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Abstract
Verifpal is a new automated modeling framework and verifier for cryptographic protocols

that aims to work better for real-world practitioners, students and engineers without sacrificing
comprehensive formal verification features.In order to achieve this, Verifpal introduces a
new, intuitive language for modeling protocols that is easier to write and understand than
the languages employed by existing tools. Its formal verification paradigm is also designed
explicitly to provide protocol modeling that avoids user error.

Verifpal is able to model protocols under an active attacker with unbounded sessions and
fresh values, and supports queries for advanced security properties such as forward secrecy
or key compromise impersonation. Furthermore, Verifpal’s semantics have been formalized
within the Coq theorem prover, and Verifpal models can be automatically translated into
Coq. Verifpal has already been used to verify security properties for Signal, Scuttlebutt, TLS
1.3 as well as the first formal model for the DP-3T pandemic-tracing protocol, which we
present in this work. Through Verifpal, we show that advanced verification with formalized
semantics and sound logic can exist without any expense towards the convenience of real-
world practitioners.

1 Introduction
Internet communications rely on a handful of protocols, such as Transport Layer Security (TLS),
SSH and Signal, in order to keep user data confidential. These protocols often aim to achieve
ambitious security properties (such as post-compromise security [1]) across complex use-cases
(such as support for multiple devices [2].) Given the broad set of operations and states supported
by these protocols, verifying that they do indeed achieve their desired security goals across all
use-case scenarios has proven to be non-trivial.

1.1 Current State of the Art
Automated formal verification tools have seen an encouraging success in helping to model the
security of these protocols. Recently, the Signal secure messaging protocol [3], the TLS 1.3
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web encryption standard [4], the 5G wireless communication standard [5, 6], the Scuttlebutt
decentralized messaging protocol [7], the Bluetooth standard [7], the Let’s Encrypt certificate
issuance system [8, 9], the Noise protocol framework [10, 11, 12] and the WireGuard [13] Virtual
Private Network (VPN) protocol [14] have all been analyzed using automated formal verification.

Despite this increase in the usage of formal verification tools, and despite the success obtained
with this approach, automated formal verification technology remains unused outside certain
specific realms of academia: an illustrative fact is that almost all of the example results cited
above have, as a co-author, one of the designers of the automated formal verification tool that was
used to obtain the research result. We conjecture that this lack of adoption is leading an increase
in the number of weaknesses in cryptographic protocols: in the case of TLS, protocol designers
did not use formal verification technology in the protocol’s design phase up until TLS 1.3, and
that was only due to automated formal verification helping discover a large number of attacks
in TLS 1.2 and below [15, 16, 4], and was, again, only accomplished via collaboration with the
designers of the formal verification tools themselves.

1.2 Simplifying Protocol Analysis with Verifpal
Extensive experience with automated formal verification tools has led us to the hypothesis that
the prerequisite knowledge, modeling languages and structure in which the tools formalize their
results are a significant barrier against wider adoption. Verifpal is an attempt to overcome this
barrier. Building upon contemporary research in symbolic formal verification, Verifpal’s main
aim is to appeal more to real-world practitioners, students and engineers without sacrificing
comprehensive formal verification features. Verifpal has four main design goals/features:

An intuitive language for modeling protocols. Verifpal’s internal logic relies on the
deconstruction and reconstruction of abstract terms, similar to existing symbolic verification tools.
However, it reasons about the protocol model with explicit principals: Alice and Bob exist, they
have independent states, they know certain values and perform operations with cryptographic
primitives. They send messages to each other over the network, and so on. The Verifpal language
is meant to illustrate protocols close to how one may describe them in an informal conversation,
while still being precise and expressive enough for formal modeling. We argue that this paradigm
extends beyond mere convenience, but extends protocol modeling and verification towards a
necessary level of intuitiveness for real adoption.

Modeling that avoids user error. Verifpal does not allow users to define their own cryptographic
primitives. Instead, it comes with built-in cryptographic functions: ENC and DEC representing
encryption and decryption, AEAD_ENC and AEAD_DEC representing authenticated encryption and
decryption, RINGSIGN and SIGN representing asymmetric primitives, etc. — this is meant
to remove the potential for users to define fundamental cryptographic operations incorrectly.
Verifpal also adopts a global name-space for all constants and does not allow constants to be
redefined or assigned to one another. This enforces models that are clean and easy to follow.

Analysis output that’s easy to understand. Existing tools provide “attack traces” that
illustrate a deduction using session-tagged values in a chain of symbolic deconstructions. Verifpal follows
a different approach: as it is analyzing a model, it outputs notes on which values it is able to
deconstruct, conceive of, or reconstruct. When a contradiction is found for a query, the result is
related in a readable format that ties the attack to a real-world scenario. This is done by using
terminology to indicate how the attack could have been possible, such as through a mayor-in-the-
middle attack on ephemeral keys.

Compatibility with the Coq theorem prover. The Verifpal language and analysis methodology
has recently been formalized within the Coq theorem prover [17]. Consequently, Verifpal models
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can be automatically translated and further analyzed within Coq using the Verifpal software. This
allows for further analysis in more established frameworks while also granting a higher level of
confidence in Verifpal’s analysis methodology. We use Coq as an attestation layer to Verifpal’s
soundness logic and show that Verifpal analysis results can be attested as sound via the generated
Coq implementations.

Verifpal is able to verify the security of complex protocols, such as Signal, and query for
complex attack scenarios such as post-compromise security and key compromise impersonation,
across unbounded session executions of the protocol and with fresh values not being shared
across sessions. By giving practitioners this powerful symbolic analysis paradigm in an intuitive
package, Verifpal stands a chance at making symbolic formal verification a staple in the diet of
any protocol designer.

1.3 Related Work
Verifpal arrives roughly two decades since automated formal verification became a research focus.
Here, we outline some of the more pertinent formal verification tools, use cases and broader
methodologies this research area has seen, and which Verifpal aims to supersede in terms of
accessibility and real-world usability.

Verifpal is heavily inspired by the ProVerif [18, 19] protocol verifier, designed by Bruno
Blanchet. It does not construct all terms out of Horn clauses [20] in the way that ProVerif does,
and it does not use the applied pi-calculus [21] as its modeling language. However, its analysis
logic is inspired by ProVerif and is similarly based on the Dolev-Yao model [22]. ProVerif’s
construction/deconstruction/rewrite logic is also mirrored in Verifpal’s own design. ProVerif
has been recently used to formally verify TLS 1.2 and TLS 1.3 [4], Let’s Encrypt’s ACME
certificate issuance protocol [9], the Signal secure messaging protocol [3], the Noise protocol
framework [10], the Plutus network filesystem [23], e-voting protocols [24, 25, 26, 27], FIDO [28]
and many more use cases.

The Tamarin [29] protocol prover also works under the symbolic model, but derives the
progeny of its analysis from principals’ state transitions rather than from the viewpoint of an
attacker observing and manipulating network messages. It is also different from ProVerif in its
analysis style, and its modeling language is unique within the domain. Tamarin has been recently
used to formally verify Scuttlebutt [7], TLS [30], WireGuard [31], 5G [5, 6], the Noise protocol
framework [12, 11], multiple e-voting protocols [32, 33] and many more use cases.

Scyther1 [35, 36], whose authors also work on Tamarin, offers unbounded verification with
guarantees of termination but uses a more accessible and explicit modeling language than Tamarin.
Scyther has been used to analyze IKEv1 and IKEv2 [37] (used in IPSec), a large amount of
Authenticated Key Exchange (AKE) protocols such as HMQV, UM and NAXOS [38], and to
check for “multi-protocol attacks” [39]. Research focus seems to be moving towards Tamarin,
but Scyther is still sometimes used.

AVISPA [40]’s modeling language is somewhat similar to Verifpal’s: both have a focus on
describing “actors” with “roles”, and explicitly attempt to allow the user to illustrate the protocol
intuitively, as if describing actors in a theatrical play. Despite this, work on AVISPA seems to have
largely moved to a successor tool, AVANTSSAR [41] which shares many of the same authors. In
2016, a new authentication protocol was designed and prototyped with AVISPA [42]. In 2011,
Facebook’s Connect single sign-on protocol was modeled with AVISPA [43].

1Not to be confused with the bug/flying-type Pokémon of the same name, which, despite its “ninja-like agility and
speed” [34], does not appear to have published work in formal verification.
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FDR [44] is not specifically a protocol verifier, but rather a refinement and equivalence checker
for processes written using the Communicating Sequential Processes language [45]. CSP can
be used to illustrate processes that capture secure channel protocols, and security queries can be
illustrated as refinements or properties resulting from these processes. In that sense, FDR can
act as a protocol verifier. In 2014, an RFID authentication protocol was formally verified using
FDR [46].

A performance analysis of symbolic formal verification tools by Lafourcade and Pus [47],
conducted in 2015, as well as a preceding study by Cremers and Lafourcade in 2011 [48] found
mixed results, with ProVerif coming out on top more often than not.

ProVerif and Tamarin appear to the the current titans of the symbolic verification space, and
they tend to compliment each other due to diverging design decisions: for example, ProVerif does
not require human assistance for verification, but sometimes may not terminate and may also
sometimes find false attacks (although it is proven not to miss attacks.) Tamarin, on the other
hand, claims to always yield a proof or an attack, but may require human assistance, therefore
making it less suited for fully automated analysis — in some cases, fully automated analysis can
be necessary to achieve certain research goals [10].

1.4 Formal Verification Paradigms
Verifpal, as well as all of the tools cited above, analyze protocols in the symbolic model. There are
other methodologies in which to formally verify protocols, including the computational model or,
for example, by using SMT solvers. We choose the symbolic model as the focus of our research
due to its academic success record in verifying contemporary protocols and due to its propensity
for fully automated analysis. It should be noted, however, that more precise analysis can often be
achieved using the aforementioned formal verification methodologies.

Traditionally, symbolic models are favored the security protocol verification community for
ease of automated analysis. Cryptographers, on the other hand, prefer to use computational
models and do their proofs by hand. A full comparison between these styles [49] is beyond the
scope of this work; here we briefly outline their differences in terms of the tools currently used in
the field.

ProVerif, Tamarin, AVISPA and other tools analyze symbolic protocol models, whereas tools
such as CryptoVerif [50] verify computational models. The input languages for both types of
tools can be similar. However, in the symbolic model, messages are modeled as abstract terms.
Processes can generate new nonces and keys, which are treated as atomic opaque terms that are
fresh and unguessable. Functions map terms to terms. For example, encryption constructs a
complex term from its arguments (key and plaintext) that can only be deconstructed by decryption
(with the same key). In ProVerif, for example, the attacker is an arbitrary process running
in parallel with the protocol, which can read and write messages on public channels and can
manipulate them symbolically.

In the computational model, messages are concrete bitstrings. Freshly generated nonces
and keys are randomly sampled bitstrings that the attacker can guess with some probability
(depending on their length). Encryption and decryption are functions on bitstrings to which
we may associate standard cryptographic assumptions such as IND-CCA. The attacker is a
probabilistic polynomial-time process running in parallel.

Queries can also be modeled similarly in symbolic and computational models as between
events, but analysis differs: in symbolic analysis, we typically ask whether the attacker can derive
a secret, whereas in the computational model, we ask whether it can distinguish a secret from a
random bitstring.
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The analysis techniques employed by the two tools are quite different. Symbolic verifiers
search for a protocol trace that violates the security goal, whereas computational model verification
tries to construct a cryptographic proof that the protocol is equivalent (with high probability) to a
trivially secure protocol. Symbolic verifiers are easy to automate, while computational model
tools, such as CryptoVerif, are semi-automated: it can search for proofs but requires human
guidance for non-trivial protocols.

Recently, the F⋆ programming language [51], which exports type definitions to the Z3 theorem
prover [52], has been used to produce an implementation of the Signal secure messaging protocol
that is formally verified for functional correctness at the level of the implementation itself [53].
Microsoft Research’s Project Everest [54] is attempting to accomplish the same thing for HTTPS,
also using F⋆ [55].

1.5 Contributions
We present the following contributions:

• In §1, we introduce Verifpal and provide a comparison against existing automated verification
tools in the symbolic model (§1), as well as a recap of the current state of the art.

• In §2, we introduce the Verifpal modeling language complete with syntax and semantics
and provide some justifications for the language’s design choices as well as examples.

• In §3, we discuss Verifpal’s protocol analysis logic and whether we can be certain that
Verifpal will not miss an attack on a protocol model.

• In §4, we provide the first formal model of the DP-3T decentralized pandemic-tracing
protocol [56], written in Verifpal, with queries and results on unlinkability, freshness,
confidentiality and message authentication.

• In §5, we introduce Verifpal’s Coq compatibility layer. We show how Verifpal’s semantics
and verification logic are captured in the Coq theorem prover, as well as how Verifpal can
translate arbitrary Verifpal models into Coq models for further analysis.

A discussion of future work follows before presenting our conclusion.
Verifpal is already available as free and open source software at https://verifpal.com. In

addition, Verifpal provides a Visual Studio Code extension that enables it to function as an IDE
for the modeling, analysis and verification of cryptographic protocols.

2 The Verifpal Language
Verifpal’s language is meant to be simple while allowing the user to capture comprehensive
protocols. We posit that an intuitive language that reads similarly to regular descriptions of secure
channel protocols will provide a valuable asset in terms of modeling cryptographic protocols,
and design Verifpal’s language around that assertion. This is radically different from how the
languages of tools such as ProVerif and Tamarin are designed: the latter is derived from the
applied-pi calculus and the latter from a formalism of state transitions, making it reasonable to
say that readability and intuitiveness were not the primary goals of these languages.

When describing a protocol in Verifpal, we begin by defining whether the model will be
analyzed under a passive or active attacker. Then, we define the principals engaging in activity
other than the attacker. These could be Alice and Bob, a Server and one or more Clients, etc.

5

https://verifpal.com


Simple Example Protocol

attacker[active]
principal Bob[]
principal Alice[
generates a
ga = G^a

]
Alice -> Bob: ga
principal Bob[
knows private m1
generates b
gb = G^b
e1 = AEAD_ENC(ga^b, m1, gb)

]
Bob -> Alice: gb, e1
principal Alice[
e1_dec = AEAD_DEC(gb^a, e1, gb)?

]

Figure 1: A complete example model of a simple protocol is shown on the left. On the right, a
helpful diagram is provided to illustrate how modeling in Verifpal works.

Once we have described the actions of more than one principal, it’s time to illustrate the
messages being sent across the network. Then, after having illustrated the principals’ actions and
their messages, we may finally describe the questions, or queries (can a passive attacker read the
first message that Alice sent to Bob? Can Alice can be impersonated by an active attacker?) that
we will ask Verifpal.

2.1 Principals
Figure 1 shows a simple Verifpal model. We first define what kind of attacker Verifpal will use to
analyze our model. attacker[passive] indicates a passive attacker, while attacker[active]
indicates an active attacker.

We may then declare a principal Alice who generates the fresh private constant a, then
used as her ephemeral private key. Alice then calculates ga = G^a. Here, ga is Alice’s public
Diffie-Hellman key, while G^a quite plainly indicates the standard Diffie-Hellman exponentiation
g
a. Later, Alice will be able to write gb^a, which is how we illustrate the derivation of the shared

secret gba in Verifpal.

2.2 Fundamental Types in Verifpal
Verifpal has three fundamental types: constants, primitives and equations. A constant may have
qualifiers such as freshness (if declared using generates). Equations are in the form G^x^y.
Primitives are one of the various built-in functions in Verifpal, and are defined using Verifpal’s
internal primitive definition structure. All of these elements are touched upon below.

2.2.1 Constants

In Figure 1, a, ga, m1, b, gb, e1 and e1_dec are all constants. Certain rules apply on constants in
Verifpal:

6



• Immutability. Once assigned, constants cannot be reassigned.

• Global name-space. If Bob declares or assigns some constant c, Alice cannot declare a
constant c even if Bob declares or assigns his constant privately.

• No referencing. Constants cannot be assigned to other constants, but only to primitives or
equations.

These rules exist in order to encourage practitioners to write Verifpal models that will hopefully
be cleaner and easier to read. Let’s summarize the different ways that exist to declare constants,
and how they differ from one another:

• knows: A principal may be described as having prior knowledge of a constant. The qualifiers
private and public describe whether this constant that they have knowledge of is supposed
to be considered known by everyone else (including the attacker) or just by them. Constants
declared this way are considered to be, well, constant, across every execution of the protocol
(i.e. they are not unique for every different time the protocol is executed).2

• generates: This allows a principal to describe a “fresh” value, i.e. a value that is re-
generated every time the protocol is executed. A good example of this could be an ephemeral
private key. Such values (and all values derived using these values) are not kept between
different protocol session executions.

• leaks: This allows us to specify that the principal will leak an existing constant that they
already know to the attacker, rendering the value immediately knowable to the attacker at
the point of leakage.

• Assignment: A constant may be declared by assigning it to the result of a primitive or
equation expression. But remember: constants may not be assigned to other constants.

2.2.2 Primitives

In order to describe cryptographic protocols, we will of course need cryptographic primitives.
In Verifpal, cryptographic primitives are essentially “perfect”. That is to say, hash functions

are perfect one way functions, and not susceptible to something like length extension attacks. It
is also not possible to model for, say, encryption primitives that use 40-bit keys, which could be
guessed easily, since encryption functions are perfect pseudo-random permutations, and so on.

Internally in Verifpal’s standard implementation, all primitives are defined using a common
API which restricts how they can be expressed to a set of common rules (aside from the primitive’s
names, arity and number of outputs). Each primitive may be defined solely via a combination of
four rules:

• Decompose. Given a primitive’s output and a defined subset of its inputs, automatically
reveal one of its inputs. (Given DEC(k, c) and k, reveal c).

2A third qualifier, password, can be used to declare private constants that are weak or guessable: if they are
used directly within, for example, an encryption primitive, and the ciphertext is obtained by the attacker, the attacker
will be able to obtain the password value immediately. Therefore, in order to be used safely, values declared using
knows passwordmust first be sent through a password hashing primitive such as PW_HASH. This allows Verifpal to
natively support modeling for cryptographic operations that use weak passwords or other guessable values that do not
go through appropriate key derivation mechanisms.
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• Recompose. Given a defined subset of a primitive’s outputs, automatically reveal one of
its inputs. (Given a, b, reveal x if a, b, _ = SHAMIR_SPLIT(x)).

• Rewrite. Given a matching defined pattern within a primitive’s inputs, rewrite the primitive
expression itself into a logical subset of its inputs. (Given DEC(k, ENC(k, m)), rewrite
the entire expression DEC(k, ENC(k, m)) to m).

• Rebuild. Given a primitive whose inputs are all the outputs of some same other primitive,
rewrite the primitive expression itself into a logical subset of its inputs. (Given SHAMIR_JOIN(a, b)
where a, b, c = SHAMIR_SPLIT(x), rewrite the entire expression SHAMIR_JOIN(a, b)
to x).

Core Primitives Verifpal offers the following “core” primitives, which perform basic operations
that are not necessarily cryptographic in nature, but still often useful in models.

• ASSERT(MAC(k, m), MAC(k, m)). Checks the equality of two values, and especially
useful for checking MAC equality.

• CONCAT(a, b): c. Concatenates between two to five into one value. “Concatenation”
is a word often used in computer science to describe joining multiple strings or values
together. For example, the concatenation of the strings cat and dog would be catdog.

• SPLIT(CONCAT(a, b)): a, b. Splits a concatenation back to its component values. Must
contain a CONCAT primitive as input; otherwise, Verifpal will output an error.

Hashing Primitives Verifpal offers the following hashing primitives, which aim to capture
classical cryptographic hashing, keyed hashing and hash-based key derivation.

• HASH(a, b.....): x. Secure hash function, similar in practice to, for example, BLAKE2s [57].
Takes an arbitrary number of input arguments ≥ 1, and returns one output.

• MAC(key, message): hash. Keyed hash function. Useful for message authentication and
for some other protocol constructions.

• HKDF(salt, ikm, info): a, b...... Hash-based key derivation function inspired by the
Krawczyk HKDF scheme [58]. Essentially, HKDF is used to extract more than one key out a
single secret value. salt and info help contextualize derived keys. Produces an arbitrary
number of outputs ≥ 1.

• PW_HASH(a): x. Password hashing function, similar in practice to, for example, Scrypt [59]
or Argon2 [60]. Hashes passwords and produces output that is suitable for use as a private
key, secret key or other sensitive key material. Useful in conjunction with values declared
using knows password a.

Encryption Primitives Verifpal offers the following encryption primitives, which aim to
capture unauthenticated encryption, and authenticated encryption with associated data.

• ENC(key, p): c. Symmetric encryption, similar for example to AES-CBC or to ChaCha20.

• DEC(key, ENC(key, p)): p. Symmetric decryption.
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• AEAD_ENC(key, p, ad): c. Authenticated encryption with associated data. ad represents
an additional payload that is not encrypted, but that must be provided exactly in the
decryption function for authenticated decryption to succeed. Similar for example to AES-
GCM or to ChaCha20-Poly1305.

• AEAD_DEC(key, AEAD_ENC(key, p, ad), ad): p. Authenticated decryption with associated
data.

• PKE_ENC(G^key, p): c. Public-key encryption.

• PKE_DEC(key, PKE_ENC(G^key, p)): p. Public-key decryption.

Signature Primitives Verifpal offers a simple signing primitive with a corresponding signature
verification function.

• SIGN(key, m): sig. Classic signature primitive. Here, key is a private key, for example
a.

• SIGNVERIF(G^k, message, SIGN(k, m)): m. Verifies if signature can be authenticated.
If key a was used for SIGN, then SIGNVERIF will expect G^a as the key value.

• RINGSIGN(k_a, G^k_b, G^k_c, m): sig. Ring signature. In ring signatures, one of
three parties (Alice, Bob and Charlie) signs a message. The resulting signature can be
verified using the public key of any of the three parties, and the signature does not reveal
the signatory, only that they are a member of the signing ring (Alice, Bob or Charlie). The
first key must be the private key of the actual signer, while the subsequent two keys must
be the public keys of the other potential signers. Paired with RINGSIGNVERIF.

• BLIND(k, m): m. Message blinding primitive, useful for the implementation of blind
signatures [61]. Here, the sender uses the secret “blinding factor” k in order to blind
message m, which can then be sent to the signer, who will be able to produce a signature on
m without knowing m. Used in conjunction with UNBLIND.

• UNBLIND(k, m, SIGN(a, BLIND(k, m))): SIGN(a, m). Once BLIND(k, m) is signed
by the signer, the sender can convert SIGN(a, BLIND(k, m)) to SIGN(a, m) by unblinding
the message using their secret blinding factor k. The resulting unblinded signature can then
be used as if it were a regular signature by a over m.

Secret Sharing Primitives Verifpal offers a simple interface for modeling Shamir Secret
Sharing [62], which allows a secret (such as a key) to be split into multiple shares such that
only some (and not all) of these shares are required to reconstitute it.

• SHAMIR_SPLIT(k): s1, s2, s3. In Verifpal, we allow splitting the key into three shares
such that only two shares are required to reconstitute it.

• SHAMIR_JOIN(sa, sb): k. Here, sa and sb must be two distinct elements out of the set
(s1, s2, s3) in order to obtain k.

If analyzing under a passive attacker, then Verifpal will only execute the model once. Therefore,
if a checked primitive fails, the entire verification procedure will abort. Under an active attacker,
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however, Verifpal is forced to execute the model once over for every possible permutation of the
inputs that can be affected by the attacker. Therefore, a failed checked primitive may not abort all
executions — and messages obtained before the failure of the checked primitive are still valid for
analysis, perhaps even in future sessions.

2.2.3 Equations

Equations are special expressions intended to capture public key generation (useful for both
Diffie-Hellman and signatures), as well as shared secret agreement (useful for Diffie-Hellman).

As we saw earlier, G^a indicates the public key obtained from value a. This public key can be
used both for signing primitives as well as for Diffie-Hellman shared secret agreement. Let’s look
at some other example equations in Verifpal:
Example Equations

principal Server[
generates x
generates y
gx = G^x
gy = G^y
gxy = gx^y
gyx = gy^x

]

In the above, gxy and gyx are considered equivalent by Verifpal. In Verifpal, all equations must
have the constant G as their root generator. This mirrors Diffie-Hellman behavior. Furthermore,
all equations can only have two constants (a^b), but as we can see above, equations can be built
on top of other equations (as in the case of gxy and gyx).

2.2.4 Messages, Guarded Constants, Checked Primitives and Phases

Sending messages over the network is simple. Only constants may be sent within messages:
Example: Messages

Alice -> Bob: ga, e1
Bob -> Alice: [gb], e2

In the first line of the above, Alice is the sender and Bob is the recipient. Notice how Alice
is sending Bob her long-term public key ga = G^a. An active attacker could intercept ga and
replace it with a value that they control. But what if we want to model our protocol such that Alice
has pre-authenticated Bob’s public key gb = G^b? This is where guarded constants become
useful.

In the second message from the above example, we see that, gb is surrounded by brackets
([]). This makes it a “guarded” constant, meaning that while an active attacker can still read it,
they cannot tamper with it. In that sense it is “guarded” against the active attacker.

In Verifpal, ASSERT, SPLIT, AEAD_DEC, SIGNVERIF and RINGSIGNVERIF are “checkable”
primitives: if we add a question mark (?) after one of these primitives, then model execution
will abort should AEAD_DEC fail authenticated decryption, or should ASSERT fail to find its two
provided inputs equal, or should SIGNVERIF fail to verify the signature against the provided
message and public key.
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Simple Example Protocol: Queries

queries[
confidentiality? m1
authentication? Bob -> Alice: e1
unlinkability? ga, m1

]

Figure 2: Queries for confidentiality, authentication and unlinkability checks on the model
described in Figure 1.

For example: SIGNVERIF(k, m, s)? makes this instantiation of SIGNVERIF a “checked”
primitive.

Phases allow Verifpal to reliably model post-compromise security properties such as forward
secrecy or future secrecy. When modeling with an active attacker, a new phase can be declared
thus:
Example: Phases

principal Alice[...]
principal Bob [...]
Bob -> Alice: b1

phase[1]

principal Alice[leaks a2]

In the above example, the attacker won’t be able to learn a2 until the execution of everything
that occurred in phase 0 (the initial phase of any model) is concluded. Furthermore, the attacker
can only manipulate a2 within the confines of the phases in which it is communicated. That is to
say, the attacker will have knowledge of b1 when doing analysis in phase 1, but won’t be able to
manipulate b1 in phase 1. The attacker won’t have knowledge of a2 during phase 0, but will be
able to manipulate b1 in phase 0.

Values are learned at the earliest phase in which they are communicated, and can only be
manipulated within phases in which they are communicated, which can be more than one phase
since Alice can for example send a2 later to Carol, to Damian, etc. Importantly, values derived
from mutations of b1 in phase 0 cannot be used to construct new values in phase 1.

Phases are useful to model scenarios where, for example, the attacker manages to steal Alice’s
keys strictly after a protocol has been executed, allowing the attacker to use their knowledge of
that key material, but only outside of actually injecting it into a running protocol session.

2.3 Queries
In Figure 2, we see three different types of queries, from Verifpal’s current four:

2.3.1 Confidentiality Queries

Confidentiality queries are the most basic of all Verifpal queries. We ask: “can the attacker
obtain m1?” — where m1 is a sensitive message. If the answer is yes, then the attacker was able
to obtain the message, despite it being presumably encrypted. When used in conjunction with
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phases, confidentiality queries can however be used to model for advanced security properties
such as forward secrecy.

2.3.2 Authentication Queries

Authentication queries rely heavily on Verifpal’s notion of “checked” or “checkable” primitives.
Intuitively, the goal of authentication queries is to ask whether Bob will rely on some value e1 in
an important protocol operation (such as signature verification or authenticated decryption) if and
only if he received that value from Alice. If Bob is successful in using e1 for signature verification
or a similar operation without it having been necessarily sent by Alice, then authentication is
violated for e1, and the attacker was able to impersonate Alice in communicating that value.

2.4 Freshness Queries
Freshness queries are useful for detecting replay attacks, where an attacker could manipulate one
message to make it seem valid in two different contexts. In passive attacker mode, a freshness
query will check whether a value is “fresh” between sessions (i.e. if it has at least one composing
element that is generated, non-static). In active attacker mode, it will check whether a value
can be rendered “non-fresh” (i.e. static between sessions) and subsequently successfully used
between sessions.

2.5 Unlinkability Queries
Protocols such as DP-3T (see §4), voting protocols and RFID-based protocols posit an “unlinkability”
security property on some of their components or processes. Definitions for unlinkability
vary wildly despite the best efforts of researchers [63, 64, 65], but in Verifpal, we adopt the
following definition: “for two observed values, the adversary cannot distinguish between a
protocol execution in which they belong to the same user and a protocol execution in which they
belong to two different users.”

Based on the above, Verifpal introduced in version 0.12.0 experimental support for a notion
of unlinkability based on the following checks. For an unlinkability query evaluating two values
a and b:

• First, Verifpal checks to see if a and b satisfy freshness. If they do not, the query fails.
Similarly to regular freshness queries, if an attacker can coerce a value to be non-fresh
across sessions, then it is non-fresh and the query fails.

• If a and b both satisfy freshness, Verifpal then checks to see if the attacker can determine
them as being the output of the same primitive or as having a common source. For example,
the first and second output of the same HKDF construction with the same inputs. Of course,
a and b can indeed be the outputs of that HKDF and be unlinkable; unless the attacker is able
to reconstruct that same HKDF primitive and thereby use it to determine that both values are
the outputs of it.

We note that unlinkability queries are especially experimental, since it is likely that these two
notions are not sufficient to fully capture unlinkability between values, and future versions of
Verifpal may expand this definition with additional notions.
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2.6 Query Options
Imagine that we want to check if Alice will only send some message to Alice if it has first
authenticated it from Bob. This can be accomplished by adding the precondition option to the
authentication query for e:
Query Options Example

queries[
authentication? Bob -> Alice: e[
precondition[Alice -> Carol: m2]
]

]

The above query essentially expresses: “The event of Carol receiving m2 from Alice shall
only occur if Alice has previously received and authenticated an encryption of m2 as coming from
Bob.”

3 Analysis in Verifpal
Verifpal’s active attacker analysis methodology follows a simple set of procedures and algorithms.
The overall process is comprised of five steps:

1. Gather values. Attacker passively observes a protocol execution and gathers all values
shared publicly between principals.

2. Insert learned values into attacker state. Attacker’s state (VA) obtains newly learned
values.

3. Apply transformations. Attacker applies the four main “transformations” on all obtained
values (these transformations are detailed below.)

4. Prepare mutations for next session. If the attacker has learned new values due to the
transformations executed in the previous step, they create a combinatorial table of all
possible value substitutions, and from that, derive a set of all possible value substitutions
across future executions of the protocol on the network.

5. Iterate across protocol mutations. Attacker proceeds to execute the protocol across
sessions, each time “mutating” the execution by mayor-in-the-middling a value. Attacker
then returns to step 1 of this list. The process continues so long as the attacker keeps
learning new values.

After each step, Verifpal checks to see if it has found a contradiction to any of the queries
specified in the model and informs the user if such a contradiction is found. The four main
transformations mentioned above are the following:

• Resolve. Resolves a certain constant to its assigned value (for example, a primitive or an
equation). Executed on VA, the set of all values known by the attacker.

• Deconstruct. Attempts to deconstruct a primitive or an equation. In order to deconstruct
a primitive, the attacker must possess sufficient values to satisfy the primitive’s rewrite
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rule. For example, the attacker must possess k and e in order to obtain m by deconstructing
e = ENC(k, m) with k. In order to deconstruct an equation, the attacker must similarly
possess all but one private exponent. Executed on VA, the set of all values known by the
attacker.

• Reconstruct. Attempts to reconstruct primitives and equations given that the attacker
possesses all of the component values. Executed on VA, the set of all values known by the
attacker, as well as on VP , the values known by the principal whose state is currently being
evaluated by the attacker.

• Equivalize. Determines if the attacker can reconstruct or equivalize any values within VP

from VA. If so, then these equivalent values are added to VA.

Verifpal’s goal is to obtain as many values as is logically possible from their viewpoint as
an attacker on the network. As a passive attacker, Verifpal can only do this by deconstructing
the values made available as they are shared between principals, and potentially reconstructing
them into different values. As an active attacker, Verifpal can modify unguarded constants as
they cross the network. Each modification could result in learning new values, so an unbounded
number of modifications can occur over an unbounded number of protocol executions. “Fresh”
(i.e. generated) values are not kept across different protocol executions, as they are assumed to be
different for every session of the protocol.

An active attacker can also generate their own values, such as a key pair that they control,
and fabricate new values that they use as substitutes for any unguarded constants sent between
principals. If, during a protocol execution, a checked primitive fails, that session execution is
aborted and the attacker moves on to the next one. However, values obtained thus far in that
particular session execution are kept.

Verifpal also keeps track of which values are used where, the path a value takes until it arrives
into the state of a principal, and who first declared or generated a value. This information is used
in order to analyze for contradictions to authentication queries.

3.1 Soundness of Results
Verifpal has so far been used in order to model TLS, Signal, Scuttlebutt, Telegram, ProtonMail
and some other protocols. So far, all of its results have been in line with previous analyses of
these protocols. We present in this section an outline of Verifpal’s formal analysis methodology,
in addition to the formalized semantics and analysis logic of the Verifpal Coq Library discussed
in §5, such that we can say with a high degree of confidence that:

• If an attacker is unable to obtain a value m, then m is necessarily confidential for the protocol
described in the Verifpal model.

• If an attacker cannot find more than one way in which value e can be communicated between
principals A and B such that B later employs e as an argument to a rewrite-capable primitive
or equation, then e is necessarily authenticated under A → B for the protocol described in
the Verifpal model.

It is important to note that we do not currently explicitly seek to rule out false attacks (i.e. false
positives.) Our central argument is that the analysis logic described in this section is sufficient in
order to capture all possible confidentiality and authentication attacks within the language defined
in Figure 5. We further buttress this claim with the formalization of Verifpal’s semantics and
analysis logic in Coq, as shown in §5.
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3.1.1 Value Construction

Protocol analysis always begins from the point of view of the attacker. The initial set of values
that the attacker can know are necessarily constants, since only constants can be exchanged
within network messages (Figure 5). “Pure” constants (constants that are declared via a knows
or generates expression and not via assignment) resolve to themselves (x → x). Assigned
constants resolve to either a primitive or an equation. Primitives can take constants, primitives
or equations as arguments but always return constants. Equations can only take constants as
arguments (effectively exponents).

3.1.2 Genealogy of Values

In Verifpal, once a constant is known, generated or assigned, an immutable creator value is
assigned to it defining the principal responsible for creating it. As the value travels across the
network, a sender chain is built tracking its genealogy. For example, if Alice creates a value m
and sends it to Bob, and if Bob then sends it to Carol, then m would have Alice as its creator and a
sender chain of Alice → Bob → Carol.

When an attacker is tasked with contradicting an authentication query, it attempts to find out
if a scenario exists in which a value is used in a primitive (or worse, triggers a valid rewrite rule)
that does not follow the sender chain decreed by the authentication query.

3.1.3 Mutations and Guarded Constants

Except for guarded constants (see §2.2.4), the attacker can, at will, substitute any constant with
any other, including constants crafted by the attacker. The goal of these substitutions is to execute
the protocol in every possible permutation of constant-to-value assignments based on the values
known by the attacker. Each unguarded constant risks being permuted with:

• Other constants and values from the protocol that have been revealed to the attacker.

• New primitive and equation declarations constructed from values that have been revealed
to the attacker.

• Malicious values crafted by the attacker, including for example malicious public keys or
malicious signatures under key pairs generated and owned by the attacker.

Mutations and transformations are executed recursively. That is, if executing any one of
Resolve, Deconstruct, Reconstruct and Equivalize leads to new values being discovered,
then that transformation is executed recursively until no new values are found. If any new values
are found, the series of four transformations is also re-executed recursively in its totality until no
new values are obtainable by the attacker. Once that is the case, we move on to the next mutation.

Our core assumption regarding the completeness and reliability of Verifpal’s analysis methodology
is that the above is sufficient to, within Verifpal’s language, capture all values knowable to the
attacker, as well as all sender chains possible within a protocol given an attacker.

4 Case Study: Pandemic Contact Tracing in Verifpal
During the COVID-19 pandemic, a rise was observed in the number of proposals for privacy-
preserving pandemic and contact tracing protocols. Arguably the most popular and well-analyzed
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of these proposals is the Decentralized Privacy-Preserving Proximity Tracing (DP-3T) protocol [56],
which aims to “simplify and accelerate the process of identifying people who have been in contact
with an infected person, thus providing a technological foundation to help slow the spread of the
SARS-CoV-2 virus”, and to “minimize privacy and security risks for individuals and communities
and guarantee the highest level of data protection.”

4.1 Modeling DP-3T in Verifpal
To demonstrate DP-3T, we will assume that the principals participating in this simulation are the
following:

• A population of 3 individuals: Alice, Bob, and Charlie, each of them possessing a
smartphone: SmartphoneA, SmartphoneB, and SmartphoneC respectively;

• A Healthcare Authority serving this population;

• A Backend Server, that individuals can communicate with to obtain daily information.

We begin by defining an attacker which matches with our security model, which, in this case,
is an active attacker. We then proceed to illustrate our model as a sequence of days in which
DP-3T is in operation within the lifecycle of a pandemic.

4.1.1 Day 0: Setup Phase

We assume that no new individuals were diagnosed with the disease on Day 0 of using DP-3T.
This means that the Healthcare Authority and the Backend Server will not act at this stage and we
can simply ignore them for now.

The DP-3T specification states that every principal, when first joining the system, should
generate a random secret key (SK) to be used for one day only. For every SK value, and the
knowledge of a public “broadcast key” value, principals should compute multiple Unique Ephemeral
ID values (EphID) using a combination of a PRG and a PRF. The method of generating EphID is
analogous with the HKDF function from Verifpal. We could add the following lines of code to
our file in order to model Alice’s SmartphoneA:
DP-3T: SmartphoneA, B and C Setup

principal SmartphoneA[
knows public BroadcastKey
generates SK0A
EphID00A, EphID01A, EphID02A = HKDF(nil, SK0A, BroadcastKey)

]

Whenever two principals would come be in physical proximity of each other, they would
automatically exchange EphIDs. Once a principal uses an EphID value, they discard it and use
another one when performing an exchange with another principal.

Let’s imagine that Alice and Bob came into contact. It would mean that Alice sent EphID00A
in a message to Bob and that Bob sent EphID00B to Alice. Further, let’s say that in the conclusion
of Day 0, Bob sits behind Charlie in the Bus:

16



DP-3T: EphID Communication

SmartphoneA -> SmartphoneB: EphID00A
SmartphoneB -> SmartphoneA: EphID00B

SmartphoneC -> SmartphoneB: EphID01C
SmartphoneB -> SmartphoneC: EphID01B

4.1.2 Day 1

The Backend Server will automatically publish the SK values of people who were infected to the
members of the general population. These values were previously unpublished and thus were
private and only known by their generators and the server.
DP-3T: BackendServer Communication

principal BackendServer[
knows private infectedPatients0

]
BackendServer -> SmartphoneA: infectedPatients0
BackendServer -> SmartphoneB: infectedPatients0
BackendServer -> SmartphoneC: infectedPatients0

Every day starting from Day 1, DP-3T mandates that principals will generate new SK values.
The new value will be equal to the hash of the SK value from the day before. Principals will also
generate EphIDs just like before.
DP-3T: EphID Generation

principal SmartphoneA[
SK1A = HASH(SK0A)
EphID10A, EphID11A, EphID12A = HKDF(nil, SK1A, BroadcastKey)

]
principal SmartphoneB[
SK1B = HASH(SK0B)
EphID10B, EphID11B, EphID12B = HKDF(nil, SK1B, BroadcastKey)

]
principal SmartphoneC[
SK1C = HASH(SK0C)
EphID10C, EphID11C, EphID12C = HKDF(nil, SK1C, BroadcastKey)

]

Thankfully, Alice, Bob and Charlie are committed to self-confinement and have stayed at
home, so they did not exchange EphIDs with anyone.

4.1.3 Day 2

A similar sequence of events takes place. Since it is sufficient to define the values that we will
need later on in our model, we will just define a block for Alice.
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Figure 3: A summary of the parties and network exchanges involved in Day 15 of our
Verifpal model of the DP-3T protocol.

DP-3T: EphID Generation

principal SmartphoneA[
SK2A = HASH(SK1A)
EphID20A, EphID21A, EphID22A = HKDF(nil, SK2A, BroadcastKey)

]

4.1.4 Fast-Forward to Day 15

Unfortunately, Alice tests positive for COVID-19. Since this breaks the routine that happened
between Day 1 and Day 15, we will announce a new phase (see §2.2.4) in our protocol model:
DP-3T: Declaring a New Phase

phase[1]

Alice decides to announce her infection anonymously using DP-3T. This means that she
will have to securely communicate SK1A (her SK value from 14 days ago) to the Backend Server,
using a unique trigger token provided by the healthcare authority. Assuming that the Backend
Server and the Healthcare Authority share a secure connection, and that a private key encryption
key ephemeral_sk has been exchanged off the wire by the Healthcare Authority, Alice, and the
Backend Server, the Healthcare Authority will encrypt a freshly generated triggerToken using
ephemeral_sk and send it to both Alice and the Backend Server.
DP-3T: Sending Tokens to HealthCareAuthority

principal HealthCareAuthority[
generates triggerToken
knows private ephemeral_sk
m1 = ENC(ephemeral_sk, triggerToken)

]
HealthCareAuthority -> BackendServer : [m1]
HealthCareAuthority -> SmartphoneA : m1

Then, Alice would have to use an AEAD cipher to encrypt SK1A using ephemeral_sk as the
key and triggerToken as additional data and send the output to the BackendServer. Note that
Alice can only obtain triggerToken after decrypting m1 using ephemeral_sk.
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DP-3T: Communicating with BackendServer

principal SmartphoneA[
knows private ephemeral_sk
m1_dec = DEC(ephemeral_sk, m1)
m2 = AEAD_ENC(ephemeral_sk, SK1A, m1_dec)

]
SmartphoneA -> BackendServer: m2

The Backend Server will now have to decrypt m1 to receive the triggerToken in the same
way that Alice did, then attempt to decrypt m2. If that decryption was successful, the server would
obtain SK1A and would be sure that the value came from Alice because it is only Alice who knows
both triggerToken and SK1A at the same time as defined in the protocol.

Finally, the Backend Server will add SK1A to the list of infected patients previously defined,
and then send this list to all of the individuals in this community.
DP-3T: Updating List of Infected Patents

principal BackendServer [
knows private ephemeral_sk
m2_dec = AEAD_DEC(ephemeral_sk, m2, DEC(ephemeral_sk, m1))?
infectedPatients1 = CONCAT(infectedPatients0, m2_dec)

]
BackendServer -> SmartphoneA: infectedPatients1
BackendServer -> SmartphoneB: infectedPatients1
BackendServer -> SmartphoneC: infectedPatients1

Everything that happened in Day 15 can be summarized in Figure 3.

4.2 DP-3T Analysis Results
Since SK1A is now shared publicly, the DP-3T software running on anyone’s phone should be
able to re-generate all EphID values generated by the owner of SK1A starting from 14 days prior
to the day of diagnosis. These values would then be compared them with the list of EphIDs they
have received. Everyone who came in contact with Alice will therefore be notified that they have
exchanged EphIDs with someone who has been diagnosed with the illness without revealing the
identity of that person.
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DP-3T: Queries

queries[
// Would someone who shared a value 15 days
// before they got tested get flagged?
// ie in phase[0], before phase[1]
confidentiality? EphID02A
// Will people who cross Alice be able to compute
// all of Alice's EphIDs starting from Day 1?
confidentiality? EphID10A
confidentiality? EphID11A
confidentiality? EphID12A
confidentiality? EphID20A
confidentiality? EphID21A
confidentiality? EphID22A
// Is the server able to Authenticate Alice as the sender of m2?
authentication? SmartphoneA -> BackendServer: m2
// Unlinkability of HKDF values
unlinkability? EphID02A, EphID00A, EphID01A

]

The results of our initial modeling in Verifpal suggest to us the following:

• No EphIDs generated by Alice are known by any parties before Alice announces her illness.

• EphID02A remains confidential even after Alice declaring her illness. Note that it was
generated 15 Days before Alice got tested.

• All of the following values EphID10A, EphID11A, EphID12A, EphID20A, EphID21A, EphID22A
have been recoverable by an attacker in phase[1] after Alice announces her illness.

These results come in line with what is expected from the protocol. We note that the security
of communication channels between Healthcare Authorities, Backend Servers, and Individuals
have not been defined, and we have placed our hypothetical own security conditions with in order
to focus on quickly sketching the DP-3T protocol.

While further analysis will be required in order to better elucidate the extent of the obtained
security guarantees, Verifpalradically speeds up this process by allowing for the automated
translation of easy-to-write Verifpalmodels to full-fat Coq and ProVerif models, as discussed in
§5.

5 Verifpal in Coq
Verifpal’s core verification logic and semantics can be captured in Coq via our Verifpal Coq
library. This library includes high level functions that can be used to perform analysis on any
valid protocol modeled using the Verifpal language. This is sufficient to allow for automated
translations of Verifpal models into representations in Coq for further analysis. We have included
a utility that when input with a protocol file, automatically generates Coq code that uses the
high level functions from our library in order to perform analysis in Coq’s powerful paradigm of
constructive logic. Once executed, this code would yield results for the queries defined in the
protocol model.
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Protocol: test.vp

attacker[passive]
principal Bob [ knows private a ]
principal Alice [
knows private a
generates ma
ka = HASH(a)
c = ENC(ka, ma)

]
Alice -> Bob: c
principal Bob [
kb = HASH(a)
mb = DEC(kb, c)

]
phase[1]
Alice [ leaks a ]
queries[ confidentiality? ma ]

Figure 4: A simple Verifpal model used in order to illustrate the Coq Library.

5.1 Verifpal Semantics in Coq
To formalize the execution of this protocol, we define several types in our library such as constant,
Principal, and knowledgemap. For every principal defined in the model, there exists an element
of type Principal which contains a list of items of knowledge, also known as constants. Every
time a constant is declared, generated, assigned or received in a message by a principal, it would
be added to the Principal’s knowledge. In order to send a constant from one Principal to
another, we model knowledgemap, a type which wraps a list of Principal elements.

The latest knowledgemap before Alice sent c to Bob would contain an object containing
Alice’s knowledge: a, ma, ka, and c, and another one containing Bob’s knowledge of a. By
applying the send_message function on that knowledgemap, we could send the constant c from
Alice to any other principal included in the knowledgemap and obtain an updated knowledgemap.
There, we notice that Alice’s knowledge is still the same, but Bob’s knowledge now contains a
and c, which is the effect of sending the message c from Alice to Bob. Alice and Bob perform
several primitive operations in the blocks defined above such as HASH(a) and ENC(ka, ma). All
of the primitives supported by Verifpal are formally specified in our Coq library. Outputs of
primitives are defined as sub-types of the type constant.
Coq: Constant Definition

Inductive constant : Type :=
| value_c (name: string)
| ENC_c (key message: constant)
| HASH1_c (value: constant)
| ...

As an illustrative example, we demonstrate a lemma that decidably proves equality between
elements of type constant, one of the cornerstones of our Coq library:
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Coq: Constant Equality Lemma

Lemma equal_constant_true : forall (c : constant),
c =? c = true.
Proof.
induction c; simpl; try firstorder.
apply string_equality. reflexivity.
rewrite IHc1, IHc2, IHc3, IHc4; auto.
rewrite IHc1, IHc2, IHc3, IHc4, IHc5; auto.
rewrite IHc1, IHc2, IHc3, IHc4; auto.
rewrite IHc1, IHc2, IHc3, IHc4, IHc5; auto.
rewrite IHc1, IHc2, IHc3, IHc4; auto.
apply string_equality. reflexivity.
Qed.

When Alice performs c = ENC(ka, ma), and then sends c over the wire, we would expect
that the decryption of c would only yield the plaintext ma if and only if the key used to decrypt c
is the same one that was used for encrypting ma. This behavior is defined as follows in our DEC
function:
Coq: Modeling Decryption

Definition DEC(key ciphertext: constant): constant :=
match ciphertext with
| ENC_c k m => match k =? key with
| true => m
| false => ciphertext
end
| _ => ciphertext
end.

We provide additional lemmas to prove that our model satisfies the behavior expected from
primitives. In this example, we prove that ENC(k, DEC(k,m)) would be equal to m.
Coq: ENC/DEC Lemma

Lemma enc_dec: forall k m: constant, DEC k (ENC k m) = m.
Proof.
unfold ENC, DEC;
intros k m; rewrite equal_constant_true; try auto.
Qed.

Using the functionality provided by the Verifpal Coq library, and the Coq code generation
feature of Verifpal, it is possible to perform a symbolic execution of any protocol that can be
modeled using Verifpal. In addition, it is possible to independently run the proofs based on which
our primitives are defined by simply running the included proofs that are written using the Ltac
tactics language supported by Coq.

5.2 Verifpal Analysis in Coq
The passive attacker methodology in Verifpal is defined in the following way:

1. The attacker can gather values: any value leaked, or declared as public is automatically
added to the attacker’s list of knowledge. In addition, any value sent over the wire is known
by the attacker.
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2. The attacker tries to apply transformations on the values learned. These transformations
are pre-defined and independently provable.

3. This process is repeated so long as the attacker was able to learn new values.

We formalize this methodology using an Attacker type which is and a constant_meta type.
An instance of type Attacker type would contain a list of constant values that are known by
the attacker. constant_meta acts as a wrapper type for constant with elements of metadata and
is defined with some helper types as follows:
Coq: constant_meta Helper Types

Inductive qualifier : Type :=
| public
| private
| password.

Inductive declaration : Type :=
| assignment
| knows
| generates.

Inductive guard_state : Type :=
| guarded
| unguarded.

Inductive leak_state : Type :=
| leaked
| not_leaked.

Inductive constant_meta: Type :=
| constant_meta_c (c: constant) (d: declaration) (q: qualifier)
(created_by name: string) (l: leak_state)
...

Whenever a constant is constructed by a Principal, it is wrapped in an element of type
constant_meta with metadata corresponding to the way in which this constant was defined in
the Verifpal model. constant_meta objects are stored inside the Principal data structure and
constitute the principal knowledge. Whenever a value is sent over the wire, it is also sent with its
corresponding metadata as type constant_meta.

5.2.1 Example Verifpal Analysis in Coq

Step 1 of the analysis methodology is modeled with the help of two functions:

• absorb_message_attacker enables an Attacker to learn any value when it is being sent
over the wire.

• absorb_knowledgemap_attacker enables anAttacker to iterate over Principal elements
found in the knowledgemap and their lists of constant_meta items. The attacker can learn
a constant_meta that they come across strictly if its (l: leak_state) value is equal to
leaked or if its (q: qualifier) is equal to public, otherwise the value is simply ignored.

At the end phase[0] of the protocol illustrated in §5.1, the attacker would have learned the
constant c because it was sent over the wire. At the end of phase[1], the attacker would have
learned a in addition to c because it was leaked by Alice.
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In phase[1], the attacker is able to construct HASH1 a after learning a then consequently
attempt DEC (HASH1 a) c. As discussed before, the DEC operation would reveal the plaintext if the
key provided is equivalent to the encryption key. Developing further we obtain DEC (HASH1 a) (ENC ka ma)
then DEC (HASH1 a) (ENC (HASH1 a) ma), the attacker would then automatically apply the
enc_dec lemma to deduce ma and add it to its knowledge. It is worth noting that all transformations
that can be applied by the attacker are accompanied with independently provable lemmas, just
like the enc_dec.

5.2.2 Example Verifpal Query in Coq

Verifpal queries are analogous to decidable processes and help us reason about protocols. The
confidentiality query defined in the protocol in (part 1) would translate to “is the attacker able to
obtain the value ma after the protocol is executed?” To answer this, we search in the attacker’s
knowledge for a value that is equal to ma; if such a value is found, the query “fails”, otherwise it
“passes”. In this case the query would fail, as the attacker was able to obtain ma by applying the
methodology in the previous section. Generating a Coq implementation of the protocol discussed
will yield an identical result, and could allow the user to independently verify the soundness of
this result by checking the proofs included in the code.

6 Discussion and Conclusion
While they do not constitute scientific contributions, Verifpal’s focus on prioritizing usability has
led it to obtain a substantially high performance benchmark while analyzing complex protocols,
largely due to it being implemented in the Go programming language and by taking advantage of
the excellent multi-threading support that it provides.

Verifpal also ships with a Visual Studio Code extension that turns into into essentially an IDE
for the modeling, development, testing and analysis of protocol models. The extension offers live
analysis feedback and diagram visualizations of models being described and supports translating
models automatically into Coq. We plan to also launch within the coming weeks support for
translating Verifpal models into prototype Go implementations immediately, allowing for live
real-world testing of described protocols.

Verifpal’s focus on prioritizing usability leads it to to have no road map to support, for example,
declaring custom primitives or rewrite rules as supported in ProVerif and Tamarin. However,
future work focuses on giving Verifpal the fine control that tools such as ProVerif can offer over
how protocol processes are executed. However, Verifpal has recently managed to gain support
for protocol phases and parametrized queries (useful for modeling post-compromise security) as
well as querying for indifferentiability or observational equivalence [66, 67] and other advanced
features.

Verifpal is also fully capable of supporting a more nuanced definition of primitives recently
seen in other symbolic verifiers — for example, recent, more precise models for signature
schemes [8] in Tamarin can be fully integrated into Verifpal’s design. We also plan to add support
for more primitives as these are suggested by the Verifpal user community. We believe that
Verifpal’s verification framework gives it full jurisdiction over maturing its language and feature
set, such that it can grow to satisfy the fundamental verification needs of protocol developers
without having the barrier-to-entry present in tools such as ProVerif and Tamarin.

Verifpal is currently available as free and open source software for Windows, Linux and
macOS, along with a user manual that goes more in-depth into the Verifpal language and analysis
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methodology, at https://verifpal.com.
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〈model〉 ::= 〈attacker〉 〈principal〉 (〈principal〉 | 〈message〉 | 〈phase〉)+ 〈queries〉

〈attacker〉 ::= ‘attacker [’ (‘active’ | ‘passive’) ‘]’

〈principal〉 ::= ‘principal’ 〈string〉 ‘[’ (〈knows〉 | 〈generates〉 | 〈leaks〉 | 〈assignment〉)+ ‘]’

〈knows〉 ::= ‘knows ’ (‘private’ | ‘public’ | ‘password’) 〈constant〉 (‘,’ 〈constant〉)*

〈generates〉 ::= ‘generates ’ 〈constant〉 (‘,’ 〈constant〉)*

〈leaks〉 ::= ‘leaks ’ 〈constant〉 (‘,’ 〈constant〉)*

〈assignment〉 ::= 〈constant〉 (‘,’ 〈constant〉)* ‘ = ’ (〈primitive〉 | 〈equation〉)

〈message〉 ::= 〈string〉 ‘ → ’ 〈string〉 ‘: ’ (〈constant〉 | 〈guardedConstant〉) (‘,’ (〈constant〉 | 〈guardedConstant〉))*

〈phase〉 ::= ‘phase[’ 〈number〉 ‘]’

〈queries〉 ::= ‘queries[’ (〈confidentialityQuery〉 | 〈authenticationQuery〉 | 〈freshnessQuery〉 | 〈unlinkabilityQuery〉)* ‘]’
[〈queryOptions〉]

〈confidentialityQuery〉 ::= ‘confidentiality? ’ 〈constant〉

〈authenticationQuery〉 ::= ‘authentication? ’ 〈string〉 ‘ → ’ 〈string〉 ‘: ’ 〈constant〉

〈freshnessQuery〉 ::= ‘freshness? ’ 〈constant〉

〈unlinkabilityQuery〉 ::= ‘unlinkability? ’ 〈constant〉 ‘,’ 〈constant〉 (‘,’ 〈constant〉)*

〈queryOptions〉 ::= ‘[’ 〈queryOption〉* ‘]’

〈queryOption〉 ::= ‘precondition’ ‘[’ 〈message〉 ‘]’

〈constant〉 ::= 〈string〉

〈guardedConstant〉 ::= ‘[’ 〈constant〉 ‘]’

〈primitive〉 ::= 〈primitiveName〉 ‘(’ (〈constant〉 | 〈primitive〉 | 〈equation〉) (‘,’ (〈constant〉 | 〈primitive〉 | 〈equation〉))* ‘)’ [‘?’]

〈equation〉 ::= 〈constant〉 ‘^’ 〈constant〉

〈primitiveName〉 ::= ‘RINGSIGN’ | ‘RINGSIGNVERIF’ | ‘PW_HASH’ | ‘HASH’ | ‘HKDF’ | ‘AEAD_ENC’ | ‘AEAD_DEC’ | ‘ENC’ | ‘DEC’ | ‘MAC’ |
‘ASSERT’ | ‘CONCAT’ | ‘SPLIT’ | ‘SIGN’ | ‘SIGNVERIF’ | ‘PKE_ENC’ | ‘PKE_DEC’ | ‘SHAMIR_SPLIT’ | ‘SHAMIR_JOIN’

Figure 5: Verifpal language syntax.
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