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Abstract—Traceable range proof (TRP) plays a major role in
the construction of regulatable privacy-preserving blockchains, as
it empowers regulators with traceability of the hidden amount
in each transaction. In this paper, we give new constructions of
TRPs with improved efficiency and more regulatory functions.
In particular, we introduce sTBoRP: a simplified traceable
Borromean range proof directly from Borromean ring signature
without additional validity proofs for tracing keys, sTBoRP can
be applied for multiple regulation between different regulators,
and can be further modified to be secure against malicious
regulators. Moreover, we introduce jTBuRP: a modified traceable
Bulletproofs range proof to support joint regulation against collu-
sion attack of malicious regulators, by improving the generation
algorithm of tracing keys. We also give the security proofs for
both schemes and give the comparisons of efficiency and security.

Index Terms—Traceable range proof, regulatable blockchain,
multiple regulation, joint regulation, privacy-preserving

I. INTRODUCTION

Privacy-preserving techniques in blockchain theory have
been developed in this decade to provide a potential replace-
ment of traditional blockchain-based cryptocurrencies such as
Bitcoin [1] and Ethereum [2]. Privacy-preserving cryptocur-
rencies, represented by Monero [3] and Zerocash [4], have
realized anonymous and confidential transactions, which can
protect the transaction amount and users’ identities, making
them suitable in privacy applications such as salary, donation,
bidding, taxation, etc. A series of works have been pro-
posed during these years such as Confidential Transaction [5],
Mimblewimble [6], Dash [7], Monero [3] and Zerocash [4],
etc. Among them, Monero uses techniques from Cryptonote
[3], Ring-CT [8], Bulletproofs [9] as building blocks, it uses
linkable ring signature scheme to hide the identity of initiator,
uses Diffie-Hellman key exchange scheme to hide the identity
of recipient and uses range proof (Borromean [8], Bulletproofs
[9]) to hide the the amount of transaction.

However, the privacy-preserving cryptocurrencies are not
traceable, which may cause abuse of privacy and facilitate
illegal transactions by malicious users. It is crucial to develop
new regulatory mechanism to realize traceability of users’
identities and transaction amount. To solve this issue, a recent
work by Li et al. [10] proposes the first fully regulatable
privacy-preserving blockchain against malicious regulators,
their construction contains traceable and linkable ring signa-
ture scheme (TLRS), traceable range proofs (TBoRP, TBuRP)

and traceable scheme of long-term addresses. Their work
is an effective approach to overcome the regulatory barriers
on privacy-preserving cryptocurrency. In the construction of
TBoRP, an extra validity proof of tracing keys is needed to
prevent traceability attack (escaping from regulation), which
requires extra storage and more time for generation and
verification, making TBoRP less efficient than the original
Borromean range proof. So it is necessary to construct new
TBoPR with more compact size and less time for generation
and verification, to support the future application of cryptocur-
rency for high TPS (transactions per second). Moreover, both
TBoRP and TBuRP have only one regulator, cannot support
regulatory functions such as multiple regulation and joint
regulation, which are needed in transnational cryptocurrency
regulations between banks and different national regulators.
In this paper, we give new constructions of TRPs to realize
multiple regulation and joint regulation.

A. Regulatory Models

1) Multiple Regulation: Multiple regulation means that
there are m independent regulators (mutually distrustful) in
the blockchain, who generate the trapdoors respectively to
trace the transaction amount, without extra communication or
computation between them. A trivial solution to fulfill this task
is to run the traceable range proof for m times (with each
regulator’s trapdoor parameter respectively), which is rather
inefficient for storage and time. It remains an open problem
to realize multiple regulation between mutually distrustful reg-
ulators within one traceable range proof. We give a simplified
construction of TBoRP in this paper to solve this problem.

2) Joint Regulation: Joint regulation means that there are m
different independent branch regulators and a chief regulator
(can be considered as the central bank and branch banks),
every branch regulator generates a trapdoor to trace the partial
amount in each transaction, while the chief regulator possesses
no trapdoors and can only receive the tracing results from
all branch regulators to recover the total amount. Moreover,
we also introduce joint regulation against collusion attack of
malicious (branch) regulators, which means any number (<
m) of colluded branch regulators cannot recover any bit of
the hidden amount, unless all branch regulators are corrupted.
In this paper, we introduce a modification of TBuRP to realize
the regulatory function of joint regulation with security against
collusion attack.



B. Our Contributions

In this paper, we propose sTBoRP (simplified traceable
Borromean range proof) and jTBuRP (traceable Bulletproofs
range proof for joint regulation), to realize the functionalities
of multiple regulation and joint regulation respectively, we give
a brief introduction of them:

1) sTBoRP: In the construction of sTBoRP, we use Peder-
sen commitment c = gxha to hide the transaction amount a,
every regulator Rj generates his trapdoor yj and computes the
corresponding trapdoor parameter hj = gyj , j = 1, · · · ,m.
For a’s binary expansion a = a0 + 2a1 + · · · + 2n−1an−1,
for every bit i = 0, · · · , n − 1, prover computes m different
tracing keys TKi,j , j = 1, · · · ,m, prover also generates a ring
LiPK with two elements and generates the Borromean ring
signature for n rings. We improve the TBoRP by removing
the additional validity proofs of all TKi,j , which is used in
TBoRP to prevent traceability attack. The verifier only need
to check the validity of Borromean ring signature and the
correctness of binary expansion. All the regulators can trace
ai = 0 or 1 for every i = 0, · · · , n − 1 to compute the total
amount a = a0 + 2a1 + · · ·+ 2n−1an−1 by usage of trapdoor
yj and TKi,j , without extra communication or computation.

We can prove that any PPT adversary (including mali-
cious regulators) cannot break the completeness, soundness
of sTBoRP. In addition, sTBoRP can be further modified by
adding n key-images to achieve traceability against malicious
regulators. Compared to TBoRP, the proof size of sTBoRP
(m = 1) is reduced from (2n, 2n+5) to (2n, 2n+2), where the
(·, ·) refers to number of elements in (G,Z∗q), the generation
computation of sTBoRP is reduced from (7n+2, 4n-1) to
(6n+1, 3n+2), the verification computation of sTBoRP is
reduced from (6n+5, 6n+1) to (5n+2, 6n+1), where (·, ·)
refers to number of exponentiations and multiplications in G.
Moreover, soundness of sTBoRP (against malicious regulator)
is better than TBoRP (against honest regulator).

2) jTBuRP: In the construction of jTBuRP, similar to
TBuRP, for different generators g = (g0, · · · , gn−1) gen-
erated independently by system, all branch regulators reach
a consensus about the bit partition of transaction amount,
and generate their trapdoors, then compute the corresponding
trapdoor parameters. For a’s commitment c = hxga and binary
expansion a = a0+2a1+· · ·+2n−1an−1, the prover computes
tracing keys with their validity proofs, then finishes the rest of
Bulletproofs, note that the major improvement of jTBuRP is
the merge operations in the tracing key generation algorithm,
which brings jTBuRP with security against collusion attack.
The verifier checks the validity of Bulletproofs and the validity
proofs of all tracing keys. The branch regulators send their
tracing results to the chief regulator, who can recover the
hidden amount a, while any number of branch regulators
(< m) cannot recover any bit of a. An optional choice
of jTBuRP is to remove the chief regulator and use MPC
to recover a between all branch regulators, it is technically
feasible but is not the focus of this paper as we only focus on
the construction and modification of traceable range proofs.

In jTBuRP, soundness holds for any PPT adversary (in-
cluding malicious regulators), traceability only holds for PPT
adversary without possession of the trapdoors. And the number
of trapdoors and tracing keys can be adjusted for different
regulatory requirements in application, which gives a potential
replacement of Bulletproofs-based cryptocurrency for joint
regulation.

C. Related Works
1) Range Proofs: Range proof is a special zero-knowledge

proof to prove a committed hidden amount a lies within a
certain range [0, 2n − 1] without revealing the amount. The
Pedersen-commitment-based range proofs are used in Monero
system. In 2016, Neother et al. [8] gave the Borromean range
proof, building from the Borromean ring signature [11], with
linear proof size to the binary length of range. In 2018, Bünz
et al. [9] introduced Bulletproofs, an efficient non-interactive
zero-knowledge proof protocol with short proofs and without a
trusted setup, the proof size is only logarithmic to the witness
size and it is used in projects such as Monero, DERO [12].
There are also privacy-preserving blockchain systems such as
Qiusqius [13], Zether [14] with different commitments and
range proofs. Moreover, range proof can also be built from
zero-knowledge for arithmetic circuits, including [15]–[20].

2) Traceable Range Proofs: Traceable range proof (TRP)
is a special variant of range proof, there is a regulator who
can use trapdoors to trace the hidden amount. The zero-
knowledge property of traceable range proof only holds for
users without possession of trapdoors. Li et al. [10] proposes
the first traceable range proof, their work contains traceable
Borromean range proofs (TBoRP) and traceable Bulletproofs
range proofs (TBuRP), which are the potential replacements in
Monero-type cryptocurrency to realize the regulatory function.
To the best of our knowledge, there are no traceable range
proofs with regulatory functions such as multiple regulation
and joint regulation.

D. Organization
In section II we give some preliminaries; in section III we

give the construction and security proofs of sTBoRP; in section
IV we give the construction and security proofs of jTBuRP; in
section V we give the analysis and comparison of the schemes;
in section VI we give the conclusion.

II. PRELIMINARIES

In this paper, we use multiplicative cyclic group G to
represent elliptic group with prime order |G| = q, g is the
generator of G, group multiplication is g1 · g2 and expo-
nentiation is ga. We use H(·) to represent hash function
and negl to represent negligible functions. For verifiers, 1 is
for accept and 0 is for reject. For adversaries, PPT means
probabilistic polynomial time. The extended DDH assumption
means any PPT adversary cannot distinguish (ga, ha1 , · · · , ham)
from (ga, r1, · · · , rm), where rj is uniformly sampled from G.
The hardness of discrete logarithm problem means that any
PPT adversary cannot compute x from gx. Oracle RO refers
to the random oracle.



A. Zero-knowledge Proofs

Zero-knowledge proof system is a proof system (P, V ) in
which a prover proves to the verifier that he has a certain
knowledge but does not reveal the knowledge itself. The
formal definition is that given language L and relation R, for
∀x ∈ L, there exists a witness w such that (x,w) ∈ R, to
prove x ∈ L without disclosing w. The transcript between
prover and verifier is 〈P (x,w), V (x)〉, the proof is correct (or
wrong) if 〈P (x,w), V (x)〉 = 1(or 0). The security notions
of zero-proof system contains completeness, soundness, zero-
knowledge:

Definition 1 (Completeness): (P, V ) has completeness for
any non-uniform polynomial time adversary A,

Pr[(x,w)← A(1λ) : (x,w) /∈ R or 〈P (x,w), V (x)〉 = 1]

= 1− negl.

When the probability equals 1, then (P, V ) has perfect com-
pleteness.

Definition 2 (Soundness): (P, V ) has soundness for any
non-uniform polynomial time adversary A and x /∈ L,

Pr[(x, s)← A(1λ) : 〈P (x,w), V (x)〉 = 1] = negl.

In Σ protocols with Fiat-Shamir transformation in the ran-
dom oracle model, we use the notion of special soundness,
that is, for a 3-round interactive proof protocol, if a non-
uniform polynomial time adversary A can generate 2 valid
proofs (x, c, e1, s1), (x, c, e2, s2), then there exists a extraction
algorithm Ext which can extract a witness (x,w) ∈ R, where
c represents the commitment, eis are challenges and sis are
responses.

Definition 3 (Zero-knowledge): (P, V ) has perfect (or com-
putational) zero-knowledge, for any non-uniform polynomial
time (or PPT) adversary A,

Pr[(x,w)← A(1λ); tr ← 〈P (x,w), V (x, ρ)〉 :

(x,w) ∈ R and A(tr) = 1]

= (or ≈c)Pr[(x,w)← A(1λ); tr ← S(x, ρ) :

(x,w) ∈ R and A(tr) = 1].

In Fiat-Shamir-based protocol, the randomness of ρ is from
the output of hash function, it is said to be public coin and
the protocol is honest-verifier zero-knowledge.

1) Pedersen Commitment: Pedersen commitment [21] was
proposed in 1991, for elliptic curve (G, q = |G|, g, h), where
g is a generator of G, h is a random element with discrete
logarithm unknown to anyone.

Definition 4 (Pedersen commitment): The Pedersen com-
mitment for a is c = gxha, where x ∈ Z∗q is a blinding
element. Under the hardness of discrete logarithm, Pedersen
commitment has the following properties:
− (Hiding) Any (computational unbounded) adversary A

cannot distinguish c = gxha from c′ = gx
′
ha
′
.

− (Binding) Any PPT adversary A cannot generate another
secret a′ binding with c = gxha = gx

′
ha
′
.

− (Homomorphic) Given c1 = gxha, c2 = gyhb, then c1 ·
c2 = gx+yha+b is a new commitment for a+ b.

2) Proof of Committed Values: For commitment c =∏n
i=1 g

xi
i , we can prove the knowledge of x1, · · · , xn without

revealing them by proof of committed values:
1. Prover generates r1, · · · , rn ∈ Z∗q uniformly, computes

e = H(
∏n
i=1 g

ri
i ).

2. Prover computes zi = ri + exi for i = 1, · · · , n, output
proof π(c) = (z1, · · · , zn, e).

3. Verifier checks e ?
= H(

∏n
i=1 g

zi
i /c

e).
Proof of committed values is an extension of Schnorr sig-

nature (n = 1) with perfect completeness, special soundness
and honest verifier zero-knowledge.

B. Range proofs

1) Borromean Range Proof: Borromean range proof [8] is
used in Monero to provide the validity proof of transaction
amount (a ∈ [0, 2n−1]) by usage of Borromean ring signature
[11] and Pedersen commitment, the detailed description of
Borromean range proof is in [8].

2) Bulletproofs Range Proof: Bulletproofs, proposed by
Bünz et al. [9] in 2018, is an efficient zero-knowledge with
O(log n) proof size, and is widely used in inner-product
argument, range proof and proof for arithmetic circuits. The
Bulletproofs range proof also uses Pedersen commitment, the
description of Bulletproofs is in [9].

C. Traceable Range proofs

1) Traceable Borromean range proof: Traceable Bor-
romean range proof [10] provides the validity proof and
traceability of transaction amount (a ∈ [0, 2n − 1]) by usage
of Borromean ring signature and Pedersen commitment, please
refer to [10] for detailed description of TBoRP.

2) Traceable Bulletproofs range proof: Traceable Bullet-
proofs range proof [10] provides the same functionality as
TBoRP, with different construction and more flexible param-
eter selection, please refer to [10] for detailed description of
TBuRP.

D. Security Models

The definitions of completeness, soundness and zero-
knowledge are in II.A. Considering the existence of regulator,
who can trace the amounts of transactions, zero-knowledge
only holds for someone not possesses the trapdoor, while the
completeness and soundness remains the same as in range
proof, for any PPT adversary A. For traceable range proof,
we need another security concept called traceability. Since
traceable range proof enables regulator with ability to trace
the hidden amounts of transactions, for any PPT adversary
A (without possession of trapdoors), it is necessary that he
cannot escape from regulation (making his transaction amount
untraceable). We give the formal definition of traceability as
follows:

Definition 5 (Traceability): Traceability for traceable range
proof is defined in the following game between the simulator
S and the adversary A, simulator S runs Setup to provide



public parameters for A, A is given access to oracle RO. A
generates a commitment c for a hidden value a and the range
proof π(c), A wins the game if:

1. Verify(c, π(c)) = 1.
2. Trace(π(c), trapdoors) 6= a.

We give the advantage of A in traceability attack as follows:

AdvtraceA = Pr[A wins].

A traceable range proof is traceable if for any PPT adversary
A, AdvtraceA = negl.

Note that sTBoRP can be further modified to achieve
traceability against malicious regulators, by adding key-images
to the proof, we will introduce the modification in III.C.

III. SIMPLIFIED TBORP FOR MULTIPLE REGULATION

In this section we introduce the construction and security
proof of simplified traceable Borromean range proof (sTBoR-
P), and introduce its application for multiple regulation.
Moreover, we give the modification of sTBoRP to achieve
traceability against malicious regulators.

A. Construction

In the construction of sTBoRP, similar to TBoRP, we use
Pedersen commitment and bit expansion of amount, then add
tracing keys bitwise into the proof, and remove the validity
proofs for tracing keys in TBoRP, the sets of public keys
for Borromean ring signature is also modified to support
multiple regulation. Every regulator can use his trapdoor and
tracing keys to recover the hidden amount without additional
communication or computation.

We give the introduction of sTBoRP in the following:

Par← Setup(λ):
1. System chooses elliptic curve G with prime order q and sam-

ples independent generators g, h ← G. For j = 1, · · · ,m,
regulator Rj generates yj ∈ Z∗q as his trapdoor, computes
hj = gyj , system outputs (G, q, g, h, h1, · · · , hm) as the
public parameters.

(c, β, SK, {(ci, c′i), TKi,j}i∈[0,n−1]j∈[1,m] )← Gen(Par, a):
1. According to the public parameters and amount a ∈ [0, 2n−

1], prover Alice samples x ∈ Z∗q uniformly, computes c =
gxha as the commitment;

2. Alice computes the binary expansion a = a0 + · · · +
2n−1an−1, ai = 0, 1 for i = 0, · · · , n − 1, samples
x0, · · · , xn−1 uniformly, computes β = x−x0−· · ·−xn−1;

3. For every i = 0, · · · , n − 1, Alice computes ci =

gxih2iai , c′i = gxih2iai−2i , outputs {ci, c′i}i∈[0,n−1];
4. For every i = 0, · · · , n − 1, j = 1, · · · ,m, Al-

ice computes TKi,j = hxij , then computes ek =

H(c0, · · · , cn−1, {TKi,j}i∈[0,n−1]

j∈[1,m] , k) for k = 1, · · · ,m;
5. Alice computes LiPK = {ci ·

∏m
j=1 TK

ej
i,j , c

′
i ·
∏m
j=1 TK

ej
i,j}

for i = 0, · · · , n− 1;
6. Alice outputs (c, β, {(ci, c′i), TKi,j}i∈[0,n−1]

j∈[1,m] ) and retains
(a, SK = (x0, · · · , xn−1), {LiPK}i∈[0,n−1]).

πsTBo(c)← Prove(SK, c, LPK):
1. For message µ, Alice runs the Borromean ring signa-

ture with LPK = {L0
PK , · · · , Ln−1

PK }, computes σ ←
Rsign(SK, µ, LPK);

2. Alice outputs the sTBoRP proof πsTBo(c) = (c, β,

{ci, c′i}i∈[0,n−1], {TKi,j}i∈[0,n−1]

j∈[1,m] , σ).

1/0← Verify(πsTBo(c)):
1. Verifier computes ek = H(c0, · · · , cn−1, {TKi,j}i∈[0,n−1]

j∈[1,m] ,
k) for k = 1, · · · ,m;

2. Verifier computes LiPK = {ci ·
∏m
j=1 TK

ej
i,j , c

′
i ·∏m

j=1 TK
ej
i,j} for i = 0, · · · , n− 1;

3. For every i = 0, · · · , n − 1, verifier checks ci/c′i
?
= h2i ,

then checks gβ ·
∏n−1
i=0 ci

?
= c;

4. Verifier checks the validity of Borromean ring signature σ,
if all passed then outputs 1, otherwise outputs 0.

a∗ ← Trace(yj , πsTBo(c)), j = 1, · · · ,m:
1. For every i = 0, · · · , n− 1, Rj computes cyji ;
2. For every i = 0, · · · , n − 1, if cyji = TKi,j then outputs

a∗i = 0, otherwise outputs a∗i = 1;
3. Rj outputs a∗ = a∗0 + · · ·+ 2n−1a∗n−1 as the result.

Alg. 1. sTBoRP

Note that the Borromean ring signature Rsign (for n rings)
uses g ·

∏m
j=1 h

ej
j as the generator (basis element), correctness

and security of sTBoRP will be proved in the next subsection.
Meanwhile, the message µ contains c, {ci, c′i}i∈[0,n−1] and
other information related with the transaction, similar to Mon-
ero. Moreover, all regulators can recover the hidden amount
by their trapdoors respectively. Actually, c′i can be removed
from the proof since c′i = ci/h

2i .
sTBoRP also supports joint regulation, by generating
{TKi}i∈[0,n−1], which is a subset of {TKi,j}i∈[0,n−1]j∈[1,m] , and
modifying the generator in each ring LiPK , but sTBoRP cannot
resist collusion attack, as every branch regulator can recover
some bits of the hidden amount, the detailed description of
sTBoRP for joint regulation is in the full version.

B. Correctness and Security

1) Proof of Correctness:
Theorem 6 (Correctness of sTBoRP): For an honest user Al-

ice, she can complete sTBoRP successfully and all regulators
can trace the hidden amount correctly and independently.

Proof: According to the binary expansion a = a0 +
· · · + 2n−1an−1 of a and ci = gxih2

iai , c′i = gxih2
iai−2i ,

we know there is only one element in LiPK = {ci ·∏m
j=1 TK

ej
i,j , c

′
i ·

∏m
j=1 TK

ej
i,j}, which is a power of g ·∏m

j=1 h
ej
j known by Alice, then Alice can use the secret

keys SK = (x0, · · · , xn−1) (SKi = xi with corresponding
PKi = (g ·

∏m
j=1 h

ej
j )xi ) to finish the Borromean ring

signature for LPK = {L0
PK , · · · , L

n−1
PK }. Besides, we know

that gβ ·
∏
ci = c and ci/c

′
i = h2

i

from the Gen algorithm.
When ai = 0, we know ci = gxih2

iai = gxi , TKi,j =
hxi
j = c

yj
i for j = 1, · · · ,m. When ai = 1, we know

TKi,j = hxi
j , c

yj
i = (gxih2

i

)yj = h
xi+2iyj
j , then cyji = TKi,j

iff yj = 0, which happens with negligible probability, then all



the regulators can recover a correctly and independently, so
we get the correctness of sTBoRP. �

2) Proof of Soundness: Completeness is easily obtained
from the correctness of sTBoRP, here we prove the soundness
of sTBoRP, which means any PPT adversary with possession
of all trapdoors cannot generate a valid πsTBo(c) for c = gxha

and a /∈ [0, 2n − 1], under the hardness of discrete logarithm
and the unforgeability of Borromean ring signature.

Theorem 7 (Soundness of sTBoRP): sTBoRP has computa-
tional soundness for any PPT adversaryA, including malicious
regulator.

Proof: For c = gxha with a /∈ [0, 2n − 1], assume
A (with possession of all trapdoors) successfully outputs a
valid proof πsTBo(c), then we have gβ ·

∏n−1
i=0 ci = c and

ci/c
′
i = h2

i

. Without loss of generality, we set ci = gxihbi ,
then c′i = gxihbi−2

i

, since a /∈ [0, 2n − 1], we know there
exists at least one l ∈ {0, · · · , n − 1}, satisfying bl 6= 0 and
bl 6= 2l, otherwise gβ ·

∏n−1
i=0 ci = g

∑
xih

∑
bi = gxha with∑

bi ∈ [0, 2n − 1], then ha−
∑
bi = gβ+

∑
xi−x, so A gets

a non-trivial relation between g and h, which happens with
negligible probability. Then we have:

LlPK = {cl ·
m∏
j=1

TK
ej
l,j , c

′
l ·

m∏
j=1

TK
ej
l,j},

where ek = H(c0, · · · , cn−1, {TKi,j}i∈[0,n−1]j∈[1,m] , k) for k =
1, · · · ,m, since A knows all the relations between g and
hj for j = 1, · · · ,m, we can set TKl,j = gsjhtj , then
LlPK = {gxl+

∑
sjejhbl+

∑
tjej , gxl+

∑
sjejhbl−2

l+
∑
tjej} =

{PKl, PK
′
l} with bl 6= 0 and bl 6= 2l. Since the generator for

Borromean ring signature is g ·
∏m
j=1 h

ej
j = g1+

∑
yjej , from

the unforgeability of Borromean ring signature, we know there
is at least one public key from {PKl, PK

′
l} (without loss

of generality we set PKl) satisfying gxl+
∑
sjejhbl+

∑
tjej =

(g1+
∑
yjej )z , with z known to A. If bl +

∑
tjej 6= 0 then

A gets a non-trivial relation between g and h, which happens
with negligible probability. Then we have bl +

∑
tjej = 0,

if there exists k ∈ [1,m] s.t. tk 6= 0, then ek = (−bl −∑
j 6=k tjej)t

−1
k , which means ek can be pre-computed before

A run the hash function, which also happens with negligible
probability, then we have tj = 0 for j = 1, · · · ,m, and then
bl = 0, which contradicts with the assumptions before, then
we get the soundness of sTBoRP against malicious regulators.
�

3) Proof of Zero-knowledge:
Theorem 8 (Zero-knowledge of sTBoRP): sTBoRP is com-

putational zero-knowledge for any PPT adversary A (without
possession of trapdoors).

Proof: For every i = 0, · · · , n − 1, we consider the
effect that {TKi,j}j∈[1,m] being added into the proof, and
prove that (ci, {TKi,j}j∈[1,m]) is computational indistinguish-
able from uniform distribution when ai = 0 or 1. For-
mally, we prove for ci = gxih2

iai , c′i = gxih2
iai−2i with

ci/c
′
i = h2

i

being a constant, any PPT adversary A cannot
distinguish uniform distribution U = (r, r1, · · · , rm) from
(ci, TKi,1, · · · , TKi,m) = (gxi , hxi

1 , · · · , hxi
m) (when ai = 0)

or (ci, TKi,1, · · · , TKi,m) = (gxih2
i

, hxi
1 , · · · , hxi

m) (when
ai = 1), where U is sampled uniformly from Gm+1.

Actually, we know that (gxi , hxi
1 , · · · , hxi

m) and
(gxi , r1, · · · , rm) are computational indistinguishable
for uniformly generated xi ∈ Z∗q , under the extended DH
assumption. For g being a generator of G, the distribution
of (gxi , r1, · · · , rm) and (r, r1, · · · , rm) are identical.
Let constant u = h2

i

, we know that the distribution of
(r, r1, · · · , rm) and (ru, r1, · · · , rm) are identical. Again
from the extended DH assumption, we know (ru, r1, · · · , rm)
and (gxiu, hxi

1 , · · · , hxi
m) are computational indistinguishable.

Then we have the following relations:

(gxi , hxi
1 , · · · , hxi

m) ≈c (r, r1, · · · , rm) = U

= (ru, r1, · · · , rm) ≈c (gxiu, hxi
1 , · · · , hxi

m).

Where g, h, h1, · · · , hm, u ∈ G are constants, U ←
Gm+1, xi ← Z∗q are sampled uniformly at random.

Since (gxi , hxi
1 , · · · , hxi

m) = (ci, TKi,1, · · · , TKi,m)ai=0

and (gxiu, hxi
1 , · · · , hxi

m) = (ci, TKi,1, · · · , TKi,m)ai=1, we
know they are all computational indistinguishable from U =
(r, r1, · · · , rm) for any PPT adversaryA without possession of
trapdoors. Since all xis are uniformly generated independently
for every i = 0, · · · , n−1, then we finish the zero-knowledge
proof of sTBoRP. �

4) Proof of Traceability:
Theorem 9 (Traceability of sTBoRP): sTBoRP is traceable

for any PPT adversary A (without possession of trapdoors).
Proof: For a PPT adversary A without possession

of the trapdoors, when A finished the tracing game
with S in Definition 5, A generates a commitment c
for a hidden amount a and range proof πsTBo(c) =

(c, β, {ci, c′i}i∈[0,n−1], {TKi,j}i∈[0,n−1]j∈[1,m] , σ), We assume that
A wins the tracing game with nonnegligible advantage δ, that
is, πsTBo(c) satisfying the following:

Verify(πsTBo(c)) = 1 and ∃l s.t. Trace(πsTBo(c), yl) 6= a.

According to the soundness of sTBoRP, we know c =
gxha with a ∈ [0, 2n − 1] and ci = gxih2

iai for ev-
ery i = 0, · · · , n − 1 except for negligible probability ε1,
we set TKi,j = gsi,jhvi,j

∏m
d=1 h

ti,j,d
d , then we get ek =

H(c0, · · · , cn−1, {TKi,j}i∈[0,n−1]j∈[1,m] , k) for k = 1, · · · ,m and

LiPK = {ci ·
m∏
j=1

TK
ej
i,j , c

′
i ·

m∏
j=1

TK
ej
i,j} = {PKi, PK

′
i}.

Without loss of generality we assume PKi is the correspond-
ing signing key, then

ci ·
m∏
j=1

TK
ej
i,j = gxi+

∑m
j=1 si,jejh2

iai+vi,jej

m∏
d=1

h
∑m

j=1 ti,j,dej
d

= (g ·
m∏
j=1

h
ej
j )z = PKz

i ,

and z is known to A under the unforgeability of Borromean
ring signature. We have xi − z +

∑m
j=1 si,jej = 0, otherwise



A gets a non-trivial relation between g, h, h1, · · · , hm, which
happens with negligible probability ε2, then we have z = xi
and si,j = 0 (ej cannot be pre-computed). From similar
argument, we can also get ai = vi,j = 0, otherwise A
gets a non-trivial relation between g, h, h1, · · · , hm, which
happens with negligible probability ε3. For ∀ d ∈ [1,m], we
know h

∑m
j=1 ti,j,dej

d = hzedd from similar argument, except for
negligible probability ε4, then we have zed =

∑m
j=1 ti,j,dej

and can get ti,d,d = z = xi, ti,j,d = 0 for d 6= j, except for
negligible probability ε5 by the unpredictable of hash function,
then we have Trace(πsTBo(c), yj) = a for ∀ j ∈ [1,m] with
advantage δ −

∑
εi, which contradicts with the assumptions

before, then we get the traceability of sTBoRP. �

C. Modification

The traceability of sTBoRP only holds for any PPT adver-
sary A without possession of trapdoors, we can further modify
sTBoRP to achieve traceability against malicious regulators by
adding extra key-images to the proof, while maintaining the
functionality of multiple regulation.

We introduce the modification of sTBoRP in the following:

Par← Setup(λ):
1. System chooses elliptic curve G with prime order q and sam-

ples independent generators g, h ← G. For j = 1, · · · ,m,
regulator Rj generates yj ∈ Z∗q as his trapdoor, computes
hj = gyj , system outputs (G, q, g, h, h1, · · · , hm) as the
public parameters.

(c, β, SK, {(ci, c′i, Ii), TKi,j}i∈[0,n−1]j∈[1,m] )← Gen(Par, a):
1. According to the public parameters and amount a ∈ [0, 2n−

1], prover Alice samples x ∈ Z∗q uniformly, computes c =
gxha as the commitment;

2. Alice computes the binary expansion a = a0 + · · · +
2n−1an−1, ai = 0, 1 for i = 0, · · · , n − 1, samples
x0, · · · , xn−1 uniformly, computes β = x−x0−· · ·−xn−1;

3. For every i = 0, · · · , n − 1, Alice computes ci =

gxih2iai , c′i = gxih2iai−2i , Ii = hxi , outputs
{ci, c′i, Ii}i∈[0,n−1];

4. For every i = 0, · · · , n − 1, j = 1, · · · ,m,
Alice computes TKi,j = hxij , then computes
ek = H({ci, Ii}i∈[0,n−1], {TKi,j}i∈[0,n−1]

j∈[1,m] , k) for
k = 0, · · · ,m;

5. Alice computes LiPK = {ciIe0i ·
∏m
j=1 TK

ej
i,j , c

′
iI
e0
i ·∏m

j=1 TK
ej
i,j} for i = 0, · · · , n− 1;

6. Alice outputs (c, β, {(ci, c′i, Ii), TKi,j}i∈[0,n−1]

j∈[1,m] ), retains
(a, SK = (x0, · · · , xn−1), {LiPK}i∈[0,n−1]).

πsTBo(c)← Prove(SK, c, LPK):
1. For message µ, Alice runs the Borromean ring signa-

ture with LPK = {L0
PK , · · · , Ln−1

PK }, computes σ ←
Rsign(SK, µ, LPK);

2. Alice outputs the sTBoRP proof πsTBo(c) =

(c, β, {ci, c′i, Ii}i∈[0,n−1], {TKi,j}i∈[0,n−1]

j∈[1,m] , σ).

1/0← Verify(πsTBo(c)):
1. For k = 0, · · · ,m, verifier computes ek =

H({ci, Ii}i∈[0,n−1], {TKi,j}i∈[0,n−1]

j∈[1,m] , k);
2. Verifier computes LiPK = {ciIe0i ·

∏m
j=1 TK

ej
i,j , c

′
iI
e0
i ·∏m

j=1 TK
ej
i,j} for i = 0, · · · , n− 1;

3. For every i = 0, · · · , n − 1, verifier checks ci/c′i
?
= h2i ,

then checks gβ ·
∏n−1
i=0 ci

?
= c;

4. Verifier checks the validity of Borromean ring signature σ,
if all passed then outputs 1, otherwise outputs 0.

a∗ ← Trace(yj , πsTBo(c)), j = 1, · · · ,m:
1. For every i = 0, · · · , n− 1, Rj computes cyji ;
2. For every i = 0, · · · , n − 1, if cyji = TKi,j then outputs

a∗i = 0, otherwise outputs a∗i = 1;
3. Rj outputs a∗ = a∗0 + · · ·+ 2n−1a∗n−1 as the result.

Alg. 2. Modified sTBoRP

Note that {Ii}i∈[0,n−1] are the key-images of sTBoRP,
and the Borromean ring signature Rsign (for n rings) uses
ghe0 ·

∏m
j=1 h

ej
j as the generator (basis element), correctness

and security of modified sTBoRP easily follows from Theorem
6-9, the modified sTBoRP has traceability against malicious
regulators, which means for any PPT adversary A who pos-
sesses all trapdoors, he cannot generate invalid proofs to
escape from regulation, detailed proof will be given in the full
version. Meanwhile, the message µ contains c, {ci, c′i}i∈[0,n−1]
and other information related with the transaction, similar
to Monero. Moreover, as in sTBoRP, all regulators can also
recover the hidden amount by their trapdoors respectively. c′i
can also be removed from the proof since c′i = ci/h

2i .

IV. NEW TBURP FOR JOINT REGULATION

In this section we introduce jTBuRP, a modification of
TBuRP to realize the functionality of joint regulation against
collusion attack of malicious (branch) regulators, which means
any number (< m) of corrupted branch regulators cannot
recover any bit of the hidden amount, unless all of branch
regulators collude.

A. Construction

The main modification of construction in jTBuRP is in the
tracing key generation algorithm, we make merge operations
of tracing keys which are related with trapdoor parameters
to achieve secure joint regulation. To describe the jTBuRP
scheme more clearly, we use a example of parameters in
the construction, we set the amount bits to be n = 32,
assume there are m = 4 branch regulators RA,RB ,RC ,RD,
each regulator generates 2 trapdoors, each trapdoor is relat-
ed with 4 bits, the regulation threshold is 4 (that is, for
regulators with number less than 4, they cannot trace any
bit of the amount). In our example, the amount bit partition
P = ((4, 4)A, (4, 4)B , (4, 4)C , (4, 4)D) is a uniform case, it
should be noted that non-uniform distribution also applies to
our scheme, we omit it due to its complicated expression. We
set the chief regulator is R. In fact, the number of amount bits,
number of branch regulators, number of trapdoors, number of
threshold are not restricted, anyone can change the parameter
selection for different applications and regulatory policies.



We give the introduction of jTBuRP in the following:

Par← Setup(λ):
1. System chooses G with prime order q and generators

g, h, g0, · · · , gn−1 ∈ G, where n = 32;
2. RA generates y0, y1 ∈ Z∗q , RB generates y2, y3 ∈ Z∗q , RC

generates y4, y5 ∈ Z∗q , RD generates y6, y7 ∈ Z∗q as their
trapdoors respectively;

3. All branch regulators compute hi = g
ybi/4c
i for i =

0, · · · , n− 1;
4. System outputs (G, q, g, h,g,h, P ) as the public parameters,

where g = (g0, · · · , gn−1) ∈ Gn,h = (h0, · · · , hn−1) ∈
Gn and P = ((4, 4), (4, 4), (4, 4), (4, 4)) is the partition of
amount bits.

(A,S, c, {TKi}i=0,··· ,19, π)← Gen(Par, a):
1. According to the amount a ∈ [0, 2n − 1] and the public

parameters (G, q, g, h,g,h, P ), prover Alice samples x ∈
Z∗q uniformly, computes c = hxga as the commitment;

2. Alice computes the binary expansion a = a0 + · · · +
2n−1an−1, ai = 0, 1 for i = 0, · · · , n − 1, sets aL =
(a0, · · · , an−1), then computes aR = aL − 1n = (a0 −
1, · · · , an−1 − 1);

3. Alice samples α ∈ Zq uniformly, then computes:

A = hαgaLhaR = hαga00 · · · g
an−1
n−1 h

a0−1
0 · · ·han−1−1

n−1 ;

4. Alice samples sL, sR ∈ Znq , ρ ∈ Zq uniformly at random,
computes S = hρgsLhsR ;

5. For every j = 0, · · · , 15, Alice computes TKj =

g
α−a2j
2j g

α−a2j+1

2j+1 , then computes TK16+k =∏3
i=0(h

−α−a8i+2k+1

8i+2k h
−α−a8i+2k+1+1

8i+2k+1 ) for k = 0, · · · , 3,
the total number of TKis is 20;

6. Alice gives the validity proof π(TK0, · · · , TK19, A) for
all TKis, such that TKj is a production of g2j’s power
and g2j+1’s power for j = 0, · · · , 15, TK16+k is a product
of {h8i+2k, h8i+2k+1}i=0,··· ,3’s power for k = 0, · · · , 3,
and A ·

∏19
i=0 TKi = (h

∏
gi/

∏
hi)

α is a power of
h
∏
gi/

∏
hi;

7. Alice outputs (A,S, c, {TKi}i=0,··· ,19, π), where π =
π(TK0, · · · , TK19, A).

(π, π′, {TKi}i=0,··· ,19)← Prove(A,S, c, a, v):
1. Prover sends (A,S, c, {TKi}i=0,··· ,19, π to verifier;
2. Verifier samples y, z ∈ Zq uniformly at random, and sends

them to prover;
3. Prover computes T1, T2 and sends them to verifier;
4. Verifier samples v ∈ Zq uniformly at random, and sends it

to prover;
5. Prover computes τv, µ, t, l, r, sends them to verifier;
6. Prover outputs πjTBu = ({TKi}i=0,··· ,19, π, π

′) as the
jTBuRP result, where π′ = (T1, T2, τv, µ, t, l, r).

1/0 ← Verify(πjTBu(c)): we only introduce the verifica-
tion of π = π(TK0, · · · , TK19, A):

1. For every i = 0, · · · , 19, verifier checks the validity of TKi;
2. Verifier computes A ·

∏19
i=0 TKi and checks the validity of

A ·
∏19
i=0 TKi;

3. Verifier checks the validity of Bulletproofs result π′;
4. If all passed then outputs 1, otherwise outputs 0.

a∗ ← Trace({TKi}i=0,··· ,19, y0, · · · , y7):
1. For every j = 0, · · · , 15, all branch regulators compute

Tj = TK
ybj/2c
j and send them to the chief regulator R;

2. R searches for di ∈ {−1, 1} such that TK16 ·T0T4T8T12 =
hd00 h

d1
1 h

d8
8 h

d9
9 h

d16
16 h

d17
17 h

d24
24 h

d25
25 , outputs a∗i = 1

2
− 1

2
di for

i = 0, 1, 8, 9, 16, 17, 24, 25;

3. R searches for di ∈ {−1, 1} such that TK17 ·T1T5T9T13 =
hd22 h

d3
3 h

d10
10 h

d11
11 h

d18
18 h

d19
19 h

d26
26 h

d27
27 , outputs a∗i = 1

2
− 1

2
di

for i = 2, 3, 10, 11, 18, 19, 26, 27;
4. R searches for di ∈ {−1, 1} such that TK18 ·

T2T6T10T14 = hd44 h
d5
5 h

d12
12 h

d13
13 h

d20
20 h

d21
21 h

d28
28 h

d29
29 , outputs

a∗i = 1
2
− 1

2
di for i = 4, 5, 12, 13, 20, 21, 28, 29;

5. R searches for di ∈ {−1, 1} such that TK19 ·
T3T7T11T15 = hd66 h

d7
7 h

d14
14 h

d15
15 h

d22
22 h

d23
23 h

d30
30 h

d31
31 , outputs

a∗i = 1
2
− 1

2
di for i = 6, 7, 14, 15, 22, 23, 30, 31;

6. The chief regulator R outputs a∗ = a∗0 + · · · + 2n−1a∗n−1

as the tracing result.

Alg. 3. jTBuRP

It should be emphasized that the above scheme is an
interactive zero-knowledge proof system, we can easily turn
it into a non-interactive scheme by usage of Fiat-Shamir
transformation. The validity proof of tracing keys π =
π(TK0, · · · , TK19, A) is derived from the proof of committed
values, which is given in II.A. Moreover, the chief regulator R
can be an independent regulator with no trapdoors, who only
receives messages Tj from the branch regulators, he also can
be one of the branch regulators, it is optional according to the
actual scenario. Another option of jTBuRP is to remove the
role of chief regulator that all branch regulators can recover
the hidden amount by MPC, which is the closest approach to
“decentralization”. All solutions are technically feasible, we
do not make a choice in this paper and leave it in the future
work.

B. Correctness and Security

Completeness of jTBuRP follows from the correctness,
soundness of jTBuRP follows from the soundness of Bul-
letproofs [9], zero-knowledge and traceability of jTBuRP
only holds for PPT adversary A without possession of the
trapdoors.

1) Proof of Correctness:
Theorem 10 (Correctness of jTBuRP): The hidden amount

a in jTBuRP scheme can be correctly traced by regulators
jointly.

Proof: Tj = TK
ybj/2c
j = g

(α−a2j)ybj/2c
2j g

(α−a2j+1)ybj/2c
2j+1 =

h
α−a2j
2j h

α−a2j+1

2j+1 , for j = 0, · · · , 15, then we have for k =
0, 1, 2, 3:

TK16+k ·
3∏
i=0

T4i+k

=

3∏
i=0

(h
−α−a8i+2k+1+α−a8i+2k

8i+2k h
−α−a8i+2k+1+1+α−a8i+2k+1

8i+2k+1 )

=

3∏
i=0

(h
−2a8i+2k+1
8i+2k h

−2a8i+2k+1+1
8i+2k+1 ) =

3∏
i=0

(h
d8i+2k

8i+2k h
d8i+2k+1

8i+2k+1).

Then we get aj = 1
2 −

1
2dj ∈ {0, 1} for j = 0, · · · , n−1, and

we get the correctness of jTBuRP. �



2) Proof of Zero-knowledge:
Theorem 11 (Zero-knowledge of jTBuRP): The jTBuRP

scheme has zero-knowledge for any PPT adversary A without
possession of trapdoors.

Proof: Since TKj = g
α−a2j
2j g

α−a2j+1

2j+1 , j = 0, · · · , 15,
and TK16+k =

∏3
i=0(h

−α−a8i+2k+1
8i+2k h

−α−a8i+2k+1+1
8i+2k+1 ), k =

0, · · · , 3. Similar to [10], we can prove when Si =
gα−aii , Vi = hα+aii (i = 0, · · · , n−1) is added into the jTBuRP
proof πjTBu instead of {TKj}j∈[0,19], jTBuRP maintains the
zero-knowledge property.

As {TKj}j∈[0,19] can be computed easily from
{Si, Vi}i∈[0,n−1], then we know that {Si, Vi}i∈[0,n−1]
contains more informations than {TKj}j∈[0,19], so if adding
{Si, Vi}i∈[0,n−1] to Bulletproofs has no effects on the
zero-knowledge property, then we can get jTBuRP also has
zero-knowledge, under the DDH assumption.

As shown in [10], they have already proved that the extra
{Si, Vi}i∈[0,n−1] have no effect on zero-knowledge of Bullet-
proofs, then we get the zero-knowledge of jTBuRP. �

3) Proof of Traceability:
Theorem 12 (Traceability of jTBuRP): The jTBuRP scheme

has traceability for any PPT adversary A without possession
of trapdoors.

Proof: The traceability of jTBuRP easily follows from
the soundness of validity proof for tracing keys π =
π(TK0, · · · , TK19, A), which is the proof of committed val-
ues from II.A. Then we know π(TK0, · · · , TK19, A) has
soundness for any PPT adversary A without possession of
trapdoors, so A cannot generate invalid tracing keys to escape
from regulation, then we get the traceability of jTBuRP. �

4) Threshold Analysis: Consider the regulatory threshold of
jTBuRP, that is, any number (less than the threshold) of branch
regulators can not recover any bit of the hidden amount from
jTBuRP, this strengthen the security of jTBuRP when regula-
tors are attacked, corrupted or collusive. In the jTBuRP exam-
ple with partition P = ((4, 4)A, (4, 4)B , (4, 4)C , (4, 4)D), we
can show that any number (< 4) of branch regulators cannot
do better than guessing the hidden amount.

Theorem 13 (Security against collusion attack): The regu-
latory threshold of jTBuRP in section IV.A is 4, the hidden
amount will be leaked iff all regulators collude. In other words,
jTBuRP is zero-knowledge for any PPT adversary A (not
corrupt all regulators).

Proof: Without loss of generality, we assume a PPT adver-
sary A who corrupts RB ,RC ,RD (possessing their trapdoors
y2 · · · , y7), but does not know the trapdoors (y0, y1) of RA.

In A’s view, we prove that for any a ∈ [0, 2n − 1]
with the corresponding c = hxga, πjTBu(c) is distin-
guishable from uniform distribution. Actually, we assume
TKj = g

α−a2j
2j g

α−a2j+1

2j+1 for j = 0, · · · , 15 is replaced
with (S2j , S2j+1) = (g

α−a2j
2j , g

α−a2j+1

2j+1 ), and TK16+k =∏3
i=0(h

−α−a8i+2k+1
8i+2k h

−α−a8i+2k+1+1
8i+2k+1 ) for k = 0, · · · , 3 is

replaced with V2k =
∏3
i=0 h

−α−a8i+2k+1
8i+2k and V2k+1 =∏3

i=0 h
−α−a8i+2k+1+1
8i+2k+1 , then the extra information in πjTBu(c)

is ({Sj}j∈[0,31], {Vk}k∈[0,7]). We only need to prove that

({Sj}j∈[0,31], {Vk}k∈[0,7]) is computational indistinguishable
from uniform distribution U ← G40.

From similar argument in Theorem 11 we know that
{Sj}j∈[0,31] is computational indistinguishable from uniform
distribution U0 ← G32. Since hi = g

ybi/4c
i for i = 0, · · · , 7

with the corresponding trapdoors y0, y1 not possessed by A,
we have {h−α−ak+1

k }k=0,··· ,7 is computational indistinguish-
able from uniform distribution U1 ← G8, then we have
{Vk}k∈[0,7] is also computational indistinguishable from uni-
form distribution U1 ← G8, we get ({Sj}j∈[0,31], {Vk}k∈[0,7])
is computational indistinguishable from uniform distribution
U ← G40 for any a ∈ [0, 2n − 1]. Then for we know
jTBuRP is zero-knowledge for any PPT adversary A who does
not corrupt all regulators, and get the regulatory threshold of
jTBuRP is 4. �

V. ANALYSIS AND COMPARISON

1) sTBoRP vs. TBoRP vs. BoRP: We give a brief comparison
of efficiency between sTBoRP(m = 1), TBoRP and BoRP in
Table1, where we compare the sizes of proofs, computations
of generation and verification in each scheme as well as the
security between them, where size (#G,#Z∗q) is denoted
by number of elements in (G,Z∗q), computations of gener-
ation and verification (#exponentiation,#multiplication) are
denoted by number of exponentiations and multiplications in
G, while computations of Hash and computations in Z∗q is
ignored. Soundness and traceability refer to the corresponding
adversary type, n refers to the maximum bit length of the hid-
den amount. From Table1 we know that sTBoRP (sTBoRP’) is
more efficient than TBoRP (TBoRP’ [10]) in size, generation
time and verification time with enhanced security.

Scheme Size Generation Verification Soundness Traceability
sTBoRP (2n, 2n+2) (6n+1, 3n+2) (5n+2, 6n+1) Malicious Honest
sTBoRP’ (3n, 2n+2) (8n+2, 4n+3) (6n+3, 7n+2) Malicious Malicious
TBoRP (2n, 2n+5) (7n+2, 4n-1) (6n+5, 6n+1) Honest Honest
TBoRP’ (3n+1, 2n+7) (8n+3, 5n-1) (7n+7, 8n+2) Malicious Malicious
BoRP (n, 2n+2) (4n, 2n) (4n+1, 4n) Malicious None

Table1. sTBoRP vs. TBoRP vs. BoRP

2) jTBuRP vs. TBuRP vs. BuRP: We give a brief compar-
ison between jTBuRP, TBuRP and BuRP in Table2, where
we focus on the comparison of the extra computations
(#exponentiation,#multiplication) other than the computa-
tions in original Bulletproofs range proof (BuRP) in gen-
eration and verification between the schemes. Moreover, in
BuRP, the original size (number of elements in (G,Z∗q))
is (2dlog ne + 4, 5), and the number of computations for
generation is O(n) and verification is O(n/ log n). We assume
n = 32, then (2dlog ne + 4, 5) = (14, 5). From Table2 we
know that jTBuRP is more efficient than TBuRP in size,
generation time and verification time.

Scheme Size Extra Gen Extra Ver Soundness Traceability
jTBuRP (34, 71) (129, 88) (86, 97) Malicious Honest
TBuRP (46, 71) (129, 64) (98, 97) Malicious Honest
BuRP (14,5) (0, 0) (0, 0) Malicious None

Table2. jTBuRP vs. TBuRP vs. BuRP



VI. CONCLUSION

In this paper, we introduce new constructions of traceable
range proofs, including simplified traceable Borromean range
proof (sTBoRP) and its application in multiple regulation,
modified traceable Bulletproofs range proof (jTBuRP) and
its application in joint regulation. For sTBoRP, it can be
further modified to be secure against malicious regulators.
For jTBuRP, it has security against collusion attack between
malicious (branch) regulators.
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