 = Eval(pp, s, 0); y1
0 ← {0, 1}`;

y0
i,si

= Eval(pp, s, i); y0
i,si
← {0, 1}` ∀i ∈ [n]

y1
i,b ← {0, 1}` ∀i ∈ [n], b ∈ {0, 1};

 ≤ 1/2 + negl(λ)

2.3 Strong Extractors

Extractors are combinatorial objects used to ‘extract’ uniformly random bits from a source that has high
randomness but is not uniformly random. In this work, we will be using seeded extractors. In a seeded
extractor, the extraction algorithm takes as input a sample point x from the high randomness source X ,
together with a short seed s, and outputs a string that looks uniformly random. Here, we will be using
strong extractors, where the extracted string looks uniformly random even when the seed is given.

Definition 2.5. A (k, ε) strong extractor Ext : D × S → Y is a deterministic algorithm with domain D,
range Y and seed space S such that for every source X on D with min-entropy at least k, the following two
distributions have statistical distance at most ε:

D1 = {(s,Ext(x, s)) : s← S, x← X},D2 = {(s, y) : s← S, y ← Y}

Using the Leftover Hash Lemma, we can construct strong extractors from pairwise-independent hash
functions. More formally, let H = {h : {0, 1}n → {0, 1}m} be a family of pairwise independent hash
functions, and let m = k − 2 log(1/ε). Then Ext(x, h) = h(x) is a strong extractor with h being the seed.
Such hash functions can be represented using O(n) bits.

8

2.4 Assumptions

Φ-Hiding Assumption. The Φ-Hiding assumption, introduced by Cachin et al. [CMS99], informally
states that given an RSA modulus N , it is hard to find the factors of φ(N), or to distinguish a factor of
φ(N) from an integer co-prime to φ(N). To formally state this assumption, we need to introduce some
notations, and will be following the work of [HOR15] for the same. Let PRIMES(λ) denote the set of
primes of bit-length λ, and let

RSA(λ) = {N : N = pq; p, q ∈ PRIMES(λ/2); gcd(p− 1, q − 1) = 2}.

For any e ≤ 2λ, let
RSAe(λ) = {N ∈ RSA(λ) : e divides φ(N)}.

Assumption 1 (Φ-Hiding). The Φ-Hiding assumption states that for all ε > 0, integers e such that 3 < e <
2λ/4−ε and PPT adversaries A,

Pr[A(N, e) = 1 : N ← RSA(λ)]− Pr[A(N, e) = 1 : N ← RSAe(λ)] ≤ negl(λ).

q-DDHI Assumption. A variant of this assumption is introduced in [BB04]. We say that a PPT algorithm
GGen is a group generator if it takes a security parameter 1λ as input and outputs a “group description”
G := (G, p) where G is a group with prime order p = Ω(2λ), from which one can efficiently sample a generator
uniformly at random.

Assumption 2 (q-DDHI). Let GGen be a group generator and q = q(λ) = poly(λ). We say that q-Decisional
Diffie Hellman Inversion assumption holds with respect to GGen if for every PPT adversary A, there exists
a negligible function negl(·) such that for every λ ∈ N, we have

Pr

[
A(G, g, gα, gα

2

, · · · , gα
q

, Tb) = b :
(G, p) = G ← GGen(1λ); g ← G;α, r ← Z∗p

b← {0, 1};T0 = g1/α;T1 ← gr;

]
≤ 1/2 + negl(λ).

q-DBDHI Assumption. This assumption is introduced in [BB04]. We say that a PPT algorithm GGen
is a group generator if it takes a security parameter 1λ as input and outputs a “group description” G :=
(G1,GT , e, p). Here, G1 and G2 are groups with prime order p = Ω(2λ), from which one can efficiently
sample a generator uniformly at random. e : G1 ×G1 → G2 is an efficiently computable pairing operation.

Assumption 3 (q-DBDHI). Let GGen be a group generator and q = q(λ) = poly(λ). We say that q-
Decisional Bilinear Diffie Hellman Inversion assumption holds with respect to GGen if for every PPT adver-
sary A, there exists a negligible function negl(·) such that for every λ ∈ N, we have

Pr

[
A(G, g, gα, gα

2

, · · · , gα
q

, Tb) = b :
(G1,G2, e, p) = G ← GGen(1λ); g ← G1;α, r ← Z∗p

b← {0, 1};T0 = e(g, g)1/α;T1 ← e(g, g)r;

]
≤ 1/2+negl(λ).

3 Hashing and Randomness Extraction under Φ-Hiding

In this section, we will prove two useful lemmas about universal hashing and randomness extraction under
the Φ-hiding assumption. Here we consider special groups defined w.r.t. an RSA modulus N . These lemmas
will be crucial in proving the security of our Φ-hiding based constructions later in Sections 4 and 6.

3.1 Number Theory: Prime Number Theorems for Arithmetic Progressions

First, we recall some important theorems from the number theory literature about prime numbers that we
will be relying on in this work.

9

In 1837, Dirichlet [Dir37] proved that for two co-prime positive integers a and q, the sequence {a+ qn}∞n=0

contains infinitely many primes. Further, Dirichlet and Legendre conjectured that the number of primes in
this in this sequence less than x is around 1

φ(q)Li(x), where Li(·) is the logarithmic integral function (and

a good approximation of the prime counting function). In 1896, de la Vallée Poussin [DlVP97] proved the
conjecture. Below we state the refined theorem statement as has been improved in a long line of works (to
cite a few [DlVP97, New80, Zag97, Tao09, Sop10]). Let PRIMES be the set of all primes numbers and
PRIMES(i) be the set of all i-bit prime numbers.

Theorem 3.1 (Prime Number Theorem for Arithmetic Progressions (Paraphrased)). For any two co-prime
integers q, a. Define θ(x; q, a) to be number of primes p less than x such that a = p (mod q). Concretely,

θ(x; q, a) =
∣∣∣ {p ∈ Z

∣∣∣ p < x ∧ p ∈ PRIMES ∧ a = p (mod q)
} ∣∣∣.

Then, the following is true:

∀x, θ(x; q, a) = (1 + oq(1))
1

φ(q)

x

log x
,

where the subscript q in the notation oq(1) denotes that the implied constant could depend q. And, oq(1)→ 0
as x→∞.

Combining the above theorem with the famed prime number (density) theorem, we get the following
corollary.

Corollary 3.1 (Prime Number Density in Arithmetic Progressions). For any two co-prime integers q, a, we
have the following

∀x, Pr
p←{t∈Z | t<x ∧ t∈PRIMES}

[a = p (mod q)] = (1 + oq,x(1))
1

φ(q)
,

where the subscripts q, x in the notation oq,x(1) denotes that the implied constant could depend q, x. And,
oq,x(1)→ 0 as x→∞.

In this work, we need a slightly stronger guarantee for our results in which the primes p we consider are
in a specific range which is fixed bit length. Below we state the corollary which again follows by combining
Theorem 3.1 and prime number (density) theorem, and in turn suffices for our results.

Corollary 3.2 (Bounded Range Prime Number Density in Arithmetic Progressions). For any two co-prime
integers q, a, we have the following

∀λ ∈ N, Pr
p←PRIMES(λ)

[a = p (mod q)] = (1 + oq,λ(1))
1

φ(q)
,

where the subscripts q, λ in the notation oq,λ(1) denotes that the implied constant could depend q, λ. And,
oq,λ(1)→ 0 as λ→∞.

Remark 3.1. It turns out we need a much weaker guarantee than what is provided above. Concretely, any
upper bound as long as it is a fixed inverse polynomial in φ(q) is sufficient for us.

3.2 A New Hashing Lemma

Consider an RSA modulus N = pq for κ/2-bit primes p, q, and let g ∈ Z∗N be a random element in the
multiplicative group Z∗N . Consider the following family of hash functions which hash an n-bit string x
(x ∈ X = {0, 1}n) to an element in ZN :

K =
{

(a, b, {ei,c}i∈[n],b∈{0,1}) ∈ Z2n+2
N : a, b ∈ ZN ;∀ i ∈ [n], b ∈ {0, 1}, ei,c ∈ PRIMES(λ)

}
,

H : K ×X → ZN , H
(

(a, b, {ei,c}i,c), x
)

= g(ax+b)
∏
i ei,xi (mod N).

10

Here x is intepreted as an integer for arithmetic operations, and xi denotes the ith bit of x when intepreted
as a binary string. Whenever it is clear from context, we will drop the hash key as an explicit input to the
function and write either H(x) or HK(x) instead of H(K,x) for some hash key K = (a, b, {ei,c}i,c). Also,
throughout we assume that n is sufficiently large, i.e. n > κ+ 2λ.

Consider any integer T , and let T =
∏t
i=1 r

ki
i be its prime factorization i.e., ki ≥ 1 and ri’s are the distinct

prime factors arranged in an increasing order. For any integer y ∈ ZT , we define its chinese remainder theorem
(CRT) representation to be the vector (y(1), y(2), · · · , y(t)), where for each i ∈ [t], y(i) = y mod rkii . Note
that each integer y ∈ ZT has distinct CRT representation.

Looking ahead to our HPRG and OWFE constructions based on Φ-hiding assumption, we use the hash
function described above. For security, we require that (for a randomly chosen key K and input x← X) the
output distribution of the hash functionH(K,x) to be indistinguishable from a distribution with large enough
min-entropy while looking independent of the input x. A natural idea would be to use a variant of Leftover
Hash Lemma (LHL) to prove such a statement, but since ei,c’s are randomly sampled primes (and not random
exponents), thus the distribution of the exponent (ax + b)

∏
i ei,xi mod Φ(N) is not well understood. Due

to this, we could not rely only on LHL to prove pseudorandomness of the desired distribution, but instead,
show that hash function satisfies the following weaker property which is sufficient for our applications. The
technical difficulty here lies in proving that the hash function satisfies this weaker property and utilizing this
to prove the security of our HPRG and OWFE constructions.

Theorem 3.2. Let pi denote the ith prime, i.e. p1 = 2, p2 = 3, . . ., and ẽi = dlogpi Ne. And, let fi denote

pẽii for all i.
Assuming the Φ-hiding assumption holds, for every PPT adversary A, non-negligible function ε(·), poly-

nomial v(·), for all λ, κ ∈ N, satisfying κ ≥ 5λ and ε = ε(λ) > 1/v(λ), the following holds:

Pr[Expt-HashingA,ε(0) = 1]− Pr[Expt-HashingA,ε(1) = 1] ≤ ε(λ)/2,

where the experiment Expt-Hashing is described in Figure 1.

Expt-HashingA,ε(β)

The challenger samples RSA modulus N ← RSA(κ), 2 group elements a, b ← ZN and 2n λ-bit primes
ei,c ← PRIMES(λ) for i ∈ [n], c ∈ {0, 1}. The challenger sets K = (a, b, {ei,c}i,c).

The challenger now samples (g, y) depending on bit β in the following way.

— If β = 0, the challenger samples a generator g ← Z∗N and a bit string x ← X and computes
y = HK(x)f1·f2 .

— If β = 1, the challenger samples generators g̃, h ← Z∗N . It then sets jε to be the smallest index

such that pjε > (2
√

2 logN/ε)3 and computes g = g̃
∏jε
i=3 fi and y = h

∏jε
i=1 fi .

The challenger sends (N, g,K, y) to the adversary. The adversary then outputs a bit β′, and the output of
the experiment is set to be the same bit β′.

Figure 1: Security experiment for Hashing Lemma

Proof. Let the prime factorization of φ(N) be φ(N) =
∏
i r
ki
i for i = 1 to `N , where ki ≥ 1, `N denotes

number of distinct prime factors of φ(N), and ri’s are the distinct prime factors arranged in an increasing

order. The proof is divided into two parts. First, we argue that (ax+ b)
∏
i ei,xi mod r

kj
j is statistically close

to random over Z
r
kj
j

for all prime factors of φ(N) greater than pjε . In the second part of the proof, we show

using Φ-hiding that the hash function H could be made lossy on all prime factors of φ(N) less than or equal
to pjε . Thus, the theorem follows. For proving the first part, we employ a tight Leftover Hash Lemma proof.
And for the second part, we rely on Φ-hiding to introduce lossiness.

Notation. Here and throughout, for any n-bit string x, we use ex to denote the following product
∏
i∈[n] ei,xi .

11

Part 1. The statistical argument. Here we show that if we look at the congruent CRT representation
of the exponent (ax + b) · ex corresponding to prime factors greater pjε , then (for a randomly chosen hash
key K and input x) they are at most ε/3-statistically far from an integer that is chosen at random with the
constraint that its congruent CRT representation corresponding to prime factors less than or equal to pjε is
same as for (ax+ b) · ex. Concretely, we show that following:

Lemma 3.1. Let pi denote the ith prime, i.e. p1 = 2, p2 = 3, . . ., and ẽi = dlogpi Ne.
For every (possibly unbounded) adversary A, non-negligible function ε(·), polynomial v(·), for all λ, κ ∈ N,

satisfying κ ≥ 5λ and ε = ε(λ) > 1/v(λ), the following holds:

Pr[Expt-NewLHLA,ε(0) = 1]− Pr[Expt-NewLHLA,ε(1) = 1] ≤ ε(λ)/3,

where the experiment Expt-NewLHLA,ε is described in Figure 2.

Expt-NewLHLA,ε(β)

The challenger samples RSA modulus N ← RSA(κ), 2 group elements a, b ← ZN and 2n λ-bit primes
ei,c ← PRIMES(λ) for i ∈ [n], c ∈ {0, 1}. It then samples a bit string x← X , sets K = (a, b, {ei,c}i,c).

The challenger now computes y depending on challenge bit β in the following way.

• If β = 0, the challenger sets y = (ax+ b) · ex (mod φ(N)).

• If β = 1,

– Let the prime factorization of φ(N) be φ(N) =
∏
rkii , where ki ≥ 1, and ri’s are the distinct

prime factors arranged in an increasing order. Let `N denotes number of distinct prime
factors of φ(N).

– It then sets ỹ = (ax + b) · ex (mod φ(N)) and computes its CRT representation ỹ =
(ỹ(1), . . . , ỹ(`N)), where ỹ(i) = ỹ (mod rkii).

– The challenger then sets jε to be the smallest index such that pjε > (2
√

2 logN/ε)3. For
each for i ∈ [`N] such that ri ≤ pjε , the challenger sets y(i) = ỹ(i). For each i ∈ [`N] such
that ri > pjε , it samples y(i) ← Z

r
ki
i

.

– The challenger then computes y which has CRT representation (y(1), . . . , y(`N)).

The challenger sends (N,K, y) to the adversary. The adversary then outputs a bit β′ ∈ {0, 1}, and the
output of the experiment is set to be the same bit β′.

Figure 2: Security Game for Lemma 3.1

Proof. Let ε = ε(λ), and the event bad correspond to the scenario when at least one of the λ-bit primes
{ei,c}i,c are not co-prime w.r.t. φ(N), or a, b ≥ φ(N). Note that the probability of this event happening can

be bounded as Pr[bad] ≤ 2n · 4`Nλ
2λ

+ 2 · φ(N)
N = negl(λ). Now for the rest of the analysis, we condition on

the event ‘bad’ not happening, but do not explicitly write it for ease of exposition. That is, in the remaining
proof of this theorem we always assume that {ei,c}i,c are co-prime w.r.t. φ(N), and a, b < φ(N).

Next, consider the following simpler case. For any prime r and exponent k, consider the hash function
h(x) = (ax+b)

∏
i ei,xi (mod rk). Here a, b are sampled uniformly at random from Zrk and ei,c’s are random

λ-bit primes. We first claim the following:

Claim 3.1. For every prime r > 3, integer k ≥ 1,

Pr
a,b,{ei,c}i,c,

x 6=y

[
(ax+ b) · ex = (ay + b) · ey (mod rk)

]
≤ 1

rk

(
1 +

2k

r2/3
+
k · rk

|X |

)
.

Proof. Note that we have already conditioned on the event that all the λ-bit primes {ei,c}i,c are co-prime

w.r.t. φ(N). (This happens with all but negligible probability, thus does not affect the remaining analysis.)

12

Now fix any c ∈ Zrk . We have that if

(ax+ b) · ex = (ay + b) · ey = c =⇒ ax+ b = c · e−1
x

ay + b = c · e−1
y

=⇒ a(x− y) = c
(
e−1
x − e−1

y

)
.

Consider the following cases — (1) r - x−y, (2) r | x−y ∧ r2 - x−y, (3) . . ., (k) rk−1 | x−y ∧ rk - x−y, (k+1)

rk | x− y. We know that Prx 6=y[Case (i)] ≤ (1
ri−1 − 1

ri + ri

|X |) for i < k + 1 and Prx 6=y[Case (k + 1)] ≤ 1/rk.

Now, in case (1), for every c ∈ Zrk , there exists a unique (a, b) pair such that the aforementioned equations
are satisfied. (Because if r - x− y, then (x− y)−1 is unique and always exists.) So, we can write that

Pr
a,b

[
(ax+ b) · ex = (ay + b) · ey (mod rk)

∣∣ Case (1)
]

=
1

rk
.

Next, consider case (i) for i > 1. There are (i − 1) sub-cases — (i.1) r - ex − ey, (i.2) r | ex − ey ∧ r2 -
ex − ey, (3) . . ., (i.(i− 1)) ri−2 | ex − ey ∧ ri−1 - ex − ey, (i.i) ri−1 | ex − ey. In case (i.1), for a collision
to occur it must hold that c = 0 mod ri−1 since x − y = 0 mod ri−1 (as ri−1 | x − y). We have that the
number of such c values is rk−i+1. Now for each such c, we can solve for ri−1 pairs of solutions for (a, b).
Similarly in other cases, i.e. case (i.j) for 1 < j ≤ i, we have that number of satisfying c values in Zrk will
be rk−i+j , and for each such c there will exist ri−1 pairs of solutions for (a, b). Now, for any i, let π(ri)
denote the following probability

π(ri) = Pr
{ei,c}i,c

[
ex = ey (mod ri)

]
.

Next, combining all the above cases and sub-cases, we get the following:

Pr
a,b,{ei,c}i,c,

x 6=y

[
(ax+ b) · ex = (ay + b) · ey (mod rk)

]
≤
(

1− 1

r
+

r

|X |

)
1

rk

+

k∑
i=2

(
1

ri−1
− 1

ri
+

ri

|X |

)(
rk−i+1 · r

i−1

r2k
+ k · π(ri−1) · rk · r

i−1

r2k

)
+

1

rk

(
rk

r2k
+ k · π(rk) · rk · r

k

r2k

)
.

⇒ Pr
a,b,{ei,c}i,c,

x6=y

[
(ax+ b) · ex = (ay + b) · ey (mod rk)

]
≤ 1

rk
+

k

|X |
+

k

rk

(
1− 1

r

) k∑
i=2

π(ri−1) +
1

rk
· π(rk).

(1)

≤ 1

rk

(
1 + k ·

k∑
i=1

π(ri)

)
+

k

|X |
. (2)

Now let us try to bound the probability π(ri). Fix any x 6= y and let j∗ denote the first index such that
xj∗ 6= yj∗ . Note that,

π(ri) = Pr
{ei,c}i,c

[
ex = ey (mod ri)

]
= Pr
ej∗,xj∗

ej∗,xj∗ = ey ·
∏
j 6=j∗

e−1
j,xj

(mod ri)

 .
Next, using the theorem on bounded range prime number density in arithmetic progressions (see Corol-
lary 3.2), we get that π(ri) ≤ 1

r2i/3
.5 Therefore, we get that

k∑
i=1

π(ri) ≤ 1− r−2(k+1)/3

r2/3 − 1
≤ 2r−2/3.

5Note that here we are using a very weak upper bound. Our analysis could be further tightened, but since a weaker guarantee
is sufficient for the proof, thus we stick with it.

13

Combining this with Equation (1), we get that

⇒ Pr
a,b,{ei,c}i,c,

x 6=y

[
(ax+ b) · ex = (ay + b) · ey (mod rk)

]
≤ 1

rk

(
1 +

2k

r2/3

)
+

k

|X |
. (3)

This completes the proof of Claim 3.1.

Next, using Claim 3.1, we can claim the following.

Claim 3.2. For every prime r > 3, integer k ≥ 1, every (possibly unbounded) adversary A, the following
holds

Pr

A(rk,K, yβ) = β :

a, b← Zrk ; ei,c ← PRIMES(λ)
K = (a, b, {ei,c}i,c); x← X

y0 = (ax+ b) · ex (mod rk); y1 ← Zrk

 ≤√ k

2r2/3
+

√
krk

2|X |

Proof. The proof of this lemma is similar to the proof of Leftover Hash Lemma [HILL99, DRS04, DORS08]
where the collision probability is used as obtained in Claim 3.1. Concretely, for any prime r and exponent
k, consider the hash function H(r,k)(K(r,k), x) = (ax+ b)

∏
i ei,xi (mod rk). Here a, b are sampled uniformly

at random from Zrk and ei,c’s are random λ-bit primes. The key consists of K(r,k) = (a, b, {ei,c}i,c). Note

that hash function H(r,k) : K(r,k) ×X → Zrk .
Let δ = Pr

a,b,{ei,c}i,c,
x6=y

[
(ax+ b) · ex = (ay + b) · ey (mod rk)

]
. Now, we can write the following

SD
(

(H(r,k), H(r,k)(X)), (H(r,k), UZ
rk

)
)
≤ 1

2

√
|K(r,k)| · rk

√
δ

|K(r,k)|
+

1

|X | · |K(r,k)|
− 1

|K(r,k)| · rk

≤ 1

2

√
δ · rk − 1 +

rk

|X |

≤ 1

2

(√
δ · rk − 1 +

√
rk

|X |

)

where SD corresponds to the statistical distance. Using Claim 3.1, we can simply it further to
√

k
2r2/3

+
√

krk

2|X | .

This completes the proof of Claim 3.2.

Finally, using union bounds, congruence due to Chinese remainder theorem, and extending the analyses
of Claim 3.1 and Claim 3.2, we get the following

Pr[Expt-NewLHLA,ε(0) = 1]− Pr[Expt-NewLHLA,ε(1) = 1] ≤ Pr[Bad] +
fac(N)√

2p
2/3
jε

+

√
logN · φ(N)

2|X |

≤ negl1(λ) + ε/4 + negl2(λ) < ε/3.

Here fac(N) is the total number of prime factors of N (where factors with multiplicity > 1 are counted

multiple times) which is bounded by logN . Here to argue that
√

logN ·φ(N)
2|X | is negligible in λ, we use the

fact that input domain X = {0, 1}n is quite large, i.e. n > κ+ 2λ.

This completes the proof of the first part, which shows a tight bound on the statistical distance between the
real and intermediate hybrid distribution.

14

Part 2. The computational argument. Here we show that, using Φ-hiding, the generator g instead

of sampling uniformly at random could be sampled as g
∏jε
i=1 fi , where jε is the smallest index such that

pjε > (2
√

2 logN/ε)3. This removes information about the input x completely. Concretely, we show that
following:

Lemma 3.2. Let pi denote the ith prime, i.e. p1 = 2, p2 = 3, . . ., and ẽi = dlogpi Ne and let fi denote pẽii
for all i. Assuming the Φ-hiding assumption holds, for every PPT adversary A, non-negligible function ε(·),
polynomial v(·), for all λ, κ ∈ N, satisfying κ ≥ 5λ and ε = ε(λ) > 1/v(λ), there exists a negligible function
negl(·) such that the following holds,

Pr[Expt-CompA,ε(0) = 1]− Pr[Expt-CompA,ε(1) = 1] ≤ negl(λ),

where the experiment Expt-CompA,ε is described in Figure 3.

Expt-CompA,ε(β)

The challenger samples RSA modulus N ← RSA(κ), 2 group elements a, b ← ZN and 2n λ-bit primes
ei,c ← PRIMES(λ) for i ∈ [n], c ∈ {0, 1}, and sets K = (a, b, {ei,c}i,c). It then samples a bit string
x← X .

The challenger then sets jε to be the smallest index such that pjε > (2
√

2 logN/ε)3.

The challenger now computes (g, h) depending on challenge bit β in the following way.

• If β = 0,

– Let the prime factorization of φ(N) be φ(N) =
∏
rkii , where ki ≥ 1, and ri’s are the distinct

prime factors arranged in an increasing order. Let `N denotes number of distinct prime
factors of φ(N).

– It then sets ỹ = (ax+ b) · ex (mod φ(N)).

– For each for i ∈ [`N] such that ri ≤ pjε , the challenger sets y(i) = ỹ (mod rkii). For each
i ∈ [`N] such that ri > pjε , it samples y(i) ← Z

r
ki
i

. The challenger then computes y which

has CRT representation (y(1), . . . , y(`N)).

– It then samples a generator g ← Z∗N and sets h = gy·f1·f2 .

• If β = 1, the challenger samples generators g̃, h̃← Z∗N and sets g = g̃
∏jε
i=3 fi , h = h̃

∏jε
i=1 fi .

The challenger sends (N, g,K, h) to the adversary. The adversary then outputs a bit β′ ∈ {0, 1}, and the
output of the experiment is set to be the same bit β′.

Figure 3: Security Game for Lemma 3.2

Proof. The proof proceeds by a sequence of jε − 2 hybrids. For each 2 ≤ i∗ ≤ jε, let us define intermediate
hybrid experiment Hybrid-Comp(i∗) be same as Expt-Comp(0) except that the challenger computes (g, h) in

the following way: The challenger samples generator g̃ ← Z∗N and sets g = g̃
∏i∗
i=3 fi and h = gy·f1·f2 .

Formally, we prove the following under the Φ-hiding assumption:

Claim 3.3. Assuming the Φ-hiding assumption holds, for every PPT adversary A, there exists a negligible
function negl(·) such that for all λ, κ ∈ N, satisfying κ ≥ 5λ and every index 2 ≤ i∗ < jε, the following holds:

Pr[Hybrid-Comp(i∗) = 1]− Pr[Hybrid-Comp(i∗ + 1) = 1] ≤ negl(λ).

Proof. Suppose there exists a PPT adversary A which can distinguish between the two hybrid distributions
with non-negligible probability γ. We use A to construct a reduction algorithm B that breaks the Φ-hiding
assumption for the (i∗ + 1)th prime pi∗+1 with advantage negligibly close to γ.

The Φ-hiding challenger samples an RSA modulus N and sends to reduction algorithm B. The reduction
algorithm samples the key K by choosing parameters a, b, primes {ei,c}i,c as in the hybrid distributions. It

also chooses a random input x← X . It computes ỹ = (ax+ b)ex. (Here computation is done in an absolute

15

sense, not as modular arithmetic.) Next, B samples a generator g̃ ← Z∗N . (Here it actually samples g̃ ← ZN
and aborts whenever g /∈ Z∗N . This happens with only negligible probability.) It computes g = g̃

∏i∗+1
i=3 fi .

Next, it computes h as h = g̃ỹ
∏i∗+1
i=1 fi × h̃

∏jε
i=1 fi where h̃ ← Z∗N . Finally, it sends (N, g,K, h) to the

adversary A. If the adversary A outputs 1, then B guesses that pi∗+1 does not divide φ(N), else it guesses
that pi∗+1 | φ(N).

Let us now analyze the advantage of the reduction algorithm B. First, recall that fi∗+1 = p
ẽi∗+1

i∗+1 . Now

if pi∗+1 - φ(N), then the distributions {g̃ : g̃ ← Z∗N} and
{
g̃fi∗+1 : g̃ ← Z∗N

}
are identically distributed.

Therefore, in this case, the reduction algorithm simulates experiment Hybrid-Comp(i∗) for A. Otherwise,
if pi∗+1 | φ(N), then B simulates the experiment Hybrid-Comp(i∗ + 1) for A. (Note that in both cases it

perfectly simulates the element h as well. This is because note that the multiplicative term h̃
∏jε
i=1 fi for a

random choice of h̃ simply randomizes the congruent CRT representation corresponding to prime factors
greater than pjε . This is exactly what the distributions require, thus simulation is done perfectly.) Hence,
if A distinguishes with non-negligible probability γ, then B’s advantage in Φ-hiding is negligibly close to γ.
Thus, the lemma follows.

Lastly, to complete the proof of Lemma 3.2, we argue the following:

Claim 3.4. For any PPT adversary A and non-negligible ε,

Pr[Expt-Comp(1) = 1] = Pr[Hybrid-Comp(jε) = 1]

Note that the only difference in both the experiments is the way the element h is computed. In

Hybrid-Comp(jε), h = g̃y
∏jε
i=1 fi , whereas in Expt-Comp(1), h = h̃

∏jε
i=1 fi . We know that, y (mod rkii) is

sampled uniformly for all i such that ri > pjε . Therefore, the distribution of y ·
∏jε
i=1 fi is identical to

y′ ·
∏jε
i=1 fi, where y′ ← Zφ(N). As the distribution of {gy′ : y′ ← Zφ(N)} is identical to the distribution

h̃← Z∗N , the claim follows.
Finally, combining above Claim 3.3 and Claim 3.4, the Lemma 3.2 follows.

Lastly, by combining Lemmas 3.1 and 3.2, we obtain the proof of Theorem 3.2.

3.2.1 Strengthening the Hash Lemma

In this section, we briefly provide a slight strengthening of the Theorem 3.2 where we argue that the
indistinguishability holds even if the input x ∈ X , instead of being sampled uniformly at random, is sampled
from any arbitrary distribution with certain min-entropy. Formally, we prove the following.

Theorem 3.3. Let pi denote the ith prime, i.e. p1 = 2, p2 = 3, . . ., and ẽi = dlogpi Ne. And, let fi denote

pẽii for all i.
Assuming the Φ-hiding assumption holds, for every PPT adversary A, non-negligible function ε(·), poly-

nomial v(·), for all λ, κ ∈ N, satisfying κ ≥ 5λ and ε = ε(λ) > 1/v(λ), and every (m,n)-source S over X
such that n−m = O(log λ), the following holds,

Pr[Expt-Hashing-SmoothA,S,ε(0) = 1]− Pr[Expt-Hashing-SmoothA,S,ε(1) = 1] ≤ ε(λ)/2,

where the experiment Expt-Hashing-Smooth is described in Figure 4.

Proof. The proof of the above theorem is nearly identical to the proof of Theorem 3.2, where we need
to slightly adapt the statistical argument to account for the entropy loss. Here we briefly highlight the
modifications necessary for proving the above theorem.

Similar to the proof of Theorem 3.2, we first prove the following statistical argument:

16

Expt-Hashing-SmoothA,S,ε(β)

The challenger samples RSA modulus N ← RSA(κ), 2 group elements a, b ← ZN and 2n λ-bit primes
ei,c ← PRIMES(λ) for i ∈ [n], c ∈ {0, 1}. The challenger sets K = (a, b, {ei,c}i,c).

The challenger now samples (g, y) depending on bit β in the following way.

— If β = 0, the challenger samples a generator g ← Z∗N and a bit string x ← S and computes
y = HK(x)f1·f2 .

— If β = 1, the challenger samples generators g̃, h ← Z∗N . It then sets jε to be the smallest index

such that pjε > (2n−m+2 logN/ε)3 and computes g = g̃
∏jε
i=3 fi and y = h

∏jε
i=1 fi .

The challenger sends (N, g,K, y) to the adversary. The adversary then outputs a bit β′, and the output of
the experiment is set to be the same bit β′.

Figure 4: Security experiment for Smooth Hashing Lemma (Theorem 3.3)

Lemma 3.3. Let pi denote the ith prime, i.e. p1 = 2, p2 = 3, . . ., and ẽi = dlogpi Ne.
For every (possibly unbounded) adversary A, non-negligible function ε(·), polynomial v(·), for all λ, κ ∈ N,

satisfying κ ≥ 5λ and ε = ε(λ) > 1/v(λ), and every (m,n)-source S over X such that n−m = O(log λ), the
following holds,

Pr[Expt-NewLHL-SmoothA,ε(0) = 1]− Pr[Expt-NewLHL-SmoothA,ε(1) = 1] ≤ ε(λ)/3,

where the experiment Expt-NewLHL-SmoothA,ε is described in Figure 5.

Expt-NewLHL-SmoothA,ε(β)

The challenger samples RSA modulus N ← RSA(κ), 2 group elements a, b ← ZN and 2n λ-bit primes
ei,c ← PRIMES(λ) for i ∈ [n], c ∈ {0, 1}. It then samples a bit string x← X , sets K = (a, b, {ei,c}i,c).

The challenger now computes y depending on challenge bit β in the following way.

• If β = 0, the challenger sets y = (ax+ b) · ex (mod φ(N)).

• If β = 1,

– Let the prime factorization of φ(N) be φ(N) =
∏
rkii , where ki ≥ 1, and ri’s are the distinct

prime factors arranged in an increasing order. Let `N denotes number of distinct prime
factors of φ(N).

– It then sets ỹ = (ax + b) · ex (mod φ(N)) and computes its CRT representation ỹ =
(ỹ(1), . . . , ỹ(`N)), where ỹ(i) = ỹ (mod rkii).

– The challenger then sets jε to be the smallest index such that pjε > (2n−m+2 logN/ε)3. For
each for i ∈ [`N] such that ri ≤ pjε , the challenger sets y(i) = ỹ(i). For each i ∈ [`N] such
that ri > pjε , it samples y(i) ← Z

r
ki
i

.

– The challenger then computes y which has CRT representation (y(1), . . . , y(`N)).

The challenger sends (N,K, y) to the adversary. The adversary then outputs a bit β′ ∈ {0, 1}, and the
output of the experiment is set to be the same bit β′.

Figure 5: Security Game for Lemma 3.3

Proof. The proof of the above theorem is nearly identical to the proof of Lemma 3.1, with the following
changes. Here the bad events, as well as all the cases (and sub-cases), are identically defined. The difference
is that first, we need to prove an alternate version of Claim 3.1, where the inputs x, y are now sampled as
per S instead.

17

Claim 3.5. For every prime r > 3, integer k ≥ 1,

Pr
a,b,{ei,c}i,c,
x,y←S,
x 6=y

[
(ax+ b) · ex = (ay + b) · ey (mod rk)

]
≤ 1

rk

(
1 +

2n−m+1k

r2/3
+

2n−mrkk

|X |

)
.

Proof. The proof of this lemma is identical to that of Claim 3.1, except the probability that any of the cases
(1) to (k + 1) occur gets amplified by a multiplicative factor of 2n−m. This simply follows directly from the
fact that the min-entropy of S is m and the length of inputs is n bits. Concretely, now we will have the
following:

Pr
x,y←S,
x 6=y

[Case (1)] ≤ 1− 2n−m

r
+

2n−mr

|X |
,

For 1 < i < k + 1, Pr
x,y←S,
x 6=y

[Case (i)] ≤ 2n−m
(

1

ri−1
− 1

ri
+

ri

|X |

)
,

Pr
x,y←S,
x 6=y

[Case (k + 1)] ≤ 2n−m

rk

Now the rest of analysis follows analogously where the only difference is that we have to take this extra multi-
plicative factor of 2n−m into account in every equation. Thus, following the analysis instead of Equation (3),
we get the following:

Pr
a,b,{ei,c}i,c,
x,y←S,
x 6=y

[
(ax+ b) · ex = (ay + b) · ey (mod rk)

]
≤ 1

rk

(
1 +

2n−m+1k

r2/3

)
+

2n−mk

|X |
. (4)

This completes the proof of Claim 3.5.

Next, using Claim 3.5, (as before) we can claim the following.

Claim 3.6. For every prime r > 3, integer k ≥ 1, every (possibly unbounded) adversary A, the following
holds

Pr

A(rk,K, yβ) = β :

a, b← Zrk ; ei,c ← PRIMES(λ)
K = (a, b, {ei,c}i,c); x← S

y0 = (ax+ b) · ex (mod rk); y1 ← Zrk

 ≤ 2(n−m)/2

(√
k

2r2/3
+

√
krk

2|X |

)
.

Proof. The proof of this lemma is similar to that of Claim 3.2. Concretely, when the input x is drawn as
x← S. We can write the following. Let δ = Pr

a,b,{ei,c}i,c,
x,y←S,
x 6=y

[
(ax+ b) · ex = (ay + b) · ey (mod rk)

]
.

SD
(

(H(r,k), H(r,k)(X)), (H(r,k), UZ
rk

)
)
≤ 1

2

√
|K(r,k)| · rk

√
δ

|K(r,k)|
+

2n−m

|X | · |K(r,k)|
− 1

|K(r,k)| · rk

≤ 1

2

√
δ · rk − 1 +

2n−mrk

|X |

≤ 1

2

(√
δ · rk − 1 +

√
2n−mrk

|X |

)

Using Claim 3.5, we can simply it further to
√

2n−mk
2r2/3

+
√

2n−mrkk
2|X | . This completes the proof of Claim 3.6.

18

Finally, using union bounds, congruence due to Chinese remainder theorem, and extending the analyses
of Claim 3.5 and Claim 3.6, we get the following

Pr[Expt-NewLHL-SmoothA,ε(0) = 1]−Pr[Expt-NewLHL-SmoothA,ε(1)]

≤ Pr[Bad] +
2(n−m)/2fac(N)√

2p
2/3
jε

+

√
2n−m logN · φ(N)

2|X |

≤ negl1(λ) + ε/4 + negl2(λ) < ε/3.

Here fac(N) is the total number of prime factors of N (where factors with multiplicity > 1 are counted

multiple times) which is bounded by logN . Here to argue that
√

2n−m logN ·φ(N)
2|X | is negligible in λ, we use

the fact that input domain X = {0, 1}n is quite large, i.e. n > κ+ 2λ.

This completes the proof of the first part, which shows a tight bound on the statistical distance between the
real and intermediate hybrid distribution.

Finally, to complete the proof of Theorem 3.3, we prove using the Φ-hiding assumption the computational
part of the argument. Concretely, we show that following:

Lemma 3.4. Let pi denote the ith prime, i.e. p1 = 2, p2 = 3, . . ., and ẽi = dlogpi Ne and let fi denote pẽii
for all i. Assuming the Φ-hiding assumption holds, for every PPT adversary A, non-negligible function ε(·),
polynomial v(·), for all λ, κ ∈ N, satisfying κ ≥ 5λ and ε = ε(λ) > 1/v(λ), and every (m,n)-source S over
X such that n−m = O(log λ), there exists a negligible function negl(·) such that the following holds,

Pr[Expt-Comp-SmoothA,ε(0) = 1]− Pr[Expt-Comp-SmoothA,ε(1) = 1] ≤ negl(λ),

where the experiment Expt-Comp-SmoothA,ε is described in Figure 6.

Expt-Comp-SmoothA,ε(β)

The challenger samples RSA modulus N ← RSA(κ), 2 group elements a, b ← ZN and 2n λ-bit primes
ei,c ← PRIMES(λ) for i ∈ [n], c ∈ {0, 1}, and sets K = (a, b, {ei,c}i,c). It then samples a bit string
x← X .

The challenger then sets jε to be the smallest index such that pjε > (2n−m+2 logN/ε)3.

The challenger now computes (g, h) depending on challenge bit β in the following way.

• If β = 0,

– Let the prime factorization of φ(N) be φ(N) =
∏
rkii , where ki ≥ 1, and ri’s are the distinct

prime factors arranged in an increasing order. Let `N denotes number of distinct prime
factors of φ(N).

– It then sets ỹ = (ax+ b) · ex (mod φ(N)).

– For each for i ∈ [`N] such that ri ≤ pjε , the challenger sets y(i) = ỹ (mod rkii). For each
i ∈ [`N] such that ri > pjε , it samples y(i) ← Z

r
ki
i

. The challenger then computes y which

has CRT representation (y(1), . . . , y(`N)).

– It then samples a generator g ← Z∗N and sets h = gy·f1·f2 .

• If β = 1, the challenger samples generators g̃, h̃← Z∗N and sets g = g̃
∏jε
i=3 fi , h = h̃

∏jε
i=1 fi .

The challenger sends (N, g,K, h) to the adversary. The adversary then outputs a bit β′ ∈ {0, 1}, and the
output of the experiment is set to be the same bit β′.

Figure 6: Security Game for Lemma 3.4

19

The proof of above lemma is identical to that of Lemma 3.2, and follows via a sequence of hybrids. Lastly,
by combining Lemmas 3.3 and 3.4, Theorem 3.3 follows.

3.3 Φ-Hiding based Extractor Lemma

In this section, we prove a useful lemma that will aid in proving the security of our Φ-hiding based con-
structions later. This has appeared (and implicitly used) in most existing Φ-hiding based works. Here we
abstract it out for ease of exposition.

Let Ext : ZN×S→ Y be a (λ−1, ε) strong extractor, where ε is negligible in the parameter λ. Informally,
the lemmas states that, for every λ-bit prime e, applying extractor on an eth root of a generator g ∈ Z∗N is
indistinguishable from random. Formally, we claim the following:

Lemma 3.5. Assuming the Φ-hiding assumption holds, then for every admissible stateful PPT adversary
A, there exists a negligible function negl(·) such that for all λ, κ ∈ N, such that κ ≥ 5λ, the following hold,

Pr

A(yb) = b :

N ← RSA(κ); s← S
e← PRIMES(λ); g ← Z∗N
F ← A(N, s, e, g); b← {0, 1}
y0 = Ext(gF/e, s); y1 ← Y

 ≤ negl(λ),

where A is an admissible adversary as long as e - F .

Proof. The proof of this lemma follows a simple sequence of hybrids. First, using Φ-hiding we can indistin-
guishably switch to sampling (e,N) such that e | φ(N). Once we have that e | φ(N), we know that there
will exist e eth-roots of generator g with all but negligible probability. Thus, using the strong extractor
guarantee, we get that y0 is indistinguishable from random.

Claim 3.7. Assuming the Φ-hiding assumption holds, then for every admissible stateful PPT adversary A,
there exists a negligible function negl(·) such that for all λ, κ ∈ N, such that κ ≥ 5λ, the following holds

Pr

A(yb) = b :

N ← RSA(κ); s← S
e← PRIMES(λ); g ← Z∗N
F ← A(N, s, e, g); b← {0, 1}
y0 = Ext(gF/e, s); y1 ← Y

− Pr

A(yb) = b :

e← PRIMES(λ); s← S
N ← RSAe(κ); h← Z∗N

F ← A(N, s, e, he); b← {0, 1}
y0 = Ext(hF , s); y1 ← Y

 ≤ negl(λ),

where A is an admissible adversary as long as e - F .

Proof. The proof of this lemma follows directly from the Φ-hiding assumption. Suppose there exists a PPT
adversary A such that can distinguish between the two hybrid distributions with non-negligible probability
γ. We use A to construct a reduction algorithm B that breaks the Φ-hiding assumption. Let e be a randomly
chosen λ-bit prime. The Φ-hiding challenger samples an RSA modulus N and sends to reduction algorithm
B. Given inputs N, e, the reduction algorithm samples a random seed s, and element h ← Z∗N . (Here it
actually samples h ← ZN and aborts whenever h /∈ Z∗N . This happens with only negligible probability.)
Next, it computes generator as g = he, and sends parameters (N, s, e, g) to A. The adversary A sends an
integer F to B, and B first samples a random bit b, output y1 ← Y, and computes y0 = Ext(hF , s). B sends
yb as the challenge to the adversary A. If the adversary A outputs b, then B guesses that e - φ(N), else it
guesses that e | φ(N).

Let us now analyze the advantage of the reduction algorithm B. Note that if e - φ(N), then the dis-
tributions

{
(g, gF/e) : g ← Z∗N

}
and

{
(he, hF) : h← Z∗N

}
are identically distributed as long as e - F .

20

Therefore, the reduction algorithm perfectly simulates the hybrid distributions for A depending on whether
e | φ(N) or not. Hence, if A distinguishes with non-negligible probability γ, then B’s advantage in Φ-hiding
is also γ. Thus, the claim follows.

Claim 3.8. If Ext is a (λ − 1, ε) strong extractor, where ε is negligible in the parameter λ, then for every
admissible stateful adversary A, there exists a negligible function negl(·) such that for all λ, κ ∈ N, such that
κ ≥ 5λ, the following holds

Pr

A(yb) = b :

e← PRIMES(λ); s← S
N ← RSAe(κ); h← Z∗N

F ← A(N, s, e, he); b← {0, 1}
y0 = Ext(hF , s); y1 ← Y

 ≤ negl(λ),

where A is an admissible adversary as long as e - F .

Proof. This follows directly from the strong extractor guarantee of Ext. The proof relies on the fact that
for any given element h ∈ Z∗N , there exists e − 1 other distinct elements h̃ ∈ Z∗N , such that he = h̃e when
e | φ(N). Concretely, for any h ∈ Z∗N , prime e, and integer F such that e - F , let Se,h and Te,h,F denote the
following sets:

Se,h =
{
h̃ ∈ Z∗N : he = h̃e

}
, Te,h,F =

{
h̃ ∈ Z∗N : h̃ = gF , g ∈ Se,h

}
.

Let De,h,F denote the uniform distribution over Te,h,F . Note that De,h,F has min-entropy log2 e > λ − 1,
since e is a λ-bit prime. Therefore, by extractor security the claim follows since ε is negligible.

From Claims 3.7 and 3.8, the lemma follows.

4 Hinting PRGs based on Φ-Hiding

In this section, we provide our (n, `)-hinting PRG (HPRG) construction based on the Φ-hiding assumption.
For an RSA modulus N and parameters λ, `, let Ext : ZN × S → {0, 1}` be a (λ − 1, εext) strong extractor,
where εext is negligible in the parameter λ.6 Below we describe our construction.

Setup(1λ)→ (pp, n). The setup algorithm takes as input the security parameter λ. It sets RSA modulus bit
length κ = 5λ and number of blocks n = κ+ 2λ.

Next, it samples modulus N as N ← RSA(κ), seed s← S, generator g ← Z∗N , 2n (λ-bit) primes {ei,b}i,b
as ei,b ← PRIMES(λ) for (i, b) ∈ [n]×{0, 1}, and elements d0, d1 ← ZN . Finally, it outputs the public

parameters pp as pp =
(
N, s, g, {ei,b}i,b , d0, d1

)
.

Eval(pp, x, j)→ y. Let pp =
(
N, s, g, {ei,b}i,b , d0, d1

)
. The evaluation algorithm proceeds as follows. Let

ẽ1 = dlog2Ne, ẽ2 = dlog3Ne, and f1 = 2ẽ1 , f2 = 3ẽ2 .

It computes h = gf1·f2·(d0x+d1)
∏
i∈[n]\{j} ei,xi (mod N), and outputs y = Ext(h, s).

6Note that such an extractor exists when ` < cλ for any fixed constant c. The Hinting PRG construction can be extended
for ` ≥ λ by using standard PRG.

21

4.1 Optimization by Sharing Computation

A näıve method of computing Eval(pp, x, j) for all indices j involves O(n2) exponentations. However, a
significant amount of these exponentiations are redundant. This is because for any indices j1 6= j2, most
of the operations involved in computing Eval(pp, x, j1) and Eval(pp, x, j2) are same. We now describe an
efficient procedure that computes Eval(pp, x, j) for all indices j using only O(n log n) exponentiations. We
use the technique of dynamic programming to achieve the optimization. Consider the recursive procedure
described in Algorithm 1. The procedure takes as input a base generator h, an integer n, a list of exponents
exp of length n and RSA modulus N . It outputs a list [h

∏
i6=j expi mod N]j∈[n]. In order to compute

Eval(pp, x, j) for all j, we invoke the procedure ComputeHPRG on generator h = gf1·f2·(d0x+d1) and exponents
exp = [ei,xi]i∈[n]. The procedure ComputeHPRG divides the list of exponents into groups of 2, multiplies
the exponents in each group and obtains the list subexp. It then recurses on the smaller list of exponents
subexp, and then uses its output to compute [h

∏
i6=j expi mod N]j∈[n]. Let us now analyze the total time

taken by the algorithm. Initially the ComputeHPRG procedure is invoked on the list exp consisting of n λ-bit
exponents [ei,xi]i∈[n]. The procedure involves n exponentiations with λ bit exponents (Lines 8-10) and calls
the ComputeHPRG procedure recursively on n/2 2λ-bit exponents subexp (Multiplying numbers as in Line
5 is asymptotically faster than exponentiation and therefore we ignore the time required for this operation
for the sake of simplicity). Similarly, the ith recursively call to the ComputeHPRG procedure involves n/2i

exponentiations with 2i · λ bit exponents. As the computational effort required for this is same as the
performing n exponentiations with λ bit exponents, and as there can be at most log n recursive calls, the
algorithm totally involves O(n log n) exponentiations with λ bit exponents.

Algorithm 1 Recursive procedure for computing HPRG

1: procedure ComputeHPRG(generator h, int n, list exp, int N)
2: if n = 1 then return [h]
3: else if n = 2 then return [hexp2 mod N, hexp1 mod N]
4: else
5: subexp← [exp2·i−1 · exp2·i]1≤i≤bn/2c
6: if n mod 2 = 1 then subexp← subexp||expn
7: suboutput← ComputeHPRG(h, dn/2e, subexp)
8: for 1 ≤ i ≤ 2 · bn/2c do
9: if i mod 2 = 0 then outputi = suboutput

expi−1

di/2e mod N

10: else if i mod 2 = 1 then outputi = suboutput
expi+1

di/2e mod N

11: if n mod 2 = 1 then output← output||suboutputdn/2e
return output

4.2 Security

Now we prove that the construction described above is a secure HPRG. Formally, we prove the following.

Theorem 4.1. If the Φ-hiding assumption (Assumption 1) holds, then the HPRG construction described
above is secure as per Definition 2.4.

Proof. First, we introduce some useful notations. For any sequence {ei,b}i,b and string x ∈ {0, 1}n, we use

ex as a shorthand for the subset product
∏n
i=1 ei,xi . Let pi denote the ith (smallest) prime, i.e. p1 = 2, p2 =

3, . . ., and ẽi = dlogpi Ne for all i. And, let fi denote pẽii for all i. For any constant ε > 0, let jε be the

smallest index such that pjε > (2
√

2 logN/ε)3. Now we describe our proof.
The proof of security follows via a sequence of hybrids. Below we first describe the sequence of hybrids

and later argue indistinguishability to complete the proof. At a very high level, the proof structure is
somewhat similar to that used in [Zha16], where for proving security one first assumes (for the sake of

22

contradiction) that the adversary wins with some non-negligible probability δ and then depending upon δ,
one could describe a sequence of hybrids such that no PPT adversary can win with probability more than
δ. This acts as a contradiction, thereby completing the proof.

Intuitively, the main idea is to first switch the randomly sampled terms y0
j,1−xj to be instead sampled

in a very structured way where y0
j,1−xj = Ext(hj,1−xj , s) and hj,1−xj = g

f1·f2·(d0x+d1)e−1
j,1−xj

∏
i∈[n] ei,xi . This

follows from the Φ-hiding based extractor lemma (Lemma 3.5). Next, using our new hashing lemma (Theo-

rem 3.2), we now instead of computing gf1·f2·(d0x+d1)
∏
i∈[n] ei,xi , sample z ← Z∗N and compute z

∏jε
k=1 fk . In

the next hybrid, we replace challenge with random elements in Z∗N using the Φ-hiding based extractor lemma
(Lemma 3.5). Concretely, Hybrid 1 corresponds to HPRG game where the challenger always chooses β = 0,
i.e. samples half of the challenge matrix as appropriate functions of the seed x and remaining randomly.
Hybrid 4 corresponds to HPRG game where the challenger always chooses β = 1, i.e. challenge matrix
consists of random entries.

For any PPT adversary A, let the probability that A outputs 1 in Hybrid t be denoted as pAt . For the sake
of contradiction, we assume that the adversary A wins with non-negligible probability δ(λ), which suggests
that pA1 −pA4 = δ(λ). This means that there exists a polynomial v(·) such that δ(λ) ≥ 1/v(λ) infinitely often
for λ ∈ N. Let ε(λ) = 1/v(λ). We will drop the dependence on λ whenever clear from context.7

Hybrid 1. This is same as the original HPRG game, where the challenger always chooses β = 0.

1. The challenger sets κ = 5λ, n = κ+2λ. It samples the public parameters pp =
(
N, s, g, {ei,b}i,b , d0, d1

)
as:

N ← RSA(κ), d0, d1 ∈ ZN , g ∈ Z∗N , s← S, ei,b ← PRIMES(λ) (∀ (i, b) ∈ [n]× {0, 1}).

2. Next, it samples a random HPRG seed x← {0, 1}n, computes the HPRG challenge (y0, {yi,b}i,b) as:

y0 = Ext(gf1·f2·(d0x+d1)ex , s),

∀ i ∈ [n], yi,xi = Ext(gf1·f2·(d0x+d1)exe
−1
i,xi , s),

∀ i ∈ [n], yi,1−xi ← {0, 1}`.

3. The challenger sends public parameters pp, n and the challenge (y0, {yi,b}i,b) to the adversary. Finally,
the adversary outputs a bit β′.

Hybrid 1.i∗ (i∗ ∈ [n]). This hybrid is same as hybrid 1, except that the challenger chooses yi,1−xi in a
structured way for all i ≤ i∗.

2. Next, it samples a random HPRG seed x← {0, 1}n, computes the HPRG challenge (y0, {yi,b}i,b) as:

y0 = Ext(gf1·f2·(d0x+d1)ex , s),

∀ i ∈ [n], yi,xi = Ext(gf1·f2·(d0x+d1)exe
−1
i,xi , s),

∀ i ∈ [i∗], yi,1−xi = Ext(gf1·f2·(d0x+d1)exe
−1
i,1−xi , s),

∀ i ∈ [n] \ [i∗], yi,1−xi ← {0, 1}`.

Note that the challenger knows φ(N), thus it can compute all the necessary inverses.

7Note that, throughout the analysis, we provide a non-uniform reduction where the description of hybrids and the reduction
algorithm depends upon ε. Note that one could instead avoid such a non-uniform choice by first running the adversary
sufficiently many times to estimate the advantage ε as ε̃, and later on, use the estimated advantage ε̃ instead. Therefore, for
ease of exposition, we simply give a non-uniform reduction.

23

Hybrid 2. This hybrid is similar to Hybrid 1.n, except none of the challenge terms have any dependence
on the HPRG seed x.

1. The challenger sets κ = 5λ, n = κ+2λ. It samples the public parameters pp =
(
N, s, g, {ei,b}i,b , d0, d1

)
as:

N ← RSA(κ), d0, d1 ∈ ZN , s← S, ei,b ← PRIMES(λ) (∀ (i, b) ∈ [n]× {0, 1}),

h ∈ Z∗N , g = h
∏jε
k=3 fk .

2. Next, it samples a random HPRG seed x← {0, 1}n, computes the HPRG challenge (y0, {yi,b}i,b) as:

z ← Z∗N ,

y0 = Ext(z
∏jε
k=1 fk , s),

∀ i ∈ [n], b ∈ {0, 1}, yi,b = Ext(ze
−1
i,b

∏jε
k=1 fk , s).

Hybrid 3.i∗.b∗ (i∗ ∈ [n], b∗ ∈ {0, 1}). This hybrid is similar to Hybrid 2, except that the challenger chooses
yi,b randomly for all (i, b) � (i∗, b∗).8

2. Next, it samples a random HPRG seed x← {0, 1}n, computes the HPRG challenge (y0, {yi,b}i,b) as:

z ← Z∗N ,

y0 = Ext(z
∏jε
k=1 fk , s),

∀ (i, b) � (i∗, b∗), yi,b ← {0, 1}`,

∀ (i, b) � (i∗, b∗), yi,b = Ext(ze
−1
i,b

∏jε
k=1 fk , s).

Hybrid 4. This hybrid is similar to Hybrid 3.n.1 except that y0 is also generated randomly.

2. Next, it samples a random HPRG seed x← {0, 1}n, computes the HPRG challenge (y0, {yi,b}i,b) as:

y0 ← {0, 1}`,
∀ i ∈ [n], b ∈ {0, 1}, yi,b ← {0, 1}`.

Now we argue indistinguishability between the hybrids described above. Below we use Hybrid 1.0 to
correspond to Hybrid 1, and Hybrid 3.0.1 to correspond to Hybrid 2.

Lemma 4.1. Assuming the Φ-hiding assumption holds, then for every PPT adversary A, there exists a
negligible function negl(·) such that for all λ ∈ N, i∗ ∈ [n], pA1.(i∗−1) − p

A
1.i∗ ≤ negl(λ).

Proof. The proof of this lemma follows directly from our Φ-hiding based extractor lemma (Lemma 3.5).
Suppose that A distinguishes between Hybrids 1.(i∗−1) and 1.i∗ with non-negligible probability γ, for some
i∗ ∈ [n]. We use A to build a reduction algorithm B that violates our Φ-hiding based extractor lemma,
thereby leading us to a contradiction. Below we provide more details.

The reduction algorithm B first receives the parameters (N, s, e, g̃) where e is a λ-bit prime and g̃ is a
random element in Z∗N . B then samples parameters d0, d1 and HPRG seed x randomly as in Hybrid 1. It
also samples primes ei,b for all (i, b) 6= (i∗, 1 − xi∗) as in Hybrid 1. It sets ei∗,1−xi∗ , g as ei∗,1−xi∗ = e and

g = g̃
∏
i<i∗ ei,1−xi . Now it sets the public parameters pp as pp =

(
N, s, g, {ei,b}i,b , d0, d1

)
. Next, B sets

exponent F as F = f1 · f2 · (d0x+ d1)ex. If e | F , then B aborts and guesses randomly, otherwise it sends F

8Here and throughout this section, � is a shorthand for the following relation: (i, b) � (i∗, b∗) ≡ i < i∗ ∨ (i = i∗ ∧ b ≤ b∗).
And, � is analogously defined, but as the converse of �.

24

to the challenger and continues. The challenger responds with a challenge bit string y, and then B computes
the HPRG challenge (y0, {yi,b}i,b) as:

y0 = Ext(gf1·f2·(d0x+d1)ex , s),

∀ i ∈ [n], yi,xi = Ext(gf1·f2·(d0x+d1)
∏
j 6=i ej,xj , s),

∀ i ∈ [i∗ − 1], yi,1−xi = Ext(g̃f1·f2·(d0x+d1)ex
∏
j<i∗∧j 6=i ej,1−xj , s),

yi∗,1−xi∗ = y,

∀ i ∈ [n] \ [i∗], yi,1−xi ← {0, 1}`.

Finally, B sends pp, n and (y0, {yi,b}i,b) to A, and A outputs its guess β′. If β′ = 1, then B outputs 0 (i.e.,

y is computed honestly) as its guess, otherwise it outputs 1 (i.e., y is random bit string) as its guess.
Let us now analyze the advantage of the reduction algorithm B. First, note that B samples d0, d1, x and

ei,b for (i, b) 6= (i∗, 1 − xi∗) randomly (from appropriate distributions). Therefore, we have that the event
e | F occurs with only negligible probability since e is a random λ-bit prime, thus B aborts with atmost
negligible probability. Second, since ei,1−xi are randomly drawn λ-bit primes for i 6= i∗, thus sampling g as
g = g̃

∏
i<i∗ ei,1−xi , g̃ ← Z∗N instead of g ← Z∗N is statistically indistinguishable. Therefore, B simulates one of

hybrids 1.(i∗− 1) and 1.i∗ (in a statistically indistinguishable way) depending upon whether the challenge y
is computed as y = Ext(g̃F/e, s) or y ← {0, 1}`. Hence, if A distinguishes with non-negligible probability γ,
then B’s advantage is also negligibly close to γ. Thus, the lemma follows.

Lemma 4.2. Assuming the Φ-hiding assumption holds, then for every PPT adversary A, there exists a
negligible function negl(·) such that for all λ ∈ N, satisfying δ(λ) ≥ ε(λ) = 1/v(λ), pA1.n − pA2 ≤ ε(λ)/2 +
negl(λ).

Proof. The proof of this lemma follows directly from our new hashing lemma (Theorem 3.2). Suppose that
A distinguishes between Hybrids 1.n and 2 with probability ε/2 + γ, where γ is non-negligible. We use A to
build a reduction algorithm B that violates the security requirement of our new hash lemma, thereby leading
us to a contradiction. Below we provide more details.

The reduction algorithm B first receives the parameters (N, g̃,K, y), where K = (d0, d1, {ei,b}i,b). B then

samples an extractor seed s randomly. It computes exponent E =
∏
i,b ei,b and generator g = g̃E , and it

sets the public parameters pp as pp =
(
N, s, g, {ei,b}i,b , d0, d1

)
. Next, B computes the HPRG challenge

(y0, {yi,b}i,b) as:

y0 = Ext(yE , s),

∀ i ∈ [n], b ∈ {0, 1}, yi,b = Ext(y
∏

(j,c)6=(i,b) ej,c , s).

Finally, B sends pp, n and (y0, {yi,b}i,b) to A, and A outputs its guess β′. If β′ = 1, then B outputs 0 (i.e.,

y is computed honestly) as its guess, otherwise it outputs 1 (i.e., y is random bit string) as its guess.
Let us now analyze the advantage of the reduction algorithm B. First, note that the challenger samples

all the primes ei,b’s randomly, thus we have that with all-but-negligible probability, all ei,b’s are co-prime
w.r.t. φ(N). Therefore, sampling g as g = g̃E , g̃ ← Z∗N instead of g ← Z∗N is statistically indistinguishable.

Similarly, sampling g as g = g̃E , g̃ = h
∏jε
k=3 fk , h ← Z∗N instead of g = g̃

∏jε
k=3 fk , g̃ ← Z∗N is statistically

indistinguishable. Therefore, B simulates one of hybrids 1.n and 2 (in a statistically indistinguishable way)

depending upon whether the challenge y is computed as y = g̃f1·f2·(d0x+d1)ex for a random x, or y = z
∏jε
k=1 fk

for a random z ∈ Z∗N . Hence, if A distinguishes with non-negligible probability ε/2 + γ, then B’s advantage
is also negligibly close to ε/2 + γ. Thus, the lemma follows.

Lemma 4.3. Assuming the Φ-hiding assumption holds, then for every PPT adversary A, there exists a
negligible function negl(·) such that for all λ ∈ N, i∗ ∈ [n], pA3.i∗.0 − pA3.i∗.1 ≤ negl(λ).

25

Proof. The proof of this lemma follows directly from our Φ-hiding based extractor lemma (Lemma 3.5) and
is quite similar to the proof of Lemma 4.1. Suppose that A distinguishes between Hybrids 3.i∗.0 and 3.i∗.1
with non-negligible probability γ, for some i∗ ∈ [n]. We use A to build a reduction algorithm B that violates
our Φ-hiding based extractor lemma, thereby leading us to a contradiction. Below we provide more details.

The reduction algorithm B first receives the parameters (N, s, e, g̃) where e is a λ-bit prime and g̃ is
a random element in Z∗N . B then samples parameters d0, d1 and HPRG seed x randomly as in Hybrid
2. It also samples primes ei,b for all (i, b) 6= (i∗, 1) as in Hybrid 2. It sets ei∗,1 as ei∗,1 = e and samples

g ← Z∗N . Now it sets the public parameters pp as pp =
(
N, s, g, {ei,b}i,b , d0, d1

)
. Next, B sets exponent F

as F =
∏jε
k=1 fk

∏
i>i∗,b∈{0,1} ei,b. If e | F , then B aborts and guesses randomly, otherwise it sends F to the

challenger and continues. The challenger responds with a challenge bit string y, and then B computes the
HPRG challenge (y0, {yi,b}i,b) as:

z = g̃
∏
i>i∗,b∈{0,1} ei,b ,

y0 = Ext(z
∏jε
k=1 fk , s),

∀ (i, b) � (i∗, 0), yi,b ← {0, 1}`,
yi∗,1 = y,

∀ (i, b) � (i∗, 1), yi,b = Ext(g̃
∏jε
k=1 fk

∏
(j,c)6=(i,b)∧j>i∗,c∈{0,1} ej,c , s).

Finally, B sends pp, n and (y0, {yi,b}i,b) to A, and A outputs its guess β′. If β′ = 1, then B outputs 0 (i.e.,

y is computed honestly) as its guess, otherwise it outputs 1 (i.e., y is random bit string) as its guess.
Let us now analyze the advantage of the reduction algorithm B. First, note that B samples ei,b for

(i, b) 6= (i∗, 1) randomly, thus we have that the event e | F occurs with only negligible probability since e
is a random λ-bit prime. So, B aborts with atmost negligible probability. Second, since ei,b are randomly

drawn λ-bit primes for i > i∗, thus sampling z as z = g̃
∏
i>i∗,b ei,b , g̃ ← Z∗N instead of z ← Z∗N is statistically

indistinguishable. Therefore, B simulates one of hybrids 3.i∗.0 and 3.i∗.1 (in a statistically indistinguishable
way) depending upon whether the challenge y is computed as y = Ext(g̃F/e, s) or y ← {0, 1}`. Hence, if A
distinguishes with non-negligible probability γ, then B’s advantage is also negligibly close to γ. Thus, the
lemma follows.

Lemma 4.4. Assuming the Φ-hiding assumption holds, then for every PPT adversary A, there exists a
negligible function negl(·) such that for all λ ∈ N, i∗ ∈ [n], pA3.(i∗−1).1 − p

A
3.i∗.0 ≤ negl(λ).

Proof. The proof of this lemma is identical to the proof of Lemma 4.3.

Lemma 4.5. For every adversary A, there exists a negligible function negl(·) such that for all λ ∈ N,
pA3.n.1 − pA4 ≤ negl(λ).

Proof. This follows directly from the strong extractor guarantee of Ext. Let S ⊂ Z∗N denote the set{
z ∈ Z∗N : z = z̃

∏jε
k=1 fk ∧ z̃ ∈ Z∗N

}
. Now sinceN is an RSA modulus of bit length κ, we have that log2 |S| ≥ λ

with all-but-negligible probability. Note that y0 is sampled as y0 = Ext(z, s) where z ← S. Thus, by extrac-
tor security, given log2 |S| ≥ λ, the claim follows since εext is negligible.

Combining Lemmas 4.1 to 4.5, we get that pA1 − pA4 ≤ ε(λ)/2 + ñegl(λ) for some negligible function ñegl(·)
(whenever δ(λ) ≥ ε(λ)). Thus, we can conclude that pA1 − pA4 ≤ 2ε(λ)/3 infinitely often. This contradicts
our assumption that pA1 − pA4 ≥ δ(λ) ≥ ε(λ). Thus, this completes the proof.

26

5 Hinting PRG from q-DDHI Assumption

We now construct (n, `)-hinting PRG from any 2n-DDHI hard group generator GGen. Suppose GGen(1λ)
generates a group of order at most 2κ. The below construction requires n ≥ k + 2λ and k = ω(log λ). For
the sake of simplicity, we construct a hinting PRG which outputs elements in a group. The construction can
be extended to output `-length bit strings for any polynomial ` by using standard PRGs and randomness
extractors.

Setup(1λ): Sample a group G = (G, p) ← GGen(1λ). Sample a generator g ← G and random exponents

α← Z∗p and d0, d1 ← Zp. Output the public parameters (G, g, gα, gα2

, · · · , gαn , d0, d1).

Eval(pp, x, i): Parse public parameters pp as pp = (G, g, gα, gα2

, · · · , gαn , d0, d1). Set f = g(d0x+d1)·
∏
j∈[1,n]\{i}(α+2j+xj).

Expand the polynomial f as
∏n
j=0 cjα

j . Compute and output
∏n
j=0

(
gα

j
)cj

.

5.1 Security

We now prove that the above construction is a secure Hinting PRG. Formally, we prove

Theorem 5.1. If the 2n-DDHI assumption (Assumption 2) holds on group generator GGen, then the hinting
PRG construction described above is secure as per Definition 2.4.

Proof. We now prove that the above construction is a secure hinting PRG via a sequence of hybrids. In the
proof, we use Fx as a shorthand for

∏n
j=1(α + 2j + xj). In the first hybrid, yi,xi are structured (yi,xi =

g(d0x+d1)·(α+2i+xi)
−1 ∏n

j=1(α+2j+xj)) and yi,1−xi are sampled randomly in the HPRG challenge. In the next

hybrid, we switch yi,1−xi to structured values, i.e., yi,b = g(d0x+d1)·(α+2i+b)−1 ∏n
j=1(α+2j+xj) using DDHI

assumption. In the next hybrid, we erase the information about x in the challenge. Concretely, we show
that (d0x + d1) ·

∏n
j=1(α + 2j + xj) mod p is statistically indstinguishable from random value in Zp and

consequently switch yi,b to gr·(α+2i+b)−1

for a randomly sampled r. We then use DDHI assumption to switch
the challenge to random group elements.

Hybrid H0: This is same as the original hinting PRG game when the challenger always chooses β = 0.

1. The challenger first samples a group G = (G, p) ← GGen(1λ) and generator g ← G. It then

samples random values α, d0, d1 ← Zp. It then computes pp = (G, g, gα, gα2

, · · · , gαn , d0, d1).

2. It then samples a bit string x← {0, 1}n, random values ri ← Zp for i ∈ [n]. It then computes the
challenge y0 = gFx , yi,xi = gFx/(α+2i+xi), yi,1−xi = gri for i ∈ [n].

3. The challenger sends public parameters pp and the challenge {y0, {yi,b}i,b} to the adversary.

4. The adversary outputs a bit β′.

Hybrid H1: This is same as previous game, except that the challenger aborts if there exists an i ∈ [2n+ 1]
s.t. α+ i = 0 mod p.

1. The challenger first samples a group G = (G, p) ← GGen(1λ) and generator g ← G. It then
samples random values α, d0, d1 ← Zp. It aborts if α + i = 0 mod p for any i ∈ [2n+ 1]. It then

computes pp = (p, g, gα, gα
2

, · · · , gαn , d0, d1).

We now define a sequence of n + 1 hybrids. For the sake of simplicity, let Hybrid H2.0 be same as
Hybrid H1.

Hybrid H2.j (j ∈ [n]): This is same as previous game, except that the challenger computes yi,1−xi differently.

2. It then samples a bit string x← {0, 1}n, random values ri ← Zp for i ∈ [n]. It then computes the
challenge y0 = gFx , yi,b = gFx/(α+2i+b) for all (i, b) s.t. i ≤ j or b = xi, yi,1−xi = gri for i > j.

27

Hybrid H3: This is same as Hybrid H2.n except that the challenger uses a random value r instead of Fx.

2. The challenger samples a random value r ← Zp. It then computes the challenge y0 = gr, yi,b =
gr/(α+2i+b) for all (i, b) ∈ [n]× {0, 1}.

We next define a sequence of 2n+ 1 hybrids. Let us define Hybrid H4.0.1 be same as Hybrid H3.

Hybrid H4.j.b′ (j ∈ [n], b′ ∈ {0, 1}): This is same as Hybrid H3 except that for (i, b) � (j, b′), the challenger
samples yi,b uniformly at random.

2. The challenger samples a random value r ← Zp and ri,b ← Zp for (i, b) � (j, b′). It then computes
the challenge y0 = gr, yi,b = gri,b for (i, b) � (j, b′), and yi,b = gr/(α+2i+b) for (i, b) � (j, b′).

Hybrid H5. This is same as Hybrid H4.n.1 except that the challenger does not abort if there exists i ∈ [2n+1]
such that α+ i = 0 mod p.

1. The challenger first samples a group G = (G, p) ← GGen(1λ) and generator g ← G. It then

samples random values α, d0, d1 ← Zp. It then computes pp = (G, g, gα, gα2

, · · · , gαn , d0, d1).

Note that hybrid H0 is the original hinting PRG game when challenger always chooses β = 0 and hybrid
H5 is the original hinting PRG game when challenger always chooses β = 1. We prove that these 2 hybrids
are computationally indistinguishable using the following lemmas. For any PPT adversary A, let pAs be the
probability that A outputs 1 in Hybrid Hs.

Lemma 5.1. There exists a negligible function negl(·) such that for every adversary A and every λ ∈ N, we
have |pA0 − pA1 | ≤ negl(λ).

Proof. The distribution of challenger’s output is same in Hybrids H0 and H1, except when α ∈ [p − 1, p −
2n − 1]. This event happens with probability (2n + 1)/p. Assuming p is super-polynomial in λ, the event
α ∈ [p− 1, p− 2n− 1] happens with negligible probability.

Lemma 5.2. Assuming 2n-DDHI assumption holds on group generator GGen, for every PPT adversary
A and every index j ∈ [n], there exists a negligible function negl(·) such that for every λ ∈ N, we have
|pA2.j − pA2.j−1| ≤ negl(λ).

Proof. Suppose there exists a PPT adversary A and an index j s.t. |pA2.j − pA2.j−1| is non-negligible. We
construct a reduction algorithm B that breaks 2n-DDHI assumption on group generator GGen.

The 2n-DDHI game challenger C first sends challenge (G, h, hγ , hγ2

, · · · , hγ2n

, T) to the reduction algo-
rithm B. The reduction algorithm samples x ← {0, 1}n, implicitly sets α = γ − 2j + xj − 1 and aborts
if there exists i ∈ [2n + 1] such that hα+i = 1G (1G is identity element of the group G). B then sam-

ples random elements d0, d1 ← Zp, computes a generator g = h
∏j−1
k=1(α+2k+1−xk), and the public parame-

ters pp = (G, g, gα, gα2

, · · · gαn , d0, d1). B then computes Hinting PRG challenge as follows. It first com-

putes y0 = g(d0x+d1)·
∏n
k=1(α+2k+xk), yi,xi = g(d0x+d1)·

∏
k∈[1,n]\{i}(α+2k+xk) for i ∈ [n]. It then computes

yi,1−xi = h(d0x+d1)·
∏
k∈[j−1]\{i}(α+2k+1−xk)·

∏n
k=1(α+2k+xk) for i < j. It then samples ri ← Zp and sets

yi,1−xi = gri for i > j. In order to compute yj,xj , B expands the polynomial

f(α) =
(d0x+ d1) ·

∏j−1
k=1(α+ 2k + 1− xk) ·

∏n
k=1(α+ 2k + xk)

(α+ 2j + 1− xj)
=
c

γ
+

n+j−2∑
k=0

ckγ
k,

where γ = (α+2j+1−xj) and c, {ck} are some functions of x, d0, d1. B sets yj,xj = T c ·
∏n+j−2
k=0 hckγ

k

. Note
that pp and (y0, {yi,b}i,b) can be computed given the challenge sent by C. Finally, B sends public parameters
pp and challenge (y0, {yi,b}i,b) to the adversary A. The adversary outputs a bit β′, which B outputs as its
guess in the 2n-DDHI game.

28

Note that α+2k+1−xk 6= 0 mod p for all k < j. Therefore g is a generator of the group G. Moreover, α
is uniformly distributed over Zp since γ is uniformly sampled from Zp. Therefore, the distribution of pp sent
by B matches the distribution of pp sent by Hybrid H2.j and H2.j−1 challengers. Moreover if T is a random
group element, then B emulates Hybrid H2.j−1 challenger to A. If T = h1/γ , then B emulates Hybrid H2.j

challenger to A. By our assumption, |pA2.j − pA2.j−1| = |Pr[β′ = 1|δ = 0]−Pr[β′ = 1|δ = 1]| is non-negligible.
Therefore, B breaks 2n-DDHI assumption of GGen.

Lemma 5.3. For every adversary A, there exists a negligible function negl(·) such that for every λ ∈ N, we
have |pA2.n − pA3 | ≤ negl(λ).

Proof. By applying Lemma C.1 with a uniform source S on {0, 1}n, the statistical difference between Hybrids
H2.n and H3 is negligible in λ.

Lemma 5.4. Assuming 2n-DDHI assumption holds on group generator GGen, for every PPT adversary A,
every index j ∈ [n] and bit b′, there exists a negligible function negl(·) such that for every λ ∈ N, we have
|pA4.j.b′ − pA4.j−1+b′.1−b′ | ≤ negl(λ).

Proof. Suppose there exists a PPT adversary A, an index j and bit b′ s.t. |pA4.j.b′ − pA4.j−1+b′.1−b′ | is non-
negligible. We construct a reduction algorithm B that breaks 2n-DDHI assumption on group generator
GGen.

The 2n-DDHI game challenger C first sends the challenge (G, h, hγ , hγ2

, · · · , hγ2n

, T) to the reduction
algorithm B. The reduction algorithm samples x ← {0, 1}n, implicitly sets α = γ − 2j − b′ and aborts if
there exists i ∈ [2n + 1] such that hα+i = 1G (1G is identity element of the group G). B then samples

random elements d0, d1 ← Zp, sets the public parameters pp = (G, h, hα, hα2

, · · ·hαn , d0, d1). B then samples
r′ ← Zp, ri,b ← Zp for (i, b) ≺ (j, b′), and implicitly sets r = r′ ·

∏
{(k,β)�(j,b′)}(α+ 2k+β). B then computes

Hinting PRG challenge as follows. It first computes y0 = hr = hr
′·
∏
{(k,β)�(j,b′)}(α+2k+β), yi,b = gri,b for

(i, b) ≺ (j, b′). It then computes yi,b = hr·e
−1
i,b = hr

′·
∏

(k,β)�(j,b′)∧(k,β)6=(i,b)(α+2k+β) for (i, b) � (j, b′). In order
to compute yj,b′ , B expands the polynomial

f(α) =
r

(α+ 2j + b′)
=
r′ ·
∏

(k,b)�(j,b′)(α+ 2k + b)

(α+ 2j + b′)
=
c

γ
+

2n∑
k=0

ckγ
k,

where γ = (α + 2j + b′) and c, {ck} are some functions of r′. B sets yj,b′ = T c ·
∏2n
k=0 h

ckγ
k

. Note that pp
and (y0, {yi,b}i,b) can be computed given the challenge sent by C. Finally, B sends public parameters pp and
challenge (y0, {yi,b}i,b) to the adversary A. The adversary outputs a bit β′, which B outputs as its guess in
2n-DDHI game.

Note that the distribution of pp sent by B matches the distribution of pp sent by Hybrid H4.j.b′ and
H4.j−1+b′.1−b′ challengers. As ρ′ is uniformly sampled in Zp and (α + 2j + b′) 6= 0 mod p, ρ is uniformly
distributed in Zp. Moreover, if T = h1/γ then B emulates Hybrid H4.j−1+b′.1.b′ challenger to A. If T is
a random group element, then B emulates Hybrid H4.j.b′ challenger to A. By our assumption, |pA4.j.b′ −
pA4.j−1+b′.1−b′ | = |Pr[β′ = 1|δ = 0] − Pr[β′ = 1|δ = 1]| is non-negligible. Therefore, B breaks 2n-DDHI

assumption of G.

Lemma 5.5. There exists a negligible function negl(·) such that for every adversary A and every λ ∈ N, we
have |pA4.n.1 − pA5 | ≤ negl(λ).

Proof. This proof is same as proof of Lemma 5.1.

By the above sequence of lemmas and triangle inequality, Hybrids H0 and H5 are computationally
indistinguishable. Therefore, the above construction is a secure Hinting PRG.

29

6 One-Way Function with Encryption from Φ-Hiding Assumption

In this section, we construct (k, n, `)-recyclable One-Way Function with Encryption (OWFE) from Phi-
Hiding assumption. The construction assumes k ≥ 7λ and n − k ≤ α log n for any fixed constant α. For
any parameters λ, `, let Extλ,` : {0, 1}λ ×S → {0, 1}` be a (λ− 1, εExt) strong seeded extractor, where εExt is
negligible in λ. 9 Let pi denote the ith (smallest) prime, i.e. p1 = 2, p2 = 3, . . ., and ẽi = dlogpi Ne for all i.

And, let fi denote pẽii for all i. The construction proceeds as follows.

K(1λ): On input security parameter λ and length `, set RSA modulus length κ = 5λ, and sample RSA
modulus N ← RSA(κ). Next, sample a generator g ← Z∗N , 2n (λ-bit) primes ei,b ← PRIMES(λ) for
(i, b) ∈ [n] × {0, 1} and elements d0, d1 ← ZN . Then, sample a seed s ← S of extractor Extλ,` and
output public parameters pp = (N, s, g, {ei,b}i,b, d0, d1).

f(pp, x): Let pp = (N, s, g, {ei,b}i,b, d0, d1). Output y = gf1·f2·(d0x+d1)
∏
i ei,xi mod N .

E1(pp, (i, b); ρ): Parse pp as pp = (N, s, g, {ei,b}i,b, d0, d1). Output ciphertext ct = (gρ·ei,b mod N, i, b).

E2(pp, (y, i, b); ρ): Let pp be pp = (N, s, g, {ei,b}i,b, d0, d1). Compute h = yρ mod N and output z =
Ext(h, s).

D(pp, ct, x): Let pp = (N, s, g, {ei,b}i,b, d0, d1). Parse ct as (t, i, b). If b = xi, compute h = tf1·f2·(d0x+d1)
∏
j 6=i ej,xj mod N

and output Ext(h, s). Otherwise, output ⊥.

Correctness. For any public parameters pp = (N, s, g, {ei,b}i,b, d0, d1), any string x ∈ {0, 1}n, any in-

dex i ∈ [n], any randomness ρ, we have D(pp, E1(pp, (i, xi); ρ), x) = gρf1·f2·(d0x+d1)
∏
j ej,xj = f(pp, x)ρ =

E2(pp, (f(pp, x), i, xi); ρ).

6.1 Security

We now prove the one-wayness, encryption security and smoothness properties of the above scheme.

One-Wayness. We now prove that the above construction satisifes (k, n)-one-wayness property when k ≥ 7λ
and n− k ≤ α log n for any fixed constant α.

Theorem 6.1. Assuming the Φ-hiding assumption holds, the above construction satisfies (k, n, `)-one-
wayness property as per Definition 2.1.

Proof. We first prove that no PPT adversary can win the following game with non-negligible advantage
assuming the Φ-hiding assumption. We then prove how a PPT adversary breaking one-wayness property of
the above scheme can be used to break the following game.

Game G: The challenger chooses RSA modulus κ = 5λ, samples N ← RSA(κ), prime e ← PRIMES(λ)
and a value z ← Z∗N . The challenger sends (N, e, z) to the adversary, which then outputs w. The
adversary wins if we = z mod N .

We now argue that no PPT adversary can win the above game with non-negligible probability.

Lemma 6.1. Assuming the Φ-hiding assumption holds, for every PPT adversary A, there exists a negligible
function negl(·) such that for every λ ∈ N, the probability that A wins in Game G is at most negl(λ).

Proof. We prove the lemma using the following intermediate Game H.

9Note that such an extractor exists for ` = c · λ for some constant c < 1. The construction can be extended for any ` ≥ λ
with the help of PRGs.

30

Game H: The challenger chooses RSA modulus κ = 5λ, samples prime e← PRIMES(λ) and N ← RSA(κ)
s.t. e|φ(N). It then samples an element z ← Z∗N . The challenger sends (N, e, z) to the adversary,
which then outputs w. The adversary wins if we = z mod N .

Let the advantage of any adversary A in Game G be AdvAG and in Game H be AdvAH .

Claim 6.1. For every adversary A, there exists a negligible function negl(·) such that for every λ ∈ N,
AdvAH ≤ negl(λ).

Proof. As e|φ(N), only a negligible fraction of z ∈ Z∗N have a w s.t. we = z mod N . Therefore, no PPT
adversary can find a w s.t. we = z mod N with non-negligible probability.

Claim 6.2. Assuming the Φ-hiding assumption holds, for every PPT adversary A, there exists a negligible
function negl(·) such that for every λ ∈ N, |AdvAG − AdvAH | ≤ negl(λ).

Proof. Suppose there exists a PPT adversary A such that |AdvAG − AdvAH | is non-negligible. We construct
a reduction algorithm that breaks Φ-hiding assumption. B samples e ← PRIMES(λ) and plays Φ-hiding
game for e. The challenger sends RSA modulus N to B, which samples z ← Z∗N and sends (N, e, z) to A. If
A outputs w s.t. we = z mod N , then B guesses that φ(N) is uniformly sampled from RSA(κ). Otherwise,
it guesses that e|φ(N).

By the above 2 claims and triangle inequality, no PPT adversary can win Game G with non-negligible
advantage.

Lemma 6.2. Assuming the Φ-hiding assumption holds, for every PPT adversary A, there exists a negligible
function negl(·) such that for every λ ∈ N, the advantage of A in (k, n)-one-wayness game is at most negl(λ).

Proof. Suppose there exist a PPT adversary A that breaks (k, n)-one-wayness property of the encryption
scheme with non-negligible probability ε. We construct a reduction algorithm B that wins against Game G
challenger C.

The adversary first sends a (k, n) source S to B. The challenger C then sends (N, e, z) to B. The reduction
algorithm samples a bit string x← S, an index j ← [n], extractor seed s← S, exponents d0, d1 ← Zp primes
ei,b′ ← PRIMES(λ) for (i, b′) 6= (j, 1−xj). It then sets generator g = z and prime ej,1−xj = e. B then sends

public parameters pp = (N, s, g, {ei,b′}i,b′ , d0, d1) and challenge y = z
∏
i ei,xi mod N to the adversary. The

adversary outputs x′. If f(pp, x′) 6= f(pp, x) or xj = x′j , then B aborts. Otherwise, we have he = zF mod N ,

where F = f1 · f2 · (d0x+ d1)
∏
i ei,xi and h = z

f1·f2·(d0x′+d1)
∏
i6=j ei,x′i mod N . As e is a randomly sampled

λ-bit prime, e - F with overwhelming probability. B computes z1/e mod N using Shamir’s trick [Sha83].
Concretely, B first computes integers a, b s.t. a · e+ b · F = 1 and outputs w = hb · za mod N .

We now analyze the advantage of B in Game G. By our assumption, f(pp, x′) = f(pp, x) with non-
negligible probability ε. We prove that x′ 6= x with non-negligible probability. As k ≥ κ+ 2λ, we know that
for any pp, Prx←S [∃t ∈ {0, 1}n s.t. x 6= t∧f(pp, x) = f(pp, t)] ≥ 1−negl(λ). Therefore, Pr[x′ 6= x∧f(pp, x) =
f(pp, x′)] ≥ ε/2− negl(λ) and Pr[x′j 6= xj ∧ f(pp, x) = f(pp, x′)] ≥ ε/2n− negl(λ) as j is sampled uniformly
from [n]. Note that if B does not abort, it outputs w s.t. we = z mod N with overwhelming probability.
Therefore, B breaks Game G security with non-negligible probability ε/2n− negl(λ).

Security of Encryption. We now prove that the above construction satisifes encryption security property.

Theorem 6.2. Assuming the Φ-hiding assumption holds, the above construction satisfies encryption security
property as per Definition 2.2.

Proof. We prove the above theorem via a sequence of following hybrids.

31

Hybrid H0: This is same as original OWFE security of encryption game when the challenger chooses β = 0.

1. The adversary sends bit string x← {0, 1}n and index j ∈ [n] to the challenger.

2. The challenger sets modulus length κ = 5λ and samples N ← RSA(κ), generator g ← Z∗N ,
extractor seed s← S and primes ei,b ← PRIMES(λ) for (i, b) ∈ [n]× {0, 1}.

3. The challenger samples ρ← ZN , computes ct = gρ·ej,1−xj , z = Ext(gρf1·f2·(d0x+d1)·
∏
i ei,xi mod N, s).

4. The challenger sends pp = (N, s, g, {ei,b}i,b), ct, z to the adversary A, which outputs a bit α.

Hybrid H1: This hybrid is similar to previous hybrid except for the following changes.

3. The challenger samples g̃ ← Z∗N , computes ct = g̃, z = Ext(g̃
f1·f2·(d0x+d1)

∏
i ei,xi ·e

−1
j,1−xjmod N, s).

Hybrid H2: This hybrid is same as previous game except that the challenger samples z uniformly at random.

3. The challenger samples g̃ ← Z∗N , computes ct = g̃, z ← {0, 1}`.

Hybrid H3: This is same as original OWFE security of encryption game when the challenger chooses β = 1.

3. The challenger samples ρ← ZN , computes ct = gρ·ej,1−xj , z ← {0, 1}`.

For any PPT adversary A, let the probability that A outputs 1 in Hybrid Hs be pAs . We prove that
Hybrids H0 and H3 are computationally indstinguishable via the sequence of following lemmas.

Lemma 6.3. For any adversary A, there exists a negligible function negl(·) such that for every security
parameter λ ∈ N, we have |pA0 − pA1 | ≤ negl(λ).

Proof. We first observe that for any N , prime e - φ(N) and generator g ∈ Z∗N , the distribution of gρ·e mod N
for a randomly sampled ρ← Zφ(N) is identical to the distribution g̃ ← Z∗N . This follows from the fact that g
and ge are generators of Z∗N . For a randomly sampled λ bit prime e, we know that e - φ(N) with overwhelming
probability. Similarly, for a randomly sampled ρ ← ZN , we know that ρ ∈ Zφ(N) with overwhelming
probability. As a result, {g̃ : g̃ ← Z∗N} is statistically indistinguishable from {gρ·e : g ← Z∗N , ρ ← ZN , e ←
PRIMES(λ)}. By a similar argument, for any F , the distribution {(gρ·e mod N, gρ·F mod N) : g ←
Z∗N , ρ← ZN , e← PRIMES(λ)} is statistically indistinguishable from the distribution {(g̃, g̃F ·e−1

mod N) :
g̃ ← Z∗N , e← PRIMES(λ)}. Therefore, for every adversary A, |pA0 − pA1 | ≤ negl(λ).

Lemma 6.4. Assuming the Φ-hiding assumption holds, for any PPT adversary A, there exists a negligible
function negl(·) such that for every security parameter λ ∈ N, we have |pA1 − pA2 | ≤ negl(λ).

Proof. The above lemma follows from φ-based Extractor lemma (Lemma 3.5). Suppose there exists a PPT
adversary A such that |pA1 − pA2 | is non-negligible. We construct a reduction algorithm B that violates
φ-based extractor lemma.

The extractor lemma challenger first samples N ← RSA(κ), s← S, e← PRIMES(λ), g̃ ← Z∗N and sends
(N, s, e, g̃) to reduction algorithm B. The adversary A then sends a string x ∈ {0, 1}n and index j ∈ [n] to
B. B samples generator g, values d0, d1 ← ZN , and primes ei,b ← PRIMES(λ) for (i, b) 6= (j, 1 − xj). B
then sets ej,1−xj = e and computes F = f1 · f2 · (d0x + d1)

∏
i ei,xi . If e|F , the reduction algorithm aborts

and guesses randomly. As e is a λ-bit prime, this happens with negligible probability. If e - F , then B sends
F to the challenger, which samples a bit γ ← {0, 1}. If γ = 0, C computes z̃ ← Ext(g̃F/e, s). If γ = 1, C
samples z̃ ← {0, 1}`. The challenger sends z̃ to B. The reduction algorithm sets ct = g̃, z = z̃ and sends
pp = (N, s, g, {ei,b}i,b, d0, d1), ct, z to A. The adversary outputs a bit α. B outputs α as its guess in extractor
lemma game.

Note that if γ = 0, then the distribution of pp, ct, z sent by B is statistically indistinguishable from that
of Hybrid H1 challenger. If γ = 1, then the distribution of pp, ct, z sent by B is statistically indistinguishable
from that of H2 challenger. Consequently if B does not abort, the advantage |Pr[α = 1|γ − 0] − Pr[α =
1|γ = 1]| ≥ |pA1 − pA2 | − negl(λ) is non-negligible. As B aborts with only negligible probability, it wins the
extractor lemma game with non-negligible probability.

32

Lemma 6.5. For any PPT adversary A, there exists a negligible function negl(·) such that for every security
parameter λ ∈ N, we have |pA2 − pA3 | ≤ negl(λ).

Proof. The distribution {g̃ : g̃ ← Z∗N} is statistically indistinguishable from {gρ·e : g ← Z∗N , ρ ← ZN , e ←
PRIMES(λ)} as mentioned in proof of Claim 6.3.

By the above lemmas and triangle theorem, no PPT adversary can distinguish between Hybrids H0 and
H3 with non-negligible probability assuming the Φ-hiding assumption.

Smoothness. We now prove that the above construction satisifes (k, n)-smoothness property when k ≥ 7λ
and n− k ≤ α log n for any fixed constant α.

Theorem 6.3. Assuming the Φ-hiding assumption holds, the above construction satisfies (k, n)-smoothness
security property as per Definition 2.3.

Proof. First, we introduce a useful notation. For any constant ε > 0, let jε be the smallest index such that
pjε > (2n−k+2 logN/ε)3. Note that (2n−k+2 logN/ε)3 is polynomial in λ for the given setting of parameters.
The proof of security follows via a sequence of hybrids. Below we first describe the sequence of hybrids and
later argue indistinguishability to complete the proof. At a very high level, the proof structure is somewhat
similar to that used in [Zha16], where for proving security one first assumes (for the sake of contradiction)
that the adversary wins with some non-negligible probability δ and then depending upon δ, one could describe
a sequence of hybrids such that no PPT adversary can win with probability more than 2δ/3. This acts as a
contradiction, thereby completing the proof.

For any PPT adversary A, let pAs be the probability that A outputs 1 in Hybrid Hs. For the sake of
contradiction, we assume that A breaks (k, n)-smoothness property with non-negligible advantage δ(λ) i.e.,
there exists a polynomial v(·) s.t. |pA0 − pA2 | = δ(λ) > 1

v(λ) for infinitely often λ ∈ N. Let ε = 1
2v(λ) . We

provide a non-uniform reduction where the description of hybrids and the reduction algorithm depends on
ε.

Hybrid H0: This is same as the original smoothness security game, except that the challenger always chooses
source S0.

1. The adversary first sends two (k, n) sources S0, S1 to the challenger. The challenger sets modulus
length κ = 5λ and samples N ← RSA(κ), extractor seed s← S, elements d0, d1 ← ZN and primes
ei,b ← PRIMES(λ) for (i, b) ∈ [n]× {0, 1}.

2. The challenger then samples a generator g ← Z∗N and sets public parameters pp = (N, s, g, {ei,b}i,b, d0, d1).

3. The challenger samples x← S0 and sends pp, y = gf1·f2·(d0x+d1)
∏n
i=1 ei,xi mod N to the adversary.

4. The adversary outputs a bit b′.

Hybrid H1: In this hybrid, the challenger does not sample x and picks the challenge y from a uniform
distribution.

2. The challenger then samples a generator g̃ ← Z∗N , sets g = g̃
∏jε
i=3 fi and sets public parameters

pp = (N, s, g, {ei,b}i,b, d0, d1).

3. The challenger samples z ← Z∗N and sends pp, y = z
∏jε
i=1 fi mod N to the adversary.

Hybrid H2: This is same as the original smoothness security game, except that the challenger always chooses
source S1.

2. The challenger then samples a generator g ← Z∗N and sets public parameters pp = (N, s, g, {ei,b}i,b, d0, d1).

3. The challenger samples x← S1 and sends pp, y = gf1·f2·(d0x+d1)
∏n
i=1 ei,xi mod N to the adversary.

33

Lemma 6.6. Assuming the Φ-hiding assumption holds, for any PPT adversary A, there exists a negligible
function negl(·) such that for all λ ∈ N satisfying δ(λ) ≥ 2ε = 1/v(λ), we have |pA0 − pA1 | ≤ ε/2 + negl(λ).

Proof. Suppose there exists a PPT adversary A that has a non-negligible advantage δ(λ) in smoothness
game, and can distinguish between Hybrids H0 and H1 with probability ε/2 + γ for some non-negligible
value γ. We construct a reduction algorithm B that breaks our strengthened hashing lemma (Theorem 3.3)
and thereby breaking Φ-hiding assumption.

The adversary A sends two (k, n)-sources S0, S1 to the reduction algoritm B. B plays hashing lemma
game for source S0 with the challenger C. The hashing lemma challenger C sends (N, g, a, b, {ei,b}i,b, y) to
the reduction algorithm B. The reduction algorithm samples a seed s ← S, sets d0 = a, d1 = b and sends
public parameters pp = (N, s, g, {ei,b}i,b, d0, d1), challenge y to the adverary A. The adversary outputs a bit
b′. B outputs b′ as its guess in hashing lemma game.

Let us analyze advantage of B in hashing lemma game. If the challenger samples g ← Z∗N , x ← S0, y =
gf1·f2·(ax+b)

∏n
i=1 ei,xi mod N , then B emulates Hybrid H0 challenger to A. If the challenger samples g̃ ←

Z∗N , z ← Z∗N and sets g = g̃
∏jε
i=3 fi , y = z

∏jε
i=1 fi , then B emulates Hybrid H1 challenger to A. Therefore, B

breaks hashing lemma game with advantage |pA1 − pA2 | ≥ ε/2 + γ.

Lemma 6.7. Assuming the Φ-hiding assumption holds, for any PPT adversary A, there exists a negligible
function negl(·) such that for all λ ∈ N satisfying δ(λ) ≥ 2ε = 1/v(λ), we have |pA1 − pA2 | ≤ ε/2 + negl(λ).

Proof. This proof is similar to the proof of Lemma 6.6.

By the above 2 lemmas and triangle inequality, A can distinguish between Hybrids H0 and H2 with
probability at most ε + negl(λ) < 2δ/3. This contradicts the assumption that A has an advantage of
δ.10 Therefore, no PPT adversary can break (k, n)-smoothness property of the above construction with
non-negligible probability.

7 One-Way Function with Encryption from q-DBDHI Assumption

We now construct (k, n, `)-OWFE from any n-DBDHI hard group generator GGen. Suppose GGen(1λ)
generates a group of size θ(2m), the below construction requires k ≥ m + 2λ and n ≤ k + m − 2λ. For the
sake of simplicity, we construct a OWFE scheme where the encryption algorithm outputs elements in a group.
The construction can be extended to output `-length bit strings by using PRGs and randomness extractors.
We present a variant of this construction with longer ciphertext from n-DDHI assumption (without pairings)
in the Appendix B.

K(1λ): Sample a group G = (G1,GT , e, p) ← GGen(1λ). Sample a generator g ← G1 and random values

α, d0, d1 ← Zp. Output the public parameters (G, g, gα, gα2

, · · · , gαn , d0, d1).

f(pp, x): Parse public parameters pp as pp = (G, g, gα, gα2

, · · · , gαn , d0, d1). Let the polynomial (d0x+d1) ·∏n
j=1(α+ 2j + xj) =

∑n
i=0 ciα

i, where ci is a function of d0, d1, x. Output
∏n
i=0

(
gα

i
)ci

.

E1(pp, (i, b);h): Compute and output (h(α+2i+b), i).

E2(pp, (y, i, b);h): Compute and output e(h, y).

D(pp, ct, x): Let ct = (ct′, i). Consider the polynomial (d0x+ d1) ·
∏
j 6=i(α+ 2j + xj) =

∑n−1
j=0 cjα

j , where

cj is a function of d0, d1, x. Compute and output e
(
ct′,
∏n−1
j=0

(
gα

j
)cj)

.

10Note that the contradiction does not happen when δ is negligible. If δ is negligible, then jε is superpolynomial and the
reduction algorithm takes superpolynomial time to execute.

34

Correctness. For any set of public parameters pp = (G, g, gα, gα2

, · · · , gαn , d0, d1), string x ∈ {0, 1}n,
index j ∈ [n] and randomness h, we have ct = E1(pp, (j, xj);h) = (h(α+2j+xj), j) and D(pp, ct, x) =
e(g, h)(d0x+d1)

∏
i(α+2i+xi) = e(h, f(pp, x)) = E2(pp, (f(pp, x), j, xj);h).

7.1 Security

We now prove that the above construction satisfies one-wayness, encryption security, and smoothness prop-
erties.
One-Wayness. We now prove that the above construction satisfies (k, n)-one-wayness property for any
k ≥ m+ 2λ and n ≤ k +m− 2λ.

Lemma 7.1. Assuming n-DBDHI assumption holds (Assumption 3), the above construction satisfies (k, n)-
one-wayness property for any (k, n) s.t. k ≥ m+ 2λ and n ≤ k +m− 2λ as per Definition 2.1.

Proof. Suppose there exists a PPT adversary A that breaks one-wayness property of the above construction
with non-negligible probability. We construct a reduction algorithm B that wins n-DBDHI game with
non-negligible probability.

The adversary A first sends a (k, n)-source S to the reduction algorithm B. The challenger then sends

(G, h, hα, hα2

, · · · , hαn , T) to the reduction algorithm B. The reduction algorithm samples a string x ← S,

d0, d1 ← Zp, computes public parameters pp = (G, h, hα, hα2

, · · ·hαn , d0, d1) and sends pp, y = f(pp, x)
to the adversary A. The adversary outputs a string x′. If x′ = x or f(pp, x) 6= f(pp, x′), the reduction
algorithm aborts and outputs a random bit. Otherwise, B computes α s.t. (d0x+ d1) ·

∏n
i=1(α+ 2i+ xi) =

(d0x
′+d1)·

∏n
i=1(α+2i+x′i) mod p. The reduction algorithm then checks if T = e(g, g)1/α. If T = e(g, g)1/α,

it outpus 1. Otherwise, it outputs 0.
We now analyze the advantage of B in n-DBDHI game. By our assumption, f(pp, x′) = f(pp, x) with non-

negligible probability ε. We prove that the reduction algorithm does not abort with non-negligible probability.
As k ≥ m+ 2λ, we know that for any pp, Prx←S [∃t ∈ {0, 1}n s.t. x 6= t ∧ f(pp, x) = f(pp, t)] ≥ 1− negl(λ).
Therefore, Pr[x′ 6= x ∧ f(pp, x) = f(pp, x′)] ≥ ε/2 − negl(λ). Note that if B does not abort, it breaks the
n-DBDHI game with advantage 1/2. Therefore, the overall advantage of B in breaking n-DBDHI game is
ε/4− negl(λ).

Security of Encryption. We now prove that the above construction satisfies encryption security property.

Lemma 7.2. Assuming n-DBDHI assumption holds (Assumption 3), the above construction satisfies en-
cryption security property as per Definition 2.2.

Proof. Suppose there exists a PPT adversary A that breaks encryption security of the above construction
with non-negligible probability. We construct a reduction algorithm B that wins n-DBDHI game with
non-negligible probability.

The challenger C first samples a group structure G = (G1,GT , e, p) ← GGen(1λ), a generator h ← G1,
a value β ← Z∗p and a bit γ ← {0, 1}. If γ = 0, it sets T = e(h, h)1/β . Otherwise, it samples T ← GT .

The challenger then sends (G, h, hβ , hβ2

, · · · , hβn , T) to the reduction algorithm B. The adversary sends a
string x ∈ {0, 1}n and an index j to B. B samples d0, d1 ← Zp and implicitly sets α = β − 2j − 1 + xj . It

then computes public parameters pp = (G, h, hα, hα2

, · · · , hαn , d0, d1), samples ρ ← Zp and implicitly uses
hρ/(α+2j+1−xj) as randomness for encryption. It computes ct∗ = (hρ, j). Consider the polynomial

ρ · (d0x+ d1) ·
∏n
i=1(α+ 2i+ xi)

α+ 2j + 1− xj
=
c

β
+

n−1∑
i=0

ciβ
i

where c, {ci}i are dependent only on ρ, x, d0, d1. The reduction algorithm computes k∗ = T c·e
(
h,
∏n−1
i=0

(
hβ

i
)ci)

and sends pp, ct∗, k∗ to the adversary. The adversary outputs a bit γ′. B outputs γ′ as its guess in n-DBDHI
game.

35

We now analyze the advantage of B in n-DBDHI game. As β is sampled uniformly, α is also uniformly
distributed. As β 6= 0 mod p and ρ is uniformly distributed, hρ/β is also uniformly distributed in G1. If

γ = 0, then (pp, ct∗, k∗) is same as
(
pp, E1(pp, (j, 1 − xj); ρ

′), E2(pp, (f(pp, x), j, 1 − xj); ρ
′)
)

. If γ = 1,

then k∗ is uniformly random. As A distinguishes these 2 distributions with non-negligible probability,
|Pr[γ′ = 1|γ = 0]− Pr[γ′ = 1|γ = 1]| is non-negligible. Therefore, B breaks n-DBDHI assumption.

Smoothness. We now prove that the above construction satisfies (k, n)-smoothness property for any k ≥
m+ 2λ and n ≤ k +m− 2λ.

Lemma 7.3. The above construction satisfies (k, n)-smoothness property for any k ≥ m + 2λ and n ≤
k +m− 2λ as per Definition 2.3.

Proof. We prove the theorem via a sequence of following hybrids.

Hybrid H0: This is same as the original smoothness security game.

1. The adversary sends two (k, n)-sources S0 and S1 to the challenger. The challenger samples a
group G = (G1,GT , e, p)← Setup(1λ), a generator g ← G1 and exponents d0, d1 ← Zp.

2. It then samples exponent α← Z∗p and computes pp = (G, g, gα, gα2

, · · · , gαn , d0, d1).

3. The challenger samples a bit b← {0, 1}, a string x← Sb and sends pp, y = g(d0x+d1)·
∏n
j=1(α+2j+xj)

to the adversary.

4. The adversary outputs a bit b′.

Hybrid H1: In this hybrid, the challenger samples α in public parameters from [1, p− 2n− 2] instead of Z∗p

2. It then samples exponent α← [1, p− 2n− 2] and computes pp = (G, g, gα, gα2

, · · · , gαn , d0, d1).

Hybrid H2: In this hybrid, the challenger samples the challenge y uniformly at random.

3. The challenger samples y ← G1 and sends pp, y to the adversary.

For any adversary A, let the probability that b′ = b in Hybrid Hs be pAs . We know that, pA2 = 1/2 as y is
independent of b. We prove that for every PPT adversary A, |pA0 − pA2 | is negligible.

Claim 7.1. For every adversary A, there exists a negligible function negl(·) such that for every λ ∈ N,
|pA0 − pA1 | ≤ negl(λ).

Proof. The distribution of challenger’s output is same in Hybrids H0 and H1, except when α ∈ [p − 1, p −
2n − 1]. This event happens with probability (2n + 1)/p. Assuming p is super-polynomial in λ, the event
α ∈ [p− 1, p− 2n− 1] happens with negligible probability.

Claim 7.2. For every adversary A, there exists a negligible function negl(·) such that for every λ ∈ N,
|pA1 − pA2 | ≤ negl(λ).

Proof. As the minimum entropy of the distribution {x : b ← {0, 1}, x ← Sb} is k ≥ log p + 2λ and as α is
sampled from [1, p− 2n− 2], by Lemma C.1, (d0x+ d1) ·

∏n
j=1(α+ 2j + xj) for x← Sb is indistinguishable

from uniform distribution on Zp.

By the above claims and triangle inequality, the advantage of any adversary in the original smoothness
game H0 is negligible.

36

8 Performance Evaluation

In this section, we discuss how our HPRG and OWFE constructions based on Φ-Hiding and D(B)DHI
assumptions compare with the constructions based on DDH provided in [GH18, KW19]. The performance
evaluation is split into two parts. First, we discuss the efficiency of our HPRG constructions and compare
them with existing schemes. Later, we look at our OWFE constructions and compare their performance.

8.1 Hinting PRG: Comparing with [KW19]

Here we discuss the efficiency of our HPRG constructions and compare it with existing constructions. First,
we provide an asymptotic comparison and eventually give a more concrete comparison.

An asymptotic comparison. Let us start by recalling the HPRG construction based on DDH assumption,
immediately derived from [KW19], which will serve as a focal comparison point to prior work.11 In their
construction, the public parameters consist of O(n2) group elements, where n is the length of the HPRG
seed (/number of blocks). Here each block is associated with O(n) group elements. Now for computing the
output of the HPRG for any given block, the evaluator simply picks half of these associated group elements
and sets the output as the product of the chosen group elements. More formally, the evaluator performs
O(n) group operations per block during HPRG evaluation.

Comparing that to our Φ-Hiding based HPRG construction described in Section 4, the public parameters
consist of 2n (λ-bit) prime exponents along with the RSA modulus, extractor seed, group generator, and
a hash key. For evaluating a single HPRG block, the evaluator needs to perform O(n) exponentiations.
However, using our dynamic programming technique described in Section 4.1, we can reduce the number of
exponentiation operations needed per block to grow only logarithmically in n.

In our DDHI based construction described in Section 5, the public parameters consists of n group elements
along with the group generator, and a hash key. For evaluating a single HPRG block, the evaluator evaluates a
degree-n polynomial symbolically and later on performs n exponentiation operations and n group operations.
We summarize the asymptotic comparison of the Hinting PRG constructions in Table 1, where N and p are
the recommended RSA modulus and elliptic curve field size for the target security λ.

Metric DDH [KW19] Φ-Hiding (§4) DDHI (§5)

Seed length n log p+ 2λ logN + 2λ log p+ 2λ

pp size O(n2) group elements
O(nλ) bits and

O(1) elements in Z∗N
O(n) group elements

Time (Setup)
Sampling O(n2)
group elements

Sampling O(n)
λ-bit primes

O(n) exponentiations

Time (Eval) O(n2) group operations O(n log n) exponentiations O(n2) exponentiations
Table 1: Asymptotic Performance Comparision of Various Hinting PRG Constructions.

Concrete performance evaluation. The evaluations were performed on a 2015 Macbook Pro with Dual
Core 2.7 GHz Intel Core i5 CPU and 8GB DDR3 RAM. We evaluated the performance of DDH and DDHI
based constructions using MCL Library [Her19] (written in C++) on NIST standardized elliptic curves
P-192, P-224, P-256, P-384 and P-521 providing 96, 112, 128, 192 and 260-bit security respectively. We
evaluated our Φ-Hiding based construction using Flint Libary [Har10] written in C++ on 1024, 2048, 3072,

11Koppula and Waters [KW19] constructed Hinting PRG based on CDH assumption. In order to provide a more fair
comparison with our constructions, we simplify their construction by instead relying on DDH assumption thereby removing the
need for using hardcore predicates. This leads to a more efficient setup phase and shorter public parameters, and thus provides
a more accurate baseline for comparing performance.

37

7680 and 15360 bit RSA modulus providing 80, 112, 128, 192 and 256-bit security respectively.12 The
performance numbers are provided in Table 2. For Φ-hiding based HPRG, the numbers mentioned in the
brackets indicate the estimated evaluation times (based on benchmarks) without the dynamic programming
technique described in 4.1.

Metric Security DDH [KW19] Φ-Hiding (§4) DDHI (§5)

Seed Length n

80/96 384 1184 384
112 448 2272 448
128 512 3328 512
192 768 8064 768

256/260 1042 15872 1042

pp size

80/96 14.15 MB 0.07 MB 0.009 MB
112 22.50 MB 0.19 MB 0.012 MB
128 33.58 MB 0.32 MB 0.016 MB
192 113.32 MB 1.16 MB 0.037 MB

256/260 268.56 MB 3.05 MB 0.065 MB

Time (Setup)

80/96 7.57s 1.32s 0.0285s
112 83.99s 6.22s 0.058s
128 15.95s 11.86s 0.080s
192 102.68s 98.74s 0.370s

256/260 431.78s 443.84s 1.598s

Time (Eval)

80/96 0.042s 1.07s (112.5s w/o optimization) 14.24s
112 0.086s 11.20s (2164.2s w/o optimization) 30.13s
128 0.11s 40.79s (3.32 hrs w/o optimization) 46.77s
192 0.48s 719.479s (5.46 days w/o optimization) 284.83s

256/260 2.145s 5975.34s (84.27 days w/o optimization) 1515.68s

Eval time per block

80/96 0.109ms 0.904ms (0.11s w/o optimization) 37.09ms
112 0.192ms 4.93ms (1.05s w/o optimization) 67.26ms
128 0.215ms 12.26ms (3.88s w/o optimization) 91.35ms
192 0.625ms 89.22ms (61.45s w/o optimization) 349.98ms

256/260 2.06ms 376.47ms (473.36s w/o optimization) 1454.59ms
Table 2: Performance Comparison of Various Hinting PRG Constructions.

Now we present a few observations and interpretations of the above performance measures. We begin with
the 112-bit security level as a focal point. The first thing that jumps out is that our constructions provide
a rather dramatic trade-off between evaluation time versus parameter size compared to prior work. Observe
that the size of the public parameters for our Φ-Hiding and DDHI based constructions are ∼120x and ∼1900x
shorter than the public parameter size provided by the baseline [KW19] DDH-based construction. The setup
phase of our DDHI based construction is also ∼1450x faster than that of the DDH-based construction. On
the flip side, in our Φ-Hiding based construction the evaluation algorithm is ∼120x slower than that for
the DDH-based construction. And, our DDHI-based construction has a further ∼3x slowdown compared
to our Φ-Hiding based construction. From the numbers, we can also see that our optimization for reusing
computation across multiple RSA blocks is critical for the construction being viable as the unoptimized
version would take ∼180x more evaluation time compared to the optimized version.

Thus, the clear trade-off between the two constructions is between optimizing the size of public parameters
and reducing the running time of the HPRG evaluation algorithm. We can also observe that as we move
up security parameters, our DDHI based construction begins to dominate the Φ-hiding based construction
in all aspects. For 128 bit security, the evaluation time of both the constructions is about even while the

12Note that we proved the security of our schemes in an asymptotic sense. However, for experiments, we use NIST recom-
mended RSA modulus for the sake of simplicity. The RSA modulus derived from applying a concrete analysis is slightly higher.
However as we mentioned in Footnote 5, the analysis could be improved further by using a tighter bound for Π(ri).

38

parameter size of the DDHI based construction is considerably lower. For larger security parameters DDHI
based construction dominates completely. The reason for this is that due to the number field sieve attacks,
the recommended RSA modulus length (and thereby HPRG seed length n) increases super linearly with
the target security level for the Φ-based construction. Whereas, the recommended field size (and thereby
HPRG seed length n) will increase linearly for the elliptic curve DDH and DDHI based constructions. In
the Hinting PRG context, this gives a double whammy to the Φ-hiding construction as an increase of n will
increase both the number of blocks as well the cost of group exponentiations required to compute each block.
One can see that even for higher security parameters the amortized average computation time per block for
the Φ-hiding construction remains lower, but the overall computation is higher due to the number of blocks
needed.

Further reducing |pp| for Φ-hiding based construction. Observe that the public parameter size of
the Φ-hiding based construction is dominated by the 2n λ-bit primes ej,b. In order to reduce the parameter
size, one could employ the PRF-trick suggested by Hohenberger and Waters [HW09] in a different context.
Their idea was to generate all the prime values ej,b from a PRF with a randomly chosen but publicly known
seed. Using this approach, we can significantly reduce the parameter size and thereby making our Φ-hiding
based construction as the HPRG construction with the smallest public parameter length even for large values
of targetted security levels. (The reason we could use a similar approach is that in each of the hybrids in
our proofs we only need to use exactly one of the 2n ej,b values for security and rest can be almost sampled
arbitrarily.) An important and subsequent trade-off, however, is that since the ej,b values now would need to
be computed on-the-fly during evaluation each time. This involves performing prime searches as part of the
Eval algorithm and can lead to a further increase in evaluation time. Moreover, the proof of our construction
would need to be adapted in a way similar to [HW09] to accommodate this change. One would additionally
need to be extra careful in extending our hashing lemma (Theorem 3.2) to incorporate this change for the
entire proof to work. Below in Table 3, we provide the performance metrics for such a modified construction.

Metric 80 112 128 192 256

Seed Length n 1184 2272 3328 8064 15872
pp size 0.77 KB 1.54 KB 2.30 KB 5.76 KB 11.52 KB

Time (Setup) 0.0079s 0.067s 0.247s 6.73s 82.61s
Time (Eval) 2.70s 17.60s 52.61s 813.28s 6342.10s

Table 3: Performance Metrics of the Φ-Hiding Based HPRG optimized for small pp size

CCA Security via Hinting PRGs. Although Hinting PRGs are an elegant cryptographic primitive,
and therefore coming up with more efficient constructions is interesting in its own right. So far, the most
prominent application of Hinting PRGs has been in upgrading any CPA-secure PKE/ABE scheme to be
CCA-secure [KW19]. Here we thereby analyze how our Hinting PRG constructions affect the performance of
the CPA to CCA-secure PKE/ABE transformation, and briefly compare with other approaches for similar
transformations.

Let us first briefly recall some important aspects of the CCA-secure PKE construction proposed by [KW19]13.
In their construction, the setup involves performing an HPRG Setup for sampling HPRG public parameters
pp which are included as part of the public encryption key. During encryption, the encryptor runs the
HPRG Eval algorithm once for each block and the size of the ciphertext also grows linearly with the seed
length n. Now observe that the recommended HPRG seed length n, for any given security parameter, is
lowest for the DDH and DDHI-based constructions. Additionally, DDHI-based construction leads to shorter
public parameters. Thus, if one uses the DDHI-based HPRG construction proposed in this work then it

13In the original construction by [KW19], the setup algorithm of CCA-secure PKE samples 2n public-secret key pairs of the
underlying CPA-secure PKE. Later in [KMT19], it was suggested that one could instead sample only 2 public-secret key pairs
of the underlying CPA-secure PKE. For an adequate analysis, here we always consider the optimized [KW19] construction as
suggested in [KMT19].

39

leads to much smaller public encryption key and ciphertext sizes with the trade-off being higher encryp-
tion/decryption times. (On the other hand, if the goal is to minimize the size of the public encryption
key, then our Φ-Hiding construction with the aforementioned optimization technique could be used instead.)
In conclusion, the trade-off between public parameter size and evaluation time in the HPRG constructions
carries forward to a trade-off between encryption key/ciphertext sizes and encryption/decryption times in
the resultant CCA-secure construction.

Comparing with [KMT19] (CCA Security via KDM Security). In a follow-up work to [KW19], Kitagawa
et al. [KMT19] provided a similar transformation for achieving CCA security but by relying on Key De-
pendent Message secure SKE [BRS02, HK07, HU08, BPS08] instead of Hinting PRGs.A natural question
would be whether this approach would outperform the [KW19] construction after we plug in the HPRGs
proposed in this work. It turns out that the [KW19] construction is asymptotically a lot more efficient
than [KMT19] in terms of key sizes, ciphertext sizes, setup, encryption, and decryption times. The reason
is that in [KMT19] construction, most of the efficiency metrics (such as public key and ciphertext size,
setup/encryption/decryption times) grow linearly with the key length ` of the underlying KDM-secure sys-
tem. In most existing KDM-secure schemes [BHHO08, BG10, BLSV17], the key length ` is at least O(λ2)
bits. Therefore, this approach leads to much worse (a quadratic slowdown) parameters when compared with
HPRG-based constructions. Thus, this further motivates the problem of improving the efficiency of Hinting
PRGs.

8.2 OWF with Encryption: Comparing with [GH18]

We now discuss the efficiency of our OWFE constructions and compare it with existing constructions. First,
we provide an asymptotic comparison and then give a more concrete performance evaluation.

An asymptotic comparison. In the [GH18] construction, the public parameters consist of O(n) group
elements, where n is at least log p + 2λ, and p is the group size. The function evaluation and decryption
algorithm performs O(n) group operations. The E1 algorithm performs O(n) exponentiations and outputs
a ciphertext containing O(n) group elements. The E2 algorithm performs one exponentiation and outputs a
key containing one group element.

Comparing that to our Φ-Hiding based OWFE construction described in Section 6, the public parameters
consist of 2n (λ-bit) prime exponents along with the RSA modulus N , extractor seed, group generator, and
a hash key. The function evaluation and decryption algorithm performs O(n) exponentiations with λ-bit
exponents, where n is at least logN + 2λ. Both E1 and E2 algorithms perform single exponentiation and
output a ciphertext and key containing just one group element, respectively.

In our DDHI based construction described in Appendix B, the setup phase performs O(n) exponentiations
and outputs public parameters containing n group elements, where n is at least log p+2λ, and p is the group
size. The function evaluation and decryption algorithms evaluate a degree-n polynomial symbolically and
later on performs n exponentiation operations and n group operations. The E1 algorithm performs O(n)
exponentiations and outputs a ciphertext containing O(n) group elements. The E2 algorithm performs one
exponentiation and outputs a key containing 1 group element. We also provide a more efficient OWFE
construction Section 7 by relying on bilinear maps and prove it secure under DBDHI. It is similar to the
DDHI based OWFE, except that E1 algorithm only performs O(1) exponentiations, E2 and decryption
algorithms additionally perform a pairing operation, and ciphertext contains only one group element.

Concrete performance evaluation. The evaluations are performed in a computational environment
similar to that of HPRG evaluation. In addition, we evaluated the performance of DBDHI based OWFE
using MCL Library [Her19] on BN-254, BN-381, BN-462 pairing-friendly elliptic curves [BN05] (providing
100, 128, 140-bit security after the recent tower number field sieve attacks [KB16, MSS16, FK18]).

It turns out that the baseline DDH based OWFE offers the shortest setup, evaluation, and decryption
times. Whereas the Φ-hiding based OWFE outperforms in terms of E1 time and ciphertext size. And, due
to smaller group size (and thereby smaller n), DBDHI based OWFE leads to shortest E1 time and ciphertext

40

size. Lastly, for the shortest E2 time and key size, both the DDH and DDHI based constructions are equally
useful. The concrete performance numbers are provided in Table 4.

Metric Security DDH [GH18] Φ-Hiding (§6) DDHI (§B) DBDHI (§7)

pp Size

80/96/BN254 18.4 KB 71.8 KB 9.2 KB 14.4 KB
112 25.1 KB 192.4 KB 12.6 KB -

128/BN381 32.7 KB 321.8 KB 16.4 KB 30.4 KB
140/BN462 - - - 42.85 KB

192 73.7 KB 1167 KB 36.9 KB -
256 131.1 KB 3059 KB 65.7 KB -

ct Size

80/96/BN254 18.4KB 128 Bytes 9.2 KB 64 Bytes
112 25 KB 256 Bytes 12.4 KB -

128/BN381 32.7KB 384 Bytes 16.3 KB 96 Bytes
140/BN462 - - - 116 Bytes

192 73.68KB 960 Bytes 36.9 KB -
256 131KB 1920 Bytes 65.5 KB -

Key Size

80/96/BN254 24 Bytes 128 Bytes 24 Bytes 381 Bytes
112 28 Bytes 256 Bytes 28 Bytes -

128/BN381 32 Bytes 384 Bytes 32 Bytes 573 Bytes
140/BN462 - - - 593 Bytes

192 48 Bytes 960 Bytes 48 Bytes -
256 64 Bytes 1920 Bytes 64 Bytes -

Time (Setup)

80/96/BN254 0.0096s 1.40s 0.026s 0.0435s
112 0.093s 6.69s 0.052s -

128/BN381 0.016s 12.43s 0.070s 0.158s
140/BN462 - - - 0.493s

192 0.065s 101.38s 0.307s -
256 0.203s 475.55s 1.326s -

Time (f)

80/96/BN254 0.0001s 0.11s 0.037s 0.059s
112 0.0002s 1.06s 0.068s -

128/BN381 0.0002s 3.67s 0.090s 0.19s
140/BN462 - - - 0.54s

192 0.0006s 59.14s 0.353s -
256 0.0020s 473.36s 1.41s -

Time (E1)

80/96/BN254 49.1ms 0.69ms 29.44ms 0.188ms
112 100.87ms 3.10ms 56.80ms -

128/BN381 134.90ms 9.40ms 76.40ms 0.45ms
140/BN462 - - - 1.435ms

192 600.84ms 106.57ms 326.49ms -
256 2590.14ms 601.5ms 1357.93ms -

Time (E2)

80/96/BN254 0.067ms 0.40ms 0.066ms 0.68ms
112 0.12ms 2.80ms 0.11ms -

128/BN381 0.14ms 8.38ms 0.136ms 1.79ms
140/BN462 - - - 4.52ms

192 0.40ms 99.50ms 0.40ms -
256 1.26ms 600.03ms 1.29ms -

Time (D)

80/96/BN254 0.0001s 0.109s 0.036s 0.059s
112 0.0003s 1.09s 0.067s -

128/BN381 0.0003s 3.57s 0.090s 0.19s
140/BN462 - - - 0.54s

192 0.00083s 58.96s 0.355s -
256 0.00286s 466.84s 1.41s -

Table 4: Concrete performance evaluation of various OWFE constructions

Note that even though both DDHI and DBDHI based OWFE schemes have the same one-way function,
DDHI based scheme has faster evaluation time. In fact, the DDHI based construction is more efficient than
DBDHI construction in all aspects other than E1 time and ciphertext size. This is because the recommended
group size of pairing-based elliptic curves grows super linearly in the security parameter due to the number
field sieve attacks. And, the function evaluation and decryption procedures of Φ-hiding based scheme per-
forms O(n) exponentiations, when compared to O(n) group operations performed by other schemes. As a
result, Φ-hiding based scheme has the slowest function evaluation and decryption procedures.

Deterministic Encryption from OWFE. A very interesting application of OWFE is of deterministic en-

41

cryption as shown by [GGH19]. In the deterministic encryption scheme of [GGH19], the setup phase invokes
the OWFE setup phase once and E1 algorithm O(`) times, where ` is proportional to the length of message
being encrypted. The encryption key includes OWFE public parameters and O(`) OWFE ciphertexts. The
encryption algorithm invokes OWFE f algorithm once and OWFE D algorithm O(`) times. The decryption
algorithm invokes OWFE E2 algorithm O(`) times. Consequently, our DBDHI based OWFE leads to a
deterministic encryption scheme with much smaller public parameters and setup time. Concretely, at 128-
bit security, the setup phase and public parameters of our DBDHI based deterministic encryption scheme
for 128-bit messages is more than 200x faster and 240x shorter respectively than the baseline DDH based
deterministic encryption described in [GGH19].

References

[AMP19] Navid Alamati, Hart Montgomery, and Sikhar Patranabis. Symmetric primitives with structured
secrets. In CRYPTO 2019, 2019.

[AMPR19] Navid Alamati, Hart Montgomery, Sikhar Patranabis, and Arnab Roy. Minicrypt primitives with
algebraic structure and applications. In EUROCRYPT 2019, 2019.

[ATSM09] Man Ho Au, Patrick P. Tsang, Willy Susilo, and Yi Mu. Dynamic universal accumulators for
DDH groups and their application to attribute-based anonymous credential systems. In CT-RSA
2009, 2009.

[BB04] Dan Boneh and Xavier Boyen. Efficient selective-ID secure Identity-Based Encryption without
random oracles. In EUROCRYPT ’04, 2004.

[BdM93] Josh Cohen Benaloh and Michael de Mare. One-way accumulators: A decentralized alternative
to digital signatures (extended abstract). In EUROCRYPT, 1993.

[BG10] Zvika Brakerski and Shafi Goldwasser. Circular and leakage resilient public-key encryption under
subgroup indistinguishability - (or: Quadratic residuosity strikes back). In CRYPTO 2010, 2010.

[BHHO08] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-Secure Encryption
from Decision Diffie-Hellman. In CRYPTO ’08, 2008.

[BLSV17] Zvika Brakerski, Alex Lombardi, Gil Segev, and Vinod Vaikuntanathan. Anonymous ibe, leak-
age resilience and circular security from new assumptions. Cryptology ePrint Archive, Report
2017/967, 2017. http://eprint.iacr.org/2017/967.

[BN05] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of prime order. In
SAC 2005, 2005.

[BP97] Niko Baric and Birgit Pfitzmann. Collision-free accumulators and fail-stop signature schemes
without trees. In EUROCRYPT ’97, 1997.

[BPS08] M. Backes, B. Pfitzmann, and A. Scedrov. Key-dependent message security under active attacks
-BRSIM/UC-soundness of Dolev-Yao-style encryption with key cycles. J.of Comp.Security, (5),
2008.

[BRS02] John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-scheme security in the pres-
ence of key-dependent messages. In SAC 2002, 2002.

[BW10] Xavier Boyen and Brent Waters. Shrinking the keys of discrete-log-type lossy trapdoor functions.
In ACNS, 2010.

[CDG+17] Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Antigoni Poly-
chroniadou. Laconic oblivious transfer and its applications. In CRYPTO 2017, 2017.

42

http://eprint.iacr.org/2017/967

[CF13] Dario Catalano and Dario Fiore. Vector commitments and their applications. In PKC 2013,
2013.

[CKS09] Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. An accumulator based on bilinear
maps and efficient revocation for anonymous credentials. In PKC 2009, 2009.

[CL02] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to efficient re-
vocation of anonymous credentials. In CRYPTO 2002, 2002.

[CMS99] Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private information re-
trieval with polylogarithmic communication. In EUROCRYPT ’99, 1999.

[DG17a] Nico Döttling and Sanjam Garg. Identity-based encryption from the diffie-hellman assumption.
In CRYPTO 2017, 2017.

[DG17b] Nico Döttling and Sanjam Garg. From selective ibe to full ibe and selective hibe. TCC, 2017.

[DGHM18] Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, and Daniel Masny. New constructions of
identity-based and key-dependent message secure encryption schemes. In PKC 2018, 2018.

[DGI+19] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and Rafail Ostrovsky.
Trapdoor hash functions and their applications. In CRYPTO 2019, 2019.

[Dir37] PG Lejeune Dirichlet. Beweis eines satzes über die arithmetische progression. Bericht über die
Verhandlungen der königlich Presussischen Akademie der Wissenschaften Berlin, 1837.

[DlVP97] Charles-Jean De la Vallée Poussin. Recherches analytiques sur la théorie des nombres premiers.
Hayez, Imprimeur de l’Académie royale de Belgique, 1897.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam D. Smith. Fuzzy extractors: How
to generate strong keys from biometrics and other noisy data. SIAM J. Comput., (1), 2008.

[DRS04] Yevgeniy Dodis, Leonid Reyzin, and Adam D. Smith. Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. In EUROCRYPT 2004, 2004.

[FK18] Georgios Fotiadis and Elisavet Konstantinou. TNFS resistant families of pairing-friendly elliptic
curves. IACR Cryptology ePrint Archive, 2018.

[GGH19] Sanjam Garg, Romain Gay, and Mohammad Hajiabadi. New techniques for efficient trapdoor
functions and applications. In EUROCRYPT 2019, 2019.

[GH18] Sanjam Garg and Mohammad Hajiabadi. Trapdoor functions from the computational diffie-
hellman assumption. In CRYPTO 2018, 2018.

[GHM+19] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, Ahmadreza Rahimi, and Sruthi
Sekar. Registration-based encryption from standard assumptions. In PKC 2019, 2019.

[GHMR18] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ahmadreza Rahimi.
Registration-based encryption: Removing private-key generator from IBE. In TCC 2018, 2018.

[GHO19] Sanjam Garg, Mohammad Hajiabadi, and Rafail Ostrovsky. Efficient range-trapdoor functions
and applications: Rate-1 ot and more. Cryptology ePrint Archive, Report 2019/990, 2019.
https://eprint.iacr.org/2019/990.

[GOS18] Sanjam Garg, Rafail Ostrovsky, and Akshayaram Srinivasan. Adaptive garbled RAM from
laconic oblivious transfer. In CRYPTO 2018, 2018.

[GR04] Craig Gentry and Zulfikar Ramzan. Rsa accumulator based broadcast encryption. In Interna-
tional Conference on Information Security. Springer, 2004.

43

https://eprint.iacr.org/2019/990

[GS17] Sanjam Garg and Akshayaram Srinivasan. Garbled protocols and two-round MPC from bilinear
maps. In FOCS 2017, 2017.

[GS18] Sanjam Garg and Akshayaram Srinivasan. Adaptively secure garbling with near optimal online
complexity. In EUROCRYPT 2018, 2018.

[Har10] W. B. Hart. Fast library for number theory: An introduction. In Proceedings of the Third
International Congress on Mathematical Software, ICMS’10, Berlin, Heidelberg, 2010. Springer-
Verlag. http://flintlib.org.

[Her19] Herumi. A portable and fast pairing-based cryptography library. https://github.com/herumi/
mcl, 2019.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM J. Comput., (4), 1999.

[HK07] Shai Halevi and Hugo Krawczyk. Security under key-dependent inputs. In ACM CCS ’07, 2007.

[HOR15] Brett Hemenway, Rafail Ostrovsky, and Alon Rosen. Non-committing encryption from Φ-hiding.
In TCC 2015, 2015.

[HU08] Dennis Hofheinz and Dominique Unruh. Towards key-dependent message security in the standard
model. In EUROCRYPT ’08, 2008.

[HW09] Susan Hohenberger and Brent Waters. Short and stateless signatures from the RSA assumption.
In CRYPTO 2009, 2009.

[KB16] Taechan Kim and Razvan Barbulescu. Extended tower number field sieve: A new complexity
for the medium prime case. In CRYPTO 2016, 2016.

[KMT19] Fuyuki Kitagawa, Takahiro Matsuda, and Keisuke Tanaka. Cca security and trapdoor functions
via key-dependent-message security. In Crypto ’19, 2019.

[KNYY19] Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. Designated ver-
ifier/prover and preprocessing nizks from diffie-hellman assumptions. In EUROCRYPT 2019,
2019.

[KW19] Venkata Koppula and Brent Waters. Realizing chosen ciphertext security generically in attribute-
based encryption and predicate encryption. In CRYPTO 2019, 2019.

[LQR+19] Alex Lombardi, Willy Quach, Ron D. Rothblum, Daniel Wichs, and David J. Wu. New con-
structions of reusable designated-verifier nizks. In EUROCRYPT 2019, 2019.

[MSS16] Alfred Menezes, Palash Sarkar, and Shashank Singh. Challenges with assessing the impact of
NFS advances on the security of pairing-based cryptography. In Mycrypt 2016, 2016.

[New80] Donald J Newman. Simple analytic proof of the prime number theorem. The American Mathe-
matical Monthly, (9), 1980.

[Ngu05] Lan Nguyen. Accumulators from bilinear pairings and applications. In Topics in Cryptology -
CT-RSA 2005, 2005.

[QRW19] Willy Quach, Ron D. Rothblum, and Daniel Wichs. Reusable designated-verifier nizks for all
NP from CDH. In EUROCRYPT 2019, 2019.

[Sha83] Adi Shamir. On the generation of cryptographically strong pseudorandom sequences. ACM
Trans. Comput. Syst., (1), 1983.

44

http://flintlib.org
https://github.com/herumi/mcl
https://github.com/herumi/mcl

[Sop10] Ivan Soprounov. A short proof of the prime number theorem for arithmetic progressions. preprint,
2010.

[STY00] Tomas Sander, Amnon Ta-Shma, and Moti Yung. Blind, auditable membership proofs. In FC
2000, 2000.

[Tao09] Terence Tao. The prime number theorem in arithmetic progressions, and dueling conspiracies.
Terry Tao Blog Post, 24 September, 2009. https://terrytao.wordpress.com/2009/09/24/

the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/.

[Zag97] Don Zagier. Newman’s short proof of the prime number theorem. The American mathematical
monthly, (8), 1997.

[Zha16] Mark Zhandry. The magic of elfs. In CRYPTO 2016, 2016.

A Hinting PRG from One Way Function with Encryption

In this section, we generically construct (n, `)-hinting PRG for any polynomials n(·), `(·) from (n− 1, n, `)-
smooth recyclable OWFE, an extractor and a standard pseudorandom generator. LetOWFE = (K, f,E1, E2, D)
be any (n − 1, n, `)-smooth recyclable OWFE with randomness space R, and let co-domain of f be C. Let
the min-entropy of distribution {f(x) : x← {0, 1}n} be k. As f is one-way, we know that k = Ω(log λ). Let
Ext : C×S → W be a (k, ε) extractor, where ε is negligibly small in security parameter. Let PRG :W → {0, 1}`
be a pseudorandom generator. We construct Hinting PRG with (Setup,Eval) as follows.

Setup(1λ): First sample pp′ ← K(1λ). Then sample {ρi,b}i∈[n],b∈{0,1} uniformly at random from R and
compute cti,b = E1(pp′, (i, b); ρi,b) for i ∈ [n], b ∈ {0, 1}. Sample an extractor seed s ← S. Output
public parameters pp = (pp′, {cti,b}i,b, s).

Eval(pp, x, i): Parse pp as (pp′, {cti,b}i,b, s). If i = 0, output PRG(Ext(f(pp′, x), s)). Otherwise, output
D(cti,xi , x).

A.1 Security

We now prove that the above scheme is a secure hinting PRG. Formally, we prove

Theorem A.1. If OWFE is an (n− 1, n, `)-smooth recyclable OWFE, Ext is a strong seeded extractor with
appropriate parameters and PRG is a secure pseudorandom generator, then the above construction is a secure
hinting PRG as per Definition 2.4.

Proof. We prove the above theorem via a sequence of following hybrids. First, we modify the challenger to
use E2 algorithm to generate HPRG challenge. We then switch the randomly sampled yi,1−xi values to be
sampled in a structured way i.e., yi,1−xi = E2(pp, (f(pp, x), i, 1 − xi); ρi,1−xi). We then switch each of the
challenge elements to random by using OWFE encryption security.

Hybrid H0: This game corresponds to the original hinting prg game in which the challenger always chooses
β = 0.

1. The challenger first samples OWFE public parameters pp′ ← K(1λ) and randomness {ρi,b}i∈[n],b∈{0,1}.
It then computes cti,b = E1(pp′, (i, b); ρi,b) for i ∈ [n], b ∈ {0, 1}. The challenger then samples an
extractor seed s.

2. The challenger samples a bit string x← {0, 1}n, computes the challenge y0 = PRG(Ext(f(pp′, x), s)), yi,xi =
D(cti,xi , x), yi,xi ← {0, 1}` for i ∈ [n].

3. It sends public parameters pp = (pp′, {cti,b}i,b, s) and challenge y = (y0, {yi,b}i,b) to the adversary.

4. The adversary outputs a bit β′.

45

https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/

Hybrid H1: This is same as the previous hybrid, except that the challenger computes yi,xi using the E2

algorithm.

2. The challenger samples a bit string x ← {0, 1}n, computes t = f(pp′, x) and the challenge y0 =
PRG(Ext(t, s)), yi,xi = E2(pp′, (t, i, xi); ρi,xi), yi,xi ← {0, 1}` for i ∈ [n].

We now define a sequence of n + 1 hybrids. For the sake of simplicity, let Hybrid H2.0 be same as
Hybrid H1.

Hybrid H2.j (j ∈ [n]): This is same as previous hybrid, except that the challenger computes yi,xi for i ≤ j
differently.

2. The challenger samples a bit string x ← {0, 1}n, computes t = f(pp′, x) and the challenge y0 =
PRG(Ext(t, s)), yi,b = E2(pp′, (t, i, b); ρi,b) for all (i, b) s.t. i ≤ j or b = xi and samples yi,1−xi ←
{0, 1}` for all i > j.

We now define a sequence of 2n + 1 hybrids. For the sake of simplicity, let Hybrid H3.0.1 be same as
Hybrid H2.n.

Hybrid H3.j.b′ (j ∈ [n], b′ ∈ {0, 1}): In this hybrid, the challenger samples x s.t. xj = 1− b′. It also samples
yi,b uniformly at random for all (i, b) ≺ (j, b′).

2. The challenger samples a bit string x ← {0, 1}n s.t. xj = 1− b′, computes t = f(pp′, x) and the
challenge y0 = PRG(Ext(t, s)), computes yi,b = E2(pp′, (t, i, b); ρi,b) for (i, b) � (j, b′) and samples
yi,b ← {0, 1}` for (i, b) ≺ (j, b′).

We now define a sequence of 2n hybrids.

Hybrid H4.j.b′ : This hybrid is same as Hybrid H3.j.b′ , except that the challenger samples yj,b′ at random.

2. The challenger samples a bit string x ← {0, 1}n s.t. xj = 1− b′, computes t = f(pp′, x) and the
challenge y0 = PRG(Ext(t, s)), computes yi,b = E2(pp′, (t, i, b); ρi,b) for (i, b) � (j, b′) and samples
yi,b ← {0, 1}` for (i, b) � (j, b′).

Hybrid H5: This hybrid is same as Hybrid H4.n.1, except that the challenger samples x← {0, 1}n without
any restriction.

2. The challenger samples a bit string x ← {0, 1}n, computes t = f(pp′, x) and the challenge y0 =
PRG(Ext(t, s)), yi,b ← {0, 1}` for all i ∈ [n], b ∈ {0, 1}.

Hybrid H6: This is same as Hybrid H5.n.1, except that the challenger samples t uniformly at random.

2. The challenger samples t←W, computes y0 = PRG(t), yi,b ← {0, 1}` for all i ∈ [n], b ∈ {0, 1}.

Hybrid H7: This is same as Hybrid H6, except that the challenger samples y0 uniformly at random.

2. The challenger samples y0 ← {0, 1}`, yi,b ← {0, 1}` for all i ∈ [n], b ∈ {0, 1}.

Note that hybrid H0 is the original hinting PRG game when challenger always chooses β = 0 and hybrid
H7 is the original hinting PRG game when challenger always chooses β = 1. We prove that these 2 hybrids
are computationally indistinguishable using the following lemmas. For any PPT adversary A, let pAs be the
probability that A outputs 1 in Hybrid Hs.

Lemma A.1. Assuming OWFE is perfectly correct, for any adversary A, we have pA0 = pA1 .

Proof. Assuming OWFE is perfectly correct, the distribution of the challenger’s output is the same in
hybrids H0 and H1.

46

Lemma A.2. Assuming OWFE has secure encryption property, for any PPT adversary A, and index
j ∈ [n], there exists a negligible function negl(·) such that for all λ ∈ N, we have |pA2.j − pA2.j−1| ≤ negl(λ).

Proof. Suppose there exists a PPT Adversary A, and an index j ∈ [n] such that |pA2.j − pA2.j−1| is non-
negligible. We construct a reduction algorithm B that breaks OWFE security of encryption.

The reduction algorithm first samples x ← {0, 1}n and sends (x, j) to challenger C. The challenger
samples OWFE public parameters pp′ ← K(1λ), a bit α ← {0, 1}, randomness ρ and computes ct∗ =
E1(pp′, j, 1 − xj ; ρ). If α = 1, it computes y∗ = E2(pp′, f(pp′, x), j, 1 − xj ; ρ). Otherwise, it samples
y∗ ← {0, 1}`. The challenger sends (pp′, ct∗, y∗) to B. B then samples randomness ρi,b ← R and computes
cti,b = E1(pp′, (i, b); ρi,b) for (i, b) 6= (j, 1 − xj). It then initializes ctj,xj = ct∗, yj,xj = y∗. B then samples
an extractor seed s ← S, computes t = f(pp′, x), y0 = PRG(Ext(t, s)), and yi,b = E2(pp′, (t, i, b); ρi,b) for
all (i, b) s.t. i < j ∨ b = xi. It then samples yi,1−xi ← {0, 1}` for i > j and sends public parameters
pp = (pp′, {cti,b}i,b, s) and challenge (y0, {yi,b}i,b) to the adversary A. The adversary outputs a bit β′. The
reduction algorithm B outputs β′ as its guess in OWFE game.

Note that if α = 0, B emulates Hybrid H2.j−1 challenger toA. If α = 1, B emulates Hybrid H2.j challenger
to A. Moreover, B acts as a valid adversary in OWFE encryption security game. By our assumption,
|pA2.j − pA2.j−1| = |Pr[β′ = 1|α = 0] − Pr[β′ = 1|α = 1]| is non-negligible. Therefore, B breaks OWFE
encryption security.

Lemma A.3. Assuming (n− 1, n)-smoothness of OWFE scheme, for any PPT adversary A, there exists a
negligible function negl(·) such that for all λ ∈ N, we have |pA2.n − pA3.1.0| ≤ negl(λ).

Proof. Suppose there exists a PPT Adversary A such that |pA2.n − pA3.1.0| is non-negligible. We construct a
reduction algorithm B that breaks smoothness property of OWFE .

Let X0 = {0, 1}n and X1 = {x ∈ {0, 1}n : x1 = 1}. Let S0 and S1 be uniform distributions on sets X0

and X1 respectively. Note that both S0 and S1 have min-entropy at least n − 1. The reduction algorithm
B sends S0 and S1 to the challenger C of smoothness game. The challenger C samples a bit α ← {0, 1},
samples x ← Sα, samples OWFE public parameters pp′ ← K(1λ), and sends (pp′, t = f(pp′, x)) to B. The
reduction algorithm B samples an extractor seed s, randomness ρi,b ← R, computes cti,b = E1(pp′, (i, b); ρi,b),
yi,b = E2(pp′, (t, i, b); ρi,b) for i ∈ [n], b ∈ {0, 1} and sets y0 = PRG(Ext(t, s)). B sends public parameters
pp = (pp′, {cti,b}i,b, s) and challenge (y0, {yi,b}i,b) to A. The adversary outputs a bit β′, which B outputs as
its guess in smoothness game.

Note that if α = 0, B emulates Hybrid H2.n challenger to A. If α = 1, B emulates Hybrid H3.1.0 challenger
to A. Moreover, B acts as a valid adversary in OWFE encryption security game. By our assumption,
|pA2.n − pA3.1.0| = |Pr[β′ = 1|α = 0] − Pr[β′ = 1|α = 1]| is non-negligible. Therefore, B breaks (n − 1, n)-
smoothness property of OWFE .

Lemma A.4. Assuming OWFE has secure encryption property, for any PPT adversary A, index j ∈ [n], bit
b′ ∈ {0, 1}, there exists a negligible function negl(·) such that for all λ ∈ N, we have |pA3.j.b′−pA4.j.b′ | ≤ negl(λ).

Proof. Suppose there exists a PPT Adversary A, an index j ∈ [n], bit b′ ∈ {0, 1} such that |pA3.j.b′ − pA4.j.b′ |
is non-negligible. We construct a reduction algorithm B that breaks OWFE security of encryption.

The reduction algorithm first samples x← {0, 1}n s.t. xj = 1− b′, and sends (x, j) to challenger C. The
challenger samples OWFE public parameters pp′ ← K(1λ), a bit α ← {0, 1}, randomness ρ and computes
ct∗ = E1(pp′, j, 1 − xj ; ρ). If α = 0, it computes y∗ = E2(pp′, f(pp′, x), j, 1 − xj ; ρ). Otherwise, it samples
y∗ ← {0, 1}`. The challenger sends (pp′, ct∗, y∗) to B. B then samples randomness ρi,b ← R and computes
cti,b = E1(pp′, (i, b); ρi,b) for (i, b) 6= (j, b′). It then initializes ctj,b′ = ct∗, yj,b′ = y∗. B then computes
t = f(pp′, x), y0 = PRG(Ext(t, s)), and yi,b = E2(pp′, (t, i, b); ρi,b) for all (i, b) s.t. (i, b) � (j, b′). It then
samples yi,b ← {0, 1}` for all (i, b) ≺ (j, b′) and sends public parameters pp = (pp′, {cti,b}i,b, s) and challenge
(y0, {yi,b}i,b) to the adversary A. The adversary outputs a bit β′. The reduction algorithm B outputs β′ as
its guess in OWFE game.

47

Note that if α = 0, B emulates Hybrid H3.j.b′ challenger to A. If α = 1, B emulates Hybrid H3.j.b′ chal-
lenger to A. Moreover, B acts as a valid adversary in OWFE encryption security game. By our assumption,
|pA3.j.b′ − pA4.j.b′ | = |Pr[β′ = 1|α = 0] − Pr[β′ = 1|α = 1]| is non-negligible. Therefore, B breaks OWFE

encryption security.

Lemma A.5. Assuming (n− 1, n)-smoothness of OWFE scheme, for any PPT adversary A, index j ∈ [n],
bit b′ ∈ {0, 1}, s.t. (j, b′) ≺ (n, 1), there exists a negligible function negl(·) such that for all λ ∈ N, we have
|pA4.j.b′ − pA3.j+b′.1−b′ | ≤ negl(λ).

Proof. This proof is similar to proof of Lemma A.3.

Lemma A.6. Assuming (n− 1, n)-smoothness of OWFE scheme, for any PPT adversary A, there exists a
negligible function negl(·) such that for all λ ∈ N, we have |pA4.n.1 − pA5 | ≤ negl(λ).

Proof. This proof is similar to proof of Lemma A.3.

Lemma A.7. Assuming OWFE satisfies one-wayness property and Ext is a strong seeded extractor with
appropriate parameters, for any adversary A, there exists a negligible function negl(·) such that for all λ ∈ N,
we have |pA5 − pA6 | ≤ negl(λ).

Proof. Assuming f is one-way, we know that the min-entropy k of the distribution {f(x) : x ← {0, 1}n}
is Ω(log λ) bits. If Ext : C × S → W is a strong seeded (k, ε) extractor for a negligibly small ε, then the
distributions (s,Ext(f(pp′, x))) and (s, u), where s← S, pp′ ← K(1λ), x← {0, 1}n, w ←W, have a statistical
difference of ε. Moroever, with an appropriate choice of ε, we have |W| ≥ 2Ω(log λ).

Lemma A.8. Assuming PRG : W → {0, 1}` is a secure PRG for any PPT adversary A, there exists a
negligible function negl(·) such that for all λ ∈ N, we have |pA6 − pA7 | ≤ negl(λ).

Proof. Suppose there exists a PPT adversary A such that |pA6 − pA7 | is non-negligible. We construct a
reduction algorithm B that breaks PRG security.

The PRG challenger C samples a bit α ← {0, 1}. If α = 0, it samples t ← W and lets v = PRG(t).
Otherwise, it samples v ← {0, 1}`. The challenger sends v to the reduction algorithm B, which samples
HPRG public parameters pp, yi,b ← {0, 1}` for i ∈ [n], b ∈ {0, 1}, sets y0 = v and sends pp, challenge
(y0, {yi,b}i,b) to A. The adversary outputs a bit β′. B outputs β′ as its guess in PRG game.

Note that, B acts as Hybrid H6 challenger if α = 0, and as Hybrid H7 challenger if α = 1. By our
assumption, |pA6 − pA7 | = |Pr[β′ = 1|α = 0]−Pr[β′ = 1|α = 1]| is non-negligible and B breaks PRG security.

By the above sequence of lemmas and triangle inequality, for any PPT adversary A, there exists a
negligible function negl(·) such that for all λ ∈ N, |pA0 − pA7 | ≤ negl(λ). Therefore, the above construction is
a secure hinting prg.

B One Way Function with Encryption from q-DDHI Assumption

We now construct (k, n)-OWFE from any n-DDHI hard group generator GGen. Suppose GGen(1λ) generates
a group of order at most 2m, the below construction requires k ≥ m+ 2λ and n ≤ k +m− 2λ for any fixed
constant α. This is a variant of the construction from n-DBDHI assumption presented in Section 7. This
construction does not use pairings but has longer ciphertext compared to the one presented in Section 7.
For the sake of simplicity, we construct a OWFE scheme where the encryption algorithm outputs elements
in a group. The construction can be extended to output `-length bit strings by using PRGs and randomness
extractors.

48

K(1λ): Sample a group G = (G, p)← GGen(1λ). Sample a generator g ← G1 and random values α, d0, d1 ←
Zp. Output the public parameters (G, g, gα, gα2

, · · · , gαn , d0, d1).

f(pp, x): Parse public parameters pp as pp = (G, g, gα, gα2

, · · · , gαn , d0, d1). Let the polynomial (d0x+d1) ·∏n
j=1(α+ 2j + xj) =

∑n
i=0 ciα

i, where ci is a function of d0, d1, x. Output
∏n
i=0

(
gα

i
)ci

.

E1(pp, (i, b); ρ): Let h = gρ·(α+2i+b). Compute and output (h, hα, hα
2

, · · · , hαn−1

, i). Note that these values

can be computed given (g, gα, gα
2

, · · · , gαn).

E2(pp, (y, i, b); ρ): Compute and output yρ.

D(pp, ct, x): Let ct = (h, hα, hα
2

, · · · , hαn−1

, i). Consider the polynomial (d0x+ d1) ·
∏
j∈[1,n]\{i}(α+ 2j +

xj) =
∑n−1
j=0 cjα

j , where cj is a function of d0, d1, x. Compute and output
∏n−1
j=0

(
hα

j
)cj

.

Correctness. For any set of public parameters pp = (G, g, gα, gα2

, · · · , gαn , d0, d1), string x ∈ {0, 1}n,
index j ∈ [n] and randomness ρ, we have D(pp, E1(pp, (j, xj); ρ), x) = gρ(d0x+d1)

∏
i(α+2i+xi) = f(pp, x)ρ =

E2(pp, (f(pp, x), j, xj); ρ).

B.1 Security

We now prove that the above construction satisfies one-wayness, encryption security and smoothness prop-
erties.
One-Wayness. We now prove that the above construction satisfies (k, n)-one-wayness property for any
k ≥ m+ 2λ and n ≤ k +m− 2λ.

Lemma B.1. Assuming n-DDHI assumption holds (Assumption 2), for any (k, n) source s.t. k ≥ m + 2λ
and n ≤ k +m− 2λ, the above construction satisfies (k, n)-one-wayness property as per Definition 2.1.

Proof. Suppose there exists a PPT adversary A that breaks one-wayness property of the above construction
with non-negligible probability. We construct a reduction algorithm B that wins n-DDHI game with non-
negligible probability.

The adversary A first sends a (k, n)-source S to the reduction algorithm B. The challenger then sends

(G, h, hα, hα2

, · · · , hαn , T) to the reduction algorithm B. The reduction algorithm samples a string x ← S,

d0, d1 ← Zp, computes public parameters pp = (G, h, hα, hα2

, · · ·hαn , d0, d1) and sends pp, y = f(pp, x)
to the adversary A. The adversary outputs a string x′. If x′ = x or f(pp, x) 6= f(pp, x′), the reduction
algorithm aborts and outputs a random bit. Otherwise, B computes α s.t. (d0x+ d1) ·

∏n
i=1(α+ 2i+ xi) =

(d0x
′ + d1) ·

∏n
i=1(α + 2i + x′i) mod p. The reduction algorithm then checks if T = g1/α. If T = g1/α, it

outpus 1. Otherwise, it outputs 0.
We now analyze the advantage of B in n-DDHI game. By our assumption, f(pp, x′) = f(pp, x) with non-

negligible probability ε. We prove that the reduction algorithm does not abort with non-negligible probability.
As k ≥ m+ 2λ, we know that for any pp, Prx←S [∃t ∈ {0, 1}n s.t. x 6= t ∧ f(pp, x) = f(pp, t)] ≥ 1− negl(λ).
Therefore, Pr[x′ 6= x ∧ f(pp, x) = f(pp, x′)] ≥ ε/2 − negl(λ). Note that if B does not abort, it breaks
the n-DDHI game with advantage 1/2. Therefore, the overall advantage of B in breaking n-DDHI game is
ε/4− negl(λ).

Security of Encryption. We now prove that the above construction satisfies encryption security property.

Lemma B.2. Assuming n-DDHI assumption holds (Assumption 2), the above construction satisfies encryp-
tion security property as per Definition 2.2.

Proof. This is similar to the proof of Lemma 7.2. Suppose there exists a PPT adversary A that breaks
encryption security of the above construction with non-negligible probability. We construct a reduction
algorithm B that wins against n-DDHI challenger C.

49

The challenger C first samples a group structure G = (G, p) ← GGen(1λ), a generator h ← G, a value
β ← Z∗p and a bit γ ← {0, 1}. If γ = 0, it sets T = h1/β . Otherwise, it samples T ← G. The challenger

then sends (G, h, hβ , hβ2

, · · · , hβn , T) to the reduction algorithm B. The adversary sends a string x ∈ {0, 1}n
and an index j to B. B samples d0, d1 ← Zp and implicitly sets α = β − 2j − 1 + xj . It then computes

public parameters pp = (G, h, hα, hα2

, · · · , hαn , d0, d1), samples randomness ρ ← Zp and computes ct∗ =

(hρ, hρ·α, hρ·α
2

, · · · , hρ·αn−1

, j). Consider the polynomial

ρ · (d0x+ d1) ·
∏n
i=1(α+ 2i+ xi)

α+ 2j + 1− xj
=
c

β
+

n−1∑
i=0

ciβ
i

where c, {ci}i are dependent only on ρ, x, d0, d1. The reduction algorithm computes k∗ = T c ·
∏n−1
i=0

(
hβ

i
)ci

and sends pp, ct∗, k∗ to the adversary. The adversary outputs a bit γ′. B outputs γ′ as its guess in n-DDHI
game.

We now analyze the advantage of B in n-DDHI game. As β is sampled uniformly, α is also uniformly
distributed. Let ρ′ = ρ

α+2j+1−xj mod p. As β 6= 0 mod p and ρ is uniformly distributed, ρ′ is also uniformly

distributed in Zp. If γ = 0, then (pp, ct∗, k∗) is same as (pp, E1(pp, (j, 1 − xj); ρ′), E2(pp, (f(pp, x), j, 1 −
xj); ρ

′). If γ = 1, then k∗ is uniformly random. As A distinguishes these 2 distributions with non-negligible
probability, |Pr[γ′ = 1|γ = 0]−Pr[γ′ = 1|γ = 1]| is non-negligible. Therefore, B breaks n-DDHI assumption.

Smoothness. We now prove that the above construction satisfies (k, n)-smoothness property for any k ≥
m+ 2λ and n ≤ k +m− 2λ.

Lemma B.3. The above construction satisfies (k, n)-smoothness property for any k ≥ m + 2λ and n ≤
k +m− 2λ as per Definition 2.3.

Proof. This proof is same as the proof of Lemma 7.3.

C Leftover Hash Lemma over Zp
We now present a lemma that is used in proving various theorems in this work.

Lemma C.1. For any prime p, any (k, n)-source S s.t. k ≥ log p + 2λ, n ≤ k + log p − 2λ, any subset

A ⊆ [0, p − 2n − 2], the distribution
(
K,H(K,S)

)
is statistically indistinguishable from

(
K,U

)
, where

H : K×{0, 1}n → Zp is a hash function with key space K = (Zp×Zp×A) and is defined as H((d0, d1, α), x) =
(d0x + d1) ·

∏n
k=1(α + 2k + xk) mod p, hash key K = (d0, d1, α) is uniformly sampled from K and U is the

uniform distribution on Zp.

Proof. This proof is information-theoretic. We first bound the probability PrK [H(K, s) = H(K, t)] for any
s, t ∈ {0, 1}n s.t. s 6= t. We then use analysis similar to leftover hash lemma and prove that the distribution
(K,H(K,S)) is statistically indistinguishable from (K,U). Consider any s, t ∈ {0, 1}n s.t. s 6= t.

Pr
K

[H(K, s) = H(K, t)] =
∑
c∈Zp

Pr
K

[H(K, s) = H(K, t) = c]

=
∑
c∈Zp

Pr
d0,d1,α

[
(d0s+ d1) = c ·

n∏
k=1

(α+ 2k + sk)−1 mod p
∧

(d0t+ d1) = c ·
n∏
k=1

(α+ 2k + tk)−1 mod p
]

Note that for any α ∈ A, (α + 2k + sk)−1, (α + 2k + tk)−1 mod p is unique for all k ∈ [n]. For any α ∈ A
and c ∈ Zp, let us compute the number of (d0, d1) pairs in Z2

p that satisfy the above pair of equations. On

50

subtracting the equations, we get

d0(s− t) = c ·
(n∏
k=1

(α+ 2k + sk)−1 −
n∏
k=1

(α+ 2k + tk)−1
)

mod p.

Consider the following 2 cases.

• Case 1 (s− t 6= 0 mod p): There exists a unique (d0, d1) pair satisfying the pair of equations for every
α ∈ A and c ∈ Zp. Therefore,∑

c∈Zp

Pr
K

[H(K, s) = H(K, t) = c] =
∑
c∈Zp

1

p2
=

1

p

• Case 2 (s−t = 0 mod p): If c = 0, for any α ∈ A, number of (d0, d1) ∈ Z2
p satisfying the pair of equations

is p. If c 6= 0, for any α ∈ A such that f(α) =
∏n
k=1(α + 2k + sk) −

∏n
k=1(α + 2k + tk) = 0 mod p,

number of (d0, d1) ∈ Z2
p satisfying the pair of equations is p. For any α s.t. f(α) 6= 0 mod p, no

(d0, d1) ∈ Z2
p satisfying the pair of equations. By lagrange’s theorem, f(α) = 0 mod p has at most n

solutions.∑
c∈Zp

Pr
K

[H(K, s) = H(K, t) = c] ≤ Pr
K

[H(K, s) = H(K, t) = 0] +
∑
c6=0

Pr
K

[H(K, s) = H(K, t) = c]

≤ p

p2
+
∑
c6=0

p

p2
· Pr
α

[n∏
k=1

(α+ 2k + sk)−
n∏
k=1

(α+ 2k + tk) = 0 mod p
]

≤ 1

p
+ (p− 1) · 1

p
· n

p− 2n− 1
≤ 2n+ 1

p
(Assuming p− 2n− 1 ≥ p/2)

We now bound the statistical distance between distributions D1 = (K,H(K,S)) and D2 = (K,U). For any
distribution D, let CP(D) be collision probability on D.

CP(D1) = Pr
K1,K2,
s,t←S

[(K1, H(K1, s)) = (K2, H(K2, t))] = Pr[K1 = K2] · Pr
K,

s,t←S

[H(K, s) = H(K, t)]

=
1

|K|
·
(

Pr
s,t

[s = t] + Pr
s,t

[s 6= t mod p] Pr
H

[H(s) = H(t)|s 6= t mod p]

+ Pr
s,t

[s = t mod p, s 6= t] Pr
H

[H(s) = H(t)|s = t mod p, s 6= t]
)

≤ 1

|K|
·
(1

2k
+ 1 · 1

p
+

1

2k
·
⌊

2n

p

⌋
· 2n+ 1

p

)
≤ 1

|K|
·
(1

2k
+

1

p
+

2n−k · (2n+ 1)

p2

)
We know that statistical difference between D1 and D2 is given by

SD(D1, D2) ≤
√
|K| · p

√
CP(D1)− CP(D2)

≤
√
|K| · p

√
1

|K|

(1

2k
+

1

p
+

2n−k · (2n+ 1)

p2

)
− 1

|K| · p

=

√
p

2k
+

2n−k · (2n+ 1)

p
= negl(λ) (As k ≥ log p+ 2λ and n− k ≤ log p− 2λ)

51

	Introduction
	Our Approach

	Preliminaries
	One Way Function with Encryption
	Hinting PRG
	Strong Extractors
	Assumptions

	Hashing and Randomness Extraction under -Hiding
	Number Theory: Prime Number Theorems for Arithmetic Progressions
	A New Hashing Lemma
	Strengthening the Hash Lemma

	-Hiding based Extractor Lemma

	Hinting PRGs based on -Hiding
	Optimization by Sharing Computation
	Security

	Hinting PRG from q-DDHI Assumption
	Security

	One-Way Function with Encryption from -Hiding Assumption
	Security

	One-Way Function with Encryption from q-DBDHI Assumption
	Security

	Performance Evaluation
	Hinting PRG: Comparing with KW19
	OWF with Encryption: Comparing with GH18

	Hinting PRG from One Way Function with Encryption
	Security

	One Way Function with Encryption from q-DDHI Assumption
	Security

	Leftover Hash Lemma over Zp

