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Abstract—Privacy-preserving currency exchange between dif-
ferent cryptocurrencies on blockchain remains an open prob-
lem as the existing currency exchange schemes cannot provide
anonymity of users or confidentiality of exchange amount. To
solve this problem, we introduce BPCEX: a privacy-preserving
currency exchange scheme which protects users’ identities and
the exchange amount, by usage of techniques including link-
able ring signature, range proof, Diffie-Hellman key exchange,
Pedersen commitment and UTXO swap. In BPCEX, the users’
identities are hidden to verifiers and dealmakers, while the
exchange amounts are hidden to the verifiers. BPCEX supports
floating exchange rate, partial deal and public verification,
without additional confirmation of traders, which improves
the success rate and shortens the waiting time of the deal.
Moreover, BPCEX is compatible with the regulatable privacy-
preserving blockchain system, which realizes the traceability of
users’ identities and the exchange amount to prevent money
laundering and illegal exchange, making BPCEX suitable in real-
life applications, including currency market and stock market.

Index Terms—blockchain, currency exchange, privacy-
preserving, UTXO swap, partial deal, floating exchange rate,
traceability

I. INTRODUCTION

Since the introduction of Bitcoin [1] by Nakamoto in 2008,
blockchain-based cryptocurrency has been developed rapidly
with more applications and more advanced techniques. Thou-
sands of altcoins are published to the blockchain field, among
them, Ethereum [2], Monero [3] and Zerocash [4] are famous
representatives that have been attracting increasing attentions
for their technological breakthroughs. For Ethereum, smart
contract is introduced to support Turing-complete languages
and automatic transactions, and is widely used in decentralized
applications including auction, lottery and business contract.
For Monero, it uses linkable ring signature [3] to hide the
identity of initiator, uses Diffie-Hellman key exchange to hide
the identity of recipient, and uses range proof [5], [6] to hide
the transaction amount. For Zerocash, it also realizes fully
anonymous and confidential transactions by usage of the zero-
knowledge succinct non-interactive argument of knowledge
(zk-SNARKs). It should be emphasized that both Monero and
Zerocash are built on UTXO model and not suited for smart
contract.

Currency exchange (token exchange) between different
cryptocurrencies is an important issue in real-life applications
such as international trade, cross-border payment and stock

trading. For stock trading, it can be regarded as the exchange
between currency and stock (token), which is technically
similar to the currency exchange in blockchain. Traditional
currency exchange schemes, including [7]–[9], mainly use
smart contract to realize this functionality. However, these
schemes are built on account model, and have no priva-
cy protection mechanisms to hide users’ identities and the
exchange amount, which brings about leakage of privacy.
When someone wants to reach a deal for currency exchange
with other users, without revealing the identity and amount,
the smart contract based schemes no longer work. In 2016,
Kosba et al. introduced Hawk [10]: a privacy-preserving
smart contract system which has potential to realize the
privacy-preserving currency exchange. However, Hawk uses
zk-SNARKs as building blocks, which requires CRS (common
reference string) of Gb size and is based on non-falsifiable
assumptions, making Hawk inefficient for computation and
storage (especially for mobile devices). Moreove, in Hawk,
there exists a trusted manager who is able to recover the
identities of users, as well as the exchange amount, which
weakens its privacy protection as user’s privacy will be leaked
by malicious manager. So it is necessary to construct new
currency exchange scheme to realize privacy protection with
high efficiency, and support application functions including
partial deal and floating exchange rate.

A. Our Contributions

1) Overview: In this paper, we introduce BPCEX
(Blockchain-based Privacy-preserving Currency EXchange),
which is an exchange scheme between Monero-based cryp-
tocurrencies with anonymity and confidentiality. In BPCEX,
assume there are two types of Monero-based privacy-
preserving cryptocurrencies (C1, C2) in the blockchain (with
symbols £ and $), in which every UTXO has its own public-
private keys, as well as the amount commitment and range
proof. Ordinary transactions for each Ci are same as Monero.
For currency exchange, there is a role of dealmaker in the
blockchain, who is able to match the exchange quotations
from users, and earn the reward. The BPCEX scheme mainly
consists of three stages: Quote, Match and Deal. We give a
brief introduction of each stage in the following:

Quote: For Alice who wants to exchange her coins in C1 to
coins in C2 with floating exchange rate range, Alice generates
a new UTXO and send a special transaction to the dealmaker,



with additional information including the exchange amount,
exchange rate range and the reward amount. Notice that the
secret key of new UTXO for exchange is possessed only
by Alice, the dealmaker can recover the amount of the new
UTXO, while cannot spend it as his own money, meanwhile,
the dealmaker does not know the identity of Alice due to the
privacy protection mechanisms of Monero.

Match: When a sufficient number of valid quotations have
been received by the dealmaker, he recovers the corresponding
exchange and reward amounts, then matches the matching
quotations (between Alice and Bob), computes the final ex-
change rate and the blinding elements, then sends the matching
result to the blockchain.

Deal: When verifiers receive the matching result from the
dealmaker, they verify the validity of matching operation
without any knowledge of the exchange amount and identities,
except for the final exchange rate, then executes UTXO swap
as the finish of the exchange, then Alice and Bob can receive
the new money from the exchange deal respectively.

In BPCEX, the final exchange rate is publicly known,
the verifier can only check the validity of quotations and
matching outputs, cannot recover the exchange amount and
users’ identities, the dealmaker can recover the exchange
amount to execute matching operation, but cannot recover
users’ identities as well, this is an effective approach to
realize privacy-preserving currency exchange. Moreover, the
efficiency of BPCEX exchange is similar to the ordinary
Monero transactions, with a little more computations by the
dealmaker to match the quotations, the users only need to wait
for 2 blocks to receive the new money.

Note that there are several similarities between the deal-
maker (this paper) and the manager (in [10]), as both of
them can recover some privacy information from the quotation
transaction (or private contract) and execute the matching task
(or execute the code in private contract). Nevertheless, there
are still some major differences between BPCEX and Hawk,
a brief comparison is given in the following:

1. Hawk is based on Ethereum and Zerocash, while BPCEX
is built on Monero system.

2. In Hawk, users’ identities are known to the manager
and will be leaked if the manager is malicious, while
in BPCEX, the dealmaker does not know the users’
identities, which realizes a higher level of anonymity.

3. In Hawk, after executing the codes in private contract,
the manager need to generate a zk-SNARKs proof to
prove the private contract is correctly executed, and this
stage takes over 1 minute to compute with Gb-sized
CRS, which means both users (Alice and Bob) have to
wait for over 1 minute to receive the swapped coins. In
BPCEX, after matching users’ quotations, the dealmaker
only need to publish the matching result including the
final exchange rate and the blinding elements directly to
the verifiers, without additional zero-knowledge proofs,
this stage takes very little time, which helps to reduce
the waiting time to receive their swapped coins for both
users.

2) Floating Exchange Rate: BPCEX supports floating ex-
change rate during the Quote and Match stages, for a user
Alice, she publishes the exchange rate range α : (β ± γ)
to the blockchain in the stage Quote, for example, it can
range from 1 : 1.95 to 1 : 2.05 as Alice’s accepted exchange
range. The dealmaker extracts the exchange rate range from
all quotations in the Match stage, compares and computes the
corresponding amounts (including exchange amount, reward
amount, accepted exchange range), then decides which two
quotations to be matched and publishes the final exchange
rate.

3) Partial Deal: Generally, in real-life currency exchange,
the amounts of money between the two parties are not al-
ways matching exactly. For example, Alice has £1000 and
wants to exchange it for $1950→$2050, with rate range
1 : 1.95 → 1 : 2.05, while Bob has $200 and wants to
exchange it for £99→£101 with range 0.99 : 2 → 1.01 : 2,
their exchange rates is matching, but not for the amount,
so the function of partial deal is a major requirement in
construction of currency exchange schemes. In BPCEX, we
introduce additional commitments and partition threshold to
realize partial deal, which makes BPCEX also suitable for
privacy-preserving stock exchange.

4) Towards Regulation: The full privacy protection in
Monero-based cryptocurrency may cause abuse of privacy,
and can commit crimes such as illegal exchanges and money
laundering, which will become a negative factor for the
application of BPCEX. In this paper, we construct a traceable
BPCEX scheme by usage of TLRS [11] (traceable and linkable
ring signature) and TRP [11] (traceable range proof) as the
replacements to the original schemes (linkable ring signature,
range proof) in Monero, to ensure all the exchanges are
traceable by the regulator, while maintaining private to the
dealmakers and verifiers.

B. Related Works

1) Privacy-preserving Techniques: Monero [3] is intro-
duced in 2013 by Saberhagen who gave the initial construc-
tion of anonymous cryptocurrency by usage of linkable ring
signature [12]. In 2016, Noether et al. [5] introduced Ring-
CT protocol to realize the confidential transaction to hide the
amount of transaction, by usage of Borromean range proof
which is built directly from Borromean ring signature [13]. In
2018, Bünz et al. introduced Bulletproofs [6], an efficient non-
interactive zero-knowledge proof protocol with short proofs
and without a trusted setup, the proof size is only logarithmic
to the witness size. In 2019, Yuen et al. [14] proposed Ring-CT
3.0, a new Bulletproofs-based confidential transaction system
with smaller size and better efficiency.

In 2014, Ben-Sasson et al. [4] proposed Zerocash and
zk-SNARKs, which is another type of privacy-preserving
cryptocurrency with anonymity and confidentiality. Several
follow-up works has been proposed, including libSNARK
[15], zkSTARK [16], Aurora [17], Hyrax [18], Libra [19] and
Supersonic [20].



2) Privacy-preserving Smart Contract: In 2016, Kosba et
al. proposed Hawk [10], the first privacy-preserving smart
contract system by usage of zk-SNARKs, has potential in
applications such as sealed auction, crowdfunding and rock
paper scissors, it also can be used in currency exchange
(similar to sealed auction).

C. Organization

In section II we give some preliminaries; in section III we
introduce UTXO swap and give the construction of BPCEX;
in section IV we introduce the traceable BPCEX to realize the
regulatory function; in section V we give the conclusion.

II. PRELIMINARIES

In this paper, we use multiplicative cyclic group G to repre-
sent elliptic group with prime order |G| = q, g is the generator
of G, group multiplication is g1 · g2 and exponentiation is ga.
We use H(·) to represent hash function and negl to represent
negligible functions. For verifiers, 1 is for accept and 0 is
for reject. For adversaries, PPT means probabilistic polyno-
mial time. The DDH assumption means any PPT adversary
cannot distinguish (ga, ha) from (ga, r), where r is uniformly
sampled from G. The hardness of discrete logarithm problem
means that any PPT adversary cannot compute x from gx.

A. Linkable Ring Signature

Ring signature is a special type of signature scheme, in
which signer can sign on behalf of a group chosen by
himself, while maintaining anonymous within the group, ring
signature was first proposed by Rivest, Shamir and Tauman
[21] in 2001, several follow-up works including [22]–[24] have
improvements in both efficiency and security.

Linkable ring signature is a variant of ring signature, which
has the function of linkability, that is, when two ring signatures
are signed by the same signer, they are linked by the algorithm
Link, linkable ring signature is used in Monero to prevent
double spending. The first linkable ring signature is proposed
in 2004 [25], several improvements and modifications have
proposed, including [12], [14], [26]. Monero uses MSLAG
[5] as building blocks.

Monero has no regulatory functions as the anonymity of
linkable ring signature is strong and the signer’s identity
is untraceable. To solve this problem, Li et al. proposed a
traceable and linkable ring signature (TLRS) [11] to provide
the traceability of signer’s identity. We will use TLRS to
construct the traceable BPCEX.

B. Pedersen Commitment

Pedersen commitment [27] was proposed in 1991, for
elliptic curve (G, q = |G|, g, h), where g is a generator of
G, h is a random element with discrete logarithm unknown to
anyone.

Definition 1 (Pedersen commitment): The Pedersen com-
mitment for a is c = gxha, where x ∈ Z∗q is a blinding
element. Under the hardness of discrete logarithm, Pedersen
commitment has the following properties:

1. (Hiding) Any (computational unbounded) adversary A
cannot distinguish c = gxha from c′ = gx

′
ha
′
.

2. (Binding) Any PPT adversary A cannot generate another
secret a′ binding with c = gxha = gx

′
ha
′
.

3. (Homomorphic) Given c1 = gxha, c2 = gyhb, then c1 ·
c2 = gx+yha+b is a new commitment for a+ b.

C. Range Proof
Range proof is a zero-knowledge proof to prove a commit-

ted hidden value lies within a certain range without revealing
the value. The Pedersen-commitment-based range proofs are
used in Monero system. In 2016, Neother et al. [5] gave the
Borromean range proof, building from the Borromean ring
signature [13], with linear proof size to the binary length of
range. In 2018, Bünz et al. [6] introduced Bulletproofs, an
efficient non-interactive zero-knowledge proof protocol with
short proofs and without a trusted setup, the proof size is only
logarithmic to the witness size.

For value a ∈ [0, 2n − 1] and the corresponding com-
mitment c = gxha, prover computes the binary expansion
a = a0 + · · ·+2n−1an−1, ai = 0, 1 for i = 0, · · · , n− 1, and
prove ai = 0, 1 for every i = 0, · · · , n − 1, without leakage
of the value. Both Borromean and Bulletproofs achieves
completeness, soundness and zero-knowledge property, please
refer to [5], [6] for detailed description.

In 2019, Li et al. proposed the first traceable range proof
(TBP) [11] to realize the traceability of the hidden amount by
usage of trapdoors, tracing keys and zero-knowledge proofs.
The hidden amount in TRPs remains private to verifiers,
but can be traced by the regulators with possession of the
trapdoors. We will use traceable range proof to construct the
traceable BPCEX.

D. Monero
In Monero system, every UTXO Uα has its public-private

keys (PKα, SKα), the SKα is known only by the owner
of Uα, and the amount of Uα is hidden by the Pedersen
commitment. When spending Uα, the owner (initiator) chooses
the receiver, generates the output of transaction, including
the output amount, new UTXO and its public key, then the
initiator chooses another n irrelevant UTXOs (denoted by
U1, · · · , Un), together with Uα, as the inputs of the transaction,
uses linkable ring signature to sign the transaction, with public
key set LPK = {PKα, PK1, · · · , PKn} (with randomized
arrangement). The receiver can recover the output amount and
the private key (only known by the receiver) of the new UTXO
by Diffie-Hellman key exchange, then the receiver can receive
the money to his wallet. During the transaction, range proofs is
used for proving the validity of the hidden amount (in range
[0, 2n−1]), linkable ring signature is used for anonymity of
initiator, Diffie-Hellman key exchange is used for anonymity
of receiver. For detailed description of Monero, please refer
to [3], [5].

III. INTRODUCTION OF BPCEX
In this section we give the construction of BPCEX, first

we introduce the UTXO swap technique, which is the key



procedure to realize currency exchange in the Deal stage,
then we give the detailed description of BPCEX (for exact
matching) and proof of correctness and security. In the last
we give the modification of BPCEX to achieve partial deal.

A. UTXO Swap

Assume there are two types of Monero-based cryptocurren-
cies (C1, C2) in the blockchain, for UTXO U1 in C1 (owned
by Alice) and U2 in C2 (owned by Bob), the algorithm of
UTXO swap is to swap the corresponding public-private keys
between U1 and U2 without changing the hidden amounts
and Pedersen commitments of them. After UTXO swap, the
new UTXO U ′1 is owned by Bob and U ′2 is owned by Alice,
which means Alice and Bob exchange their UTXOs success-
fully. Fig.1 shows the operation in UTXO swap, denoted by
(U ′1, U

′
2)← Swap(U1, U2), where U1, U

′
1 ∈ C1, U2, U

′
2 ∈ C2.

Fig. 1. UTXO swap.

It should be emphasized that if Alice does not know the
hidden amount b and the blinding element y in c2 = gyhb,
she still cannot spend U ′2, which is the main challenge to
construct currency exchange scheme directly from UTXO
swap. A simple solution is to let the dealmaker send the
encryption of b, y to Alice in the Match stage (using PK ′2
to encrypt), but when the dealmaker is malicious, he gives the
wrong ciphertext to Alice, the verifiers cannot find any error
during verification, as all the information are hidden to the
verifiers. In the construction of BPCEX, we solve this problem
by publishing the final exchange rate (by dealmaker) which
has no effects on the privacy of the scheme, but can help both
users to recover the hidden amounts and blinding elements cor-
rectly without any additional encryption and decryption, and
can prevent malicious dealmaker from maliciously matching
(including incorrect matching, incomplete matching, detailed
description of malicious dealmaker is in III.D).

B. Construction

In this subsection we give the construction of BPCEX
for exact matching, which is a simpler scheme can help
readers have a more direct understanding of the techniques in
BPCEX, including usage of exchange rate, usage of Pedersen

commitment in Match stage, privacy recovery by users. Then
we give the modified scheme to achieve partial deal in III.E.

The BPCEX consists of six algorithms: Setup, Quote,
Match, Deal, Verify and Receive:

(Par,Adds,Keys)← Setup(λ):
1. System chooses elliptic curve G with prime order q and

a generator g ∈ G, then generates another independent
element h ∈ G whose discrete logarithm is unknown to
anyone (optional, use hash to point to compute h), system
outputs (G, q, g, h) as the public parameters;

2. Alice and Bob generate their long-term addresses for each
cryptocurrency respectively, similar to Monero;

3. The dealmaker generates his public-private key pair
(PKd, SKd) = (gxd , xd) and his long-term address Addd.

Alg. 1. Setup

Assume Alice wants to exchange her UTXO Uα (with
amount aα, commitment cα = gxαhaα , public-private keys
(PKα, SKα)) in C1 to coins in C2, she needs to submit an
exchange order to the dealmaker, that is the Quote stage.

(LU , EA, RA, σA, πA, UA, U
′
A)← Quote(Uα, SKα):

1. Alice computes the amount for exchange a and the amount
of reward a′, satisfying aα = a + a′, then samples ran-
dom blinding elements x, x′ ∈ Z∗q and computes the new
commitments cA = gxha, c′A = gx

′
ha
′
, then generates the

range proof πA = (πRP (cA), πRP (c
′
A)). Notice that cA is

the commitment of the UTXO UA for exchange (pending),
and c′A is the commitment of the UTXO U ′A for reward
(pending), and πRP refers to range proof;

2. Alice uniformly generates the public-private key pair
(PKA, SKA) = (gxA , xA) (with xA only known by Alice)
for UA, and generates the public key PK′A for U ′A. It
should be emphasized that the generation of PK′A is same
as in Monero, only the dealmaker (receiver) can recover
the corresponding secret key SK′A. Then Alice outputs
UA = (PKA, cA), U ′A = (PK′A, c

′
A);

3. Alice computes EA = EncK(a, a′, x, x′) by standard sym-
metric encryption algorithm, such as AES, where K =
PKxA

d = gxAxd is the Diffie-Hellman key exchange;
4. Alice chooses another n irrelevant UTXOs: U1, · · · , Un

(with commitments c1, · · · , cn), as the hiding ele-
ments, then computes the set of input UTXOs LU =
{Uα, U1, · · · , Un} and the corresponding public key
sets L1

PK = {PKα, PK1, · · · , PKn}, L2
PK =

{cα(cAc′A)−1, c1(cAc
′
A)
−1, · · · , cn(cAc′A)−1} (with ran-

domized arrangement), this step is same as Monero;
5. Alice decides the exchange rate range RA, for example 1 :

1.95→ 1 : 2.05;
6. Alice runs the multilayered linkable ring signature Rsign:

σA = Rsign(SKα, SK
′
α;LU , EA, RA, πA, UA, U

′
A), out-

puts the quotation QA = (LU , EA, RA, σA, πA, UA, U
′
A).

Alg. 2. Quote (Alice)

Notice that the Quote algorithm is similar to the ordinary
transactions in Monero, with difference in the generation
of (PKA, SKA), where SKA is only known by Alice, not
the receiver (in Monero), another difference is in Quote,
extra information RA is added for matching the quotation.
Moreover, in step 3, one can also use asymmetric encryption
EA = EncPKd(a, a

′, x, x′) which can be recovered by deal-



maker, the choice of encryption is not restricted; in step 6, one
of the signing key is SK ′α = xα − x − x′, the multilayered
linkable ring signature (MSLAG [5]) is same as Monero.

Similar to Alice, Bob also submits an exchange order to the
dealmaker, assume Bob wants to exchange his UTXO Uβ (with
amount aβ and commitment cβ) in C2 to coins in C1, he runs
the Quote algorithm to generate the quotation output QB =
(L′U , EB , RB , σB , πB , UB , U

′
B) ← Quote(Uβ , SKβ), where

UB = (PKB , cB), U ′B = (PK ′B , c
′
B), cB = gyhb, c′B =

gy
′
hb
′

and EB = EncK′(b, b′, y, y′).

For the dealmaker, he can extract all the valid quotations
from the blockchain, then match the quotations to earn the
reward. In the following we assume that the quotations from
Alice and Bob are matching, we call the dealmaker David:

(σd, z, cd, rd, QA, QB)← Match(QA, QB , SKd):
1. David receives all the valid quotations (QA, QB) from the

blockchain, computes K = PK
xd
A ,K′ = PK

xd
B by his

secret key SKd, and recovers the corresponding privacy
information (a, a′, x, x′) ← DecK(EA), (b, b′, y, y′) ←
DecK′(EB);

2. David checks cA
?
= gxha, c′A

?
= gx

′
ha
′
, cB

?
= gyhb, c′B

?
=

gy
′
hb
′
, if all passed then continues, otherwise aborts;

3. David decides to match the quotation QA, QB , if a : b is
in RA ∩RB (the amounts of rewards (a′, b′) are also taken
into consideration by David to make the decision);

4. David computes the final exchange rate rd = γ : θ = a : b,
for example when a = £1000, b = $1980, rd = γ : θ =
50 : 99 with γ = 50, θ = 99, and rd is publishes as (γ, θ);

5. David computes cd = cθA/c
γ
B and z = xθ − yγ;

6. David signs σd = Sign(SKd; z, cd, rd, QA, QB) and out-
puts the matching result Md = (σd, z, cd, rd, QA, QB).

Alg. 3. Match

The verifiers are responsible to check the validity of all the
transactions and exchanges in the blockchain. For ordinary
transactions, verifications are same as in Monero; for currency
exchanges, additional verifications for Match are needed,
while the verifications for Quote are similar as in Monero:

1/0← Verify(QA):
1. For the verification of Quote, similar to Monero, the veri-

fiers check the validity of L1
PK and L2

PK ;
2. Then the verifiers check the validity of σA and πA;
3. If all passed then outputs 1, otherwise outputs 0.

1/0← Verify(Md):
1. For the verification of Match, verifiers check whether rd lies

in RA ∩RB ;
2. Then the verifiers check cθA/c

γ
B

?
= cd and gz ?

= cd;
3. Then the verifiers check the validity of σd;
4. If all passed then outputs 1, otherwise outputs 0.

Alg. 4. Verify

The Deal is executed after all the verifications are passed:

(U∗A, U
∗
B)← Deal(QA, QB ,Md):

1. When all the verifications are passed, verifiers run UTXO
swap algorithm to get the swapped UTXOs (U∗B , U

∗
A) ←

Swap(UA, UB);
2. Verifiers revoke the old UTXOs (UA, UB) and add new

UTXOs (U∗A, U
∗
B , U

′
A, U

′
B) to the system, where U∗A ∈ C2

is owned by Alice, U∗B ∈ C1 is owned by Bob and
U ′A ∈ C1, U ′B ∈ C2 are owned by David.

Alg. 5. Deal

All participants (Alice, Bob, David) are able to receive the
UTXOs when Deal is done, then they can spent the new
money as they wish.

(b∗, y∗)← Receive(a, x,Md, U
∗
A) (Alice):

1. For a valid Deal output of the exchange U∗A = (PKA, cB),
Alice computes b∗ = aθγ−1;

2. Alice computes y∗ = (xθ − z)γ−1;
3. Alice checks gy

∗
hb
∗ ?
= cB , if passed then receives U∗A to

her wallet.
(a∗, x∗)← Receive(b, y,Md, U

∗
B) (Bob):

1. For a valid Deal output of the exchange U∗B = (PKB , cA),
Bob computes a∗ = bγθ−1;

2. Bob computes x∗ = (yγ + z)θ−1;
3. Alice checks gx

∗
ha
∗ ?
= cA, if passed then receives U∗B to

his wallet.
(SK′A, SK

′
B , a

′, b′, x′, y′)← Receive(QA, QB , SKd) (David):
1. David recovers (a′, b′, x′, y′) by usage of his secret key

SKd, then checks c′A
?
= gx

′
ha
′
, c′B

?
= gy

′
hb
′
, this step

has been done in Match;
2. David computes the secret keys (SK′A, SK

′
B) of the reward

UTXO (U ′A, U
′
B), which is same as in Monero;

3. David receives the (U ′A, U
′
B) to his wallet.

Alg. 6. Receive

In the stage Match, if the ciphertext EA, EB is invalid,
David will abort and sign a cheat message for the corre-
sponding quotations, then the verifiers will directly revoke
the UTXOs in the invalid quotations as the punishment, this
setting can prevent dishonest users from spamming quota-
tions. Meanwhile, in the generation of rd = (γ, θ), David
samples u ∈ Z∗

2blog qc−N
uniformly at random, then computes

γ = au, θ = bu to ensure the computation of (γ, θ) does
not exceed q (no boundary crossing occurs), where N is the
maximum amount length in the cryptocurrency (N = 32 in
Monero).

For Alice and Bob, they can withdraw the quotations when
there are no suitable matching quotations by signing the
withdraw information, then they receive (UA, UB) to their
wallets respectively, the dealmaker can still get the reward but
cannot make any matching after the quotation is withdrawn.
For (UA, UB), it cannot be spent before it is withdrawn, that is
to say, (UA, UB) is in a pending state and cannot be transacted.

For a complete currency exchange in BPCEX, the waiting
time for both Alice and Bob is at least 2-block generation
time, where in block Blockm−1 they submit the quotations,
in block Blockm the dealmaker finishes Match and in block
Blockm+1 the verifiers finish the UTXO swap and Deal.



Fig. 2. Waiting blocks.

C. Correctness

Theorem 2 (Correctness of BPCEX): For honest users Alice
and Bob (with matching quotations), and honest dealmaker
David, they can successfully finish the currency exchange:
Alice and Bob can receive the swaped UTXOs and David
can receive the reward correctly.

Proof: If all the messages in Quote, Match are correctly
generated, then we get rd = γ : θ = a : b and z = xθ − yγ,
then cθA/c

γ
B = (gxha)θ/(gyhb)γ = gxθ−yγhaθ−bγ = gz = cd,

then they can pass the verification. Meanwhile, when the deal
is done, Alice computes b = aθγ−1, y = (xθ − z)γ−1 =
yγγ−1, Bob computes a = bγθ−1, x = (yγ+z)θ−1 = xθθ−1.
Then Alice and Bob can recover the hidden amounts and
blinding elements respectively, then they can receive the new
UTXOs to their wallets.

For David, he can recover (a′, b′, x′, y′) by usage of his
secret key SKd, and can generate the private keys for U ′A and
U ′B correctly (from the correctness of Monero), then he can
receive the rewards to his wallet. �

D. Security

1) Security Requirements: The security requirements of
BPCEX contains anonymity, confidentiality, double-spending
resistance and malicious dealmaker resistance. We introduce
these requirements respectively:

1. Anonymity of BPCEX is similar to Monero, it is required
that the identity of user in the exchange cannot be recov-
ered by other parties, including the dealmaker, veirfiers
and the counterparty (for Alice, her counterparty is Bob),
this feature makes BPCEX a completely anonymous
currency exchange scheme.

2. Confidentiality of BPCEX is that the exchange amounts
(a, b) and blinding elements (x, y) are hidden to other
parties (excluding the dealmaker and the counterparty),
the definition of confidentiality of BPCEX is weaker
than Monero, as the amounts and blinding elements of
the swaped UTXOs can be recovered by the dealmaker.
Meanwhile, the final exchange rate is published as rd =
(γ, θ), as well as z = xθ − yγ, which may bring about
leakage of the privacy if one of a, b, x, y is disclosed.

3. Double spending Resistance of BPCEX is similar to
Monero that any user cannot double spend his UTXOs
in C1 or C2, an extra requirement of BPCEX is that during
the exchange, any user cannot spend his original UTXOs.
For example, in the stages of Quote, Match, Deal, Alice
cannot spend Uα, UA, after the stage Deal, she can only
spend the swaped UTXO U∗A.

4. Malicious Dealmaker Resistance of BPCEX means
that the malicious dealmaker cannot spend the UTXOs
(UA, UB) in the exchange, and he cannot break the
anonymity of users and anonymity of UTXOs. More-
over, he cannot make incorrect matching and incomplete
matching, which means he cannot make a match that is
incorrect (a : b 6= γ : θ), nor make a match that is
incomplete (Alice cannot recover the amount or blinding
element of U∗A from the output of a valid Deal).

2) Proof of Anonymity:
Theorem 3: BPCEX is an anonymous currency exchange

scheme with UTXO anonymity and addresses anonymity.
Proof: In BPCEX, user Alice makes a special transaction to

the dealmaker (and herself) in the Quote stage, the anonymity
of the transaction is same as Monero: using linkable ring
signature to hide the identity of the input UTXO (Uα) among
other UTXOs ({U1, · · · , Un}). The anonymity of input UTXO
is derived from the anonymity of linkable ring signature. For
the uniformly sampled public-private key pair (PKA, SKA)
of UA, it has no relationship with Alice’s long-term address,
then any adversary cannot recover Alice’s long-term address
from the exchange, then we get the UTXO anonymity and
addresses anonymity of BPCEX. �

3) Proof of Confidentiality:
Theorem 4: BPCEX has 1/2blog qc−N amount confidentiali-

ty and blinding element confidentiality for any PPT adversary
except for the dealmaker and the exchange parties.

Proof: For the range proofs πA = (πRP (cA, c
′
A)), πB =

(πRP (cB , c
′
B)) in the exchange, we know that the proofs

πA, πB will not leak any information of the exchange amounts
and the blinding elements, this feature is similar to Monero.
The additional messages related with the exchange amount
in BPCEX contains the ciphertext EA, EB , the exponent z
and the final exchange rate rd, where EA, EB will not leak
any information according to the semantic security of the
encryption algorithm. Moreover, rd = (γ, θ) = (au, bu) with
uniformly sampled u ← Z∗

2blog qc−N
by the dealmaker, there

are 2blog qc−N possible amounts of (a, b) if rd is published.
The possibility of correctly guessing the right amount of
(a, b) is 1/2blog qc−N , then we get the 1/2blog qc−N amount
confidentiality of BPCEX for any PPT adversary except for
the dealmaker and the exchange parties.

For the blinding elements (x, y), we know that any PPT
adversary cannot recover x, y by usage of z = xθ − yγ, γ, θ,
then we get the blinding element confidentiality of BPCEX for
any PPT adversary except for the dealmaker and the exchange
parties. �

4) Proof of Double spending Resistance:
Theorem 5: Double spending is prevented in BPCEX for any

PPT adversary, assuming the majority of verifiers are honest
(the consensus is valid).

Proof: In the Quote stage, the double spending prevention
of Uα, Uβ is from the linkability of linkable ring signature,
which is same as Monero. Moreover, for UTXOs UA, UB
which are pending to exchange, they can only be spent after
the quotation is withdrawn, according to the honesty of the



verifiers, who will not let any pending UTXO appear in a
valid transaction. Moreover, when the Deal is done, UA, UB
is removed and U∗A, U

∗
B is added into the system, the double

spending prevention of U∗A, U
∗
B is also same as Monero, then

we finish the double spending prevention of BPCEX. �

5) Proof of Malicious Dealmaker Resistance:

Theorem 6: BPCEX can prevent malicious dealmaker from
spending user’s UTXO, recovering identity of user and identity
of input UTXO. BPCEX can also prevent malicious dealmaker
from making a match that is incorrect or incomplete.

Proof: Since the public-private key pair (PKA, SKA) is
generated by Alice, the dealmaker cannot learn any informa-
tion about SKA, then he cannot spend the swaped UTXO
U∗A after the Deal is done. Moreover, the dealmaker cannot
recover the identity of Alice and the identity of Uα, according
to the anonymity of BPCEX in Theorem 3.

For the prevention of incorrect match and incom-
plete match, we prove that, for any valid Match result
(σd, z, cd, rd, QA, QB) passed by the verifiers, we have a :
b = γ : θ and users can recover the exchange amounts
(a, b) and blinding elements (x, y) correctly. In fact, for
cA = gxha and cB = gyhb, if gz = cθA/c

γ
B , then we know

gz = gxθ−yγhaθ−bγ . If aθ − bγ 6= 0, then the dealmaker
gets a nontrivial relation between g and h, which contradicts
with the hardness of discrete logarithm problem, then we get
aθ − bγ = 0 with a : b = γ : θ, and both users can recover
the exchange amount (a, b) with the help of (γ, θ). Moreover,
gz = gxθ−yγhaθ−bγ = gxθ−yγ , then z = xθ − yγ and both
users can recover x, y with the help of z. �

E. Modification

The BPCEX introduced in III.B only supports exact deal,
which means the exchange amounts (a, b) can reach a deal
satisfying a : b ∈ RA ∩ RB . However, in real-life currency
exchange, the amounts in the quotation are not always match-
ing for a full deal, then partial deal is needed in BPCEX to
increase the success rate of exchange. We give the modified
Quote’, Match’ and Deal’ to realize this functionality.

In the modified scheme, we introduce a new concept
called UTXO partition: for a UTXO U with amount a
and commitment c = gxha, we partition U into U1, U2

by using proportion of deal τ ∈ [0, 1], with the amount
in U1 being τa and amount in U2 being (1 − τ)a, and
the corresponding commitments of U1 and U2 become
c1 = gx1hτa and c2 = gx2h(1−τ)a. For example, when
c = gxh1000 with τ = 0.1 (10% of the amount is partitioned),
then c1 = gx1h100 and c2 = gx2h900 is the partition results.
In the construction of modified Match’, proportion of deal τ
is added into the scheme to realize partial deal.

(LU , EA, RA, σA, πA, UA, U
′
A, SA)← Quote’(Uα, SKα)

1. Alice computes the amount for exchange a and the amount
of reward a′, satisfying aα = a + a′, then samples ran-
dom blinding elements x, x′ ∈ Z∗q and computes the new
commitments cA = gxha, c′A = gx

′
ha
′
, then generates the

range proof πA = (πRP (cA), πRP (c
′
A)). Notice that cA is

the commitment of the UTXO UA for exchange (pending),
and c′A is the commitment of the UTXO U ′A for reward
(pending), and πRP refers to range proof;

2. Alice uniformly generates the public-private key pair
(PKA, SKA) = (gxA , xA) (with xA only known by Alice)
for UA, and generates the public key PK′A for U ′A. It
should be emphasized that the generation of PK′A is same
as in Monero, only the dealmaker (receiver) can recover
the corresponding secret key SK′A. Then Alice outputs
UA = (PKA, cA), U ′A = (PK′A, c

′
A);

3. Alice computes EA = EncK(a, a′, x, x′, rA) by standard
symmetric encryption algorithm, such as AES, where K =
PKxA

d = gxAxd is the Diffie-Hellman key exchange, rA is
uniformly sampled in Z∗q ;

4. Alice chooses another n irrelevant UTXOs: U1, · · · , Un
(with commitments c1, · · · , cn), as the hiding ele-
ments, then computes the set of input UTXOs LU =
{Uα, U1, · · · , Un} and the corresponding public key
sets L1

PK = {PKα, PK1, · · · , PKn}, L2
PK =

{cα(cAc′A)−1, c1(cAc
′
A)
−1, · · · , cn(cAc′A)−1} (with ran-

domized arrangement), this step is same as Monero;
5. Alice decides the exchange rate range RA;
6. Alice computes si = gH(rA,i) for i = 1, · · · ,MA, where

MA is the maximum number of UTXO partitions (set by
Alice), then gets SA = {s1, · · · , sMA};

7. Alice runs the multilayered linkable ring signature Rsign:
σA = Rsign(SKα, SK

′
α;LU , EA, RA, πA, UA, U

′
A, SA),

outputs QA = (LU , EA, RA, σA, πA, UA, U
′
A, SA).

Alg. 7 Quote’ (Alice)

Bob also submits an order to exchange his Uβ (with amount
aβ and commitment cβ) in C2 to coins in C1, he runs the
Quote’ algorithm to generate the quotation output QB =
(L′U , EB , RB , σB , πB , UB , U

′
B , SB) ← Quote’(Uβ , SKβ),

where UB = (PKB , cB), U ′B = (PK ′B , c
′
B), cB =

gyhb, c′B = gy
′
hb
′
, EB = EncK′(b, b′, y, y′, rB) and SB =

{t1, · · · , tMB
} with ti = gH(rB ,i).

After receiving quotations from both sides (Alice and Bob),
the dealmaker David will make a match if the intersection
of their exchange rate ranges is not empty. Without loss of
generality, we assume Bob’s quotation reaches a full deal
and Alice’s quotation reaches a partial deal with proportion τA.

(σd, z, cd, rd, QA, QB , U1, U
′
1, τA)← Match’(QA, QB , SKd):

1. David receives all the valid quotations (QA, QB) from the
blockchain, computes K = PK

xd
A ,K′ = PK

xd
B by his se-

cret key SKd, and recovers the corresponding privacy infor-
mation (a, a′, x, x′, rA)← DecK(EA), (b, b′, y, y′, rB)←
DecK′(EB);

2. David checks cA
?
= gxha, c′A

?
= gx

′
ha
′
, cB

?
= gyhb, c′B

?
=

gy
′
hb
′
, then checks the validity of SA and SB , if all passed

then continues, otherwise aborts;
3. If RA∩RB 6= ∅, then David decides to match the quotation

QA, QB (the amounts of rewards (a′, b′) are also taken into
consideration by David to make the decision);



4. David computes 0 < a1 < a satisfying a1 : b ∈ RA ∩
RB , then computes the final exchange rate rd = γ : θ =
a1 : b and rd is published as (γ, θ), then computes the deal
proportion of Alice’s quotation τA = a1 : a = λ1/λ and τA
is published as (λ1, λ);

5. David computes the partitioned UTXO (U1, U
′
1), with com-

mitment c1 = s1 · cλ1λ
−1

A and c′1 = c
(λ−λ1)λ

−1

A ;
6. David sets the public key of U1 as PK1 = PKA · s1, sets

public key of U ′1 as PK′1 = PKA, then we get U1 =
(c1, PK1) and U ′1 = (c′1, PK

′
1);

7. David computes cd = cθ1/c
γ
B and z = (H(rA, 1) +

xλ1λ
−1)θ − yγ;

8. David signs σd = Sign(SKd; z, cd, rd, QA, QB , U1, U
′
1, τA)

and outputs Md = (σd, z, cd, rd, QA, QB , U1, U
′
1, τA).

Alg. 8. Match’

The verifiers can check the validity of the Match’ result
and then executes the UTXO swap, then both users can
receive the swaped UTXO to their wallets respectively:

1/0← Verify’(Md):
1. For the verification of Match’, verifiers check whether rd

lies in RA ∩RB ;
2. Then the verifiers check c1

?
= s1 · cλ1λ

−1

A , then check
cθ1/c

γ
B

?
= cd and gz ?

= cd;
3. Then the verifiers check PK1

?
= PKA · s1;

4. Then the verifiers check the validity of σd;
5. If all passed then outputs 1, otherwise outputs 0.

(U∗A, U
∗
B , U

′
1)← Deal’(QA, QB ,Md):

1. When all the verifications are passed, verifiers run UTXO
swap algorithm to get the swapped UTXOs (U∗B , U

∗
A) ←

Swap(U1, UB);
2. Verifiers revoke the old UTXOs (UA, UB) and add new

UTXOs (U∗A, U
∗
B , U

′
B , U

′
1) to the system, where U∗A ∈ C2

is owned by Alice, U∗B ∈ C1 is owned by Bob, U ′B ∈ C2 is
owned by David, and U ′1 ∈ C1 is still in the quotation for
exchange.

(b∗, y∗)← Receive’(a, x,Md, U
∗
A) (Alice):

1. For a valid Deal output of the exchange U∗A = (PK1, cB),
Alice computes a∗1 = aλ1λ

−1, b∗ = a∗1θγ
−1;

2. Alice computes y∗ = ((H(rA, 1) + xλ1λ
−1)θ − z)γ−1;

3. Alice checks gy
∗
hb
∗ ?
= cB , if passed then receives U∗A to

her wallet.
(a∗1, x

∗)← Receive’(b, y,Md, U
∗
B) (Bob):

1. For a valid Deal output of the exchange U∗B = (PKB , c1),
Bob computes a∗1 = bγθ−1;

2. Bob computes x∗ = (yγ + z)θ−1;
3. Bob checks gx

∗
ha
∗
1

?
= c1, if passed then receives U∗B to his

wallet.

Alg. 9. Verify’, Deal’ and Receive’

Notice that the modified scheme above only describe the
first partition of UA for partial deal, when it is partitioned
for the second time (if necessary), then s2 will be used in
the generation of the new UTXO. For the dealmaker, he can
receive the reward from Alice until all the partitions of UA
reaches a exchange deal, then U ′A is added into the system by
the verifiers, and the dealmaker can receive it to his wallet.

F. Efficiency Estimation

The BPCEX is deeply related with Monero system, where
Quote is a special transaction in C1 (or C2), with slightly more
message of the exchange rate range, which makes the size and
verification time for Quote very close to the transactions in
Monero. Meanwhile, computations in Match is efficient as it
only consists of computations in G (with 12 exponentiations, 5
multiplications), computations in Z∗q (with 5 multiplications),
AES decryption and signature. The verification of Match only
consists of computations in G (with 3 exponentiations, 1
multiplications) and verification of signature, which is also
efficient. Moreover, The Receive is similar to the receive
algorithm in Monero, with slightly more computations in Z∗q
(compute b∗ = aθγ−1, y∗ = (xθ− z)γ−1). To summarize, the
overall storage and computations of BPCEX is very close to
the transactions in Monero system.

IV. TOWARDS REGULATION

A. Motivation and Necessity

Privacy-preserving currency exchange is something to be
taken seriously, as it may facilitate crimes such as money
laundering, transfer of illegal assets, where criminals can
easily escape from legal sanctions due to the privacy protec-
tion mechanisms, making the legitimacy of BPCEX seriously
threatened. Meanwhile, privacy protection is also the need of
honest users (enterprises) to isolate the privacy from the public
(competitors). So it is necessary to construct a BPCEX with
the regulatory functions to achieve crime prevention.

B. Construction

A recent work [11] proposed the first fully regulatable
privacy-preserving blockchains against malicious regulators,
in their constructions, there exists a regulator who can trace
all the identities and amounts of transactions, while in the ver-
ifier’s view the scheme remains anonymous and confidential.

In the construction of regulatable BPCEX, we use TLRS
(traceable and linkable ring signature) to replace MLSAG
(multilayered linkable ring signature) and use TPR (traceable
range proof) to replace RP (range proof), we only describe
the differences between BPCEX and regulatable BPCEX:

(Par,Adds,Keys)← Setup(λ):
1. System chooses elliptic curve G with prime order q and a

generator g ∈ G, the regulator R generates a trapdoor y ∈
Z∗q , then computes h = gy ∈ G, system outputs (G, q, g, h)
as the public parameters.

(LU , EA, RA, σA, πA, UA, U
′
A)← Quote(Uα, SKα):

1. Alice computes the amount for exchange a and the amount
of reward a′, satisfying aα = a + a′, then samples ran-
dom blinding elements x, x′ ∈ Z∗q and computes the new
commitments cA = gxha, c′A = gx

′
ha
′
, then generates the

range proof πA = (πTRP (cA), πTRP (c
′
A)). Where πTRP

refers to traceable range proof;
6. Alice runs the traceable and linkable ring signature TLRS:

σA = TLRS(SKα, SK
′
α;LU , EA, RA, πA, UA, U

′
A), out-

puts the quotation QA = (LU , EA, RA, σA, πA, UA, U
′
A).



(Uα, Uβ , a, b)← Trace(QA, QB ,Md, y):
1. The regulatorR uses his trapdoor y to trace the input UTXO

(Uα, Uβ) from the TLRS signatures (σA, σB);
2. R uses y to trace the exchange amounts (a, b) from the

traceable range proofs (πA, πB).

Alg. 10. Traceable BPCEX

V. CONCLUSION

In this paper we give the construction of BPCEX: a
blockchain-based privacy-preserving currency exchange be-
tween two types of Monero-based cryptocurrencies in the
UTXO model. BPCEX achieves anonymity, confidentiality,
double spending resistance and malicious dealmaker resis-
tance. BPCEX has the functionality of floating exchange rate
and can be modified to realize partial deal, which makes
BPCEX suitable in real-life applications. Moreover, BPCEX
can be further modified to achieve regulatory functions to
prevent money laundering and illegal assets transfer.
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