
ETHDKG: Distributed Key Generation with Ethereum Smart Contracts

Philipp Schindler
SBA Research

Aljosha Judmayer
SBA Research

Nicholas Stifter
SBA Research, TU Wien

Edgar Weippl
SBA Research, TU Wien

Abstract
Distributed key generation (DKG) is a fundamental build-
ing block for a variety of cryptographic schemes and proto-
cols, such as threshold cryptography, multi-party coin tossing
schemes, public randomness beacons and consensus proto-
cols. More recently, the surge in interest for blockchain tech-
nologies, and in particular the quest for developing scalable
protocol designs, has renewed and strengthened the need for
efficient and practical DKG schemes. Surprisingly, given the
broad range of applications and available body of research,
fully functional and readily available DKG protocol imple-
mentations still remain limited. We hereby aim to close this
gap by presenting an open source, fully functional, well docu-
mented, and economically viable DKG implementation1 that
employs Ethereum’s smart contract platform as a communi-
cation layer. The efficiency and practicability of our protocol
is demonstrated through the deployment and successful exe-
cution of a DKG contract in the Ropsten testnet. Given the
current Ethereum block gas limit, it is possible to support up
to 256 participants, while still ensuring that the key genera-
tion process can be verified at smart contract level. Further,
we present a generalization of our underlying DKG protocol
that is suitable for distributed generation of keys for discrete
logarithm based cryptosystems.

1 Introduction

Distributed key generation (DKG) protocols serve as a key
building block for threshold cryptography. The goal of a DKG
scheme is to agree on a common secret/public keypair such
that the secret key is shared among a set of n participants.
Only a subset of t +1≤ n parties can use or reveal the gen-
erated secret key, while t collaborating parties cannot learn
any information about it. In this regard DKG is related to
secret sharing protocols, as first introduced by Shamir [39]

1 The source code, documentation, and logs of a successful execu-
tion in the Ropsten testnet are publicly available at https://github.com/
PhilippSchindler/ethdkg/.

and Blakley [4]. However, in contrast to secret sharing, DKG
protocols do not rely on a (trusted) dealer which generates,
knows and distributes the secret key, and hence avoid this
single point of failure. Instead, the keypair is generated using
a multi-party computation in a way that no single party learns
the secret that is being shared.

Distributed key generation is a topic that has been studied
and discussed for over two decades [6, 21, 22, 26, 27, 30, 33].
However, the extensive body of literature is currently not
matched by a single clear, succinct, and practical protocol
design template that reflects the state of the art and leverages
on recent technical developments such as distributed ledgers.
Moreover, real-world open source implementations of DKG
protocols are still rare, and often not well documented.

We aim to close this gap by providing and evaluating a
lightweight, scalable, and well-documented protocol design
and open source implementation of a DKG protocol. Our
design is based on the Joint-Feldman DKG protocol [21] and
incorporates the enhancements proposed by Neji et al. [30]
to address biasing attacks [21], without requiring two dis-
tinct secret sharing rounds. Additionally, we describe and
implement a new mechanism that handles disputes during
the protocol execution more efficiently. The resulting pro-
tocol design is described in its generality for any discrete
logarithm based cryptosystem, and we demonstrate that our
protocol improvements enable the verification of the key gen-
eration process within Ethereum, and similar smart contract
platforms, in a cost effective manner. Our evaluation results
show that the total costs incurred by each participant in a
scenario with n = 256 parties vary between 0.67 USD and
2.46 USD, depending on the behavior of the adversary.

Augmenting our DKG protocol with the capabilities pro-
vided by smart contracts enables us to dynamically define the
set of participating entities, incentivize participation, and pe-
nalize adversarial behavior. Further, we are able to ensure that
any security deposits provided by participants following the
protocol rules always remain safe, even if the DKG protocol
itself is executed by a majority of adversarial participants.

1

https://github.com/PhilippSchindler/ethdkg/
https://github.com/PhilippSchindler/ethdkg/

1.1 Structure of this Paper
We continue this paper by describing application scenarios
for our DKG protocol in section 2. Section 3 introduces and
compares related work to our approach. We describe our
system model, including assumptions concerning the network
infrastructure, the capabilities of the adversary as well as the
security properties expected from DKG protocols, in section 4.
Our generalized protocol design for discrete logarithm based
cryptosystems is presented and analysed in sections 5 and
6. Section 7 provides implementation specific details, while
section 8 describes our evaluation results. Finally, we discuss
and conclude the paper in sections 9 and 10.

2 Application Scenarios

We outline several application domains for DKG that have gar-
nered increased interest, in particular as a result of the rising
popularity of cryptocurrencies and blockchain technologies,
and describe how our DKG protocol can prove beneficial in
this context.

Consensus Protocols Recent improvement proposals for
blockchain and other distributed ledger protocols, e.g. ran-
domized Byzantine fault tolerant (BFT) consensus protocols
such as Honeybadger [29], the Dfinity blockchain proto-
col [25] or Calypso [28], are increasingly relying on threshold
cryptography as one of their core building blocks. In these
scenarios, having to rely on a single centralized entity for the
necessary protocol setup would likely contradict the overall
design goals of avoiding single points of trust and failure.
Hence, DKG can provide improved guarantees and our pro-
tocol seems particularly suited for such scenarios, as it can
be executed on the readily available Ethereum platform, pro-
vides flexible means for registration of the participants, and
tolerates faulty or adversarial behavior of any minority of
participants.

Custodian and Escrow Schemes An Ethereum related use
case of our DKG includes multi-signature wallet (contracts) or
exchanges, where the collaboration of multiple stakeholders
is required to legitimize actions, such as performing trans-
actions. Using our approach, the stakeholders can set up a
shared keypair to be used within a threshold signature scheme
such as Boneh-Lynn-Shacham (BLS) [5, 7, 8]. The BLS pub-
lic key is registered within the wallet contract and signature
validation within the smart contract is possible to verify the
authenticity of initiated actions. As signature aggregation
can be performed off-chain, the number of on-chain computa-
tional steps for the corresponding verification procedure does
not depend on the number of involved stakeholders.

Randomness Beacon Our smart contract based DKG pro-
tocol can also be used to bootstrap a variety of interesting

applications on the Ethereum platform itself. A candidate
example is a source of publicly-verifiable, bias-resistant and
unpredictable randomness, or in short, a randomness bea-
con [34]. By levering the security and uniqueness properties
of BLS threshold signatures, the construction of a random-
ness beacon follows naturally. Within the Ethereum platform,
such trustworthy randomness beacons are particularly useful,
as there are currently no built-in mechanisms for deriving
randomness with the aforementioned characteristics. Con-
sequently, Ethereum smart contracts largely rely on less se-
cure sources of randomness (such as the block hash) or even
depend on trusted third parties. Beyond an application in
Ethereum smart contracts, unpredictable bias-resistant public
randomness also plays an important role in a broad range of
fields, including proof-of-stake and sharding protocols, pri-
vacy preserving messaging services, e-voting protocols, as
well as gambling and lottery services [38]. Additionally, con-
sensus protocols such as Cachin et al. [10] and Dfinity [25]
rely on threshold cryptography to build a common coin as a
core component of their protocol designs.

Threshold and Time-Lock Encryption We can also envi-
sion our protocol to be employed for setting up the keypairs
required for threshold public key encryption schemes [17].
In such a scenario, a client could encrypt a message under
the generated master public key such that the decryption of
the message requires the collaboration of a threshold of par-
ticipants from the DKG. Furthermore, utilizing the capabili-
ties of threshold encryption schemes in combination with a
cryptocurrency supporting smart contracts, enables the con-
struction of time-lock encryption protocols [37]. Here, an
incentive structure, and security deposits provided by the
stakeholders during the setup process with the DKG protocol,
ensure economic guarantees for the decryption of messages
at specified points in time.

3 Related Work

The first protocol for DKG was introduced by Pedersen [33] in
1991, and was subsequently built upon within a wide range of
publications in the field of threshold cryptography. A popular
variant is the so called Joint-Feldman DKG protocol, intro-
duced by Gennaro et al. [21] as a simplification of Pedersen’s
work. The core idea of the Pedersen (and the Joint-Feldman)
protocol is that each party executes Feldman’s [19] verifiable
secret sharing (VSS) protocol, acting as a dealer in order to
share a randomly chosen secret among all parties. After a
verification step, ensuring the participants shared their secrets
correctly, the resulting group private key is defined by the sum
of the properly shared secrets. This private key is unknown to
the individual participants, but may be obtained by a collab-
orating group of parties. The corresponding public key can
be computed using the commitments published during the

2

sharing phase with Feldman’s VSS protocol and is the public
result of executing the DKG protocol.

However, as described in great detail by the works of Gen-
naro et al. [21, 22], keys generated using (a wide range of
variants of) the Pedersen protocol, are not guaranteed to be
uniformly distributed over the respective keyspace. An adver-
sary can bias bits of the resulting key by selectively denounc-
ing one or more of the parties it controls. Consequently, the
set of parties which properly shared their secrets, and thus
define the resulting key, is influenced as the denounced parties
are excluded. The critical2 issue in this case is that honest
parties have provided all the information required to compute
the resulting public key before agreement on the set of shares
that are used to create the master key is reached, allowing the
adversary to influence the final outcome.

Gennaro et al. [21] presents mitigation strategies to protect
against these kind of attacks. However, their approach adds
complexity as it requires an additional secret sharing step
using Pedersen VSS protocol [32]. Canetti et al. [12] extend
the solution from Gennaro et al. to cope with adaptive adver-
saries, which may corrupt parties based on prior knowledge
gathered during the protocol execution. More recently, Neji et
al. [30] describe a different countermeasure which we adopt
in this paper, avoiding these drawbacks.

Kate and Goldberg [26] were the first to study DKG in an
asynchronous communication model, whereas previously syn-
chronous message delivery was assumed. In order to support
these weaker assumptions on the communication model, they
require a network of n≥ 3t+2 f +1 participants, out of which
t are controlled by the adversary and thus considered Byzan-
tine and f parties may fail in the crash-stop model. This is in
contrast to works in the style of Gennaro et al. and our pro-
tocol, which require synchrony but can tolerate (n≥ 2t +1)
Byzantine adversaries. In a subsequent extension of their
work [27], Kate et al. provide an implementation, tested with
up to 70 parties distributed over multiple continents. A cru-
cial distinction between Kate and Goldberg’s work and the
approach followed by Gennaro et al. and also this paper, is
that that the former also implement a Byzantine agreement
protocol alongside the DKG, whereas the consensus protocol
is not part of the DKG specification in the latter. We outline
the advantages and drawbacks of both design decisions in our
discussion (see section 9).

To the best of our knowledge, the DKG protocol developed
by the Orbs Network team [31] is the only publicly available
protocol targeting a similar deployment scenario, namely, an
implementation of a DKG protocol using the Ethereum plat-
form. However, the presented prototypical implementation
appears to be incomplete and has not been updated since 5th

August, 2018. A scientific publication outlining the details
of the protocol is also not available at the time of writing.
Furthermore, this approach, in comparison to the works of

2 We refer to the works of Gennaro et al. [22,23] for an in-depth discussion
of the implications of a non-uniform distribution.

Gennaro et al., Kate and Goldberg, and our work, fails to
guarantee liveness under adversarial behavior, as it requires a
protocol restart even if a single adversarial participant sends
an invalid share.

4 System Model

Using our protocol, a set of n participants P = {P1,P2, ...,Pn}
wish to jointly generate a master secret/public keypair of the
form mpk = gmsk for a discrete logarithm based threshold
cryptosystem. We use g and h to denote two independently3

selected generators of the group Gq with prime order q and
assume that computing discrete logarithms in Gq is hard. The
master public key mpk is the (public) output of the protocol.
The corresponding (virtual) secret key msk is shared among
the participants, and may be obtained by pooling the shares
from t +1 collaborating parties. Depending on the use case
scenario, it may not be desirable or even necessary to ever
obtain msk. For instance, by employing BLS threshold signa-
tures [8], a signature verifying under the master public key
mpk can be obtained by aggregating signature shares without
recovering msk first.

4.1 Communication Model
We assume all parties can monitor and broadcast messages
on a shared public and authenticated communication chan-
nel. Further, all participants are in agreement on a common
view and ordering of these broadcast messages. We assume
synchrony in the sense that, any message that is broadcast
by a participant during some protocol phase is received by
all other parties before the next phase starts. In this regard,
our communication model is closely related to the notion of
public bulletin boards [16].

In contrast to Gennaro et al. [21], we do not consider pair-
wise private communication links between parties. Instead,
we assume that each participant Pi ∈ P generates a fresh
secret/public keypair 〈ski, pki〉 of the form pki = gski prior
to the protocol start and knows the public keys of all other
participants. These keys are used to derive keys for a sym-
metric encryption algorithm, which is used to ensure secrecy
of broadcast messages during the sharing phase of the pro-
tocol. Instead of assuming a priori knowledge of the other
parties’ keys, an additional registration phase (see section 7.6)
to exchange public keys may also be used.

Blockchain protocols, which allow inclusion of arbitrary
data, and other BFT state machine replication and distributed
ledger protocols present suitable candidates for such com-
munication channels. In practice, we leverage the Ethereum
blockchain as a public authenticated communication chan-
nel and consensus protocol, where agreement on message
ordering is ensured through the common prefix property [20].

3 I.e. the discrete logarithm dlogg(h) between g and h is unknown.

3

Together with the client software, which enforces appropriate
stabilization times to ensure agreement with high probability,
the desired guarantees can be achieved. We refer to section 7.1
for additional details on how we instantiate such a communi-
cation channel.

4.2 Adversarial Model
To ensure secrecy of the generated secret key msk, we assume
that an adversary controls at most t participants, whereas a
collaboration of t+1 participants is required to derive msk. A
node controlled by the adversary may deviate arbitrarily from
the specified protocol. We consider an adaptive adversary,
in the sense that it can decide which parties to corrupt based
on prior observations. However, the adversary is not mobile,
once a party is corrupted it is considered compromised for
the entire protocol execution. To guarantee both, secrecy of
the generated key as well as liveness, i.e. that the protocol
completes successfully, the adversary must not control more
than t < n/2 parties. These are the optimal bounds one can
hope to achieve in our setting [21].

4.3 Security Properties
In the following, we reiterate on the security properties we
aim for and expect from a DKG protocol. Hereby, we fol-
low the definitions given by Gennaro et al. [21] and Neji et
al. [30] for correctness and secrecy. The uniformity property
highlights a shortcoming identified by Gennaro et al. [21]
that was not covered by the original Joint-Feldman protocol.
Because recent DKG implementations appear to not consider
this property, e.g., the Ethereum-based DKG implementation
in [31], we use a distinct category to further emphasize this
characteristic. Robustness ensures that a subset of parties,
which want to recover the master secret key, is able to do so
under adversarial influence. The definitions of uniformity and
robustness follow the correctness definitions C3 and C1’ from
Gennaro et al. We also add a definition for liveness, which
was not explicitly stated in Gennaro et al.’s work.

Correctness
(C1) All sets of t + 1 correct key shares define the same

unique master secret key msk.
(C2) All honest parties agree on the common value of the

master public key mpk = hmsk.

Uniformity The master secret key msk is uniformly dis-
tributed in Zq, and hence the master public key mpk is uni-
formly distributed in Gq.

Robustness There is an efficient procedure that, on input of
the public information of the DKG protocol and n submitted
shares, outputs msk, even if up to t invalid shares have been
submitted by malicious or faulty participants.

Liveness An adversary controlling up to n− t − 1 nodes
cannot prevent the protocol from completing successfully.

5 Protocol Description

In this section, we present our generalized DKG protocol
design for discrete logarithm based cryptosystems. We start
by giving a brief overview of our three consecutive protocol
phases, and then describe each phase in detail in sections 5.1,
5.2 and 5.3. For implementation specific details we refer to
section 7.

Sharing Phase During the first phase, each participant in
Pi ∈ P selects a randomly chosen secret si ∈R Zq and subse-
quently uses Feldman’s VSS to share this secret among all
parties, such that t + 1 collaborating parties can recover si,
in case a malicious party withholds the required information
during the key derivation phase. The verification procedure of
Feldman’s protocol enables the parties to check that received
shares are indeed valid.

Dispute Phase During the dispute phase, each party that
received one or more invalid shares in the previous phase uses
a non-interactive proof technique to convince other parties
about the fact that the issuer violated the protocol.

Key Derivation Phase At the beginning of the last phase,
a set of qualified parties Q ⊆ P is formed. A party Pi is part
of Q if and only if it (i) broadcasted the required information
during the sharing phase and (ii) no party broadcasted a valid
dispute against Pi during the dispute phase. In other words,
the set Q contains all parties which correctly shared their
secret and should thus contribute to form the master keypair
〈msk,mpk〉. Finally, for all parties Pi ∈ Q the values hsi ,
related to the randomly chosen secrets si, are either revealed
or recovered and used to derive the master public key mpk.
Using Lagrange interpolation, msk can be computed after
pooling the shares from t +1 parties. However, depending on
the use case scenario, it may not be desirable or necessary to
ever obtain msk.

5.1 Sharing Phase

Share Generation At the beginning of the sharing phase,
each party Pi ∈ P executes the first step of the Joint-Feldman
DKG protocol [21]. In order to share a randomly chosen
secret si ∈R Zq among all4 registered parties, Pi acts as the
dealer in a (n, t) Feldman VSS protocol [19]. For this purpose
it picks a secret polynomial fi : Zq → Zq with coefficients

4 For ease of exposition, we assume that Pi also provides one share for
itself.

4

ci0 = si and ci1,ci2, ...,cit drawn uniformly at random from
Zq:

fi(x) = ci0 + ci1x+ ci2x2 + ...+ citxt (mod q) (1)

Then Pi computes the shares si→ j = fi(j) for all Pj ∈ P , and
the commitments Ci0 = gci0 ,Ci1 = gci1 , ...,Cit = gcit to the
coefficients of fi(·). These commitments are used in the
verification process for the shares and implicitly define Pi’s
public polynomial Fi : Zq→Gq:

Fi(x) =Ci0 ·Cx
i1 ·Cx2

i2 · ... ·Cxt

it (2)

Share Transmission Next, each Pi has to securely send
its shares si→ j to all other parties Pj ∈ P . Contrary to the
original description of the Joint-Feldman DKG, we do not
assume access to private communication channels between
parties, but rather realize the secure sending of the shares
using encryption over our public broadcast channel. We use
a symmetric key encryption algorithm Encki j(·) to ensure
secrecy of a sent share from Pi to Pj. The corresponding
encryption key ki j can be derived non-interactively by both
parties:

ki j = pk j
ski = pki

sk j = gskisk j (3)

Notice that this approach is inspired by the techniques used
in the Diffie Hellman key exchange protocol [36] and the
ElGamal encryption scheme [18].

Finally, Pi broadcasts the encrypted shares si→ j =
Encki j(si→ j) for all i 6= j as well as the commitments
Ci0,Ci1, ...,Cit from Feldman’s VSS. Each party Pj moni-
tors the communication channel for messages broadcasted
by other participants. Upon receiving encrypted shares
and commitments from Pi, Pj decrypts its share to obtain
si→ j = Decki j(si→ j).

Share Verification Pj employs the verification procedure
of Feldman’s VSS to check the validity of each share si→ j. A
share is valid if and only if the following share verification
condition holds:

gsi→ j = Fi(j) (4)

In case si→ j is found invalid, further actions are required in
the dispute phase. As Pi only expects to receive a single
message from each party, only the first message is processed,
any additional messages from the same sender are ignored. In
our smart contract based implementation (see section 7), the
smart contract itself ensures that parties can only broadcast a
single message during the sharing phase.

5.2 Dispute Phase
In case a party Pj notices that it received an invalid share si→ j
from Pi in the previous phase, Pj must broadcast a dispute

claim in order to ensure that Pi is excluded from further steps
of the protocol execution. Intuitively, Pi must be excluded
because its secret si may not be recoverable by a collaboration
of t +1 correct parties.

In the original description of the Joint-Feldman DKG pro-
tocol, an adversarial Pj can always issue an (unsupported)
claim stating that it received an invalid share from a correct
Pi, requiring Pi to prove adherence to the protocol rules. We
flip this notion in the sense that it is Pj’s obligation to show
that Pi indeed violated the protocol. To accomplish this we
use a non-interactive proof technique described below, and
can consequently reduce the required number of interactions
between parties.

Issuing a Dispute Claim The key idea how Pj is able to
prove that Pi provided an invalid share si→ j is to publish
the key ki j used for encryption and decryption of the share.
Using this key, other parties are able to decrypt the previ-
ously distributed share si→ j and can, in the same way as
Pj did, verify that si→ j is indeed invalid. To ensure that an
adversarial Pj cannot just publish an invalid key k′i j, which
would again lead to a false accusation of Pi, it is required
that Pj proves the correctness of ki j. We use a common
non-interactive zero-knowledge (NIZK) proof technique for
showing the equality of the two discrete logarithms [11,15] to
show the correctness of ki j. The corresponding proving and
verification procedures are denoted by DLEQ(x1,y1,x2,y2,α)
and DLEQ-verify(x1,y1,x2,y2,π).

Procedure 1: DLEQ(x1,y1,x2,y2,α).
To show that dlogx1(y1) = dlogx2(y2) holds without reveal-
ing the discrete logarithm α, a prover proceeds as follows:

1. compute t1 = xw
1 adding t2 = xw

2 for w ∈R Zq

2. compute c = H(x1,y1,x2,y2, t1, t2)

3. compute r = w−αc (mod q)

4. output π = 〈c,r〉

Instantiating the above procedure, Pj can prove the cor-
rectness of the decryption key ki j by providing π(ki j) =
DLEQ(g, pk j, pki,ki j,sk j) in addition to ki j.

Verifying a Dispute Claim Upon receiving a dispute
claim 〈ki j,π(ki j)〉 against Pi, issued by Pj, one can use
DLEQ-verify(g, pk j, pki,ki j,π(ki j)) to check the validity of
the received key ki j.

5

Procedure 2: DLEQ-verify(x1,y1,x2,y2,π).
To check the correctness of a proof π = 〈c,r〉, showing
that dlogx1(y1) = dlogx2(y2) holds, a verifier proceeds as
follows:

1. compute t ′1 = xr
1yc

1 and t ′2 = xr
2yc

2

2. output VALID if c = H(x1,y1,x2,y2, t ′1, t
′
2) holds

output INVALID otherwise

If the key is found invalid, the dispute claim is invalid. Oth-
erwise, the verification procedure continues by decrypting
the corresponding share si→ j = Decki j(si→ j) and checking
its correctness according to the share verification condition
specified in equation 4. The dispute is valid if and only if ki j
is found valid but the verification condition does not hold.

The protocol ensures that: (i) In case a correct participant
received an invalid share from another party, the share issuer
is considered disqualified by all (correct) parties at the end of
the dispute phase. (ii) An adversary cannot wrongly accuse
any correct party of providing it with an invalid share. (iii)
The adversary does not gain any additional information when
a party Pj reveals the values ki j and π(ki j), because the adver-
sary can always compute (and therefore publish) ki j = pk j

ski

using Pi’s secret key, and the NIZK proof π(ki j) does not
reveal additional information apart from the correctness of
the statement.

5.3 Key Derivation
Deriving the Set of Qualified Nodes The first step in the
key derivation phase is determining the set of qualified parties
Q ⊆ P , describing which parties should contribute to the
resulting keypair 〈msk,mpk〉. If we recall the current protocol
state at the beginning of the key derivation phase, we observe
that each Pi ∈ P has either:

1. correctly shared its secret si with all other parties.

2. incorrectly shared its secret si.

3. did not share its secret si at all.

We say a secret was correctly shared by Pi, if and only if no
valid dispute claim against Pi was filed during the dispute
phase. Parties which incorrectly shared their secrets, or did
not share their secrets at all, are disqualified and excluded
from the upcomming protocol steps. The remaining parties
form the set Q . In other words, a node Pi ∈ P is only part of
Q if (i) it published the values Ci0,Ci1, ...,Cit and si→ j for all
i 6= j during the sharing phase and (ii) no node Pj filed a valid
dispute against Pi during the dispute phase.

Bias when Computing the Keys Directly Using this defi-
nition of the set Q , the resulting group public key mpk could

be derived by following the description of the Joint-Feldman
protocol:

mpk = ∏
Pi∈Q

Ci0 = ∏
Pi∈Q

gsi (5)

However, as described in great detail by the works of Gennaro
et al. [21, 22], the above approach does not ensure that the
resulting keypair is uniformly distributed. An adversary can
bias bits of the resulting key by selectively denouncing one
or more of its nodes, which influences the set Q and thus the
resulting key. The critical5 issue here is, that all information
required to compute the resulting public key is known to the
adversary before the set Q is fixed.

Protection against Biasing of the Generated Keys We
adopt a recent countermeasure described by Neji et al. [30] to
ensure the resulting key is uniformly distributed. The key idea
to ensure uniformity is to instead compute mpk as follows:

mpk = ∏
Pi∈Q

hsi (6)

Here, h is used to denote an additional generator of the
group Gq, such that dlogg(h) is unknown. The required
values hsi used to compute mpk are published by the par-
ties in Q , whereas each Pi shows the correspondence be-
tween the values hsi and Ci0 = gsi using the NIZK proof
π(hsi) = DLEQ(g,gsi ,h,hsi ,si) as introduced in section 5.2.
In case any (adversarial) party Pi ∈ Q does not reveal its
value hsi and a valid proof π(hsi) by the end of the key deriva-
tion phase, a set of t +1 correct parties is always able to use
the recovery procedure of Feldman’s VSS to obtain si and con-
sequently hsi anyway. Without loss of generally, let R ⊆ Q
denote a set of t +1 correct parties. Then, si is obtained via
Lagrange interpolation:

si = ∑
Pj∈R

si→ j ∏
Pk∈R

j 6=k

k
k− j

(7)

Deriving the Keys Finally, the common master public key
mpk can be derived as specified in equation 6 using the pub-
lished or recovered values hsi | Pi ∈ Q . Additionally, each
Pj ∈Q can compute its individual group keypair

〈
gsk j,gpk j

〉
:

gsk j = ∑
Pi∈Q

si→ j gpk j = hgsk j (8)

In order to enable a third party to verify gpk j, Pj pro-
vides the values ggsk j as well as a correctness proof
DLEQ(g,ggsk j ,h,gpk j,gsk j). The verifier accepts gpk j as
valid if checking of the proof via DLEQ-verify(·) succeeds,

5 See [22, 23] for an in-depth discussion on the implications of non-
uniform distribution.

6

and the verification of ggsk j using the previously committed
public polynomials is successful:

ggsk j = ∏
Pi∈Q

Fi(j) (9)

The corresponding master secret key msk is shared among
all nodes in Q and can be obtained as follows:

msk = ∑
Pi∈Q

si (10)

In case Pi does not reveal its secret si, it can always be com-
puted by t +1 collaborating parties, because each Pi ∈ Q has
correctly shared si among the parties during the first proto-
col phase. Alternatively, a set of t +1 collaborating parties,
denoted by R , can also derive the master secret key msk via
Lagrange interpolation from their group secret keys:

msk = ∑
Pj∈R

gsk j ∏
Pk∈R

j 6=k

k
k− j

(11)

However, for many threshold cryptographic applications msk
might never be computed at a single location. Considering,
e.g. BLS threshold signatures, t + 1 collaborating parties
might produce a signature σ on message m which verifies
under the public key mpk. For this purpose, each of these
parties Pj uses its individual group signing key gsk j to issue
a partial signature for m, which upon aggregation form σ.
There is no need to compute the master secret key msk in
order to issue the signature in this scenario.

6 Security Analysis

We omit a detailed analysis of the guarantees in regard to
correctness (C1, C2) and uniformity (U1) in this paper. The
corresponding security proofs have been provided by the
works of Gennaro et al. [21] and Neji et al. [30] and directly
apply to our protocol.

Secrecy In order to apply the original security proofs for
secrecy, we proceed by showing that the dispute process we in-
troduce as alternative to the steps described by Neji et al. [30]
does not provide the adversary with any additional informa-
tion. Specifically, any information a correct node Pi secretly
transfers to another correct node Pj must remain hidden from
the adversary. The critical point, where this information is
exchanged, is the share transmission step (see section 5.1).
Here a correct party Pi always encrypts the share si→ j it sends
to Pj, using a symmetric key encryption algorithm Encki j(·).
Under the computational Diffie-Hellman assumption, the cor-
responding shared key ki j can only be derived using secret
information ski or sk j from node Pi or Pj. However, neither Pi
nor Pj reveal this information or ki j itself during the protocol
execution if they are both honest.

The only point in time a honest node Pi would pub-
lish ki j and the corresponding correctness proof π(ki j) =
DLEQ(g, pki, pk j,ki j,ski) is during the process of issuing a
dispute claim (section 5.2). A correct Pi, however, only issues
such a claim if Pj provided an invalid share during the dis-
tribution phase – violating the assumption that Pj is correct.
If we consider an adversarial Pj instead, no additional infor-
mation is revealed when Pi publishes ki j, as the adversary
was already able to derive ki j = pki

sk j (and thus obtain si→ j).
Furthermore, e.g. as outlined by Camenisch and Stadler [11],
the NIZK proof π(ki j) does not reveal any information in
addition to correctness of ki j, in particular does not reveal any
information about ski.

Robustness Robustness requires an efficient procedure,
that recovers the master secret key msk from a set of at least
t +1 correct shares. However, this set may additionally con-
tain up to t invalid shares provided by the adversary. We
obtain such a procedure, by first checking the validity of a
provided share gski using the verification condition specified
in equation 9. Then we use Lagrange interpolation to compute
msk from any set of t +1 valid shares (see equation 11)

Liveness In our synchronous system model, the protocol al-
ways reaches the beginning of the key derivation phase, as the
sharing and dispute phases always end after a fixed amount
of steps (the respective number of blocks per phase). Con-
sequently, the completion of the key derivation phase (and
thus the completion of the protocol), depends on the nodes’
ability to gather all the information required to compute mpk
from the values hsi provided by all Pi ∈ Q . Each correct node
in the set of qualified nodes Q , publishes this value at the
beginning of the phase. However, up to t adversarial nodes,
which completed the sharing and dispute phase successfully,
and are thus part of Q , might not reveal the respective val-
ues. In this case, the correct parties obtain all missing values
hsi by recovering si using Lagrange interpolation from their
shares for si (see section 5.3 for additional details). This pro-
cess requires the collaboration of at least t +1 correct nodes,
and thus completes successfully for configurations where the
adversary controls at most n− t−1 nodes.

7 Implementation

To highlight the feasibility and practicality of our approach,
we present a prototype implementation. It consists of two
parts: (i) an Ethereum smart contract serving as the communi-
cation and verification platform, and (ii) a Python client imple-
mentation, executed locally by each participant. The imple-
mentation of both parts is open source and publicly available
at https://github.com/PhilippSchindler/ethdkg/.

In the following, we describe the steps required to apply our
generalized protocol description for the concrete use case of

7

https://github.com/PhilippSchindler/ethdkg/

deriving keypairs to be used with the BLS signature scheme.
Thereby, we outline (i) how our communication model can be
realized, (ii) which techniques are necessary to efficiently im-
plement the required cryptographic primitives, and (iii) how
the protocol execution can be verified at the smart contract
level, despite the limitations of the Ethereum platform. We do
not only target the BLS signature scheme because Ethereum
has built-in support for a pairing friendly elliptic curve which
can be used with BLS, but also due to the wide range of de-
sirable properties this signature scheme provides for different
application scenarios. These properties include short signa-
ture size, non-interactive aggregation capabilities as well as
signature uniqueness.

When using our protocol for BLS signatures, a set of par-
ties first executes our DKG protocol to compute a master
BLS keypair 〈msk,mpk〉. The public key mpk is published
and verified within the smart contract, whereas the (virtual)
secret key msk is shared among the parties. Each party Pi is
then capable of using its individual signing key gski to sign
messages with BLS. Any set of t + 1 valid6 signatures on
a common message can be combined to form a threshold
signature, which verifies under mpk, for that message. This
aggregation process can be performed without necessitating
on-chain transactions within Ethereum. Furthermore, the cost
of verifying the resulting threshold signature within the smart
contract does not depend on the number of participants or
signers.

7.1 Realizing our Communication Model
Revisiting the assumptions from our protocol description (see
section 4.1), we require a shared agreed-upon authenticated
broadcast channel and adherence to certain synchrony as-
sumptions to separate the different protocol phases. These
assumptions are realized as follows:

Ethereum as a Broadcast Channel In our implementation,
each participant of the DKG protocol actively monitors the
Ethereum blockchain. In particular, the clients watch all
transactions to the address of the pre-deployed DKG contract.
A message is broadcast by issuing an Ethereum transaction,
which effectively executes a function within the DKG smart
contract when the transaction is mined within a block in
the Ethereum network. Upon being called successfully, the
contract triggers Ethereum events, which are processed by the
client implementation.

Agreement After detecting the emission of a new event,
the client software of each participant waits for a sufficient
number7 of confirming blocks. This ensures that all nodes

6 The process is robust in the sense that the validity of an individual
signature can also be checked using the issuer’s public key.

7 For an in depth discussion on the required number of confirmations we
refer to the works of Gervais et al. [24] and Sompolinsky and Zohar [40].

agree on a common history of blocks, and consequently on
the triggered events and their order w.h.p, before they react to
the events. This requirement is a direct consequence of the
fact that the Ethereum blockchain may fork and thus does not
provide immediate agreement on newly mined blocks.

Message Authentication The requirements in regard to
message authenticity are directly supported by Ethereum. In
fact, Ethereum enforces that all transactions are cryptographi-
cally signed by the issuer in order to be processed.

Synchrony Assumptions Our synchrony assumptions can
be realized by specifying the start and end of each protocol
phase based on appropriate relative Ethereum block heights.
Liveness, i.e. ensuring the protocol completes successfully
even under adversarial conditions, critically depends on the
ability of correct nodes to timely disseminate information.
Consequently, it has to be ensured that any transaction a node
issues at the beginning of a protocol phase is confirmed, and
consequently received by all other correct nodes, by the begin-
ning of the next phase. The required phase durations depend
on a range of factors including: the number of participants,
the state of the Ethereum network, and the amount of transac-
tion fees the participants are willing to pay. Thus they need to
be analysed on a case by case basis or selected conservatively.

7.2 Cryptographic Primitives
When leveraging a smart contract-based DKG implemen-
tation that is capable of performing the verification steps
on-chain, an efficient implementation of the underlying cryp-
tographic primitives can be crucial for a low cost protocol
design. Within the Ethereum platform, only a limited range
of so called pre-compiled contracts for elliptic curve cryp-
tography are available. The supported operations target the
groups G1, G2 and GT of prime order q, defined on the el-
liptic curve BN254 [2, 3] and include point/point addition
(G1×G1→G1), point/scalar multiplication (G1×Zq→G1)
and a verification procedure for the pairing e : G1×G2→GT .
We rely upon these operations to efficiently implement the
verification procedures for our DKG, targeting the generation
of keys for the BLS signature scheme.

As BLS public keys reside in G2, most of the operations
required for our protocol would use group G2, if we directly
apply our general protocol description. However, as of the
current Ethereum release, computations in G2 are not natively
supported, and implementing the required operations using
available Ethereum Virtual Machine (EVM) opcodes would
lead to very high gas consumption and thus render the ap-
proach inefficient.8 Fortunately, the corresponding operations
in group G1 and a verification procedure for the pairing e

8 A Solidity implementation of a single multiplication of a group element
from G2 with a 256 bit scalar requires approximately 2,000,000 gas [1],

8

exist as pre-compiled contracts in Ethereum [9, 35]. This al-
lows us to efficiently perform operations in G1 and verify the
corresponding element in G2 using the pairing check within
the smart contract. In the following sections 7.3, 7.4 and 7.5,
we outline the details for incorporating this approach into our
protocol design.

7.3 Sharing Phase

During the sharing phase, each participant Pi ∈ P proceeds as
specified in our general protocol description (see section 5.1).
In particular, Pi shares a secret si ∈R Zq among all parties
in P using Feldman’s VSS protocol. The commitments
Ci0,Ci1, ...,Cit are group elements from G1: Cik = gcik

1 | 0 ≤
k ≤ t, where g1 denotes a generator of G1. Because there
are no primitives for symmetric encryption available within
Ethereum as of August 2019, we realize the encryption and
decryption algorithms Encki j(·) and Decki j(·) using a one time
pad, where we derive a unique key from ki j and j by using a
cryptographic hash function9 H(·):

Encki j(si→ j) = si→ j⊕H(ki j || j)

Decki j(si→ j) = si→ j⊕H(ki j || j)

Here, adding the the index of the receiver j ensures that the
one time pad is indeed only used once, i.e. the si→ j and s j→i
are xored with different values. To publish the required infor-
mation, namely the encrypted shares si→ j for all i 6= j and the
commitments Ci0,Ci1, ...,Cit , the client software constructs
and broadcasts the corresponding Ethereum transaction, in-
voking the pre-deployed smart contract.

The smart contract ensures that only eligible parties, i.e.
Pi ∈ P may provide a single, well-formed message. The set
of eligible parties is either specified statically at the time of
creation of the smart contract, or via a dynamic registration
process as described in section 7.6. A message is considered
well-formed, if it contains exactly n−1 encrypted shares, and
t + 1 commitments to the coefficients of the secret sharing
polynomial. Upon receiving a well-formed transaction from
an eligible party, the smart contract notifies all other partic-
ipants about the published information using an Ethereum
event. The contents of the encrypted shares and the validity of
the commitments are not verified at this point in time. Instead,
the verification is only performed on demand, i.e. in case a
dispute is submitted in the next protocol phase. In order to
verify a potential dispute in the next phase, the smart contract
stores a cryptographic hash of the message content. As we
see in section 7.4, the hash is sufficient to fully verify a po-
tential dispute. It would also be possible to store the entire
message instead of the digest. However, storing only the hash

9 In our implementation, the value si→ j and the output of the used crypto-
graphic hash function are 256 bits each.

significantly reduces the amount of on-chain storage required,
and thus lowers transactions fees, in particular for large n.

7.4 Dispute Phase
In case a party Pj finds that Pi provided an invalid share for
si, Pj follows our general protocol description to publish a
dispute. For this purpose, it constructs a transaction which, in
addition to ki j and π(ki j), includes the message content sent
by Pi in the previous protocol phase. This enables the smart
contract to recompute and compare the hash of Pi’s message
with the stored value. If the hashes do not match, the dispute
is found invalid and the smart contract aborts. Otherwise the
smart contract has all information required to perform a full
verification. In particular, it knows that the encrypted share
si→ j present in the dispute transaction is indeed the share Pi
previously distributed. The verification continues as stated in
section 5.1. The corresponding computations can efficiently
be performed using the Ethereum pre-compiled contracts [35]
for arithmetic in G1. If the dispute is considered valid, the
share issuer is flagged as adversarial and thus excluded from
the set Q in the key derivation phase. Additionally, the smart
contract triggers a corresponding event to notify all parties
about the successful dispute. Optionally the issuer may be
economically punished, and a security deposit could be used
to refund the disputer for its transaction fees. Similarly, an ad-
versarial disputer could be penalized for submitting an invalid
dispute. In either case, the contract may not process a dispute
transaction against an already disqualified participant. In fact,
in this scenario, our implementation of the smart contract
aborts immediately in order to save transaction fees.

7.5 Key Derivation Phase
Again, we closely follow our protocol specification from sec-
tion 5.3 to implement the key derivation phase. Similar to
the definition of h, we use h1 ∈ G1 and h2 ∈ G2 to denote
independently selected generators for the groups G1 and G2.

As a first step, each Pi ∈Q computes the values h1
si and the

corresponding NIZK proof π(h1
si) showing its correctness.

The corresponding computations are performed in group G1.
However, as the master public key mpk = h2

msk is an element
of G2, Pi is also required to map its key share h1

si to G2,
i.e. compute hsi

2 . Then, Pi crafts and publishes a transaction,
containing h1

si , π(h1
si) and hsi

2 . As described, a collaboration
of t +1 parties recovers si (and thus h1

si , π(h1
si) and hsi

2) in
case Pi does no publish the required information by the end
of the key derivation phase. After completing the recovery,
any one of the involved parties can issue the corresponding
transaction on behalf of Pi. Either way, it is ensured that
h1

si , π(h1
si) and hsi

2 become public and available for the smart
contract for all Pi ∈ Q . The smart contract can verify the
provided information with the DLEQ-verify(·) procedure and
use the precompiled pairing contract [9] to check the validity

9

of h2
si . The value h2

si is considered correct if e(h1
si ,h2) =

e(h1,h2
si) holds.

Finally, any party can compute and publish the master pub-
lic key mpk = ∏Pi∈Q hsi

2 and mpk∗ = ∏Pi∈Q hsi
1 . The smart

contract can recompute mpk∗ and use the pairing e(·) to verify
the correctness of mpk.

7.6 Dynamic Participation
The utilization of a smart contract platform such as Ethereum
also enables us to readily implement dynamic participation
strategies. If the choice is made to employ this protocol fea-
ture, the set of participants P which run the DKG protocol
is not defined a priori, but rather obtained in an additional
registration phase, executed at the beginning of the proto-
col. For this purpose, the creator of the corresponding smart
contract specifies a set of participation rules at the time of
contract creation. A participation rule specifies under which
condition a particular Ethereum account is allowed to “join”
the set P . Within the limitations of the Ethereum platform,
arbitrary smart contract code can be used to define participa-
tion rules. In the following, we provide basic examples for
participation rules while more elaborate and robust schemes
against adversarial behavior are left to future work.

1. First come, first serve: Only the first N parties to register
are allowed to join the protocol.

2. Security deposit: Only parties, which provide a secu-
rity deposit of at least X Ether are allowed to join the
protocol.

3. Highest bidding: The N parties, which provided the
highest amount of security deposit are allowed to join
the protocol.

For conditions 1 and 2 the participation rules are checked as
soon as a registration transaction is included in an Ethereum
block. Only upon success is the issuer of the transaction
added to the set P , tracked within the smart contract. The
implementation of condition 3 is rendered slightly more com-
plex. In this case, the smart contract keeps track of the set P
consisting of up to N participants and their provided security
deposits. Upon registration of party PN+1, the registration is
accepted if the deposit provided is bigger than the smallest
deposit received so far. If this is the case, the registration
is accepted by adding PN+1 to the set P and removing the
participant with the smallest deposit from P . Otherwise the
registration is rejected and P remains unchanged.

8 Evaluation

As previously outlined, the correct execution of our DKG pro-
tocol implementation can be verified with the corresponding
Ethereum smart contract. To demonstrate the practicability

of our solution, we evaluate the computational costs for all
interactions between the parties and the smart contract plat-
form. Figure 1, provides the measured gas consumption per
executed transaction for different numbers of parties partici-
pating in the DKG protocol. We observe that (i) gas costs for
contract deployment (3,126,281), for registration (107,489),
and key share submission (517,770) do not depend on the
number of participants, (ii) costs for recovery linearly depend
on the number of recovered parties, whereas (iii) the costs for
the other operations increase linearly with increasing numbers
of participants. Figure 1 reports the measured costs for (ii)
and (iii) in the worst case for different numbers of participants
(n). We use a setup with n = 2t +1 participants, where t par-
ties are executing adversarial actions, i.e. they either provide
invalid shares, handled by issuing dispute transactions, or they
withhold the required values during the key generation phase,
leading to a recovery of the missing information.

64 128 192 256
Number of Participants (n)

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

8,000,000

Ga
s C

os
ts

block gas limit
share distribution
dispute
key share recovery
master key submission

Figure 1: Computational costs, measured in gas per transac-
tion, for all the interactions with the smart contract

The most critical operation in terms of gas consumption is
the execution of a dispute transaction. In the most demanding
scenario with n = 256 participants, a dispute consumes ap-
proximately 6,9 million gas. At a current exchange of 1 ETH
≈ 200 USD and a recommended10 gas price of 1.3 Gwei11,
this amounts to approximately 1.80 USD in transaction fees.
If we consider a full protocol execution with n = 256 parties,
the transaction fees each participant has to pay sum up to
approximately 0.67 USD in the optimal case (no disputes and
no recovery), and 2.46 USD in the worst case (including a
dispute and a recovery of missing key shares).

The costs for a dispute are largely dominated by the internal
share verification procedure (see equation 4). In particular, the
required elliptic curve multiplications are currently relatively
expensive, at 40,000 gas each. Consequently our protocol
would benefit from the EIP-1108 proposal [13], which aims
to reduce gas costs for these operations. However, even with

10 The estimates are based on the recommend gas prices provided by
https://ethgasstation.info/ for average confirmation times at the time
of writing.

111 Gwei = 10−9 ETH

10

https://ethgasstation.info/

the current gas cost computations, and for at least 256 partici-
pants, our protocol is able to perform all required operations
for handling a dispute within the current Ethereum block gas
limit of approximately 8,000,000 gas. In addition, a dispute
transaction has to be executed only once per adversarial party,
independent of the number of invalid shares the adversary
distributed. In case all participants behave according to the
protocol, no transactions for dispute, and key share recovery
are executed. Additionally, the adversaries security deposit
might be seized and used to cover the expenses for the transac-
tion fees. While issuing a dispute transaction against the same
party a second time is much cheaper, as the contract aborts
prematurely the additional costs can be mitigated: A potential
strategy is to continuously monitor for dispute transactions
and only issue dispute transactions on demand at randomized
points in time within the bounds of the dispute phase.

In order to keep costs for the share distribution low, we
minimize the amount of data stored within the smart contract.
In particular, we do not store the transaction data, i.e. n−1
encrypted shares and t +1 commitments to the secret sharing
polynomial, in the smart contract. Instead, only a crypto-
graphic hash of the above information is stored, whereas trig-
gering a corresponding Ethereum event renders the full data
easily accessible to all clients. During the verification of a
dispute, this cryptographic hash is recomputed and compared
to the stored value to ensure that the disputer’s information is
correct.

9 Discussion

Model In our DKG protocol, we follow the model described
in the theoretical works of Gennaro et al. [21]. Consequently,
we inherit three important characteristics for our protocol: (i)
the synchronous communication model, (ii) the separation
of the underlying consensus platform and the DKG protocol
itself, (iii) the optimal threshold t, i.e. secrecy and liveness
for all t < n/2. These are in contrast to the properties of the
more recent works by Kate et al. [26, 27], which consider an
asynchronous communication model. While these works still
require a weak synchrony assumption [14] to ensure liveness,
the protocol’s safety guarantees do not depend on timing as-
sumptions of the underlying message delivery network. To
mitigate this risk in a synchronous protocol design, the cor-
responding timings, i.e. the number blocks in each protocol
phase for our protocol, have to be selected appropriately.

A drawback of moving to the asynchronous model, is a
reduced resilience against Byzantine adversaries. In the hy-
brid failure model (n = 3t + 2 f + 1), described by Kate et
al., the protocol can only tolerate less than 1/3 Byzantine
parties (t), and less than 1/2 crashed participants (f). Here,
our protocol design can prove advantageous as it ensures the
desired security properties, in particular secrecy and liveness,
with up to n = 2t +1 participants.

Secrecy / Liveness Trade-off Our protocol design enables
the use of different values for the parameter t, specifying
the threshold for the underlying secret sharing protocol, de-
pending on the specific application scenario. The choice of
t directly incurs a trade-off between liveness and secrecy. If
an adversary controls at most t nodes, secrecy is ensured,
whereas at least t +1 honest nodes are required to guarantee
liveness. For example, setting t = n, ensures that as long as
there is at least one honest participant, the master secret key
msk cannot be learned by the adversary. On the contrary, even
a single adversarial node can prevent successful completion
of the protocol. In practice the choice of t is directly related to
the application scenario. If we consider, for example, the use
for a synchronous BFT protocol in a setting with n = 2 f +1
participants, t is set to equal f , whereas a typical requirement
in asynchronous or particularly synchronous BFT protocols,
i.e. that more than 2/3 of the parties have to sign a particular
state or message, is supported by setting t = d2/3ne−1.

Uniform Key Distribution During the key derivation
phase, we follow Neji et al. [30] to implement a protection
mechanism, which prevents the adversary from biasing bits
of the generated keypair. While the implemented countermea-
sure does not require a full additional secret sharing round,
it requires up to two12 additional transactions issued by all
participants. To save these costs and reduce the protocols
complexity, one might decide to omit the additional steps re-
quired to ensure uniform distribution of the keypair. Instead,
each party Pi publishes a commitment H(Ci0) to the value Ci0
prior to the sharing phase. The values Ci0, published during
the sharing phase, are only accepted if they match the corre-
sponding commitment. During the key derivation phase, the
master public key mpk is directly computed as described for
the Joint-Feldman protocol (see equation 5). Such a design
decision may be useful e.g. in a deployment scenario, where
we expect the DKG protocol to complete without any errors,
i.e. in a scenario where we assume that it is very likely that all
participants follow the protocol accordingly. However, as de-
scribed in section 8 and shown in figure 1, the additional costs
required to achieve uniformity do not add much overhead to
the overall protocol execution. Consequently, we recommend
to use our protocol design without this modification for most
practical scenarios.

Ethereum as Communication Infrastructure As de-
scribed in section 4.1, a key component necessary for the
implementation of our DKG protocol is a suitable commu-
nication layer. Using an existing distributed ledger that pro-
vides Byzantine fault tolerance and agreed upon total ordering
of exchanged messages. Although our approach may also
be used on top of traditional BFT protocols or other avail-

12 one transaction for publishing the key share hsi and proof π(hsi), and
potentially an additional message for recovering any missing key shares

11

able blockchain platforms, we decided to use an existing
blockchain platform, namely Ethereum, instead of deploying
our own communication infrastructure. If we compare our
solution to the protocol described by Kate et al. we observe
a key difference in the design approach: whereas in our pro-
tocol, the core functions of the DKG protocol are separated
from the the underlying consensus mechanism, Kate et al.
describe their protocol in a standalone setting, intertwining a
custom BFT protocol with the DKG logic. We see advantages
in both approaches, depending on the application scenario.
While the technique we present can benefit from an easier
deployment and a simplified protocol design due to the sep-
aration of concerns, the security of Kate et al.’s approach
does not depend on an external consensus mechanism and
can hence operate in a stand-alone setting.

Benefits of On-Chain Verification While on-chain verifi-
cation is not required for the core functionality of the protocol,
it immediately provides a range of benefits: e.g. other ap-
plications on the Ethereum platform can be assured that the
master public key was correctly computed, and can thus safely
use this key to verify threshold signatures issued under the
corresponding (shared) secret key. Furthermore, including
monetary incentive mechanisms allows us to define a wide
range of interesting dynamic participation models. It is no
longer required to define the set of parties P , executing the
protocol, prior to the protocol start. Instead, the smart contract
logic can be used to specify under which conditions a party
is allowed to join the protocol. For example, participation
could require a security deposit that is only returned if a party
executes all steps of the protocol correctly. Otherwise this
deposit can be seized to economically punish/disincentivize
adversarial behavior (and unresponsiveness13).

Implementation and Scalability Part of the motivation for
this work was the lack of public available DKG protocol im-
plementations. In particular and to the best of our knowledge,
there are no implementations of a DKG protocol following
Gennaro et al.’s design, despite the extensive theoretical re-
search in this direction. On the contrary, the protocol design
by Kate and Goldberg [26] was implemented and evaluated
in subsequent work [27], performing tests of their implemen-
tation with up to 70 nodes on the PlanetLab platform. Our
protocol implementation was realized and evaluated using the
Ethereum platform as a communication layer. Consequently,
the scalability of our approach is limited by the transaction
fees required to execute transactions on Ethereum. Never-
theless, our measurements (see section 8) show that even in
a demanding scenario with 256 participants, all transactions

13 The decision to actually seize a security deposit in case of unrespon-
siveness should be taken with great care. For example, a high temporary rate
of transactions in the Ethereum network or an active denial of service attack
could limit the ability of honest parties to get their transaction confirmed, or
force them to pay very high transaction fees.

can be executed well within Ethereum’s current block gas
limit at reasonable costs.

To support an even higher number of participants, our solu-
tion would require a cost reduction in the underlying elliptic
curve primitives on the Ethereum platform, e.g. an imple-
mentation of the EIP-1108 proposal [13]. Alternatively, our
protocol is able to use Ethereum (or a different platform) as
communication layer only. This leads to reduced gas costs
and increased scalability as the gas otherwise consumed for
the on-chain verification is saved.

While the clients can still fully verify the protocol execu-
tion off-chain, the lack of on-chain verification also comes
with the disadvantage, namely that seizing a security deposit
becomes more difficult without placing honest clients at risk.
It is no longer possible to seize the deposit automatically dur-
ing the submission process of a dispute, as the smart contract
does not perform the corresponding verification steps. A par-
tial mitigation strategy is that a majority of the participants of
the DKG verify a dispute off-chain and confirm its validity.
However, this leads to the issue that a honest party’s security
deposit may be seized if the DKG protocol is run by an ad-
versarial majority. This is is contrast to the approach with
on-chain verification, which always ensures that the deposit
of correct party remains safe.

10 Conclusion

We present ETHDKG, a new state of the art protocol for
distributed key generation. Thereby, we demonstrate how
to efficiently implement an improved variant of Gennaro et
al.’s [21] theoretical work. Our enhancements include a new
mechanism to resolve disputes, which arise if certain parties
violate the protocol rules, as well as a range of techniques
improving the performance of our implementation in practice.
We outline that our protocol design is simple enough to be
used with minimal costs on existing blockchain infrastruc-
tures. In particular, we show that all verification steps required
during the protocol execution can be performed efficiently
within the constrained environment of the Ethereum platform.
By levering the Ethereum blockchain, or an alternative plat-
form with similar guarantees, we are able to decouple the
implementation of the underlying consensus protocol and the
cryptographic components at the core of the DKG protocol it-
self. This approach simplifies the protocol design and security
analysis, while at the same time enabling new novel features,
such as dynamic participation and support for economic in-
centives, by utilizing the capabilities of the Ethereum smart
contract platform. Furthermore, we show that our approach
does not compromise scalability by demonstrating that our
protocol can support at least n = 256 participants with full
support for on-chain verification.

12

Availability

This paper is supported by an open source implementation
of the described protocol. All artifacts in regard to the im-
plementation are public available at https://github.com/
PhilippSchindler/ethdkg/. These artifacts include:

• the source code of the DKG protocol client

• the source code of the Ethereum smart contract

• an extensive test suite for both parts of the implementa-
tion, including simulations of adversarial behavior

• evaluation scripts for measuring gas costs

• additional implementation specific documentation

References

[1] Mustafa Al-Bassam. Implementation of elliptic curve
operations on G2 for alt_bn128 in Solidity. https:
//github.com/musalbas/solidity-BN256G2, 2019.
Accessed: 2019-08-21.

[2] Diego F Aranha, Koray Karabina, Patrick Longa, Cather-
ine H Gebotys, and Julio López. Faster explicit formu-
las for computing pairings over ordinary curves. In
Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, pages 48–68.
Springer, 2011.

[3] Jean-Luc Beuchat, Jorge E González-Díaz, Shigeo Mit-
sunari, Eiji Okamoto, Francisco Rodríguez-Henríquez,
and Tadanori Teruya. High-speed software implemen-
tation of the optimal ate pairing over barreto–naehrig
curves. In International Conference on Pairing-Based
Cryptography, pages 21–39. Springer, 2010.

[4] George Robert Blakley. Safeguarding cryptographic
keys. Proc. of the National Computer Conference,
48:313–317, 1979.

[5] Dan Boneh, Manu Drijvers, and Gregory Neven. Com-
pact multi-signatures for smaller blockchains. In Inter-
national Conference on the Theory and Application of
Cryptology and Information Security, pages 435–464.
Springer, 2018.

[6] Dan Boneh and Matthew Franklin. Efficient generation
of shared rsa keys. In Annual International Cryptology
Conference, pages 425–439. Springer, 1997.

[7] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav
Shacham. Aggregate and verifiably encrypted signa-
tures from bilinear maps. In International Conference
on the Theory and Applications of Cryptographic Tech-
niques, pages 416–432. Springer, 2003.

[8] Dan Boneh, Ben Lynn, and Hovav Shacham. Short
signatures from the weil pairing. In International Con-
ference on the Theory and Application of Cryptology
and Information Security, pages 514–532. Springer,
2001.

[9] Vitalik Buterin and Christian Reitwiessner. EIP 197:
Precompiled contracts for optimal ate pairing check on
the elliptic curve alt_bn128. https://github.com/
ethereum/EIPs/blob/master/EIPS/eip-197.md,
2017. Accessed: 2019-08-21.

[10] Christian Cachin, Klaus Kursawe, and Victor Shoup.
Random oracles in constantinople: Practical asyn-
chronous byzantine agreement using cryptography. In
Proceedings of the nineteenth annual ACM symposium
on Principles of distributed computing, pages 123–132.
ACM, 2000.

[11] Jan Camenisch and Markus Stadler. Proof systems for
general statements about discrete logarithms. Technical
report/Dept. of Computer Science, ETH Zürich, 260,
1997.

[12] Ran Canetti, Rosario Gennaro, Stanisław Jarecki, Hugo
Krawczyk, and Tal Rabin. Adaptive security for thresh-
old cryptosystems. In Annual International Cryptology
Conference, pages 98–116. Springer, 1999.

[13] Antonio Salazar Cardozo and Zachary Williamson.
EIP 1108: Reduce alt_bn128 precompile gas
costs. https://github.com/ethereum/EIPs/blob/
master/EIPS/eip-1108.md, 2018. Accessed: 2019-
08-21.

[14] Miguel Castro and Barbara Liskov. Practical byzantine
fault tolerance and proactive recovery. ACM Trans-
actions on Computer Systems (TOCS), 20(4):398–461,
2002.

[15] David Chaum and Torben Pryds Pedersen. Wallet
databases with observers. In Annual International Cryp-
tology Conference, pages 89–105. Springer, 1992.

[16] Arka Rai Choudhuri, Matthew Green, Abhishek Jain,
Gabriel Kaptchuk, and Ian Miers. Fairness in an unfair
world: Fair multiparty computation from public bulletin
boards. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
pages 719–728. ACM, 2017.

[17] Ronald Cramer, Rosario Gennaro, and Berry Schoen-
makers. A secure and optimally efficient multi-authority
election scheme. European transactions on Telecommu-
nications, 8(5):481–490, 1997.

[18] Taher ElGamal. A public key cryptosystem and a signa-
ture scheme based on discrete logarithms. IEEE trans-
actions on information theory, 31(4):469–472, 1985.

13

https://github.com/PhilippSchindler/ethdkg/
https://github.com/PhilippSchindler/ethdkg/
https://github.com/musalbas/solidity-BN256G2
https://github.com/musalbas/solidity-BN256G2
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-197.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-197.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1108.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1108.md

[19] Paul Feldman. A Practical Scheme for Non-interactive
Verifiable Secret Sharing. In Foundations of Computer
Science, 1987., 28th Annual Symposium on, pages 427–
438. IEEE, 1987.

[20] Juan Garay, Aggelos Kiayias, and Nikos Leonardos.
The bitcoin backbone protocol: Analysis and applica-
tions. In Advances in Cryptology-EUROCRYPT 2015,
pages 281–310. Springer, 2015.

[21] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk,
and Tal Rabin. Secure distributed key generation for
discrete-log based cryptosystems. In International
Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 295–310. Springer, 1999.

[22] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk,
and Tal Rabin. Revisiting the distributed key generation
for discrete-log based cryptosystems. RSA Security’03,
pages 89–104, 2003.

[23] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk,
and Tal Rabin. Secure applications of pedersen’s dis-
tributed key generation protocol. In Cryptographers’
Track at the RSA Conference, pages 373–390. Springer,
2003.

[24] Arthur Gervais, Ghassan O Karame, Karl Wüst,
Vasileios Glykantzis, Hubert Ritzdo rf, and Srdjan Cap-
kun. On the security and performance of proof of work
blockchains. In Proceedings of the 2016 ACM SIGSAC,
pages 3–16. ACM, 2016.

[25] Time Hanke, Mahnush Movahedi, and Dominic
Williams. Dfinity technology overview series consensus
system, 2018. Rev. 1.

[26] Aniket Kate and Ian Goldberg. Distributed key genera-
tion for the internet. In 2009 29th IEEE International
Conference on Distributed Computing Systems, pages
119–128. IEEE, 2009.

[27] Aniket Kate, Yizhou Huang, and Ian Goldberg. Dis-
tributed key generation in the wild. IACR Cryptology
ePrint Archive, 2012:377, 2012.

[28] Eleftherios Kokoris-Kogias, Enis Ceyhun Alp, San-
dra Deepthy Siby, Nicolas Gailly, Linus Gasser, Philipp
Jovanovic, Ewa Syta, and Bryan Ford. Calypso: Au-
ditable sharing of private data over blockchains. Cryp-
tology ePrint Archive, Report 2018/209, 2018.

[29] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and
Dawn Song. The honey badger of bft protocols. In

Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 31–42.
ACM, 2016.

[30] Wafa Neji, Kaouther Blibech, and Narjes Ben Rajeb.
Distributed key generation protocol with a new com-
plaint management strategy. Security and communica-
tion networks, 9(17):4585–4595, 2016.

[31] Orbs Network. DKG for BLS threshold signature
scheme on the EVM using solidity. https://github.
com/orbs-network/dkg-on-evm, 2018. Accessed:
2019-08-21.

[32] Torben Pryds Pedersen. Non-interactive and
information-theoretic secure verifiable secret sharing.
In Annual International Cryptology Conference, pages
129–140. Springer, 1991.

[33] Torben Pryds Pedersen. A threshold cryptosystem with-
out a trusted party. In Workshop on the Theory and
Application of of Cryptographic Techniques, pages 522–
526. Springer, 1991.

[34] Michael O Rabin. Transaction protection by beacons.
Journal of Computer and System Sciences, 27(2):256–
267, 1983.

[35] Christian Reitwiessner. EIP 196: Precompiled contracts
for addition and scalar multiplication on the elliptic
curve alt_bn128. https://github.com/ethereum/
EIPs/blob/master/EIPS/eip-196.md, 2017. Ac-
cessed: 2019-08-21.

[36] Eric Rescorla. Rfc 2631: Diffie-hellman key agreement
method. Technical report, RFC, IETF, June, 1999.

[37] Ronald L Rivest, Adi Shamir, and David A Wagner.
Time-lock puzzles and timed-release crypto. 1996.

[38] Philipp Schindler, Aljosha Judmayer, Nicholas Stifter,
and Edgar Weippl. Hydrand: Practical continuous dis-
tributed randomness. In Proceedings of IEEE Sympo-
sium on Security and Privacy (IEEE S&P). IEEE, 2020.
to appear.

[39] Adi Shamir. How to share a secret. Communications of
the ACM, 22(11):612–613, 1979.

[40] Yonatan Sompolinsky and Aviv Zohar. Bitcoin’s secu-
rity model revisited. arXiv preprint arXiv:1605.09193,

2016.

14

https://github.com/orbs-network/dkg-on-evm
https://github.com/orbs-network/dkg-on-evm
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-196.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-196.md

	Introduction
	Structure of this Paper

	Application Scenarios
	Related Work
	System Model
	Communication Model
	Adversarial Model
	Security Properties

	Protocol Description
	Sharing Phase
	Dispute Phase
	Key Derivation

	Security Analysis
	Implementation
	Realizing our Communication Model
	Cryptographic Primitives
	Sharing Phase
	Dispute Phase
	Key Derivation Phase
	Dynamic Participation

	Evaluation
	Discussion
	Conclusion

