
Verifpal: Cryptographic Protocol Analysis
for Students and Engineers

Nadim Kobeissi
Symbolic Software, NYU Paris

Abstract

Contemporary research in symbolic formal verification has led to confirming
security guarantees (as well as finding attacks) in secure channel protocols such
as TLS and Signal. However, formal verification in general has not managed to
significantly exit the academic bubble.

Verifpal is new software for verifying the security of cryptographic protocols
that aims is to work better for real-world practitioners, students and engineers
without sacrificing comprehensive formal verification features. In order to achieve
this, Verifpal introduces a new, intuitive language for modeling protocols that is
easier to write and understand than the languages employed by existing tools. Its
formal verification paradigm is also designed explicitly to provide protocol modeling
that avoids user error. By modeling principals explicitly and with discrete states,
Verifpal models are able to be written in a way that reflects how protocols are
described in the real world.

At the same time, Verifpal is able to model protocols under an active attacker
with unbounded sessions and fresh values, and supports queries for advanced security
properties such as forward secrecy or key compromise impersonation. Verifpal has
already been used to verify security properties for Signal, Scuttlebutt, TLS 1.3 and
other protocols. It is a community-focused project, and available under a GPLv3
license.

1 Introduction
Internet communications rely on a handful of protocols, such as Transport Layer Security
(TLS), SSH and Signal, in order to keep user data confidential. These protocols often aim
to achieve ambitious security properties (such as post-compromise security [1]) across
complex use-cases (such as support for multiple devices [2].) Given the broad set of
operations and states supported by these protocols, verifying that they do indeed achieve
their desired security goals across all use-case scenarios has proven to be non-trivial.

Automated formal verification tools have seen an encouraging success in helping to
model the security of these protocols. Recently, the Signal secure messaging protocol [3],
the TLS 1.3 web encryption standard [4], the 5G wireless communication standard [5, 6],
the Scuttlebutt decentralized messaging protocol [7], the Bluetooth standard [7], the
Let’s Encrypt certificate issuance system [8, 9], the Noise protocol framework [10, 11, 12]
and the WireGuard [13] Virtual Private Network (VPN) protocol [14] have all been
analyzed using automated formal verification.

Despite this increase in the usage of formal verification tools, and despite the success
obtained with this approach, automated formal verification technology remains unused

1

outside certain specific realms of academia: an illustrative fact is that almost all of the
example results cited above have, as a co-author, one of the designers of the automated
formal verification tool that was used to obtain the research result. We conjecture that
this lack of adoption is leading an increase in the number of weaknesses in cryptographic
protocols: in the case of TLS, protocol designers did not use formal verification technology
in the protocol’s design phase up until TLS 1.3, and that was only due to automated formal
verification helping discover a large number of attacks in TLS 1.2 and below [15, 16, 4],
and was, again, only accomplished via collaboration with the designers of the formal
verification tools themselves.

1.1 A Simpler Approach to Symbolic Verification

Extensive experience with automated formal verification tools has led us to the hypothesis
that the prerequisite knowledge, modeling languages and structure in which the tools
formalize their results are a significant barrier against wider adoption. Verifpal is an
attempt to overcome this barrier. Building upon contemporary research in symbolic
formal verification, Verifpal’s main aim is to appeal more to real-world practitioners,
students and engineers without sacrificing comprehensive formal verification features.
Verifpal has four main design goals/features:

An intuitive language for modeling protocols. Verifpal’s internal logic relies
on the deconstruction and reconstruction of abstract terms, similar to existing symbolic
verification tools. However, it reasons about the protocol model with explicit principals:
Alice and Bob exist, they have independent states, they know certain values and perform
operations with cryptographic primitives. They send messages to each other over the
network, and so on. The Verifpal language is meant to illustrate protocols close to
how one may describe them in an informal conversation, while still being precise and
expressive enough for formal modeling.

Modeling that avoids user error. Verifpal does not allow users to define their
own cryptographic primitives. Instead, it comes with built-in cryptographic functions:
ENC and DEC representing encryption and decryption, AEAD_ENC and AEAD_DEC representing
authenticated encryption and decryption, DH and SIGN representing asymmetric primitives,
etc. — this is meant to remove the potential for users to define fundamental cryptographic
operations incorrectly. Verifpal also adopts a global name-space for all constants and
does not allow constants to be redefined or assigned to one another. This enforces models
that are clean and easy to follow.

Analysis output that’s easy to understand. Existing tools provide “attack
traces” that illustrate a deduction using session-tagged values in a chain of symbolic
deconstructions. Verifpal follows a different approach: as it is analyzing a model, it
outputs notes on which values it is able to deconstruct, conceive of, or reconstruct. When
a contradiction is found for a query, the result is related in a readable format that ties
the attack to a real-world scenario. This is done by using terminology to indicate how
the attack could have been possible, such as through a mayor-in-the-middle on ephemeral
keys.

Integration with the developer’s workflow. Verifpal comes with a Visual Studio
Code extension that offers syntax highlighting and, soon, live query verification within
Visual Studio Code, allowing developers to obtain insights on their model as they are
writing it.

Verifpal is founded upon these four design goals, without sacrificing the ability to

2

handle advanced security analysis: the tool is able to verify the security of complex
protocols, such as Signal, and query for complex attack scenarios such as post-compromise
security and key compromise impersonation, across unbounded session executions of the
protocol and with fresh values not being shared across sessions. By giving practitioners
this powerful symbolic analysis paradigm in an intuitive package, Verifpal stands a chance
at making symbolic formal verification a staple in the diet of any protocol designer.

Verifpal does not aim to replace existing tools: for example, it will likely never
support certain features that are easy to accomplish in ProVerif, such as the definition
of custom cryptographic primitives (through construction, deconstruction and rewrite
rules). Finally, it is important to note that Verifpal currently does not come with a full
soundness theorem — this is further discussed in §3.2.

1.2 Related Work

Verifpal is pretty late to the party, arriving roughly two decades since automated formal
verification became a research focus. Here, we outline some of the more pertinent formal
verification tools, use cases and broader methodologies this research area has seen, and
which Verifpal aims to supersede in terms of accessibility and real-world usability.

1.2.1 Other Symbolic Verification Tools and their Use Cases

Verifpal is heavily inspired by the ProVerif [17, 18] protocol verifier, designed by Bruno
Blanchet. It does not construct all terms out of Horn clauses [19] in the way that
ProVerif does, and it does not use the applied pi-calculus [20] as its modeling language.
However, its analysis logic is inspired by ProVerif and is similarly based on the Dolev-
Yao model [21]. ProVerif’s construction/deconstruction/rewrite logic is also mirrored
in Verifpal’s own design. ProVerif has been recently used to formally verify TLS 1.2
and TLS 1.3 [4], Let’s Encrypt’s ACME certificate issuance protocol [9], the Signal
secure messaging protocol [3], the Noise protocol framework [10], the Plutus network
filesystem [22], e-voting protocols [23, 24, 25, 26], FIDO [27] and many more use cases.

The Tamarin [28] protocol prover also works under the symbolic model, but derives
the progeny of its analysis from principals’ state transitions rather than from the
viewpoint of an attacker observing and manipulating network messages. It is also
different from ProVerif in its analysis style, and its modeling language is unique within
the domain. Tamarin has been recently used to formally verify Scuttlebutt [7], TLS [29],
WireGuard [30], 5G [5, 6], the Noise protocol framework [12, 11], multiple e-voting
protocols [31, 32] and many more use cases.

Scyther1 [34, 35], whose authors also work on Tamarin, offers unbounded verification
with guarantees of termination but uses a more accessible and explicit modeling language
than Tamarin. Scyther has been used to analyze IKEv1 and IKEv2 [36] (used in IPSec),
a large amount of Authenticated Key Exchange (AKE) protocols such as HMQV, UM
and NAXOS [37], and to check for “multi-protocol attacks” [38]. Research focus seems to
be moving towards Tamarin, but Scyther is still sometimes used.

AVISPA [39]’s modeling language is somewhat similar to Verifpal’s: both have a
focus on describing “actors” with “roles”, and explicitly attempt to allow the user to
illustrate the protocol intuitively, as if describing actors in a theatrical play. Despite this,

1Not to be confused with the bug/flying-type Pokémon of the same name, which, despite its “ninja-like
agility and speed” [33], does not appear to have published work in formal verification.

3

work on AVISPA seems to have stalled in 2005. The tool does not seem to be actively
developed and appears to have been superseded by the AVANTSSAR [40] project. In
2016, a new authentication protocol was designed and prototyped with AVISPA [41]. In
2011, Facebook’s Connect single sign-on protocol was modeled with AVISPA [42].

FDR [43] is not specifically a protocol verifier, but rather a refinement and equivalence
checker for processes written using the Communicating Sequential Processes language [44].
CSP can be used to illustrate processes that capture secure channel protocols, and security
queries can be illustrated as refinements or properties resulting from these processes. In
that sense, FDR can act as a protocol verifier. In 2014, an RFID authentication protocol
was formally verified using FDR [45].

A performance analysis of symbolic formal verification tools by Lafourcade and
Pus [46], conducted in 2015, as well as a preceding study by Cremers and Lafourcade in
2011 [47] found mixed results, with ProVerif coming out on top more often than not.

ProVerif and Tamarin appear to the the current titans of the symbolic verification
space, and they tend to compliment each other due to diverging design decisions: for
example, ProVerif does not require human assistance for verification, but sometimes may
not terminate and may also sometimes find false attacks (although it is proven not to
miss attacks.) Tamarin, on the other hand, always terminates, but may require human
assistance, therefore making it less suited for fully automated analysis — in some cases,
fully automated analysis can be necessary to achieve certain research goals [10].

1.2.2 Formal Verification Paradigms

Verifpal, as well as all of the tools cited above, analyze protocols in the symbolic model.
There are other methodologies in which to formally verify protocols, including the
computational model or, for example, by using SMT solvers. We choose the symbolic
model as the focus of our research due to its academic success record in verifying
contemporary protocols and due to its propensity for fully automated analysis. It
should be noted, however, that more precise analysis can often be achieved using the
aforementioned formal verification methodologies.

Traditionally, symbolic models are favored the security protocol verification community
for ease of automated analysis. Cryptographers, on the other hand, prefer to use
computational models and do their proofs by hand. A full comparison between these
styles [48] is beyond the scope of this work; here we briefly outline their differences in
terms of the tools currently used in the field.

ProVerif, Tamarin, AVISPA and other tools analyze symbolic protocol models,
whereas tools such as CryptoVerif [49] verify computational models. The input languages
for both types of tools can be similar. However, in the symbolic model, messages are
modeled as abstract terms. Processes can generate new nonces and keys, which are
treated as atomic opaque terms that are fresh and unguessable. Functions map terms
to terms. For example, encryption constructs a complex term from its arguments (key
and plaintext) that can only be deconstructed by decryption (with the same key). In
ProVerif, for example, the attacker is an arbitrary process running in parallel with the
protocol, which can read and write messages on public channels and can manipulate
them symbolically.

In the computational model, messages are concrete bitstrings. Freshly generated
nonces and keys are randomly sampled bitstrings that the attacker can guess with
some probability (depending on their length). Encryption and decryption are functions

4

on bitstrings to which we may associate standard cryptographic assumptions such as
IND-CCA. The attacker is a probabilistic polynomial-time process running in parallel.

Queries can also be modeled similarly in symbolic and computational models as
between events, but analysis differs: in symbolic analysis, we typically ask whether the
attacker can derive a secret, whereas in the computational model, we ask whether it can
distinguish a secret from a random bitstring.

The analysis techniques employed by the two tools are quite different. Symbolic
verifiers search for a protocol trace that violates the security goal, whereas computational
model verification tries to construct a cryptographic proof that the protocol is equivalent
(with high probability) to a trivially secure protocol. Symbolic verifiers are easy to
automate, while computational model tools, such as CryptoVerif, are semi-automated: it
can search for proofs but requires human guidance for non-trivial protocols.

Recently, the F? programming language [50], which exports type definitions to the Z3
theorem prover [51], has been used to produce an implementation of the Signal secure
messaging protocol that is formally verified for functional correctness at the level of the
implementation itself [52]. Microsoft Research’s Project Everest [53] is attempting to
accomplish the same thing for HTTPS, also using F? [54].

1.3 Contributions

W present the following contributions:

• Introduction of Verifpal and comparison against existing automated verification
tools in the symbolic model (§1).

• The Verifpal modeling language with justifications for the language’s design choices
as well as examples (§2).

• Verifpal’s protocol analysis logic and whether we can be certain that Verifpal will
not miss an attack on a protocol model (§3).

• Modeling of the Signal secure messaging protocol using Verifpal, with queries for
confidentiality, authentication, forward secrecy and key compromise impersonation
(§4).

Verifpal is free and open source software, available for download at https://verifpal.
com.

2 The Verifpal Language
Verifpal’s language is meant to be simple while allowing the user to capture comprehensive
protocols. When describing a protocol in Verifpal, we begin by defining whether the
model will be analyzed under a passive or active attacker. Then, we define the principals
engaging in activity other than the attacker. These could be Alice and Bob, a Server
and one or more Clients, etc.

Once we have described the actions of more than one principal, it’s time to illustrate
the messages being sent across the network. Then, after having illustrated the principals’
actions and their messages, we may finally describe the questions, or queries (can a passive
attacker read the first message that Alice sent to Bob? Can Alice can be impersonated
by an active attacker?) that we will ask Verifpal.

5

https://verifpal.com
https://verifpal.com

〈verifpal〉 ::= 〈attacker〉 〈principal〉 (〈principal〉 | 〈message〉)+ 〈queries〉
〈attacker〉 ::= ‘attacker [’ (‘active’ | ‘passive’) ‘]’
〈principal〉 ::= ‘principal’ 〈string〉 ‘[’ (〈knows〉 | 〈generates〉 | 〈assignment〉)+ ‘]’
〈knows〉 ::= ‘knows ’ (‘private’ | ‘public’) 〈constant〉 (‘,’ 〈constant〉)*
〈generates〉 ::= ‘generates ’ 〈constant〉 (‘,’ 〈constant〉)*
〈assignment〉 ::= 〈constant〉 (‘,’ 〈constant〉)* ‘ = ’ (〈primitive〉 | 〈equation〉)
〈message〉 ::= 〈string〉 ‘ → ’ 〈string〉 ‘: ’ (〈constant〉 | 〈guardedConstant〉) (‘,’ (〈constant〉 |
〈guardedConstant〉))*
〈queries〉 ::= ‘queries[’ (〈confidentialityQuery〉 | 〈authenticationQuery〉)* ‘]’
〈confidentialityQuery〉 ::= ‘confidentiality? ’ 〈constant〉
〈authenticationQuery〉 ::= ‘authentication? ’ 〈string〉 ‘ → ’ 〈string〉 ‘: ’ 〈constant〉
〈constant〉 ::= 〈string〉
〈guardedConstant〉 ::= ‘[’ 〈constant〉 ‘]’
〈primitive〉 ::= 〈primitiveName〉 ‘(’ (〈constant〉 | 〈primitive〉 | 〈equation〉) (‘,’ (〈constant〉 |
〈primitive〉 | 〈equation〉))* ‘)’ [‘?’]
〈equation〉 ::= 〈constant〉 ‘^’ 〈constant〉
〈primitiveName〉 ::= ‘HASH’ | ‘HKDF’ | ‘AEAD_ENC’ | ‘AEAD_DEC’ | ‘ENC’ | ‘DEC’ | ‘HMAC’ | ‘HMACVERIF’
| ‘SIGN’ | ‘SIGNVERIF’
〈string〉 ::= 〈stringElement〉+
〈stringElement〉 ::= a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v |
w | x | y | z | _ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Figure 1: Verifpal language syntax.

2.1 Principals

First, we must define what kind of attacker Verifpal will use to analyze our model. The
syntax for this is pretty simple: attacker[passive] indicates a passive attacker, while
attacker[active] indicates an active attacker.

We may then declare a principal Alice which knows the public constants c0, c1 and
the private constant m1, which will act as the secret message Alice will want to send to
Bob later. Since c0 and c1 are declared as known publicly, they are immediately also
known to the attacker. The same, of course, is not true of m1. Alice also generates a
random value a. She will use this value as her private key.
New Principal: Alice

principal Alice[
knows public c0, c1
knows private m1
generates a

]

New Principal: Bob

principal Bob[
knows public c0, c1
knows private m2
generates b
gb = G^b

]

6

Notice how Bob also calculates gb = G^b. Here, gb is Bob’s public Diffie-Hellman key,
while G^b quite plainly indicates the standard Diffie-Hellman exponentiation gb. Later,
Alice will be able to write gb^a, which is how we illustrate gba in Verifpal.

2.2 Constants

In the above examples, c0, c1, m1, m2, b, gb are all constants. Certain rules apply on
constants in Verifpal:

• Immutability. Once assigned, constants cannot be reassigned.

• Global name-space. If Bob declares or assigns some constant c, Alice cannot
declare a constant c even if Bob declares or assigns his constant privately.

• No referencing. Constants cannot be assigned to other constants, but only to
primitives or equations.

These rules exist in order to encourage the user to write Verifpal models that will
hopefully be cleaner and easier to read. Let’s summarize the different ways that exist to
declare constants, and how they differ from one another:

• knows: A principal may be described as having prior knowledge of a constant.
The qualifiers private and public describe whether this constant that they have
knowledge of is supposed to be considered known by everyone else (including the
attacker) or just by them. Constants declared this way are considered to be, well,
constant, across every execution of the protocol (i.e. they are not unique for every
different time the protocol is executed).

• generates: This allows a principal to describe a “fresh” value, i.e. a value that is
re-generated every time the protocol is executed. A good example of this could be
an ephemeral private key. Such values (and all values derived using these values)
are not kept between different protocol session executions.

• Assignment: A constant may be declared by assigning it to the result of a
primitive or equation expression. Remember, however, that constants may not be
assigned to other constants.

2.3 Primitives

In order to describe cryptographic protocols, we will of course need cryptographic
primitives.

In Verifpal, cryptographic primitives are essentially “perfect”. That is to say, hash
functions are perfect one way functions, and not susceptible to something like length
extension attacks. It is also not possible to model for, say, encryption primitives that
use 40-bit keys, which could be guessed easily, since encryption functions are perfect
pseudo-random permutations, and so on. This is a common element of formal verification
tools that function under the symbolic model.

7

Simple Example Protocol

attacker[active]
principal Bob[]
principal Alice[
generates a
ga = G^a

]
Alice -> Bob: ga
principal Bob[
knows private m1
generates b
gb = G^b
e1 = AEAD_ENC(ga^b, m1, gb)

]
Bob -> Alice: gb, e1
principal Alice[
e1_dec = AEAD_DEC(gb^a, e1, gb)?

]

Figure 2: A complete example model of a simple protocol is shown on the left. On the
right, a helpful diagram is provided to illustrate how modeling in Verifpal works. The
diagram on the right is not part of Verifpal’s modeling language and is simply provided
here as a visual aid.

2.3.1 Hashing Primitives

Verifpal offers the following hashing primitives, which aim to capture classical cryptographic
hashing, keyed hashing and hash-based key derivation:

• HASH(a, b...): x. Secure hash function, similar in practice to, for example,
BLAKE2s [55]. Takes an arbitrary number of input arguments ≥ 1, and returns
one output.

• HMAC(key, message): hash. Keyed hash function. Useful for message authentication
and for some other protocol constructions.

• HMACVERIF(HMAC(k, m), HMAC(k, m)): x. Checks the equality of two HMAC primitive
outputs.

Simple Example Protocol: Queries

queries[
confidentiality? e1
confidentiality? m1
authentication? Bob -> Alice: e1

]

Figure 3: Queries for confidentiality and authentication checks on the model described
in Figure 2.

8

• HKDF(salt, ikm, info): a, b.... Hash-based key derivation function inspired by
the Krawczyk HKDF scheme [56]. Produces an arbitrary number of outputs ≥ 1.

2.3.2 Encryption Primitives

Verifpal offers the following encryption primitives, which aim to capture unauthenticated
encryption, and authenticated encryption with associated data:

• ENC(key, plaintext): ciphertext. Symmetric encryption, similar for example to
AES-CBC or to ChaCha20.

• DEC(key, ENC(key, plaintext)): plaintext. Symmetric decryption.

• AEAD_ENC(key, plaintext, ad): ciphertext. Authenticated encryption with associated
data. ad represents an additional payload that is not encrypted, but that must
be provided exactly in the decryption function for authenticated decryption to
succeed. Similar for example to AES-GCM or to ChaCha20-Poly1305.

• AEAD_DEC(k, AEAD_ENC(k, p, ad), ad): p. Authenticated decryption with associated
data.

2.3.3 Signature Primitives

Verifpal offers a simple signing primitive with a corresponding signature verification
function:

• SIGN(key, message): signature. Classic signature primitive. Here, key is a private
key, for example a.

• SIGNVERIF(G^k, m, SIGN(k, m)): m. Verifies if signature can be authenticated. If
key k was used for SIGN, then SIGNVERIF will expect G^k as the key value.

2.3.4 Checked Primitives

In Verifpal, AEAD_DEC, HMACVERIF, and SIGNVERIF are “checkable” primitives: if we add a
question mark (?) after one of these primitives, then model execution will abort should
AEAD_DEC fail authenticated decryption, or should HMACVERIF fail to find its two provided
inputs equal, or should SIGNVERIF fail to verify the signature against the provided message
and public key. For example: SIGNVERIF(k, m, s)? makes this instantiation of SIGNVERIF
a “checked” primitive.

If we are analyzing under a passive attacker, then Verifpal will only execute the model
once. Therefore, if a checked primitive fails, the entire verification procedure will abort.
Under an active attacker, however, Verifpal is forced to execute the model once over for
every possible permutation of the inputs that can be affected by the attacker. Therefore,
a failed checked primitive may not abort all executions. Also, messages obtained before
the failure of the checked primitive are still valid for analysis in future sessions.

Checked primitives are supposed to offer an elegant way to express session abortion
in the event of an unexpected failure. This could be, for example, a client finding an
invalid signature for a server certificate in a Verifpal model of TLS 1.3.

9

2.4 Equations

Equations are special expressions intended to capture public key generation (useful
for both Diffie-Hellman and signatures), as well as shared secret agreement (useful for
Diffie-Hellman).

As we saw earlier, G^a indicates the public key obtained from value a. This public
key can be used both for signing primitives as well as for Diffie-Hellman shared secret
agreement. Let’s look at some other example equations in Verifpal:
Example Equations

principal Server[
generates x
generates y
gx = G^x
gy = G^y
gxy = gx^y
gyx = gy^x

]

In the above, gxy and gyx are considered equivalent by Verifpal. In Verifpal, all
equations must have the constant G as their root generator. This mirrors Diffie-Hellman
behavior. Furthermore, all equations can only have two constants (a^b), but as we can
see above, equations can be built on top of other equations (as in the case of gxy and
gyx).

2.5 Messages and Guarded Constants

Sending messages over the network is simple. Only constants may be sent within
messages:
Example Messages

Alice -> Bob: ga, e1
Bob -> Alice: [gb], e2

In the first message above, Alice is the sender and Bob is the recipient. Notice
how Alice is sending Bob her long-term public key ga = G^a. An active attacker could
intercept ga and replace it with a value that they control. But what if we want to model
our protocol such that Alice has pre-authenticated Bob’s public key gb = G^b? This is
where guarded constants become useful.

In the second message from the above example, we see that, gb is surrounded by
brackets ([]). This makes it a “guarded” constant, meaning that while an active attacker
can still read it, they cannot tamper with it. In that sense it is guarded against the
active attacker.

Guarded constants are intended to provide an elegant way to express certain properties,
such as mutual authentication of public keys, and the out-of-band authentication of data
streams or pre-shared key material.

10

2.6 A Simple Complete Example

Figure 2 provides a full model of a naïve protocol where Alice and Bob only ever exchange
unauthenticated public keys (G^a and G^b). Bob then proceeds to send an encrypted
message to Alice using the derived Diffie-Hellman shared secret to encrypt the message.
We then want to ask Verifpal three questions:

1. Can the attacker obtain the ciphertext?

2. Can the attacker obtain the plaintext?

3. Can the attacker impersonate Bob and deliver a tampered ciphertext to Alice that
nevertheless still authenticates?

Figure 3 shows what these queries would look like in Verifpal. While simple, the
Verifpal language is sufficiently expressive in order to elegantly capture complex protocols,
such as Signal, as we will illustrate in §4.

3 Analysis in Verifpal
Verifpal is a protocol verifier; unlike some other automated formal verification tools [49],
it does not produce game-based proofs of the protocols that it analyzes. Instead, it
digests models representing the execution of a protocol under a very specific scenario
enacted by principals that act in a specific way. Verifpal’s goal is to then attempt to find
contradictions to the queries presented by the user. For example, the second query in
Figure 3 is understood by Verifpal as, essentially, the user telling them: “I bet you can’t
obtain m1!”

Authentication queries are trickier than confidentiality queries. In the example
authentication query shown in Figure 3, we ask: “if Bob successfully decrypts and
authenticates e1, does that necessarily mean that Alice sent e1 to Bob?” The implication
is that if the attacker was able to successfully convince Bob to validate the decryption of
e1, then an impersonation attack could have occurred where the attacker was able to
impersonate Alice. Authentication queries rely heavily on Verifpal’s notion of “checked”
or “checkable” primitives, as seen in §2.3.4.

Intuitively, the goal of authentication queries is to ask whether Bob will rely on
some value e1 in an important protocol operation (such as signature verification or
authenticated decryption) if and only if he received that value from Alice. If Bob is
successful in using e1 for signature verification or a similar operation without it having
been necessarily sent by Alice, then authentication is violated for e1, and the attacker
was able to impersonate Alice in communicating that value. Note that we don’t check
for the authentication of plaintext m1 — that is because m1 is only obtainable by Bob
once decryption succeeds, which only happens if AEAD_DEC is successfully re-writable back
into the input values to AEAD_ENC, i.e. if the primitive passes the check.

3.1 Analysis Methodology

Verifpal’s active attacker analysis methodology (Figure 4) follows a simple set of
procedures and algorithms. The overall process is comprised of five phases:

11

RESOLVE(ga,e1,gb,e2)

DECONSTRUCT(ga,e1,gb,e2)

RECONSTRUCT(ga,g1,gb,e2)

EQUIVOCATE(ga,e1,gb,e2)

RESOLVE(ga,e1,gb,e2)

DECONSTRUCT(ga,e1,gb,e2)

RECONSTRUCT(ga,g1,gb,e2)

EQUIVOCATE(ga,e1,gb,e2)Alice’s State Bob’s State

ga, e1

[gb], e2

Alice’s State Bob’s State

ga, e1

[gb], e2

Mutation
ga = G^attacker
e1 = e1
gb = gb
e2 = AEAD_ENC(…)

Mutation
ga = G^attacker
e1 = e1
gb = gb
e2 = e1

Alice’s State Bob’s State
ga, e1

[gb], e2

Revealed Values

Attacker State
RESOLVE(ga,e1,gb,e2)

DECONSTRUCT(ga,e1,gb,e2)

RECONSTRUCT(ga,g1,gb,e2)

EQUIVOCATE(ga,e1,gb,e2)

Alice’s State Bob’s State

ga, e1

[gb], e2

Mutation
ga = G^attacker
e1 = e1
gb = gb
e2 = e2

……

2

1

3

4

5
RESOLVE(ga,e1,gb,e2)

DECONSTRUCT(ga,e1,gb,e2)

RECONSTRUCT(ga,g1,gb,e2)

EQUIVOCATE(ga,e1,gb,e2)

ga^b = gb^a

Figure 4: Verifpal analysis methodology.

1. Gather values. Attacker passively observes a protocol execution and gathers all
values shared publicly between principals.

2. Insert learned values into attacker state. Attacker’s state (VA) obtains newly
learned values.

3. Apply transformations. Attacker applies the four main “transformations” on
all obtained values (these transformations are detailed below.)

4. Prepare mutations for next session. If the attacker has learned new values due
to the transformations executed in the previous step, they create a combinatorial
table of all possible value substitutions, and from that, derive a set of all possible
value substitutions across future executions of the protocol on the network.

5. Iterate across protocol mutations. Attacker proceeds to execute the protocol
across sessions, each time “mutating” the execution by mayor-in-the-middling a
value. Attacker then returns to step 1 of this list. The process continues so long as
the attacker keeps learning new values.

After each phase, Verifpal checks to see if it has found a contradiction to any of the
queries specified in the model and informs the user if such a contradiction is found. The
four main transformations mentioned above are the following:

• Resolve. Resolves a certain constant to its assigned value (for example, a primitive
or an equation). Executed on VA, the set of all values known by the attacker.

• Deconstruct. Attempts to deconstruct a primitive or an equation. In order
to deconstruct a primitive, the attacker must possess sufficient values to satisfy
the primitive’s rewrite rule. For example, the attacker must possess k and e in
order to obtain m by deconstructing e = ENC(k, m) with k. In order to deconstruct
an equation, the attacker must similarly possess all but one private exponent.
Executed on VA, the set of all values known by the attacker.

12

• Reconstruct. Attempts to reconstruct primitives and equations given that the
attacker possesses all of the component values. Executed on VA, the set of all
values known by the attacker, as well as on VP , the values known by the principal
whose state is currently being evaluated by the attacker.

• Equivocate. Determines if the attacker can reconstruct or equivocate any values
within VP from VA. If so, then these equivalent values are added to VA.

Verifpal’s goal is to obtain as many values as is logically possible from their viewpoint
as an attacker on the network. As a passive attacker, Verifpal can only do this by
deconstructing the values made available as they are shared between principals, and
potentially reconstructing them into different values. As an active attacker, Verifpal
can modify unguarded constants as they cross the network. Each modification could
result in learning new values, so an unbounded number of modifications can occur over
an unbounded number of protocol executions. “Fresh” (i.e. generated) values are not
kept across different protocol executions, as they are assumed to be different for every
session of the protocol.

An active attacker can also generate their own values, such as a key pair that they
control, and fabricate new values that they use as substitutes for any unguarded constants
sent between principals. If, during a protocol execution, a checked primitive fails, that
session execution is aborted and the attacker moves on to the next one. However, values
obtained thus far in that particular session execution are kept.

Verifpal also keeps track of which values are used where, the path a value takes until
it arrives into the state of a principal, and who first declared or generated a value. This
information is used in order to analyze for contradictions to authentication queries.

3.2 Soundness of Results

Verifpal has so far been used in order to model TLS, Signal, Scuttlebutt, Telegram,
ProtonMail and some other protocols. So far, all of its results have been in line with
previous analyses of these protocols. But anecdotal evidence is not sufficient in order
to declare with full confidence that Verifpal qualifies as a proven formal verification
framework.

In order for Verifpal to qualify as a mature formal verification framework, it must
provide a soundness theorem in which it can demonstrate that its methodology cannot
miss an attack. A formal soundness theorem is currently a work in progress, and is
expected to be completed as the Verifpal tool evolves and matures during real-world user
testing. In this section, we nevertheless present an outline of Verifpal’s formal analysis
methodology, such that we can say with a high degree of confidence that:

• If an attacker is unable to obtain a value m, then m is necessarily confidential for
the protocol described in the Verifpal model.

• If an attacker cannot find more than one way in which value e can be communicated
between principals A and B such that B later employs e as an argument to a rewrite-
capable primitive or equation, then e is necessarily authenticated under A → B for
the protocol described in the Verifpal model.

It is important to note that we do not currently explicitly seek to rule out false
attacks (i.e. false positives.) Our central argument is that the analysis logic described

13

in §3.1 is sufficient in order to capture all possible confidentiality and authentication
attacks within the language defined in Figure 1:

3.2.1 Value Construction

Protocol analysis always begins from the point of view of the attacker. The initial set of
values that the attacker can know are necessarily constants, since only constants can
be exchanged within network messages (Figure 1). “Pure” constants (constants that
are declared via a knows or generates expression and not via assignment) resolve to
themselves (x → x). Assigned constants resolve to either a primitive or an equation.
Primitives can take constants, primitives or equations as arguments but always return
constants. Equations can only take constants as arguments (effectively exponents).

3.2.2 Deconstructions, Rewrites, and Checks

Verifpal primitives have two kinds of potential rules:

• Decomposition rules allow principals and the attacker to obtain the value of
a primitive’s argument by knowing the primitive’s output and only some of the
primitive’s other arguments. For example, knowing e = ENC(k, m) and k allows us
to obtain m. AEAD_ENC, AEAD_DEC, ENC and DEC have decomposition rules.

• Rewrite rules allow principals and the attacker to rewrite a primitive’s assigned
value if certain conditions are satisfied. For example, d = AEAD_DEC(k, e, a) would
be rewritten to d = p if e = AEAD_ENC(k, p, a). When we “check” a primitive (see
§2.3.4), a failed rewrite is essentially what we are terming as a “failed check” —
checks simply make it such that failed rewrites abort session execution at that
point. HMACVERIF, SIGNVERIF, AEAD_DEC and DEC have rewrite rules.

3.2.3 Genealogy of Values

In Verifpal, once a constant is known, generated or assigned, an immutable creator value
is assigned to it defining the principal responsible for creating it. As the value travels
across the network, a sender chain is built tracking its genealogy. For example, if Alice
creates a value m and sends it to Bob, and if Bob then sends it to Carol, then m would
have Alice as its creator and a sender chain of Alice → Bob → Carol.

When an attacker is tasked with contradicting an authentication query, it attempts
to find out if a scenario exists in which a value is used in a primitive (or worse, triggers
a valid rewrite rule) that does not follow the sender chain decreed by the authentication
query.

3.2.4 Mutations and Guarded Constants

Except for guarded constants (see §2.5), the attacker can, at will, substitute any constant
with any other, including constants crafted by the attacker. The goal of these substitutions
is to execute the protocol in every possible permutation of constant-to-value assignments
based on the values known by the attacker. Each unguarded constant risks being
permuted with:

14

• Other constants and values from the protocol that have been revealed to
the attacker.

• New primitive and equation declarations constructed from values that have
been revealed to the attacker.

• Malicious values crafted by the attacker, including for example malicious public
keys or malicious signatures under key pairs generated and owned by the attacker.

As noted in §3.1, once the attacker gains new values through this process, the
permutation table is recalculated and the the set of executions begins anew. Protocol
analysis ends when no new values are known to the attacker after a complete run of all
possible permutations. The goal of this step is to obtain a full search of all runs of the
protocol under all possible discoverable values, given the assumption that §3.1 allows
the attacker to obtain all obtainable values.

Mutations and transformations are executed recursively. That is, if executing any
one of Resolve, Deconstruct, Reconstruct and Equivocate leads to new values
being discovered, then that transformation is executed recursively until no new values are
found. If any new values are found, the series of four transformations is also re-executed
recursively in its totality until no new values are obtainable by the attacker. Once that
is the case, we move on to the next mutation.

Our core assumption regarding the completeness and reliability of Verifpal’s analysis
methodology is that the above is sufficient to, within Verifpal’s language, capture all
values knowable to the attacker, as well as all sender chains possible within a protocol
given an attacker.

4 Case Study: Signal in Verifpal
Introduced in 2014, the Signal protocol started off as the core of the eponymous Signal
messaging app for Android and iOS devices. In the following years it was also adopted
by WhatsApp [57], Facebook Messenger, Skype and other applications. Today, it
is responsible for encrypted communications on at least a billion devices worldwide,
competing with Apple’s iMessage protocol and Telegram’s MTProto protocol.

4.1 Security Goals

Aside from targeting obvious security goals such as message confidentiality and mutual
authentication for principals, Signal differentiated itself from predecessors as well as from
its competitor protocols by offering some ambitious security properties. The core design
element behind these features is the fact that in Signal, each principal has essentially two
types of key pairs: long-term key pairs, which serve to authenticate the identity of Alice
and Bob to one another, are used exclusively for signing and for session establishment
and that never change, and ephemeral key pairs, which last at most for a handful of
messages and are used solely for encryption. The point of this approach is target the
following security goals:

15

Figure 5: Signal’s “X3DH” authenticated key exchange. IKA and IKB represent Alice
and Bob’s long-term key pairs. EKA represents Alice’s ephemeral session key pair. SPKB

and OPKB represent Bob’s signed ephemeral pre-key and one-time ephemeral pre-key.
Three Diffie-Hellman shared secret calculations, and one optional Diffie-Hellman shared
secret calculation, are conducted.

• Forward-secure authenticated key exchange. After a Signal session is established
between Alice and Bob, revealing any or both parties’ long-term keys does not
reveal the contents of any of their messages. Since long-term keys are the only key
material that remains on-device for extended periods of time, it can be assumed
that this security goal is supposed to guard against device theft.

• Per-message forward secrecy and post-compromise security. If Alice or
Bob’s state were to be compromised at any point in time, the number of past and
future messages, relevant to the last message sent at time of compromise, is limited.

Aside from these security-centric features, Signal also offers asynchronous (“offline”)
session establishment: Alice is able to establish a Signal session with Bob and send a
message even if Bob’s phone is turned off. When Bob turns his phone back on, he will
immediately receive Alice’s message (even if, at the time, Alice’s phone is off.)

Signal has already been formally verified using ProVerif [3], with results for confidentiality,
authentication, post-compromise security and even leading to the discovery of a new key
compromise impersonation attack. Here, we show that Verifpal can meet these exact
same results, and in a smaller, simpler model (Figure 6).

4.2 Principals

Our first step in Verifpal will be to model Signal’s essential protocol components and then
to illustrate how these components can be used by Alice and Bob in order to conduct a
Signal session.

4.2.1 Modeling the Key Exchange

Figure 5 illustrates how Signal’s authenticated key exchange works. When initiating a
session with Bob, Alice will perform four Diffie-Hellman operations:

1. Between Alice’s long-term private key and Bob’s “signed pre-key”, an ephemeral
public key that Bob has pre-emptively generated, signed using his long-term private
key, and stored on the Signal server.

16

2. Between Alice’s ephemeral private key, generated for this session, and Bob’s long-
term public key.

3. Between Alice’s ephemeral private key and Bob’s signed pre-key.

4. Between Alice’s ephemeral private key and Bob’s “one-time pre-key”, an ephemeral
public key that Bob has pre-emptively generated and stored on the Signal server.
Unlike the signed pre-key, it is not signed. Signed pre-keys are rotated roughly
once a week, while one-time pre-keys are only used once. This is simply because
signing is a slow and computationally expensive process, and having Bob’s phone
sign every one-time pre-key (of which a server could store hundreds at a time)
would be somewhat inefficient.

The four values obtained above are then hashed into a single value known as the
master secret. Alice can also include an encrypted message along with her key exchange
message. So, let’s declare Alice and Bob in Verifpal:
Signal: Initializing Alice and Bob

attacker[active]
principal Alice[
knows public c0, c1, c2, c3, c4
knows private alongterm
galongterm = G^alongterm

]
principal Bob[
knows public c0, c1, c2, c3, c4
knows private blongterm, bs
generates bo
gblongterm = G^blongterm
gbs = G^bs
gbo = G^bo
gbssig = SIGN(blongterm, gbs)

]

Now, let’s have Alice initiate a session with Bob and derive a master secret, which
she stores as amaster:
Signal: Alice Initiates Session with Bob

Bob -> Alice: [gblongterm], gbssig, gbs, gbo
principal Alice[
generates ae1
gae1 = G^ae1
amaster = HASH(c0, gbs^alongterm, gblongterm^ae1, gbs^ae1, gbo^ae1)
arkba1, ackba1 = HKDF(amaster, c1, c2)

]

4.2.2 Modeling Messages and the Double Ratchet

Since long-term keys are only employed in master secret derivation, and since we want
to achieve per-message forward secrecy and post-compromise security, we want to both

17

authenticate future messages based on Alice and Bob’s identities while keeping them
confidential using perpetually fresh ephemeral shared secrets.

Signal: Alice Encrypts Message 1 to Bob

principal Alice[
generates m1, ae2
gae2 = G^ae2
valid = SIGNVERIF(gblongterm, gbs, gbssig)?
akshared1 = gbs^ae2
arkab1, ackab1 = HKDF(akshared1, arkba1, c2)
akenc1, akenc2 = HKDF(HMAC(ackab1, c3), c1, c4)
e1 = AEAD_ENC(akenc1, m1, HASH(galongterm, gblongterm, gae2))

]
Alice -> Bob: [galongterm], gae1, gae2, e1

Notice how Alice generates a second fresh ephemeral key pair, (ae2, gae2 = G^ae2),
and mixes it with the master secret in order to derive two symmetric keys, ackab1 will be
used for encryption, while arkab1 will only be used to derive future pairs of symmetric
keys in the same fashion, thereby keeping a relationship back to the master secret, which
ensures that all future derived keys are mixed with the key material that provided
authentication in the master secret.

Notice also how the SIGNVERIF primitive is checked — if Alice can’t verify the signature
of Bob’s signed pre-key gbs using Bob’s long-term signing public key gblongterm, then
the entire session is aborted.

Finally, notice how we are guarding gblongterm and galongterm from being modified
by an active attacker while in transit – this achieves a model where Alice and Bob have
mutually pre-authenticated one another’s long-term public keys.

Alice then encrypts her chosen plaintext message m1 to produce ciphertext e1. Notice
how the Signal protocol specifies that a hash of the public keys used in this session must
go as associated data to the message encryption primitive. This helps achieve a property
known as session or channel binding.

Bob will first need to generate the shared master secret. Bob will be able to decrypt
Alice’s first message. Then, Bob will send his reply, encrypting his message m2 to produce
ciphertext e2:
Signal: Bob Derives Shared Master Secret

principal Bob[
bmaster = HASH(c0, galongterm^bs, gae1^blongterm, gae1^bs, gae1^bo)
brkba1, bckba1 = HKDF(bmaster, c1, c2)

]

18

Signal: Bob Decrypts Alice’s Message 1

principal Bob[
bkshared1 = gae2^bs
brkab1, bckab1 = HKDF(bkshared1, brkba1, c2)
bkenc1, bkenc2 = HKDF(HMAC(bckab1, c3), c1, c4)
m1_d = AEAD_DEC(bkenc1, e1, HASH(galongterm, gblongterm, gae2))

]

Signal: Bob Encrypts Message 2 to Alice

principal Bob[
generates m2, be
gbe = G^be
bkshared2 = gae2^be
brkba2, bckba2 = HKDF(bkshared2, brkab1, c2)
bkenc3, bkenc4 = HKDF(HMAC(bckba2, c3), c1, c4)
e2 = AEAD_ENC(bkenc3, m2, HASH(gblongterm, galongterm, gbe))

]
Bob -> Alice: gbe, e2

For good measure, we model a final message m3 sent from Alice to Bob, after Alice
decrypts Bob’s message:
Signal: Alice Decrypts Message 2

principal Alice[
akshared2 = gbe^ae2
arkba2, ackba2 = HKDF(akshared2, arkab1, c2)
akenc3, akenc4 = HKDF(HMAC(ackba2, c3), c1, c4)
m2_d = AEAD_DEC(akenc3, e2, HASH(gblongterm, galongterm, gbe))

]

Signal: Alice Encrypts Message 3 to Bob

principal Alice[
generates m3, ae3
gae3 = G^ae3
akshared3 = gbe^ae3
arkab3, ackab3 = HKDF(akshared3, arkba2, c2)
akenc5, akenc6 = HKDF(HMAC(ackab3, c3), c1, c4)
e3 = AEAD_ENC(akenc5, m3, HASH(gblongterm, galongterm, gae3))

]
Alice -> Bob: gae3, e3

19

Signal: Bob Decrypts Message 3

principal Bob[
bkshared3 = gae3^be
brkab3, bckab3 = HKDF(bkshared3, brkba2, c2)
bkenc5, bkenc6 = HKDF(HMAC(bckab3, c3), c1, c4)
m3_d = AEAD_DEC(bkenc5, e3, HASH(gblongterm, galongterm, gae3))

]

Now that we’ve modeled a fairly illustrative and representative execution of the Signal
protocol between Alice and Bob, covering an authenticated key exchange as well as three
messages, we’re finally ready to ask Verifpal some tough questions and to analyze if, and
how, our model of Signal achieves its desired security goals.

4.3 Queries and Analysis

Given that Signal is a secure messaging protocol, we certainly want to check whether
m1, m2 and m3 are confidential against an active attacker. We also want to check if an
attacker can impersonate any of the principals in sending one of the above messages.
Formulating these queries in Verifpal is straightforward:
Signal: Message Queries

queries[
confidentiality? m1
authentication? Alice -> Bob: e1
confidentiality? m2
authentication? Bob -> Alice: e2
confidentiality? m3
authentication? Alice -> Bob: e3

]

Signal: Initial Results

Verifpal! verification completed at 12:36:53

This indicates that Verifpal was unable to find a contradiction to any of the queries.
This goes hand in hand with previous academic formal verification work on Signal [3]: if
Alice and Bob initiate a session with mutual pre-authentication, and if Alice is aborting
the session should Bob’s signed pre-key not pass signature verification, then the Signal
protocol achieves confidentiality and authentication for messages sent between the two
parties.

Recall that Signal also aims to achieve forward secrecy and post-compromise security.
Let’s see what happens if we leak Alice’s long-term private key, by adding the following
line right before she encrypts and sends m3:
Signal: Alice Leaks Long-Term Private Key

Alice -> Bob: alongterm

20

By re-running the analysis, we see that Alice’s messages m1 and m3 are still confidential
against an active attacker. However, an interesting result appears:
Signal: Key Compromise Impersonation for Alice

Deduction! m2 is obtained by the attacker as m2
Deduction! e2, sent by Attacker and not by Bob and resolving to AEAD_ENC(bkenc3,

m2, HASH(gblongterm, galongterm, gbe)), is used in primitive AEAD_DEC(akenc3,
e2, HASH(gblongterm, galongterm, gbe)) in Alice’s state

It appears that leaking Alice’s long-term private key allowed the attacker to impersonate
Bob to Alice. The explanation is that Signal is vulnerable to a key compromise
impersonation attack — compromising Alice’s long-term private key does not only
allow the attacker to impersonate Alice to others, but it also allows them to impersonate
others to Alice. This result again matches previous analyses of Signal [3].

In order to understand how this attack works, let’s look at Figure 5. Armed with
Alice’s long-term private key, the attacker can now perform the Diffie-Hellman operation
marked “1” in her name as well as the others, thereby faking a session initiation. Let’s
remove the line we added to test forward secrecy and try something else. If we uncheck
Alice’s usage of SIGNVERIF, we see that results don’t change. But what happens if we
then also unguard Bob’s long-term public key as it is being sent to Alice?
Signal: Mayor-in-the-Middle Attack on Bob

Result! confidentiality? m1: m1 is obtained by the attacker as m1
Result! authentication? Alice -> Bob: e1: e1, sent by Attacker and not by Alice

and resolving to AEAD_ENC(akenc1, m1, HASH(galongterm, gblongterm, gae2)), is
used in primitive AEAD_DEC(bkenc1, e1, HASH(galongterm, gblongterm, gae2)) in
Bob’s state

Result! confidentiality? m3: m3 is obtained by the attacker as m3
Result! authentication? Alice -> Bob: e3: e3, sent by Attacker and not by Alice

and resolving to AEAD_ENC(akenc5, m3, HASH(gblongterm, galongterm, gae3)), is
used in primitive AEAD_DEC(bkenc5, e3, HASH(gblongterm, galongterm, gae3)) in
Bob’s state

The attacker was able to compromise all of the messages that Alice sent to Bob, since
they were able to fully impersonate Bob as he interacted with Alice in the session.

Tweaking our model and re-running analysis is central to getting the most insight
out of Verifpal. By making some very simple changes to our model, we were quickly able
to go from a fully secure model to one that showed us whether forward secrecy would be
achieved in the event of a long-term private key compromise, and then to another that
provided a warning on the importance of mutual pre-authentication.

5 Limitations and Future Work
Verifpal currently does not possess a full soundness theorem, and this is slated as the
most urgent future work as the tool matures and develops due to its exposure to the
world. Verifpal does possess a formalized analysis methodology, as described in §3. This
analysis comes with two major known limitations:

21

Signal (PV) Scutt. (PV) Signal (VP) Scutt. (VP)
0

200

400

600

429

151
91 109

M
od

el
Le

ng
th

(L
in
es
)

Figure 6: Comparison of the length and complexity of modeling Scuttlebutt (handshake
only) and Signal (full protocol with three messages) in ProVerif (PV) and Verifpal (VP),
with similar scenarios for Alice and Bob, and with similar queries.

1. Reconstruct is largely limited to reconstructing values known by principals, and
will not attempt to construct arbitrary values outside of those used and expressed
within principal declarations (with VP .)

2. Fresh values are not kept between sessions. This is expected behavior for many
symbolic analysis tools, but, in Verifpal, it may lead to some less complete analysis
for attacks based on intra-session fresh values, especially, for example, parallel or
“multi-protocol” session executions.

Current effort is focused largely on further studying the limitations of Verifpal’s
analysis methodology and on deriving countermeasures that may lead to a more comprehensive
analysis. For example, allowing the attacker to keep certain fresh values between protocol
executions could lead to an easier modeling for parallel sessions.

Verifpal does not plan to be a competitor to aforementioned tools such as ProVerif
or Tamarin. This is due to our plan to prioritize usability over features, leading
Verifpal to have no road map to support, for example, declaring custom primitives
or rewrite rules. Verifpal also lacks the fine control that tools such as ProVerif can
offer over how protocol processes are executed: Verifpal has no notion of protocol
phases, cannot differentiate between parallel and non-parallel processes, cannot query
for indifferentiability or observational equivalence [58, 59], and also does not support
many other advanced features. Verifpal cannot also model state transitions with the
same precision enjoyed by Tamarin. At least for the moment, this is explicit and by
design: Verifpal aims to differentiate itself from other verifiers by focusing on usability
first and features last. So far, the results have been encouraging: Verifpal was able to
test for advanced security goals in protocols such as Signal from its very first release.

Verifpal is also fully capable of supporting a more nuanced definition of primitives
recently seen in other symbolic verifiers — for example, recent, more precise models for
signature schemes [8] in Tamarin can be fully integrated into Verifpal’s design.

We also plan to add support for more primitives as these are suggested by the Verifpal
user community. We also plan to integrate Verifpal better into existing IDEs, such as
Visual Studio Code integration, in order to provide engineers live feedback on their
protocol as they model it.

22

6 Conclusion
Verifpal’s language is easier and more intuitive than that of existing tools, while still
allowing to express complex protocols, such as the Signal secure messenger, and to
query for advanced security properties such as forward secrecy. These design elements
should allow Verifpal to offer students, engineers, developers and protocol designers a
way to prototype protocols that works for them. We believe that Verifpal’s verification
framework gives it full jurisdiction over maturing its language and feature set, such that
it can grow to satisfy the fundamental verification needs of protocol developers without
having the barrier-to-entry present in tools such as ProVerif and Tamarin.

Verifpal is currently available as free and open source software, allowing it to grow
both in terms of both confidence in the soundness of its own analysis, and in terms of
features offered for newcomers to the world of formal protocol verification.

Acknowledgments Verifpal is fundamentally inspired by Bruno Blanchet’s decades
of research into automated formal verification, and would not exist without his work.
We also thank Georgio Nicolas and Sasha Lapiha for their feedback.

Funding was provided through the NGI0 PET Fund, a fund established by NLnet with
financial support from the European Commission’s Next Generation Internet program,
under the aegis of DG Communications Networks, Content and Technology under grant
agreement №825310.

References
[1] Katriel Cohn-Gordon, Cas Cremers, and Luke Garratt. On post-compromise security.

In IEEE Computer Security Foundations Symposium (CSF), pages 164–178. IEEE,
2016.

[2] Andreas Straub. OMEMO encryption. 2018.

[3] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno Blanchet. Automated
verification for secure messaging protocols and their implementations: A symbolic
and computational approach. In IEEE European Symposium on Security and Privacy
(EuroS&P), pages 435–450. IEEE, 2017.

[4] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. Verified models and
reference implementations for the TLS 1.3 standard candidate. In IEEE Symposium
on Security and Privacy (S&P), pages 483–502. IEEE, 2017.

[5] David Basin, Jannik Dreier, Lucca Hirschi, Saša Radomirovic, Ralf Sasse, and
Vincent Stettler. A formal analysis of 5G authentication. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security, pages
1383–1396. ACM, 2018.

[6] Cas Cremers and Martin Dehnel-Wild. Component-based formal analysis of 5G-
AKA: Channel assumptions and session confusion. 2019 Network and Distributed
System Security Symposium (NDSS), 2019.

23

[7] Cas Cremers and Dennis Jackson. Prime, order please! revisiting small subgroup and
invalid curve attacks on protocols using Diffie-Hellman. IEEE Computer Security
Foundations Symposium (CSF), 19, 2019.

[8] Dennis Jackson, Cas Cremers, Katriel Cohn-Gordon, and Ralf Sasse. Seems legit:
Automated analysis of subtle attacks on protocols that use signatures. In ACM
CCS 2019, 2019.

[9] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, and Nadim Kobeissi. Formal
modeling and verification for domain validation and ACME. In International
Conference on Financial Cryptography and Data Security, pages 561–578. Springer,
2017.

[10] Nadim Kobeissi, Georgio Nicolas, and Karthikeyan Bhargavan. Noise Explorer:
Fully automated modeling and verification for arbitrary Noise protocols. In IEEE
European Symposium on Security and Privacy (EuroS&P), 2019.

[11] Guillaume Girol. Formalizing and verifying the security protocols from the Noise
framework. Master’s thesis, ETH Zurich, 2019.

[12] Andris Suter-Dörig. Formalizing and verifying the security protocols from the Noise
framework, 2018.

[13] Jason A Donenfeld. WireGuard: Next generation kernel network tunnel. In Network
and Distributed System Security Symposium (NDSS), 2017.

[14] Lipp Benjamin, Bruno Blanchet, and Karthikeyan Bhargavan. A mechanised
cryptographic proof of the WireGuard virtual private network protocol. In IEEE
European Symposium on Security and Privacy (EuroS&P), 2019.

[15] Karthikeyan Bhargavan, Antoine Delignat Lavaud, Cédric Fournet, Alfredo Pironti,
and Pierre Yves Strub. Triple handshakes and cookie cutters: Breaking and fixing
authentication over TLS. In IEEE Symposium on Security and Privacy (S&P),
pages 98–113. IEEE, 2014.

[16] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric
Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and Jean Karim
Zinzindohoue. A messy state of the union: Taming the composite state machines of
TLS. In IEEE Symposium on Security and Privacy (S&P), pages 535–552. IEEE,
2015.

[17] Bruno Blanchet. Modeling and verifying security protocols with the applied pi
calculus and ProVerif. Foundations and Trends® in Privacy and Security, 1(1-2):1–
135, 2016.

[18] Bruno Blanchet. Automatic verification of security protocols in the symbolic model:
The verifier ProVerif. In Foundations of Security Analysis and Design VII, pages
54–87. Springer, 2013.

[19] Ashok K Chandra and David Harel. Horn clause queries and generalizations. The
Journal of Logic Programming, 2(1):1–15, 1985.

24

[20] Martín Abadi, Bruno Blanchet, and Cédric Fournet. The applied pi calculus: Mobile
values, new names, and secure communication. J. ACM, 65(1):1:1–1:41, 2018.

[21] Danny Dolev and Andrew Yao. On the security of public key protocols. IEEE
Transactions on information theory, 29(2):198–208, 1983.

[22] Bruno Blanchet and Avik Chaudhuri. Automated formal analysis of a protocol
for secure file sharing on untrusted storage. In IEEE Symposium on Security and
Privacy (S&P), pages 417–431. IEEE, 2008.

[23] Michael Backes, Catalin Hritcu, and Matteo Maffei. Automated verification of
remote electronic voting protocols in the applied pi-calculus. In IEEE Computer
Security Foundations Symposium, pages 195–209. IEEE, 2008.

[24] Stéphanie Delaune, Steve Kremer, and Mark Ryan. Verifying privacy-type properties
of electronic voting protocols. Journal of Computer Security, 17(4):435–487, 2009.

[25] Véronique Cortier and Cyrille Wiedling. A formal analysis of the norwegian e-voting
protocol. In International Conference on Principles of Security and Trust, pages
109–128. Springer, 2012.

[26] Cas Cremers and Lucca Hirschi. Improving automated symbolic analysis of ballot
secrecy for e-voting protocols: A method based on sufficient conditions. In IEEE
European Symposium on Security and Privacy (EuroS&P), 2019.

[27] Olivier Pereira, Florentin Rochet, and Cyrille Wiedling. Formal analysis of the
FIDO 1. x protocol. In International Symposium on Foundations and Practice of
Security, pages 68–82. Springer, 2017.

[28] Benedikt Schmidt, Simon Meier, Cas Cremers, and David Basin. Automated analysis
of Diffie-Hellman protocols and advanced security properties. In Stephen Chong,
editor, IEEE Computer Security Foundations Symposium (CSF), Cambridge, MA,
USA, June 25-27, 2012, pages 78–94. IEEE, 2012.

[29] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der
Merwe. A comprehensive symbolic analysis of TLS 1.3. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, pages
1773–1788. ACM, 2017.

[30] Jason A Donenfeld and Kevin Milner. Formal verification of the WireGuard protocol.
Technical report, Technical Report, 2017.

[31] David Basin, Saša Radomirovic, and Lara Schmid. Alethea: A provably secure
random sample voting protocol. In IEEE 31st Computer Security Foundations
Symposium (CSF), pages 283–297. IEEE, 2018.

[32] Alessandro Bruni, Eva Drewsen, and Carsten Schürmann. Towards a mechanized
proof of selene receipt-freeness and vote-privacy. In International Joint Conference
on Electronic Voting, pages 110–126. Springer, 2017.

[33] Professor Oak. Kanto Regional Pokédex. Kanto Region Journal on Pokémon
Research, 19, 1996.

25

[34] C.J.F. Cremers. The Scyther Tool: Verification, falsification, and analysis of security
protocols. In Computer Aided Verification, 20th International Conference, CAV
2008, Princeton, USA, Proc., volume 5123/2008 of Lecture Notes in Computer
Science, pages 414–418. Springer, 2008.

[35] David A. Basin and Cas J.F. Cremers. Degrees of security: Protocol guarantees in
the face of compromising adversaries. In Computer Science Logic, 24th International
Workshop, CSL 2010, 19th Annual Conference of the EACSL, Brno, Czech Republic,
August 23-27, 2010. Proceedings, volume 6247 of Lecture Notes in Computer Science,
pages 1–18. Springer, 2010.

[36] C.J.F. Cremers. Key exchange in IPsec revisited: formal analysis of IKEv1 and
IKEv2. In Proceedings of the 16th European conference on Research in computer
security, ESORICS, pages 315–334, Berlin, Heidelberg, 2011. Springer-Verlag.

[37] David Basin and Cas Cremers. Modeling and analyzing security in the presence of
compromising adversaries. In Computer Security - ESORICS 2010, volume 6345 of
Lecture Notes in Computer Science, pages 340–356. Springer, 2010.

[38] C.J.F. Cremers. Feasibility of multi-protocol attacks. In Proc. of The First
International Conference on Availability, Reliability and Security (ARES), pages
287–294, Vienna, Austria, April 2006. IEEE Computer Society.

[39] Alessandro Armando, David Basin, Yohan Boichut, Yannick Chevalier, Luca
Compagna, Jorge Cuéllar, P Hankes Drielsma, Pierre-Cyrille Héam, Olga
Kouchnarenko, Jacopo Mantovani, et al. The AVISPA tool for the automated
validation of internet security protocols and applications. In International conference
on computer aided verification, pages 281–285. Springer, 2005.

[40] Alessandro Armando, Wihem Arsac, Tigran Avanesov, Michele Barletta, Alberto
Calvi, Alessandro Cappai, Roberto Carbone, Yannick Chevalier, Luca Compagna,
Jorge Cuéllar, et al. The AVANTSSAR platform for the automated validation of
trust and security of service-oriented architectures. In International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, pages 267–282.
Springer, 2012.

[41] Ruhul Amin, SK Hafizul Islam, Arijit Karati, and GP Biswas. Design of an enhanced
authentication protocol and its verification using AVISPA. In 2016 3rd International
Conference on Recent Advances in Information Technology (RAIT), pages 404–409.
IEEE, 2016.

[42] Marino Miculan and Caterina Urban. Formal analysis of Facebook Connect single
sign-on authentication protocol. In SOFSEM, volume 11, pages 22–28. Citeseer,
2011.

[43] Thomas Gibson-Robinson, Philip Armstrong, Alexandre Boulgakov, and A.W.
Roscoe. FDR3 — A Modern Refinement Checker for CSP. In Erika Ábrahám and
Klaus Havelund, editors, Tools and Algorithms for the Construction and Analysis of
Systems, volume 8413 of Lecture Notes in Computer Science, pages 187–201, 2014.

[44] Charles Antony Richard Hoare. Communicating sequential processes. In The origin
of concurrent programming, pages 413–443. Springer, 1978.

26

[45] Bae Woo-Sik. Formal verification of an RFID authentication protocol based on hash
function and secret code. Wireless personal communications, 79(4):2595–2609, 2014.

[46] Pascal Lafourcade and Maxime Puys. Performance evaluations of cryptographic
protocols verification tools dealing with algebraic properties. In International
Symposium on Foundations and Practice of Security, pages 137–155. Springer, 2015.

[47] Cas J.F. Cremers, Pascal Lafourcade, and Philippe Nadeau. Comparing state spaces
in automatic protocol analysis. In Formal to Practical Security, volume 5458/2009
of Lecture Notes in Computer Science, pages 70–94. Springer Berlin / Heidelberg,
2009.

[48] Bruno Blanchet. Security protocol verification: Symbolic and computational models.
In Principles of Security and Trust (POST), pages 3–29, 2012.

[49] Bruno Blanchet. CryptoVerif: Computationally sound mechanized prover for
cryptographic protocols. In Dagstuhl seminar on Applied Formal Protocol
Verification, page 117, 2007.

[50] Jonathan Protzenko, Jean-Karim Zinzindohoué, Aseem Rastogi, Tahina
Ramananandro, Peng Wang, Santiago Zanella-Béguelin, Antoine Delignat-Lavaud,
Cătălin Hriţcu, Karthikeyan Bhargavan, Cédric Fournet, et al. Verified low-level
programming embedded in F. Proceedings of the ACM on Programming Languages,
1(ICFP):17, 2017.

[51] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 337–340. Springer, 2008.

[52] Jonathan Protzenko, Benjamin Beurdouche, Denis Merigoux, and Karthikeyan
Bhargavan. Formally verified cryptographic web applications in WebAssembly. In
IEEE Symposium on Security and Privacy (S&P), page 0. IEEE, 2019.

[53] Karthikeyan Bhargavan, Barry Bond, Antoine Delignat-Lavaud, Cédric Fournet,
Chris Hawblitzel, Catalin Hritcu, Samin Ishtiaq, Markulf Kohlweiss, Rustan Leino,
Jay Lorch, et al. Everest: Towards a verified, drop-in replacement of HTTPS.
In 2nd Summit on Advances in Programming Languages (SNAPL 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[54] Jonathan Protzenko, Jean-Karim Zinzindohoué, Aseem Rastogi, Tahina
Ramananandro, Peng Wang, Santiago Zanella-Béguelin, Antoine Delignat-Lavaud,
Cătălin Hriţcu, Karthikeyan Bhargavan, Cédric Fournet, et al. Verified low-level
programming embedded in F. Proceedings of the ACM on Programming Languages,
1(ICFP):17, 2017.

[55] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and Christian
Winnerlein. BLAKE2: simpler, smaller, fast as MD5. In International Conference
on Applied Cryptography and Network Security, pages 119–135. Springer, 2013.

[56] Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme.
In Advances in Cryptology (CRYPTO), pages 631–648. IACR, 2010.

27

[57] Open Whisper Systems. WhatsApp encryption overview, 2016.

[58] Vincent Cheval and Bruno Blanchet. Proving more observational equivalences with
ProVerif. In International Conference on Principles of Security and Trust, pages
226–246. Springer, 2013.

[59] Hiroyuki Okazaki, Yuichi Futa, and Kenichi Arai. Suitable symbolic models for
cryptographic verification of secure protocols in ProVerif. In 2018 International
Symposium on Information Theory and Its Applications (ISITA), pages 326–330.
IEEE, 2018.

28

	Introduction
	A Simpler Approach to Symbolic Verification
	Related Work
	Other Symbolic Verification Tools and their Use Cases
	Formal Verification Paradigms

	Contributions

	The Verifpal Language
	Principals
	Constants
	Primitives
	Hashing Primitives
	Encryption Primitives
	Signature Primitives
	Checked Primitives

	Equations
	Messages and Guarded Constants
	A Simple Complete Example

	Analysis in Verifpal
	Analysis Methodology
	Soundness of Results
	Value Construction
	Deconstructions, Rewrites, and Checks
	Genealogy of Values
	Mutations and Guarded Constants

	Case Study: Signal in Verifpal
	Security Goals
	Principals
	Modeling the Key Exchange
	Modeling Messages and the Double Ratchet

	Queries and Analysis

	Limitations and Future Work
	Conclusion

