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Abstract

Let f : {−1, 1}n → {−1, 1} be with total degree d, and f̂(i) be
the linear Fourier coefficients of f . The relationship between the sum
of linear coefficients and the total degree is a foundational problem in
theoretical computer science. In 2012, O’Donnell Conjectured that

n∑
i=1

f̂(i) ≤ d ·
(
d− 1

bd−1
2 c

)
21−d.

In this paper, we prove that the conjecture is equivalent to a conjec-
ture on the cryptographic Boolean function. We then prove that the
conjecture is true for d = 1, n− 1. Moreover, we count the number of
f ’s such that the upper bound is achieved.

Keywords: Boolean function, Linear coefficient, Total degree, Resilien-
cy.

1 Introduction

Let f : {−1, 1}n → {−1, 1}. Then it can be written as

f(x) =
∑
S⊆[n]

f̂(S)
∏
i∈S

xi,

where [n] = {1, 2, . . . , n} and f̂(S) are the Fourier coefficients of f given by

1

2n

∑
x∈{−1,1}n

f(x)
∏
i∈S

xi.
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The total influence of f , denoted by Inf [f ], is defined by

Inf [f ] =
∑
S⊆[n]

|S|f̂(S)2.

The total degree of f , denoted by deg(f), is defined by

deg(f) = max{|S| : f̂(S) 6= 0}.

It is well-known that

n∑
i=1

f̂({i}) ≤ Inf [f ] ≤ deg(f).

For simplicity, we use f̂(i) to denote f̂({i}). In 2009, Parikshit Gopalan and
Rocco Servedio conjectured that

n∑
i=1

f̂(i) ≤
√

deg(f).

More ambitiously, in [5], O’Donnell proposed the following Conjecture.

Conjecture 1.1. Let f : {−1, 1}n → {−1, 1} be with total degree d. Then

n∑
i=1

f̂(i) ≤ d ·
(
d− 1

bd−12 c

)
21−d.

It is known that the conjecture is trivial for d = n [6], since

n∑
i=1

f̂(i) ≤ 2−n|x1 + x2 + . . . + xn| = n ·
(
n− 1

bn−12 c

)
21−n.

It should be noted that

n∑
i=1

f̂(i) ≥ −d ·
(
d− 1

bd−12 c

)
21−d,

if Conjecture 1.1 holds.
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2 An equivalent conjecture

Let Fn
2 be the n-dimensional vector space over the finite field F2 = {0, 1}

and Bn be the set of all n-variable Boolean functions from Fn
2 into F2. Let

a = (a1, a2, . . . , an) ∈ Fn
2 . The Hamming weight of a, denoted by wt(a), is

defined by
∑n

i=1 ai.
Let g ∈ Bn. g is called t-resilient if [13]∑

x∈Fn
2

(−1)g(x)⊕v·x = 0,

for any v = (v1, . . . , vn) ∈ Fn
2 satisfying 0 ≤ wt(v) ≤ t, where “⊕” is the

XOR operator and v · x = v1x1 ⊕ · · · ⊕ vnxn is the usual inner product.
If t is small, and g is not t-resilient, then a nonlinear combiner mod-

el of stream cipher using g as combining function can be attacked using
the divide-and-conquer attack [12]. For more results on resilient Boolean
functions, we refer to e.g. [2, 3, 4, 7, 8, 9, 10, 14, 15].

Conjecture 2.1. Let g ∈ Bn be (n− d− 1)–resilient, where 1 ≤ d ≤ n− 1.
Then ∑

v∈Fn
2

wt(v)=n−1

∑
x∈Fn

2

(−1)g(x)⊕v·x ≤ d ·
(
d− 1

bd−12 c

)
2n+1−d.

Theorem 2.2. Conjecture 1.1 is equivalent to Conjecture 2.1.

Proof. “⇒” Let g ∈ Bn be (n− d− 1)–resilient. Then we have∑
x∈Fn

2

(−1)g(x)⊕x1⊕x2⊕...⊕xn⊕v·x = 0,

for any v ∈ Fn
2 satisfying d + 1 ≤ wt(v) ≤ n. Let G(x) = g(x) ⊕ x1 ⊕ x2 ⊕

. . .⊕ xn. We define a function f : {−1, 1}n → {−1, 1} as

f(x) = (−1)G(x+1
2

),

where x+1
2 = (x1+1

2 , x2+1
2 , . . . , xn+1

2 ). Then we have∑
x∈{−1,1}n

f(x)
∏
i∈S

xS =
∑

x∈{−1,1}n
(−1)G(x+1

2
)
∏
i∈S

(−1)
xi+1

2
+1

= (−1)|S|
∑
y∈Fn

2

(−1)G(y)
∏
i∈S

(−1)viyi

= (−1)|S|
∑
y∈Fn

2

(−1)G(y)⊕v·y

= 0, for |S| ≥ d + 1,
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where v ∈ Fn
2 and vi = 1 if and only if i ∈ S. Therefore, the total degree of

f is at most d. By Conjecture 1.1, we have

n∑
i=1

f̂(i) =
1

2n

n∑
i=1

∑
x∈{−1,1}n

(−1)G(x+1
2

)(−1)
xi+1

2
+1

=
1

2n

n∑
i=1

∑
y∈Fn

2

(−1)G(y)(−1)yi+1

= − 1

2n

n∑
i=1

∑
y∈Fn

2

(−1)G(y)⊕yi⊕y1⊕y2⊕...⊕yn

≥ −d ·
(
d− 1

bd−12 c

)
21−d,

and the result follows.
“⇐” It is known that Conjecture 1.1 holds for d = n. Let f : {−1, 1}n →

{−1, 1} be with total degree d, where 1 ≤ d ≤ n − 1. Then we define a
function g ∈ Bn as

g(x) =
f(1− 2x) + 1

2
⊕ x1 ⊕ x2 ⊕ . . .⊕ xn.

It is easy to verify that g is (n − d − 1)–resilient. Then by Conjecture 2.1,
we have ∑

v∈Fn
2

wt(v)=n−1

∑
x∈Fn

2

(−1)g(x)⊕v·x = −
n∑

i=1

∑
y∈{−1,1}n

f(y)yi

≥ −d ·
(
d− 1

bd−12 c

)
2n+1−d,

and the result follows.

3 Proof of the conjecture for two cases

In this section, we will prove that Conjecture 2.1 holds for d = 1, n− 1.

3.1 Case d = 1

Any g ∈ Bn can be written as a multivariate polynomial

g(x) =
⊕
S⊆[n]

cS
∏
i∈S

xi,
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where cS ∈ {0, 1}. The algebraic degree of g is defined as the degree of
this polynomial. It is well-known that the algebraic degree of an n-variable
t-resilient Boolean function is at most n − t − 1 [1, 11]. We state this as a
lemma.

Lemma 3.1. Let g ∈ Bn be t–resilient, where 0 ≤ t ≤ n − 2. Then the
algebraic degree of g is at most n− t− 1.

Theorem 3.2. Conjecture 2.1 holds for d = 1. Moreover, the bound is
achieved if and only if g(x) = v · x, where v ∈ Fn

2 and wt(v) = n− 1.

Proof. If d = 1, then g is (n − 2)-resilient. By Lemma 3.1, the algebraic
degree of g is at most 1. That is, g = a0 ⊕ a1x1 ⊕ a2x2 ⊕ . . .⊕ anxn, where
aj ∈ F2 and 0 ≤ j ≤ n. Clearly, g(x) ⊕ v · x is not balanced only when
(a1, . . . , an) = v. Therefore,∑

v∈Fn
2

wt(v)=n−1

∑
x∈Fn

2

(−1)g(x)⊕v·x ≤
∑
x∈Fn

2

|(−1)a0 | = 2n.

Moreover, the equality holds if and only if a0 = 0 and (a1, . . . , an) = v, and
the result follows.

Clearly, for d = 1, there are exactly n functions achieving the bound.

Remark 3.3. Naturally, one may generalize Conjecture 2.1 to the case when
g is of algebraic degree d. However, the bound does not always hold in this
case. For example, g = x2x3⊕x2x4⊕x3x4⊕x1⊕x2⊕x3⊕x4 is a balanced
function with algebraic degree 2. However,

4∑
i=1

∑
x∈F4

2

(−1)g(x)⊕xi⊕x1⊕x2⊕x3⊕x4 = 24 > d ·
(
d− 1

bd−12 c

)
2n+1−d = 16.

3.2 Case d = n− 1

The following lemma gives three combinatorial formulas, which will be used
afterwards.

Lemma 3.4. The following three expressions are all equal to

n · 2n−2 + (n− 1)

(
n− 2

bn−22 c

)
.
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(i) for n ≥ 4 even,
n
2
−1∑

i=0

(n− i)

(
n

i

)
+

n

4

(
n
n
2

)
;

(ii) for n ≥ 9 and mod(n, 4) = 1,

2

n−5
4∑

i=0

(n− 2i)

(
n

2i

)
+

n + 1

2
(2n−1 − 2

n−5
4∑

i=0

(
n

2i

)
);

(iii) for n ≥ 7 and mod(n, 4) = 3,

2

n−3
4∑

i=0

(n− 2i)

(
n

2i

)
+

n− 1

2
(2n−1 − 2

n−3
4∑

i=0

(
n

2i

)
).

Proof. We only prove (i) and the other two formulas can be proved similarly.
Since n is even, we have

n

4

(
n
n
2

)
=

n

4
(2

(
n− 2
n
2 − 1

)
+ 2

(
n− 2
n
2 − 2

)
)

=
n

2
(

(
n− 2
n
2 − 1

)
+

n− 2

n

(
n− 2
n
2 − 1

)
)

= (n− 1)

(
n− 2
n
2 − 1

)
.

Since (1 + x)n =
∑n

i=0

(
n
i

)
xi, the derivation

d

dx
((1 + x)n) = n(1 + x)n−1 =

n∑
i=1

i

(
n

i

)
xi−1.

Therefore,
∑n

i=1 i
(
n
i

)
= n · 2n−1, and

n
2
−1∑

i=0

(n− i)

(
n

i

)
= n · 2n−2,

and the result follows.

Lemma 3.5. Let An = 1n− In be the matrix over F2, where 1n is the n×n
matrix whose elements are all 1, and In is the identity matrix. Then the
rank of An is

rank(An) =

{
n if mod(n, 2) = 0,
n− 1 otherwise,
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Proof. If mod(n, 2) = 0, then A2
n = In and rank(An) = n. If mod(n, 2) =

1, then the determinant of An is 0 and rank(An) < n. Since An−1 is a
submatrix of An, we have rank(An) ≥ rank(An−1) = n− 1, and the result
follows.

Theorem 3.6. Conjecture 2.1 holds for d = n − 1. Moreover, the number

of g’s achieving the bound is
( (n

n
2
)

1
2(n

n
2
)

)
, for n even,

( 2
(

n
n+1
2

)
2n−1 − 2

∑n−5
4

i=0

(
n
2i

)), for mod(n, 4) = 1,

and ( 2
(

n
n+1
2

)
2n−1 − 2

∑n−3
4

i=0

(
n
2i

)), for mod(n, 4) = 3.

Proof. Since d = n − 1, g is 0-resilient. That is, g is a balanced function.
We use 0g to denote the set {x ∈ Fn

2 : g(x) = 0}. Then |0g| = 2n−1. Clearly,
If v 6= 0, then∑

x∈Fn
2

(−1)g(x)⊕v·x = 2
∑
x∈0g

(−1)v·x = 4|{x ∈ 0g : v · x = 0}| − 2n.

Let A = 1n− In, where 1n is the n×n matrix whose elements are all 1, and
In is the identity matrix. Then∑

v∈Fn
2

wt(v)=n−1

∑
x∈Fn

2

(−1)g(x)⊕v·x

= 4
∑
v∈Fn

2
wt(v)=n−1

|{x ∈ 0g : v · x = 0}| − n · 2n

= 4
∑
x∈0g

|{v ∈ Fn
2 : wt(v) = n− 1 and v · x = 0}| − n · 2n

= 4
∑
b∈Fn

2

∑
x∈0g
Ax=b

(n− wt(b))− n · 2n.

Case 1: n is even. Then by Lemma 3.5, A is invertible and Ax = b has
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exactly one solution for any b ∈ Fn
2 . Therefore,∑

b∈Fn
2

∑
x∈0g
Ax=b

(n− wt(b))

≤ n

(
n

0

)
+ (n− 1)

(
n

1

)
+ . . . + (

n

2
+ 1)

(
n

n
2 − 1

)
+

n

2

1

2

(
n
n
2

)
,

and the number of g’s such that the equality holds is
( (n

n
2
)

1
2(n

n
2
)

)
. Then by

Lemma 3.4, ∑
v∈Fn

2
wt(v)=n−1

∑
x∈Fn

2

(−1)g(x)⊕v·x ≤ 4(n− 1) ·
(
n− 2
n
2 − 1

)
.

Case 2: n is odd. Then by Lemma 3.5, the rank of A is n − 1. Clearly,
Ax = b has two solutions if wt(b) is even, and no solution otherwise. If
mod(n, 4) = 1, then∑

b∈Fn
2

∑
x∈0g
Ax=b

(n− wt(b))

≤ 2n

(
n

0

)
+ 2(n− 2)

(
n

2

)
+ . . . + 2(

n + 5

2
)

(
n

n−5
2

)
+

n + 1

2
(2n−1 − 2

n−5
4∑

i=0

(
n

2i

)
),

and the number of g’s such that the equality holds is( 2
(

n
n−1
2

)
2n−1 − 2

∑n−5
4

i=0

(
n
2i

)).
If mod(n, 4) = 3, then∑

b∈Fn
2

∑
x∈0g
Ax=b

(n− wt(b))

≤ 2n

(
n

0

)
+ 2(n− 2)

(
n

2

)
+ . . . + 2(

n + 3

2
)

(
n

n−3
2

)
+

n− 1

2
(2n−1 − 2

n−3
4∑

i=0

(
n

2i

)
),

and the number of g’s such that the equality holds is( 2
(

n
n+1
2

)
2n−1 − 2

∑n−3
4

i=0

(
n
2i

)).
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Then by Lemma 3.4,∑
v∈Fn

2
wt(v)=n−1

∑
x∈Fn

2

(−1)g(x)⊕v·x ≤ 4(n− 1) ·
(
n− 2
n−3
2

)
,

and the result follows.

4 Conclusion

In this paper, we transformed a problem in theoretical computer science
to a problem in cryptography, and proved that the conjecture proposed
by O’Donnell is equivalent to a conjecture on the cryptographic Boolean
function. We proved that the conjecture is true for d = 1, n−1, and counted
the number of f ’s such that the upper bound is achieved. We hope that
our work would attract more researchers working on cryptographic Boolean
functions to be interested in this conjecture.
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