
Ci-Lock: Cipher Induced Logic Locking Resistant
Against SAT Attacks

Akashdeep Saha · Sayandeep Saha · Debdeep
Mukhopadhyay · Bhargab B Bhattacharya

Abstract Protection of intellectual property (IP) cores is one of the most
practical security concern for modern integrated circuit (IC) industry. Al-
beit being well-studied from a practical perspective, the problem of safe-
guarding gate-level netlists from IP-theft is still an open issue. State-of-the-
art netlist protection schemes, popularly known as logic locking, are mostly
ad-hoc and their security claims are based on experimental evidences and
the power of heuristics used for security evaluation. Observing this fact, in
this paper we propose a novel logic locking approach, for which the security
claims are based on the hardness of well-studied cryptographic primitives.
More precisely, for the first time we show that the mapping realized by a
circuit netlist (or at least a part of it) can be hidden inside a block cipher
by setting a proper secret key. Moreover, this hiding scheme can be real-
ized in a systematic manner with fairly simple heuristics. We claim that ex-
tracting the actual mapping is equivalent to a key recovery attack on the ci-
pher, which is believed to be hard for standard block ciphers. The proposed
scheme also attains SAT attack resistance directly from the block ciphers
which are known to be SAT-hard, in general. Experimental evaluation on
ISCAS-85 benchmarks establishes that even for small circuits like C17 (hav-
ing 6 gates), the proposed approach can successfully throttle SAT-attacks.
Further, we argue that the hiding a circuit inside a block cipher is interest-
ing by its own from a theoretical perspective, and may have several useful
applications in the domain of security.

A. Saha, S. Saha, D. Mukhopadhyay, B. B. Bhattacharya
Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur
E-mail: {akashdeepsaha95, sayandeep.iitkgp, debdeep.mukhopadhyay, bhar-
gab.bhatta}@gmail.com

2 A. Saha et al.

1 Introduction

One of the major threats to modern integrated circuit (IC) industry comes
from the risk of intellectual property (IP) theft and illegal overproduction.
Modern IC manufacturing chain is global and involves several untrusted or
partially trusted parties. It is fairly difficult (if not impossible) to control
malicious activities within such diverse and complex production network un-
less some standard security measures are adopted. However, conventional
cryptographic primitives and protocols are not directly applicable in the
context of IC-supply chain, mainly due to the fact that one cannot simply
”encode” a circuit netlist without hindering its actual functionality. This
inherent challenge in hardware IP protection has given rise to an entirely
new class of security measures popularly known as logic locking. Although
logic locking bears some similarity with the extensively studied concept of
obfuscation, their connection has never been established formally, and the
progress of these two happened in a rather independent manner.

Several alternative suggestions for logic locking have been proposed till date.
The core concept behind most of these schemes is to judiciously insert some
extra key gates inside the actual circuit netlist, so that original mapping can
only be realized if the correct key is provided. The adversary is supposed
to obtain this locked netlist without the key. Moreover, she may also have
a black-box access to an activated IC implementing the same mapping as
the target netlist. The adversary is considered successful if she can some-
how extract or realize the actual mapping from the locked netlist. Extract-
ing the key used for locking is the most straightforward approach for doing
so. Initial logic locking schemes suggest that the key gates should be inserted
either randomly, or at certain specific locations for which the output cor-
ruption would be the maximum, upon the application of a wrong key. How-
ever, most of these schemes were eventually broken with the introduction of
so-called SAT-attack, which intelligently prunes the key space of a locked
netlist by exploiting the structural features of the circuit. Till date, SAT at-
tack remains the most standard adversarial technique against logic locking
schemes targeting key recovery. However, there exist relatively trivial attack
strategies like removal of locking circuitry and use of bypass circuits for mit-
igating the output corruption due to wrong key guesses. There also exists
Side-Channel Analysis (SCA) assisted techniques for key recovery. However,
SCA against logic locking is a relatively less exported area and few contribu-
tions can be found in literature.

Recent proposals in logic locking describe several alternative strategies for
throttling SAT (and other) attacks. The most notable among them are based
on one simple observation that the number of calls to the SAT solver in a
SAT attack becomes exponential, if corresponding to each wrong key there
exists exactly one input pattern resulting in a wrong output. For the rest
of inputs the output will be correct even with the wrong key. Albeit being
simple, one of the major complains against these schemes is their low out-
put corruptibility. Further, the extra logic incorporated for implementing

Ci-Lock: Cipher Induced Logic Locking Resistant Against SAT Attacks 3

the locking scheme is often remains distinguishable and removable. Further,
in [10] it was shown that such schemes are inherently susceptible to the ad-
dition of a bypass circuit for correcting the only wrong output corresponding
to a wrong key. In such attacks the netlist can be unlocked even with an ar-
bitrary wrong key. Although some of the recent schemes like [18] claim to
provide security against such attacks, in most of the cases the output cor-
ruptibility remains low which is not desirable from a security perspective.

It has been observed that low output corruptibility is an essential criteria
to achieve an exponential blowup in the number of SAT solver calls in SAT-
attack. Another alternative strategy for throttling SAT-attack is to make
each SAT call sufficiently hard and time consuming for the SAT solver. One
great advantage of this alternative approach is that the relation between
output corruptibility and attack efficiency does not become a shortcoming
anymore. In other words, such an approach is able to provide sufficiently
high output corruptibility while still providing resilience against SAT-attacks.
Surprisingly, this direction for throttling SAT attack is almost unexplored.
One potential example for such is scheme is [3], where it was shown that ad-
dition of SAT-hard sub-circuits for logic locking makes each iteration (i.e.,
SAT call) of SAT-attack prohibitively difficult.

Our Contributions: The present proposal is somewhat motivated by the
above mentioned strategy for throttling SAT-attacks. However, instead of
embedding ad-hoc SAT-hard sub-blocks inside the circuit, we take an en-
tirely different strategy. The main observation is that a given block cipher
structure is able to hide any arbitrary combinational circuit (with some rea-
sonable bounds in circuit size). Here, the hiding is achieved as follows: the
original mapping realized by the combinational circuit is activated only if the
correct key is provided to the block cipher. For all other cases, the block ci-
pher realizes a key dependent pseudo-random mapping with roughly 50% out-
put corruptibility. We note that hiding a circuit within a block cipher is an
entirely new idea by itself, and may found usage in several other contexts.
Some of the fascinating advantages from a logic locking perspective can be
listed as follows:

– Block ciphers are fairly well-explored structures from security point of
view. Using block cipher for logic locking inherently adopts many of the
well-established security claims, and hence provides a higher confidence
compared to the ad-hoc schemes proposed till date.

– The hiding operation happens without any significant structural modi-
fication of the original block cipher circuit. In some sense, the hiding is
similar to the placement and routing of a circuit on an FPGA-like net-
work. In essence, no trace of the actual netlist remains in the locked cir-
cuit, which significantly reduces the chances of trivial structural attacks
like removal attack [14] or sensitivity analysis attack [14], [5], [6].

– Block ciphers are well-known to be SAT-hard. Hiding within block ci-
phers thus achieves SAT-attack resilience by default.

4 A. Saha et al.

– The heuristics for embedding a circuit within a block cipher us fairly
simple and efficient. Moreover, it can be proved that any arbitrary com-
binational circuit can be embedded in a given block cipher structure and
the number of iterative cipher rounds required is polynomial with the gate
count of the embedded circuit.

In this initial draft of the proposal, we only provide some proof-of-concept
examples of the proposed approach. More specifically, we show that how
small circuits like C17 from ISCAS-85 benchmark suite can be embedded
on a lightweight block cipher called PRESENT. SAT-attack results on the
locked circuit is also discussed which clearly establishes that the proposed
approach is highly promising. The rest of the report is organized as follows.
In the next section (Sec. 2), we provide a high level overview of the exist-
ing schemes and attacks. The fundamental building blocks for achieving the
cipher embedding of a circuit are presented in Sec. 3. Proof-of-concept eval-
uations on PRESENT and C17 will be provided in Sec. 4 with experimental
evidences for SAT-attack resilience. We conclude in Sec. 5.

2 Preliminary

2.1 Logic Locking: The Concept

Logic locking is a technique to hide the functionality of an IC. For an IC to
function as desired, correct key is required else the IC behaves anomalously.
Early logic locking methods [7] achieved its purpose by inserting key-gates
at random position in the circuit. Later Yasin et al. [17] proposed to insert
key gates (XOR/XNOR) into cautiously chosen locations such that various
shortcomings of randomly inserting key-gates are overcome. The authors
have also proposed metric for inserting key gates into the circuit with com-
plex interference among them so that the attackers’ effort maximizes in ex-
tracting the key from the circuit. They propose to insert key gates in such
a way that they form cliques in the circuit graph representation. They aim
to maximize the size of these cliques. As these cliques of key-gates require
brute force to solve for the key.

After the powerful SAT-based attack was proposed, a new genre of logic
locking schemes were developed which aimed to mitigate the SAT attack.
They mainly achieved their purpose by increasing the number of SAT iter-
ations or by increasing the time required for each iteration of SAT attack.
These techniques are briefly discussed in section 2.3.

2.2 The SAT Attack

The SAT attack [9] works by iteratively eliminating the equivalence class of
keys which produce the wrong output value for at-least one input pattern

Ci-Lock: Cipher Induced Logic Locking Resistant Against SAT Attacks 5

until the correct key is left behind. It assumes that the attacker has input-
output access to an operational chip (as oracle) obtained from the market
and the obfuscated circuit netlist. The attack flow is represented in Fig. 1.

Fig. 1 The SAT attack flow.

The attack begins with the CNF C(X,K,Y) representing the obfuscated cir-
cuit where X is the input, K is key and output Y . The attack works by iter-
atively finding the assignment to the CNF clause C(X,K1, Y1) ∧ C(X,K2, Y2)
∧ (Y1 6=Y2) until it is not satisfiable. Input Xi is called a discriminating in-
put pattern iff for a particular input (Xi) two different keys (K1 and K2)
produces two different outputs (Y1 and Y2), of which either one is correct
or both are incorrect. The correctness of an output for a particular input
and key combinations is verified using the oracle (an activated chip procured
from the market). The clause C(Xi,K1, Yi) ∧ C(Xi,K2, Yi) is appended to
the existing CNF clause and fed back to the SAT solver.
When the CNF becomes unsatisfiable, it signifies that all the wrong key
classes has been eliminated. Now the SAT solver finds the solution which
satisfies the current constraints of the CNF and finds the correct key.

2.3 Related Works on SAT Attack Resiliency

With the advent of SAT based attacks on logic locking, the focus has been
shifted towards developing countermeasures to mitigate SAT attack. Tech-
niques like SARLock [11], Anti-SAT [15], CamoPerturb [13] etc., have been
proposed to mitigate SAT attacks. The main crux of these attack, is to in-
crease the number of iterations required by the SAT attack in extracting the
correct key so that it becomes exponential. In SARLock each distinguishing

6 A. Saha et al.

input pattern (DIP) can eliminate a single wrong key. This is achieved by
inverting the output for a single input pattern corresponding to each wrong
key. It consists of a couple of blocks namely a mask block and a compara-
tor block and a XOR gate. The protection circuitry is integrated into the
original circuit to make it SAT resilient as the number of iteration required
becomes exponential. Similarly, Anti-SAT consists of two complimentary
blocks connected to an AND gate. The blocks share the same input but have
different key values. When the correct key is applied, the blocks produce
complementary outputs for all inputs producing 0 as the AND gate output
else it produces 1 for a particular input pattern, resulting in incorrect out-
put. Stripped-functionality logic locking (SFLL), proposed in [18], in SFLL-
HDh the circuit to be protected is stripped of its original functionality for a
certain number of inputs. Inputs having Hamming Distance h with the key
are protected. SFLL-FLEX protects user specified input patterns. In this
scheme, the protected input patterns act as secret keys which can be later
used to get back the original functionality of the circuit. However, SFLL-
HDh is vulnerable to functional reverse engineering attack [8]. This attack
can successfully identify the perturb and the restore unit of SFLL-HDh and
recover the original circuitry. Full-lock [3] are logic locking schemes that pre-
vent SAT attack in a different manner. Instead of increasing the number of
iterations, it increases the time required for each iteration of the SAT solver.
Previously Yasin et al. proposed to insert AES cipher into the circuit [17] to
be protected to complicate the circuit and make it SAT resistant.

However several above mentioned schemes are vulnerable to certain kinds
of attacks like the removal attack [14]. As the original circuitry is kept un-
touched in SARLock after appending the protection circuitry, the attacker
can peel-off the protection circuitry (XOR gate, mask and comparator block),
and retrieve the original circuit. Anti-SAT is vulnerable to signal probabil-
ity skew (SPS) attack [16]: Given a netlist locked by Anti-SAT, the AND
gate can be easily identified by calculating the Absolute Difference of prob-
ability Skew (ADS) of the inputs for all gates. The AND gate of Anti-SAT
block exhibits the highest ADS value as it has opposite skewed inputs. So
the Anti-SAT block can be isolated from this AND gate by replacing the
AND gate output to either 0 or 1 in the de-obfuscated netlist. To mitigate
removal attack, the original circuit design in SARLock is slightly modified
to produce TTLock [12]. This is done by flipping the output for a single in-
put pattern (called the protected input pattern) with respect to the original
circuit. So even if the XOR gate and the other block are isolated with the
application of the removal attack, the attacker is left with the modified cir-
cuit. SFLL-HD0 is functionally equivalent to TTLocks as it protects a single
input pattern.

In addition SARLock and Anti-SAT are vulnerable to Bypass attack [10].
This attack works by finding the DIP that produces wrong output for the
wrong key using SAT attack. Then a bypass circuit is added which flips the
output for this DIP.

Ci-Lock: Cipher Induced Logic Locking Resistant Against SAT Attacks 7

3 Ci-Lock: Cipher Based logic locking

3.1 Motivation

Various logic locking schemes that can mitigate SAT based attacks or more
correctly stated reduce SAT attack to simple brute force attack, rely on in-
creasing the number of SAT iterations. As already stated, the number of
DIPs required to find the correct key is used as a metric for evaluating the
logic locking technique against SAT attack.

In this way, SARLock is successful in increasing the number of DIPs re-
quired for finding the correct key to exponential order as each DIP elim-
inates only one possible wrong key combination. The problem with this
scheme is that the error rate (output corruptibility) is exponentially low
even though their key values are wrong there is a chance of getting the cor-
rect output for some input pattern.

Another approach of SAT attack mitigation is to increase the time required
for each iteration of the SAT attack. This is achieved by forming SAT-hard
instances. SAT hardness of formula is defined by the metric called variable
per clause ratio. [4] investigates the SAT hardness of formulae and it con-
cludes as follows - If a formula has this ratio less than 3, then it is said to be
under-constrained. An under-constrained formula has many assignments and
hence quickly solved by a SAT solver whereas if this ratio is above 6 for a
formula, then the formula is said to be over-constrained. An over-constrained
formula has fewer assignments and more contradictions, hence they are also
quickly solved by SAT solvers.

But formulae with variable per clause ratio lying in the range 3 to 6 are
found to be SAT-hard instances. SAT-hard instances have very few assign-
ments and the SAT solver takes significant time for verifying such assign-
ments and to solve such formulae. Logic locking using SAT-hard instances
is proposed in [3], where SAT-hard instances are created using fully Pro-
grammable Logic and Routing blocks (PLR) that replace parts of the circuit
to be obfuscated. These PLRs are non-blocking and SAT-hard instances by
construction and they are constructed using a Logarithmic-based Network
which is key-Configurable (CLN) and they are inserted into the circuit. The
CLNs are constructed using MUXes.

As mentioned, CLN provides the required SAT hardness but to prevent
other kinds of attacks (like removal attack), logic gates before the CLN are
replaced using LUTs. However the CLNs suffers from few shortcomings, they
can be expressed as an affine transformation function of input X (the affine
form y = AX + B) and can be successfully de-obfuscated. Further we see
that gates are replaced with LUTs (non volatile memory) which is not com-
monly used in standard ASIC design flow and are relatively slow.

Almost all logic locking schemes proposed till date are key-based. The secu-
rity they provide is solely dependent on the key. But to secure real world
data, we trust cryptographic constructs like block ciphers. Block ciphers
are tested by cryptographers across the globe and are known for their rich

8 A. Saha et al.

theory and strong mathematical background. They are by default secure
against SAT based attacks, so we aim to utilize their properties and propose
a logic locking scheme which is immune to known SAT based attacks.

In such a situation, recovering the key of the locked circuit for the purpose
of de-obfuscation will be equivalent to the key extraction of a standard block
cipher. The output corruption for the wrong key is also high for block ci-
phers. Even minor variations can create a significant number of output bits
to change. So it is practically infeasible for the adversary to extract the key
by sensitizing the key values to the output.

3.2 Can a Cipher Hide a Circuit?

Block ciphers C are pseudo-random permutation. It can be represented as C:
P × K → E where K = {0, 1}k is the key space | K | = k, P = {0, 1}n is the
plaintext and E = {0, 1}n is the encrypted text both of size n. It is fairly dif-
ficult to tune C to realize the desired mapping as required. The input-output
mappings realized by C is unique based on a K and given a significant num-
ber of input-output pairs, it is not possible to guess the key that realizes the
desired mapping. In other words, there is no correlation between P, E and
K. C is secure against various attacks mentioned previously and also known
to have high output corruptibility. We need to explore the possibility of hid-
ing a circuit in C to utilize its security firmness.

A combinational circuit is a circuit, where the output is a pure function
of the present input only. It produces specified output for each input pat-
tern. The mapping realized by a combinational circuit can be represented
as F : I −→ O, where I = {0, 1}x and O = {0, 1}y with x inputs and y
outputs. But the question is how can we realize F using C partially. A sim-
ple straight forward approach to do the same would be to have a unique
key for every I in F . But this is impractical as in this case the key would
vary with each input pattern and becomes dependent on I. For |I| = x, we
shall have |key| = 2x. But for the purpose of logic locking, we need to have a
unique key m ∈ K so that C can realize F . For the correct key (mc) we have
Cmc
≡ F and ∀mi 6= mc we have Cmi

not equivalent to F .

A circuit consists of logic gates and wires as its fundamental components. It
does not involve any memory elements. If we can create these fundamental
components using the existing components of C then we can embed a cir-
cuit into C. We explored this idea and found a novel approach of construct-
ing gates and switch boxes using the Sbox of C (namely PRESENT [2] and
GIFT [1]). The methodology for using the Sbox of PRESENT cipher as vari-
ous logic gates and routing switch boxes is elaborated in detail in the follow-
ing subsections.

Ci-Lock: Cipher Induced Logic Locking Resistant Against SAT Attacks 9

3.3 Sbox as Logic Gates

Sboxes are the basic component of C which are non-linear and performs sub-
stitution. It takes n bit input and transforms them into m bit output (where
n is not necessarily equal to m). Generally, Sboxes are implemented using
look-up table.
Our main idea is to use the Sboxes as various logic gates by fixing some of
the input bits of the Sboxes. Let us consider the PRESENT cipher. PRESENT
cipher Sboxes are 4× 4 mappings. For example, let us see how a Sbox can be
configured as logic NAND. Fig. 2 shows a PRESENT cipher Sbox (4 × 4)
configured as a NAND gate. In order to make a Sbox behave as a NAND
gate, we need to set the last two input bits of the Sbox (2nd and 3rd bit) as
logic 1 and connect the inputs for NAND gate (A and B) to the first two in-
put bits of the Sbox (0th and 1st bit). With the above configuration, we ob-
tain the NAND output of signal A and B at the 1st output bit of the Sbox
(0th bit).

[a] [b]

Fig. 2 Gates using Sbox (a) Nand gate (b) Nor gate, where A and B are gate inputs and
O/P is the gate output.

Similarly logic NOR can be constructed from Sbox by setting the 1st and
3rd input bit (0th and 2nd bit) of the Sbox as logic 1 and connecting the
inputs for NOR gate (A and B) to 2nd and 4th bit (1st and 3rd bit) of the
Sbox input and the output of NOR gate is obtained at the 2nd output bit.
In this way, other 2-input logic gates like AND, OR, XOR can be constructed
using the PRESENT Sbox by setting two of the four input bits with 0 or 1
(as required) and connecting the inputs for the gate to the remaining two
Sbox inputs. The output is obtained at one of the four output bits of the
Sbox (this output bit remains fixed for a particular gate formed by that
Sbox).
One input inverter gate can also be constructed using the above-mentioned
method with a difference that the for a Sbox to behave as inverter gate, we
need to fix three out of the four input bits with logic 0 or 1 (as required)
and the inverted output of the input signal is obtained at one of the four
output bit of the Sbox (which is fixed).
We know that NAND and NOR are universal logic gates. All other logic
gates can be constructed using these two gates individually. Since a PRESENT
cipher Sbox can be designed to function as NAND and NOR gates, proves

10 A. Saha et al.

Sbox input bits Sbox output bits
Gate

0 1 2 3 0 1 2 3
A 0 B 1 O/P
A 1 B 1 O/P O/P
1 A B 0 O/P
A B 0 0 O/P

XOR

A B 1 0 O/P
0 1 A B O/P

AND
A 1 0 B O/P
1 0 A B O/P

OR
A 0 1 B O/P
1 A 1 B O/P

NOR
A 1 0 B O/P
A B 1 1 O/P

NAND
0 0 A B O/P
0 A 1 0 O/P

NOT
A 0 0 0 O/P

Table 1 Present Cipher Sbox configurations for various logic gates. ’A’ and ’B’ are the
gate inputs and O/P is the gate output.

the universal nature of the Sbox as well. A Sbox or a cascaded set of Sboxes
can be made to function as any required logic gates.

We have also observed that various logic gates (NAND, NOR, OR, AND,
XOR, NOT) can be constructed using (4 × 4) GIFT cipher Sbox. Table 1
summarizes the configuration of various Sbox bits for the purpose of con-
structing different gates from PRESENT cipher Sbox. ’A’ and ’B’ are the
input signals to the gate and ’O/P’ is the gate output. We obtain the out-
put at a specific Sbox output bit (one out of four) and the remaining three
bits signals are redundant. There are many possibilities of single input not
gate (only two mentioned in the table) that can be constructed using this
method.

3.4 Routing the Signals

We have seen how the PRESENT cipher Sbox can be configured and used
as various logic gates. We aim to embed a circuit into the PRESENT cipher
without altering its original structure. PRESENT cipher is a Substitution-
Permutation network having a linear permutation layer. Every layer of this
cipher has 16 Sboxes. The output from these Sboxes are connected to the
input of 16 Sboxes in next layer based on the fixed permutation network.

An actual circuit can have multiple fan-outs and situations like output of
gates feeding to other gates which are separated by multiple topological lev-
els. Further, we see in the above section that to use a Sbox as gate we need
to apply input signal to specific input bits of the Sboxes. All these situations
are needed to be handled and for this purpose, we propose to use Sbox as
switches for routing a signal from one PRESENT layer to another and also
to act as dummy Sbox to supply multiple fan-out as required in the circuit.

Ci-Lock: Cipher Induced Logic Locking Resistant Against SAT Attacks 11

These Sboxes behaving as dummies are required to keep the permutation
layer and hence the structure of the cipher intact.
The Fig. 3 shows a few cases as how a Sbox can be configured as a dummy
to simply pass signals from one layer to another and to handle multiple fan-
out. The first and the second Sbox in Fig. 3 shows how the signal ’A’ is dis-
tributed among three out of the four output Sbox bits whereas the third
Sbox shows that the signal is simply passed through the Sbox and the fouth
Sbox shows the signal getting distributed among two output bits. Sboxes,
where the signal gets distributed into two or three bits can be used to han-
dle fan-outs in the circuit and Sboxes where no such distribution occurs and
the signal is simply passed to one of its output bit can be used as a routing
wire.

Fig. 3 Sbox configured as switch boxes for routing and handling multiple fan-out
,

Fig. 4 C17 circuit of ISCAS-85 benchmark.

3.5 Embedding a Circuit into the PRESENT Cipher

So far we have seen how a Sbox can be configured into logic gates and rout-
ing wires by setting the input bits as required. Now let us see how a simple
circuit can be embedded into C without disturbing the structure of C. As an
example, we consider C17 circuit of ISCAS-85 benchmark. It is a 5-input
2-output circuit consisting of 6 two-input NAND gates (ref. Fig. 4). Each
input and output is of one bit.
Fig. 5 shows C17 circuit embedded into the PRESENT cipher. In this case,
we need 7 layers of PRESENT to embed the entire C17 circuit.The initial

12 A. Saha et al.

Fig. 5 C17 circuit embedded in Present cipher. The blue sboxes function as nand gate
and the remaining sboxes are simply used for routing purpose. MUXes are placed for each
bit for the purpose of setting the bits or passing the signal from the above layer (as re-
quired).

layer has two NAND gates (namely Sbox0 and Sbox9) and the second layer
is a routing layer. The C17 circuit has a couple of multiple fan-outs and they
are handled in the second layer by Sbox0 and in the fifth layer by Sbox0.
The figure also demonstrates how a signal is passed from one topological

Ci-Lock: Cipher Induced Logic Locking Resistant Against SAT Attacks 13

layer to another as required by the circuit. Finally the output is obtained at
the last layer from the Sboxes.

The Sboxes in order to perform the desired function (gate or routing pur-
pose) for embedding a circuit needs to be configured correctly. It is evident
that the functionality of a Sbox depends on input bits and their correspond-
ing set value (0 or 1). We see that in every layer of the figure, the Sbox in-
puts are fixed but this is not possible in a cipher directly. The inputs to vari-
ous bits of an Sbox in a layer is based on the Sbox output in the layer above
that is permuted to its input. But we need to fix the input bits of the in-
termediate Sbox layer in order to achieve the desired circuit mapping. We
achieve this by inserting MUXes. PRESENT is a 64 bit block cipher and in
each layer we place a MUX for each bit and pass the signal from the layer
above through this MUX. These MUXes are key controlled. As a result of
which we can either allow the signal from the above level to pass or set a
desired input bit (0/1).

Fig. 6 MUX inserted for each bit in between each layer to set the input bits (if required).

For example in Fig. 6, K1 is the select line for the MUX and K2 is the value
that is to be set into the next layer Sbox input. K1 can assume a value 0
or 1 based on which either ’A’ is passed or K2 is passed through the MUX.
Similarly K2 can also assume a value 0 or 1, which is to be set in the next
layer. Both K1 and K2 can act as keys. Now if the Sbox in the upper layer is
a gate Sbox then we need to pass signal ’A’ to the next layer in that case we
need to set K1 as 0 and K2 is in don’t care condition. But if we need to set
logic 0 to the input bit of the Sbox in the lower layer then we set K1 as 1
and K2 as 0. In this way we have control of each and every input bit of the
Sboxes in the subsequent layer. The keys K1 and K2 are of length 64 bits
each as there are 64 MUXes in each layer (one per bit) this adds complexity

14 A. Saha et al.

to our proposed technique. In this way we can easily set a Sbox input bit or
pass on a signal from one layer to any subsequent layer below.

Fig. 7 A full adder circuit. ’A’, ’B’, ’C’ are the inputs. ’Sum’ and ’Car’ are the sum and
carry output of the circuit respectively.

Likewise, we have successfully embedded the full adder circuit by using this
proposed technique. A full adder is a simple circuit which performs addition.
It adds three one-bit binary numbers and outputs - one sum bit another
carry bit. It is widely used in ALU and DSP blocks. Fig. 7 shows the gate
level representation of the full adder. It took five layers of the PRESENT ci-
pher to embed the full adder circuit using the proposed methodology. The
obfuscated structure takes input 64 bits out of which 6 bits are used as the
input bits of the full adder and the rest of the bits are randomly chosen.
The output of the 5 layer PRESENT cipher is also 64 bits of which only 2
specific bits gives the desired output of the adder circuit - the sum and the
carry.

Ci-Lock: Cipher Induced Logic Locking Resistant Against SAT Attacks 15

Algorithm 1 Cone nodes extraction algorithm
Input: Circuit Netlist(CN)
Output:Cone with Node of maximum assigned colours (N)
G = parser(CN) // DAG representation of CN

Initialization: Output Nodes in G(NS) = [1 · · ·N]
Assign: unique colours to all elements in NS

Define: Queue Q, Cone nodes[], ColorsDict[N] // N ← # of nodes in G
for each i in NS do

Enqueue(Q, i)
while (!Empty(Q)) do

tmp ← Dequeue(Q)
for each j in parents[tmp] do

ColorsDict[j] ← colour[i]
Enqueue(Q, j)

end

end

end
N = findMaxColor(ColorsDict[N]) // Returns the node with maximum colour

if N ≥ 2 then
for each i in N do

if fan in(i) ≤ 3 then
Cone nodes ← Cone nodes ∪ BFS(i) upto 3 levels upward
return Cone nodes
break

end

end

end

3.6 Automating the Embedding

So far we have seen how a circuit can be successfully embedded into the
PRESENT cipher. But can all circuits be embedded into the cipher? We see
that the width of the cipher or the number of Sboxes in each layer is fixed
for C. So there is definitely a constraint on the type of circuit that can be
obfuscated using this proposed technique. For simplicity we assume that we
will extract a part of a circuit (a cone of reasonable depth from the circuit),
we shall embed this cone into C using the above methodology and hence this
part of the circuit remains obfuscated.
Initially we take a circuit netlist and represent it graphically. Fig. 8(a) shows
the DAG representation of the circuit C17. This helps us to apply various
graph algorithms in the circuit required for processing. The DAG represen-
tation ensures that the nodes in the circuit in already levelized. In order to
extract a cone from the circuit graph, we run BFS from desired source node.
BFS helps to extract a cone as shown in Fig. 8(b). The parent nodes in this
cone which have 2 children are the NAND gates and the nodes (especially at
the bottom level) which does not have any children are the input signal and
they does not have any logic gate associated with them.

Nodes with highest influence (N) : Since we propose to obfuscate a part
of a circuit, we need to find the most influential part of the circuit and ob-

16 A. Saha et al.

[a]

N1

N10

N22

N3

N11

N16 N19

N6

N2

N23

N7

[b]

N10

N1

N3

N11

N6

N16

N2

N22

Fig. 8 (a) Graphical representation of C17 circuit (b) Cone extracted from the C17 cir-
cuit graph using BFS with N22 as the source node.

fuscate it. N can be defined as a set of nodes which causes the maximum
output corruptibility in the circuit to be obfuscated. Thus ∀ni ∈ N , out-
put corruptibility of ni is maximum. This asserts that the input signals
to almost all the final output nodes in the circuit passes through ni. N is
extracted using Algo. 1. The algorithm uses a simple graph colouring ap-
proach to extract the nodes from the graphical representation of the netlist.
These nodes, when obfuscated using the proposed approach will achieve
the maximum possible output corruptibility. According to Algo. 1, we as-
sociate a unique colour to every output node. Now we find out the depen-
dent nodes for each output node and assign the colour (corresponding to
that output node) to all the nodes on which that output node depends. This
process continues for all the output nodes and when all the nodes in the cir-
cuit graph has been assigned one or more colours based on its influence on
the number of output nodes, we obtain the nodes with maximum colour as-
signment (N). In this way we can find nodes that has the highest output
corruptibility and hence cones containing one or more such nodes (provided
it is a 2 or 3 input gate) are obfuscated to secure the circuit.

Now we have to embed the extracted cone into C. We propose to do the
same in a bottom-up manner. For example, for embedding the cone in Fig. 8(b).
We will initially choose a Sbox randomly and make it as node N22 (the root
of the cone). We know that N22 is a NAND gate so we need to supply the
signals from N10 and N16 to the first two input bits of the Sbox chosen as
N22 (since a Sbox forms a NAND gate when the first two bits are input and
the other two bits are set as logic 1). It is evident that N10 and N16 are also
NAND gates and they are in the same topological level. So we have to route
the gate Sbox outputs of N10 and N16 to the input of gate Sbox N22. In or-
der to do this, we often come across a problem that a Sbox output bit does
not reach a desired Sbox input bit due to the presence of the permutation
layer of C. As we shall not alter the existing permutation layer, we deal with
this issue by placing routing Sboxes in subsequent layer so that the required
signal is ultimately routed to the desired bit position.

Ci-Lock: Cipher Induced Logic Locking Resistant Against SAT Attacks 17

Fig. 9 If a particular Sbox is not available in a layer then we add a routing Sbox (Sbox
2)

The routing Sboxes also deals with the issue of non-availability of a partic-
ular Sbox in a layer. For example in Fig. 9 if a situation arises where both
Sbox 12 and Sbox 4 are needed to be supplied at the first two of its input
bits. It is not possible to simultaneously supply signals to first two bits of
both the Sboxes as every layer has a single copy of every Sbox. Sbox 0 and
Sbox 1 is already used to supply Sbox 12 so in such a situation, we place a
routing Sbox (Sbox 2) to pass the signal to Sbox 4 and form the required
gate in subsequent layers of PRESENT.
In this way by placing routing Sboxes based on availability in the layer above
we embed the part of the circuit into C.

4 Experimental Results

In this section we shall see the performance of our proposed obfuscation
technique against SAT attack. We have implemented our scheme on vari-
ous benchmark circuits of ISCAS-85 and also we have encrypted a simple
full adder circuit using this scheme. The experiments are conducted on Intel
Xeon processors running at 2.4GHz with 256 GB of RAM. The circuits were
analyzed and graphically represented using python3 libraries. Netlists were
generated using the DC compiler. The experimental results shows that all
our obfuscated designs were SAT resistant. Table 2 summarizes the results
of SAT attack on various circuits.

5 Conclusion

In this paper we have approached the problem of logic obfuscation in a en-
tirely new dimension. So far logic encryption was achieved and various SAT
based attacks were mitigated by inserting key gates, circuit distorting logic
blocks or by sat hard constructions, into the circuit. But this paper high-
lights how block ciphers can be used to achieve the purpose of logic obfusca-

18 A. Saha et al.

Circuits # Gates #I/Os Cone Details SAT-Resilient

Full Adder 5 3/2 Entire Circuit X
c17 6 5/2 Entire Circuit X
c432 160 36/7 4 nodes X
c499 202 41/32 7 nodes X
c880 383 60/26 5 nodes X
c1908 880 33/25 7 nodes X
c2670 1269 233/140 7 nodes X
c3540 1669 50/22 6 nodes X
c5315 2307 178/123 8 nodes X
c6288 2416 32/32 7 nodes X
c7552 3513 207/108 4 nodes X

Table 2 SAT Resilience on ISCAS-85 benchmark circuits

tion by embedding a part or the whole circuit into it. We have also demon-
strated that our proposed scheme throttles SAT attack on various obfus-
cated circuits. Block ciphers are known to be resistant against SAT attacks
so obfuscating circuits using them prevents SAT and other known forms of
attacks against the logic locked circuits.

References

1. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: Gift: a small
present. In: International Conference on Cryptographic Hardware and Embedded
Systems, pp. 321–345. Springer (2017)

2. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.,
Seurin, Y., Vikkelsoe, C.: Present: An ultra-lightweight block cipher. In: International
workshop on cryptographic hardware and embedded systems, pp. 450–466. Springer
(2007)

3. Kamali, H.M., Azar, K.Z., Homayoun, H., Sasan, A.: Full-lock: Hard distributions of
sat instances for obfuscating circuits using fully configurable logic and routing blocks.
In: Proceedings of the 56th Annual Design Automation Conference 2019, p. 89. ACM
(2019)

4. Mitchell, D., Selman, B., Levesque, H.: Hard and easy distributions of sat problems.
In: AAAI, vol. 92, pp. 459–465 (1992)

5. Rajendran, J., Pino, Y., Sinanoglu, O., Karri, R.: Security analysis of logic obfusca-
tion. In: Proceedings of the 49th Annual Design Automation Conference, pp. 83–89.
ACM (2012)

6. Rajendran, J., Sam, M., Sinanoglu, O., Karri, R.: Security analysis of integrated cir-
cuit camouflaging. In: Proceedings of the 2013 ACM SIGSAC conference on Com-
puter & communications security, pp. 709–720. ACM (2013)

7. Roy, J.A., Koushanfar, F., Markov, I.L.: Epic: Ending piracy of integrated circuits.
In: Proceedings of the conference on Design, automation and test in Europe, pp.
1069–1074. ACM (2008)

8. Sirone, D., Subramanyan, P.: Functional analysis attacks on logic locking (2018)
9. Subramanyan, P., Ray, S., Malik, S.: Evaluating the security of logic encryption algo-

rithms. In: 2015 IEEE International Symposium on Hardware Oriented Security and
Trust (HOST), pp. 137–143. IEEE (2015)

10. Xu, X., Shakya, B., Tehranipoor, M.M., Forte, D.: Novel bypass attack and bdd-
based tradeoff analysis against all known logic locking attacks. In: International Con-
ference on Cryptographic Hardware and Embedded Systems, pp. 189–210. Springer
(2017)

Ci-Lock: Cipher Induced Logic Locking Resistant Against SAT Attacks 19

11. Yasin, M., Mazumdar, B., Rajendran, J., Sinanoglu, O.: Sarlock: Sat attack resistant
logic locking. pp. 236–241 (2016). DOI 10.1109/HST.2016.7495588

12. Yasin, M., Mazumdar, B., Rajendran, J.J., Sinanoglu, O.: Ttlock: Tenacious and
traceless logic locking. In: 2017 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), pp. 166–166. IEEE (2017)

13. Yasin, M., Mazumdar, B., Sinanoglu, O., Rajendran, J.: Camoperturb: Secure ic cam-
ouflaging for minterm protection. In: 2016 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp. 1–8 (2016). DOI 10.1145/2966986.2967012

14. Yasin, M., Mazumdar, B., Sinanoglu, O., Rajendran, J.: Removal attacks on logic
locking and camouflaging techniques. IEEE Transactions on Emerging Topics in Com-
puting (2017)

15. Yasin, M., Mazumdar, B., Sinanoglu, O., Rajendran, J.: Security analysis of anti-sat.
In: 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC), pp.
342–347 (2017). DOI 10.1109/ASPDAC.2017.7858346

16. Yasin, M., Mazumdar, B., Sinanoglu, O., Rajendran, J.: Security analysis of anti-sat.
In: 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC), pp.
342–347. IEEE (2017)

17. Yasin, M., Rajendran, J.J., Sinanoglu, O., Karri, R.: On improving the security of
logic locking. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 35(9), 1411–1424 (2015)

18. Yasin, M., Sengupta, A., Nabeel, M.T., Ashraf, M., Rajendran, J.J., Sinanoglu, O.:
Provably-secure logic locking: From theory to practice. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, CCS ’17, pp.
1601–1618. ACM, New York, NY, USA (2017). DOI 10.1145/3133956.3133985. URL
http://doi.acm.org/10.1145/3133956.3133985

