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Abstract. A canonical identification (CID) scheme is a 3-move protocol consisting of a commit-
ment, challenge, and response. It constitutes the core design of many cryptographic constructions
such as zero-knowledge proof systems and various types of signature schemes. Unlike number-
theoretic constructions, CID in the lattice setting usually forces provers to abort and repeat the
whole authentication process once the distribution of the computed response does not follow a
target distribution independent from the secret key. This concept has been realized by means of
rejection sampling, which makes sure that the secrets involved in a protocol are concealed after a
certain number of repetitions. This however has a negative impact on the efficiency of interactive
protocols because it leads to a number of communication rounds that is multiplicative in the
number of aborting participants (or rejection sampling procedures). In this work we show how
the CID scheme underlying many lattice-based protocols can be designed with smaller number
of aborts or even without aborts. Our new technique exploits (unbalanced) binary hash trees
and thus significantly reduces the communication complexity. We show how to apply this new
method within interactive zero-knowledge proofs. We also present BLAZE+: a further application
of our technique to the recently proposed lattice-based blind signature scheme BLAZE (FC20).
We show that BLAZE+ has an improved performance and communication complexity compared
to BLAZE while preserving the size of signatures.
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1 Introduction

A canonical identification (CID) scheme allows a prover P to prove to a verifier V the possession of a
secret key s in the following way: P sends a commitment to V, who then sends a challenge c back to P.
Upon receiving c, P answers with a response z. This response allows V to verify P’s authenticity while
not leaking any information about the secret key. In number-theoretic constructions like Schnorr’s
CID scheme [Sch91], the response z already hides s, since it is computed by adding a secret masking
term y to a challenge-dependent function of s, i.e., z = y + sc. The term y is chosen uniformly at
random from a large distribution and is also used to compute the commitment. This approach has
been generalized in [Lyu09] to include aborting provers for the lattice setting. In a lattice-based CID
scheme y is required to be chosen from a narrow distribution (typically, Gaussian or uniform) and
the so called rejection sampling procedure [vN51] is used to hide the distribution of s. If the sum z
is not accepted, a new masking term is sampled. This procedure is repeated until the sum becomes
independently distributed from the secret term sc. Lattice-based CID is a fundamental building block
of many cryptographic constructions: signature schemes [ABB+19, BG14,DKL+18, Lyu12] and even
those with advanced functionalities such as blind signatures [AEB19,Rüc10], ring signatures [BLO18,
TSS+18], and multisignatures [ES16] in addition to many other protocols, e.g., zero-knowledge proof
systems [BCK+14,BDL+18].



While aborting does not affect the efficiency of constructions with one rejection sampling process like
ordinary signatures, it has a significant negative impact on the performance and communication com-
plexity of lattice-based interactive protocols with multiple rejection sampling procedures. For instance,
the multisignature scheme proposed in [ES16] suffers from a repetition rate that grows exponentially in
the number of users participating in the signing protocol. Though it is efficient for a small set of users,
one would need to restart the protocol very often when instantiated with a large set because each user
has to carry out rejection sampling. Another example is the blind signature scheme BLAZE [AEB19]
and its predecessor introduced in [Rüc10]. In both constructions not only signers have to carry out
rejection sampling and repeat the signing process MS times until the secret key is concealed, but for
maintaining blindness even users have to apply rejection sampling MU times and request a protocol
restart in case of failure. This imposes a multiplicative repetition rate MS ·MU and an additional
communication step by the user asking the signer to trigger a protocol restart by including a proof of
failure, i.e., a proof that allows the signer to verify the occurrence of a failure. Although BLAZE has been
shown to be practical [AEB19], this additional step increases the time and communication complexity
required to generate valid signatures and forces the use of statistically hiding and computationally
binding commitments to retain security.

Therefore, masking secrets in lattice-based interactive protocols with multiple rejection sampling proce-
dures such that aborting occurs as little as possible while maintaining efficiency and security remained a
very important research question. This would improve the running time and decrease the total amount
of communication required to successfully complete the protocol.

1.1 Contributions

In this work we show how to reduce the number of repetitions in lattice-based protocols by means
of a tool that we call trees of commitments. A tree of commitments is an (unbalanced) binary hash
tree of height h ≥ 1, whose leaves are the hash values of ` > 1 commitments computed from masking
terms sampled during an instance of a CID-based protocol. The number ` is chosen such that rejection
sampling succeeds for at least one masking term at a given probability bound. This allows to aggregate
` commitments in one tree and send only the root of the tree as a new commitment rather than `
commitments. The new response now further includes the authentication path of the leaf with index k
(0 ≤ k < `), where at step k rejection sampling accepts for the first time after k−1 trials. Note that by
choosing ` large enough we can remove aborts completely. Interestingly, only trees with small heights
are required to reduce aborts to very small probabilities, e.g., h = 3 for a probability of at most 2−10.

We demonstrate the effectiveness of using our method in two lattice-based interactive protocols. We
show how to use trees of commitments in zero-knowledge proofs such as [BCK+14, BDL+18]. This
reduces the communication complexity when they are implemented as interactive proof systems (e.g.,
within larger protocols). Furthermore, we utilize trees of commitments in the recently proposed blind
signature scheme BLAZE [AEB19]. We call the new scheme BLAZE+. In the new scheme a user con-
structs a tree of commitments using ` masking terms such that blindness is ensured at a given proba-
bility bound. More precisely, for 128 bits of security we fix an aborting probability δabort and compute
` such that signatures are blind with probability of at least 1 − δabort. Our results (summarized in
Table 1) show that while preserving the size of keys and signatures, the communication complexity
is significantly decreased and the signing speed is improved for δabort = 2−10. Note that the choice
δabort = 2−128 implies blindness with overwhelming probability. In this case we can safely remove
the last step of the protocol, hence proof of failures and the related commitment scheme. Thus, we
obtain a 3-move version of the protocol similar to the basic structure of CID. We present this ver-
sion in Section 4 and the 4-move version in Appendix B. We leave applying trees of commitments to
multisignatures [ES16] as a future work.
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Table 1. Comparing BLAZE+ (this work) with BLAZE [AEB19] at 128 bits of security. The parameter δabort
denotes the aborting probability by the user, and ` denotes the related number of masking terms. Performance
is given in cycles and milliseconds (in parentheses), sizes and communication complexity in kilobytes. The
corresponding parameters can be found in Table 3. Benchmarking the parameters were carried out on an Intel
Core i7-6500U, operating at 2.3 GHz and 8GB of RAM.

Scheme δabort ` Complexity BS.KGen BS.Sign BS.Verify Secret key Public key Signature

BLAZE+ 2−128 71 177.8 222, 151
(0.11)

112, 540, 972
(56.49)

348, 724
(0.18) 0.75 3.9 6.7

BLAZE+ 2−40 32 189.1 222, 151
(0.11)

56, 193, 762
(28.21)

348, 724
(0.18) 0.75 3.9 6.7

BLAZE+ 2−10 8 189.2 222, 151
(0.11)

24, 443, 555
(12.27)

348, 724
(0.18) 0.75 3.9 6.6

BLAZE 0.38 1 351.6 204, 671
(0.10)

35, 547, 397
(17.85)

276, 210
(0.14) 0.8 3.9 6.6

1.2 Techniques

We show how to reduce the number of repetitions or even remove aborts in CID-based protocols
completely. To this end, we give a brief description of the CID scheme that underlies many lattice-based
constructions and was originally introduced in [Lyu09]. Let A be a public matrix selected uniformly at
random from Zn×mq . The prover P would like to prove to a verifier V the possession of a secret matrix
S ∈ Zm×n with small entries such that B = AS (mod q). We let χ denote some distribution over Z.
Typically, χ is either the discrete Gaussian distribution over Z or the uniform distribution over a small
subset of Z. The challenge space is defined by C = {c = (c1, . . . , cn) ∈ Zn : ci ∈ {−1, 0, 1},

∑n
1 |ci| = κ}.

We let RejSamp denote an algorithm that carries out rejection sampling. The commitment is a vector
v = Ay (mod q), where y is a masking vector chosen from χm. For a challenge c ∈ C the response is
given by z = y + Sc. The verifier accepts if and only if v = Az−Bc (mod q) and ‖z‖p ≤ B, where B
is a predefined bound and p ∈ {2,∞} depending on the distribution χ. Aborting occurs if RejSamp(z)
does not accept. The protocol is always repeated by sampling a fresh y until RejSamp accepts such
that z is statistically independent from Sc.

Consider a lattice-based interactive protocol with N ≥ 1 rejection sampling procedures, where each of
them is repeated x ≥ 1 times on average. The main motivation of this work is the observation that
the total average number of repetitions M in such a protocol is multiplicative in N , i.e., M = x ·N .
Thus, the main question is: Can we improve it?

One can use a large enough distribution χ such that RejSamp accepts after a fixed number of repetitions
M , e.g., M ≤ 2. This is already established in previous works as a trade-off between performance and
sizes, but it does not solve the problem for all interactive protocols as explained above.

Our first attempt is the following. Rather than sampling one masking term y and repeating until
RejSamp accepts, P generates ` > 1 masking vectors yj at once and computes the commitment
(v0, . . . ,v`−1), where vj = Ayj (mod q) and j = 0, . . . , ` − 1. The response is then zk, where k
(0 ≤ k < `) is the first index for which RejSamp accepts. This reduces aborts, but the amount of
exchanged data grows in `. In particular, any type of lattice-based signatures following this approach
becomes very large. While this can be decreased by using some cryptographic hash function F and
sending F(vj) instead of vj , this is still not satisfactory. A similar approach has been taken in [dPL17]
in a different context for zero-knowledge proofs, where all the hash values of commitments of potential
masking terms are sent (those in C). We note that no tree structure for commitments has been applied
in [dPL17] and furthermore the challenge size increases linearly in the number of masking terms. The
protocol is then repeated multiple times to achieve negligible soundness error.
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Our final solution to this issue is to use a tree of commitments: an (unbalanced) binary hash tree
of height h = dlog(`)e, whose leaves are F(vj). The commitment is simply the root of the tree root,
and the response is the pair (zk, auth), where auth is the authentication path of the leaf with index
k. Verification is carried out by checking that ‖zk‖p ≤ B and root is equal to the root of the tree
associated to the leaf F(Azk − Bc (mod q)) and its given authentication path auth. Using a tree of
commitments obviously reduces the communication complexity. It can also improve the performance of
interactive protocols with multiple rejection sampling procedures as we demonstrate in this work. We
note that the number of masking terms ` can be chosen such that the aborting probability is bounded
by some given bound. In Section 3.2 we show how to optimize this number. We note that our technique
may be used in [dPL17] to improve efficiency.

Finally, we briefly explain two further optimizations that can be exploited when using trees of com-
mitments. The first one is to generate trees with randomized hashing similar to the standard of the
hash-based signature scheme XMSS [HBG+18]. This allows to save space and further reduce the com-
munication complexity, since randomized hashing requires the hash function F to be only second preim-
age resistant rather than collision resistant. This means the output of F is required to be ≥ λ rather
than ≥ 2λ bits assuming λ bits of classical security. The second optimization allows to reuse already
generated, but not consumed, masking terms in subsequent executions of the protocol. This further
improves the performance of the protocol, since complete subtrees of the tree can be reused. This
reduces the number of new masking terms to be sampled in addition to the number of multiplications
and hash computations.

1.3 Related work

In the context of analyzing the hardness of computational lattice problems, previous works such
as [BP18,BPMW16,Gen09] point to techniques called “noise swallowing” or “super-polynomial noise
flooding”, which uses Gaussian masking terms entailing a super-polynomial Gaussian parameter in
order to swallow a polynomially large secret term. However, the negative impact on the efficiency is
tremendous as the parameters become also super-polynomial. By generating many masking terms at
once and capturing them in a tree of commitments, the secret and masking terms remain polynomially
bounded while the number of repetitions is reduced. As mentioned in Section 1.2 the approach of
sending hashed commitments has been used in [dPL17] for zero-knowledge proofs of small secrets, but
without the use of tree structures for commitments.

1.4 Outline

In Section 2 we review the relevant background. In Section 3 we define trees of commitments and
show how they can be utilized in lattice-based canonical identification schemes. In Section 4 we briefly
show how to employ trees of commitments in zero-knowledge proof systems and then we present a new
blind signature scheme that we call BLAZE+, which demonstrates the practical relevance of our new
technique.

2 Preliminaries

In this section we give the background required throughout this work. We first give some general
notation. Then we define the relevant cryptographic primitives and their security in Section 2.1. After
that we define lattices and the related lattice problems.
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Notation. We let N,Z,R denote the set of natural numbers, integers, and real numbers, respectively.
We denote column vectors with bold lower-case letters and matrices with bold upper-case letters. The
identity matrix of dimension n is denoted by In. For any positive integer q we write Zq to denote the set
of integers in the range [− q2 ,

q
2 )∩Z. The Euclidean norm (`2-norm) of a vector v with entries vi is defined

as ‖v‖ = (
∑
i |vi|2)1/2, and its `∞-norm as ‖v‖∞ = maxi |vi|. We define the ring R = Z[x]/〈xn + 1〉

and its quotient Rq = R/qR, where n is a power of 2. A ring element a0 + a1x+ . . .+ an−1x
n−1 ∈ Rq

is denoted by â and it corresponds to a vector a ∈ Znq via coefficient embedding, hence ‖â‖ = ‖a‖ and
‖â‖∞ = ‖a‖∞. We write â = (â1, . . . , âk) ∈ Rkq to denote a vector of ring elements and Â for a matrix
with entries from Rq. The norms of â are defined by ‖â‖ = (

∑k
i ‖âi‖

2)1/2 and ‖â‖∞ = maxi ‖âi‖∞. We
let Tnκ denote the set of all (n− 1)-degree polynomials with coefficients from {−1, 0, 1} and Hamming
weight κ. All logarithms in this work are to base 2, i.e., log(·) = log2(·). We always denote the security
parameter by λ ∈ N. A function f : N −→ R is called negligible if there exists an n0 ∈ N such that for
all n > n0, it holds f(n) < 1

p(n) for any polynomial p. With negl(λ) we denote a negligible function
in λ. A probability is called overwhelming if it is at least 1− negl(λ). The statistical distance between
two distributions X,Y over a countable domain D is defined by ∆(X,Y ) = 1

2
∑
n∈D |X(n) − Y (n)|.

The distributions X,Y are called statistically close if ∆(X,Y ) = negl(λ). We write x ← D to denote
that x is sampled according to a distribution D. We let x←$ S denote choosing x uniformly random
from a finite set S.

2.1 Cryptographic Primitives

This section defines canonical identification and blind signature schemes and related security notions.

A canonical identification (CID) scheme is a 3-move interactive protocol of the following form: A
prover P initiates the protocol by sending a commitment message y to a verifier V. Upon receiving y,
V sends a uniform random challenge c to P. Afterwards, a response z is sent from P back to V, which
then allows V to make a deterministic decision about P’s authenticity. The tuple (y, c, z) represents a
protocol transcript. A formal definition follows.

Definition 1 (Canonical Identification Scheme). A canonical identification scheme with commit-
ment space Y, challenge space C, and response space Z is defined as a tuple of the following polynomial-
time algorithms:

– KG(1`) is a key generation algorithm that outputs a pair of keys (pk, sk) from some key space K,
where pk is a public key and sk is a secret key.

– P = (P1(sk),P2(sk, y, c, st)) is a prover algorithm consisting of two algorithms: P1 takes as input
a secret key sk and returns a commitment y ∈ Y and a state st, whereas P2 on input sk, y, a
challenge c ∈ C, and st, outputs a response z ∈ Z ∩{⊥}, where the symbol ⊥ 6∈ Z indicates failure.

– V(pk, y, c, z) is a verification algorithm that takes as input a public key pk and a transcript (y, c, z),
and outputs 1 if it is valid and 0 otherwise.

Any CID scheme must satisfy the correctness property. It states that the algorithm V always (or with
overwhelming probability) validates honestly generated transcripts, i.e., for all ` ∈ N, all (pk, sk), and
all honestly generated transcripts (y, c, z), it holds that Pr[V(pk, y, c, z) = 1 | z 6= ⊥] ≥ 1 − δ, where
δ = negl(`) is called the correctness error. The standard security notion of CID schemes is the active
attack model. Following this model, any adversary A interacting with a prover as a verifier must not
be able to obtain any useful information (zero-knowledge). Furthermore, when acting as a prover (with
no access to the honest prover), A must not be able to make a verifier accept the transcript.

Definition 2 (Blind Signature Scheme). A blind signature scheme BS is a tuple of polynomial-
time algorithms BS=(BS.KGen,BS.Sign,BS.Verify) such that:
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Game ForgeBS,U∗(λ)

1: (pk, sk)← BS.KGen(1λ)
2: H← H(1λ)
3: ((µ1, σ1), . . . , (µl, σl))← U∗H(·),〈S(sk),·〉∞(pk)
4: k := number of successful signing invocations
5: if

(
µi 6= µj for all 1 ≤ i < j ≤ l ∧ BS.Verify(pk, µi, σi) = 1, ∀i ∈ [l] ∧ k + 1 = l

)
then

6: return 1
7: return 0

Fig. 1. The security game of one-more unforgeability of blind signatures.

– BS.KGen(1λ) is a key generation algorithm that outputs a pair of keys (pk,sk), where pk is a public
(verification) key and sk is a secret (signing) key.

– BS.Sign(sk, pk, µ) is an interactive protocol between a signer S and a user U . The private input of
S is a secret key sk, whereas the private input of U is a public key pk and a message µ ∈ M with
message spaceM. The private output of S is a view V (interpreted as a random variable) and the
private output of U is a signature σ, i.e., (V, σ) ← 〈S(sk),U(pk, µ)〉. We write σ = ⊥ to denote
failure.

– BS.Verify(pk, µ, σ) is a verification algorithm that outputs 1 if the signature σ is valid and 0 other-
wise.

Blind signature schemes require the completeness property, i.e., BS.Verify always (or with overwhelm-
ing probability) validates honestly signed messages under honestly created keys. Security of blind
signatures is captured by two security notions: blindness and one-more unforgeability [JLO97,PS00].
The former prevents a malicious signer to learn information about user’s messages (see [AEB19] for
a formal definition). The latter ensures that each completed execution of BS.Sign yields at most one
signature.

Definition 3 (One-more Unforgeability). Let H be a family of random oracles. A blind signature
scheme BS is called (t, qSign, qH, ε)-one-more unforgeable in the random oracle model if for any adver-
sarial user U∗ running in time at most t and making at most qSign signing and qH hash queries, the
game ForgeBS,U∗(λ) depicted in Figure 1 outputs 1 with probability Pr[ForgeBS,U∗(λ) = 1] ≤ ε. The
scheme is strongly (t, qSign, qH, ε)-one-more unforgeable if the condition µi 6= µj in the game changes to
(µi, σi) 6= (µj , σj) for all 1 ≤ i < j ≤ l.

2.2 Lattices and Gaussians

Let B = {b1, . . . ,bk} ∈ Rm×k be a set of linearly independent vectors for k ≤ m. The m-dimensional
lattice L of rank k generated by B is given by L(B) = {Bx | x ∈ Zk} ⊂ Rm. The discrete Gaussian
distribution DL,σ,c over a lattice L with standard deviation σ > 0 and center c ∈ Rn is defined
as follows: For every x ∈ L the probability of x is DL,σ,c(x) = ρσ,c(x)/ρσ,c(L), where ρσ,c(x) =
exp(−‖x−c‖2

2σ2 ) and ρσ,c(L) =
∑

x∈L ρσ,c(x). The subscript c is taken to be 0 when omitted. We recall
a lemma that gives a tail bound on discrete Gaussians and a rejection sampling lemma.

Lemma 1 ([Lyu12, Lemma 4.4]). For any t, η > 0 we have

1. Prx←DZ,σ [|x| > t · σ] ≤ 2 exp(−t2/2).
2. Prx←DZm,σ [‖x‖ > ησ

√
m] ≤ ηm exp(m2 (1− η2)).
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Lemma 2 ([Lyu12, Theorem 4.6, Lemma 4.7]). Let V ⊆ Zm with elements having norms bounded
by T , σ = ω(T

√
logm), and h : V → R be a probability distribution. Then there exits a constant

M = O(1) such that ∀v ∈ V : Pr[DZm,σ(z) ≤M ·DZm,σ,v(z); z← DZm,σ] ≥ 1−ε, where ε = 2−ω(logm).
Furthermore, the following two algorithms are within statistical distance δ = ε/M .

1. v← h, z← DZm,σ,v, output (z, v) with probability DZm,σ(z)
M ·DZm,σ,v(z) .

2. v← h, z← DZm,σ, output (z, v) with probability 1/M .

Moreover, the probability that the first algorithm outputs something is at least (1 − ε)/M . If σ = αT
for any positive α, then M = exp( 12

α + 1
2α2 ) with ε = 2−100.

We let RejSamp(x) denote an algorithm that carries out rejection sampling on input x. The algorithm
outputs 1 if it accepts and 0 otherwise. To specify the randomness r used within the algorithm we
write RejSamp(x; r). Next we define the lattice problems related to this work.

Definition 4 (Module Short Integer Solution (MSIS) Problem). Let n, q, k1, k2 be positive
integers and β a positive real. Given a uniformly random matrix Â ∈ Rk1×k2

q , the Hermite Normal Form
of MSIS asks to find a non-zero vector x̂ ∈ Rk1+k2 such that [Â Ik1 ] · x̂ = 0 (mod q), where ‖x̂‖ ≤ β.
The inhomogeneous MSIS asks to find x̂ ∈ Rk1+k2 with ‖x̂‖ ≤ β such that [Â Ik1 ] · x̂ = û (mod q), for
a given û ∈ Rk1

q .

Definition 5 (Module Learning With Errors (MLWE) Problem). Given poly(n) samples of the
form (âi, b̂i) ∈ Rk1

q ×Rq, the decision MLWE problem asks to distinguish, with non-negligible advantage,
whether (âi, b̂i) were chosen from the uniform distribution over Rk1

q ×Rq or from the distribution that
outputs (â, 〈â, ŝ〉 + ê (mod q)) for â ←$ Rk1

q , ŝ ← χk1 , and ê ← χ, where χ is either DZn,σ or the
uniform distribution over a small subset of Rq. The search MLWE problem asks to find ŝ.

The MLWE problem [LS15] generalizes LWE [Reg05] and RLWE [LPR10]. More precisely, by setting
k1 = 1 in the above definition we obtain the ring version RLWE, while setting k1 > 1 and Rq = Zq
yields a definition of the LWE problem. The same applies for MSIS [LS15] and the special versions
SIS [Ajt96] and RSIS [Mic02].

3 How to Reduce Aborts in Lattice-Based Protocols

In this section we show how aborting in lattice-based protocols can be reduced or even be removed at all.
As stated in Section 1, when the number of rejection sampling proceduresN in an interactive CID-based
protocol grows, the total number of repetitions becomes multiplicative inN , e.g., [AEB19,ES16,Rüc10],
and a large amount of communication is required to successfully complete the protocol. Consider the
CID protocol sketched in Section 1. If rejection sampling fails, a new masking term is sampled, hence
a new commitment has to be computed and sent in order to receive a new challenge c. Suppose that
c does not change for certain number of masking terms and related commitments, which are sent
in an aggregated form while any successfully computed response can be verified and related to the
corresponding commitment. In this case repetition does not have to occur often or even not at all. We
realize this concept using a tree of commitments: a method by which different commitments belong to
one challenge in an aggregated form and only the valid response and its related commitment will be
revealed. Masking terms that are rejected or not consumed during rejection sampling remain hidden
and will never be revealed.
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HashTree(v0, . . . , v`−1)
1: h← dlog(`)e
2: for (j = 0, . . . , `− 1) do
3: v0[j]← F(vj)
4: tree← tree ∪ {v0[j]}
5: for (i = 1, . . . , h) do
6: for (j = 0, . . . , 2h−i − 1) do
7: vi[j]← F(vi−1[2j], vi−1[2j + 1])
8: tree← tree ∪ {vi[j]}
9: root← vh[0]
10: return (root, tree)

BuildAuth(k, tree, h)

1: tree := (vi[j])i,j , 0 ≤ i ≤ h, 0 ≤ j < 2h−i, vi[j] ∈ {0, 1}ω
2: for (i = 0, . . . , h− 1) do
3: s← bk/2ic
4: bit← s mod 2
5: if (bit = 1) then
6: ai ← vi[s− 1]
7: else
8: ai ← vi[s+ 1]
9: auth := (k,a0, . . . ,ah−1)
10: return auth

RootCalc(v, auth)
1: auth := (k,a0, . . . ,ah−1), ai ∈ {0, 1}ω, i = 0, . . . , h− 1
2: b0 ← F(v)
3: for (i = 1, . . . , h) do
4: s← bk/2i−1c
5: bit← s mod 2
6: if (bit = 1) then
7: bi ← F(ai−1,bi−1)
8: else
9: bi ← F(bi−1,ai−1)
10: root := bi
11: return root

Fig. 2. A description of the algorithms HashTree, BuildAuth, and RootCalc.

3.1 Trees of Commitments

In this section we describe trees of commitments. We first define some relevant functions and algorithms.
For a positive integer ω ≥ 2λ we let F be a collision resistant hash function randomly chosen from the
family F = {F : {0, 1}∗ −→ {0, 1}ω}. We define the algorithms related to binary hash trees in a way
that fits to our purposes. A formal description of these algorithms is given in Figure 2.

HashTree: An algorithm that computes an (unbalanced) binary hash tree of height h ≥ 1. Its input
consists of ` ≤ 2h commitments v0, . . . , v`−1 whose hash values are the leaves of the tree, i.e.,
(root, tree)← HashTree(v0, . . . , v`−1), where root is the root of the tree and tree is a sequence of all
other nodes.

BuildAuth: An algorithm that on input an index k, a sequence of nodes tree, and a height h outputs the
corresponding authentication path auth including the index k, i.e., auth← BuildAuth(k, tree, h).

RootCalc: An algorithm that computes the root of a hash tree given a commitment v and its authen-
tication path auth, i.e., root← RootCalc(v, auth).

In the following we define trees of commitments. The leaves are the hash values of commitments vj ,
i.e., v0[j] = F(vj) for 0 ≤ j < `. The inner nodes of height i are denoted by vi[j], where 0 < i ≤ h,
0 ≤ j < 2h−i. They are typically computed as vi[j] = F(vi−1[2j] ‖ vi−1[2j + 1]). The root is the only
node of height h, i.e., vh[0] = root. A formal definition follows.

Definition 6 (Tree of Commitments). Let vj be commitments of ` > 1 secrets yj, where 0 ≤ j < `.
A tree of commitments is an (unbalanced) binary hash tree of height h = dlog(`)e, whose leaves are
the hash values of vj, i.e., F(vj). The root constitutes an aggregated commitment root, and auth is the
authentication path of the commitment vk generated using the secret yk, where 0 ≤ k < `.
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v3[0]

root

v2[0]

v1[0]

a1

v0[0]

v0

v0[1]

v1

v1[1]

v0[2]

a0

v2

v0[3]

v3

v2[1]

a2

v1[2]

v0[4]

v4

v0[5]

v5

v1[3]

v0[6]

v6

v0[7]

v7

Fig. 3. A tree of commitments of height h = 3 and ` = 8 commitments. Assume that the first time RejSamp
accepts at step k = 3 (0 ≤ k < `), then the gray colored nodes represent the authentication path required to
compute the root starting from v3.

Next we define trees of commitments for lattice-based canonical identification (CID). Figure 3 illus-
trates such a tree of height h = 3.

Definition 7 (Tree of Commitments for CID). Let CID be a lattice-based canonical identification
scheme. Let vj be commitments of CID generated using ` > 1 masking terms yj (0 ≤ j < `). A
tree of commitments for CID is an (unbalanced) binary hash tree of height h = dlog(`)e, whose leaves
are the hash values of vj, i.e., F(vj), and its root constitutes an aggregated commitment root to `
masking terms for up to ` repetitions within CID for the same challenge c. A response (zk, auth),
where zk = yk + sc, is composed with the first masking term at index k, for which rejection sampling
succeeds, i.e., RejSamp(zk) = 1 for 0 ≤ k < `, and auth is the authentication path of the commitment
vk generated using the masking term yk.

Figure 4 describes a variant of the CID protocol briefly explained in Section 1. The variant shown here
is based on MLWE and MSIS and utilizes trees of commitments. Using the Fiat-Shamir transform [FS86]
we obtain a digital signature scheme. In Appendix A we give a formal description of this scheme with
a proof of correctness and security.

We can choose ` such that at least one of the masking pairs (ŷ(k)
1 , ŷ(k)

2 ) (see Figure 4) hides Ŝĉ with
probability of at least 1− δabort for a given bound δabort, where Ŝ = (ŝ1, ŝ2). This can be established as
follows. Since the entries of the masking pairs are chosen from DZn,σ, the probability of successfully
outputting (ẑ1, ẑ2) with only one masking pair is≈ 1/M , whereM is the expected number of repetitions
(see Lemma 2). Consequently, one of the ` masking pairs conceals the secret key with probability
1−(1−1/M)`. Hence, by choosing ` satisfying (1−1/M)` ≤ δabort, the protocol aborts with probability
at most δabort. For instance, to obtain a probability negligible in λ we have to select ` such that
(1− 1/M)` ≤ 2−λ, which allows to completely eliminate aborts.

Let us consider an illustrative example. Suppose that we set δabort = 2−10 and use masking pairs
with entries sampled from DZn,σ, where σ = α‖Ŝĉ‖ and M = exp( 12

α + 1
2α2 ) (Lemma 2). Then by

setting α = 23 we need only ` = 8 masking pairs in order to hide Ŝĉ with probability at least 0.999.
This means we need a tree of commitments of height h = 3, which is a very small tree. Regarding
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P(Â ∈ Rk1×k2
q , (ŝ1, ŝ2) ∈ Dk2

Zn,σ′ ×D
k1
Zn,σ′) V(Â, b̂ = Âŝ1 + ŝ2 (mod q))

ŷ(0)
1 , . . . , ŷ(`−1)

1 ← Dk2
Zn,σ

ŷ(0)
2 , . . . , ŷ(`−1)

2 ← Dk1
Zn,σ

for (k = 0, . . . , `− 1) do
v̂(k) ← Âŷ(k)

1 + ŷ(k)
2 (mod q)

(root, tree)← HashTree(v̂(0), . . . , v̂(`−1))
root

ĉ←$ Tnκ
ĉ

k ← 0
while (k < `) do

ẑ1 ← ŷ(k)
1 + ŝ1ĉ

ẑ2 ← ŷ(k)
2 + ŝ2ĉ

if (RejSamp(ẑ1, ẑ2) = 0) then
k ← k + 1

if (k ≥ `) then
restart

auth← BuildAuth(k, tree, h)
(ẑ1, ẑ2, auth)

ŵ← Âẑ1 + ẑ2 − b̂ĉ (mod q)
accept if ‖(ẑ1, ẑ2)‖ ≤ B and

root = RootCalc(ŵ, auth)

Fig. 4. Canonical identification based on MLWE and MSIS with trees of commitments.

communication complexity, the commitment consist of only 4 hash values and a pair of Gaussian
vectors, i.e., (root, ẑ1, ẑ2, auth = (a0,a1,a2)). The parameter α = 23 increases σ in this example and
hence the size of (ẑ1, ẑ2) by at most 1.1 bits per integer entry in comparison to α = 11, which is a
typical choice [DLL+17] that induces a repetition rate of M ≈ 3 and a communication complexity
consisting of 3 vectors from Rk1

q and 3 Gaussian vectors with σ = 11 · ‖Ŝĉ‖. In order to hide Ŝĉ with
probability 1 − 2−10 using a single masking pair we need to set α > 213.6, which increases the size of
the response to at least 10.1 bits per integer entry when compared with α = 11, and hence we require
a larger modulus q and a communication complexity consisting of a vector from Rk1

q and a Gaussian
vector with a very large σ, i.e., σ > 213.6 · ‖Ŝĉ‖.

Furthermore, we can improve the performance of protocols employing trees of commitments as follows.
For subsequent executions of the protocol we can reuse the masking pairs that were sampled in previous
executions but were not consumed during rejection sampling. For instance, consider the tree in Figure 3,
where the first time RejSamp accepts at step k = 3. For the next protocol run we can simply reuse the
whole subtree with root a2 = v2[1] such that we only need to compute a new subtree of height h − 1
and combine both subtrees to compute a new root. This decreases the number of new masking terms
to be sampled and reduces the number of hash computations and multiplications modulo q. We can
also lower the security requirement of the hash function F by following the standard of the hash-based
signature scheme XMSS [HBG+18] and using randomized tree hashing. This allows to generate trees
of commitments such that F is required to be only second preimage resistant rather than collision
resistant. This reduces the size of the authentication path to one half of its original size.
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Table 2. Values for the required number of Gaussian masking terms ` and the bit length of the standard
deviation σ = αT = α · 500 at given aborting probabilities.

Aborting probability δabort 2−128 2−100 2−80 2−40 2−40 2−10 2−10

Number of masking terms ` 64 63 62 31 16 16 8
Height of the binary hash tree h 6 6 6 5 4 4 3
Parameter α 42 30 23 23 62 12 23
Bit length of the standard deviation σ 15 14 14 14 15 13 14

3.2 Optimizing the Number of Masking Terms

The previous section shows how to reduce the overall repetition rate of lattice-based protocols with
multiple rejection sampling procedures. In this section we show how to minimize the height of the tree
of commitments when using Gaussian distributed masking terms. This improves the performance of
interactive protocols significantly. A similar approach can be taken for masking terms sampled from
other distributions such as the uniform distribution.

Lemma 3. Let ε = 2−ω(logn) and M be the repetition rate of sampling one masking term from DZn,σ.
Let δabort be the desired aborting probability. Then, the number of masking terms ` required to conceal
a secret-related term with norm bounded by T and with probability at most 1 − δabort is minimized by
solving the following optimization problem:

min(`) conditioned on (1− 1− ε
M

)` ≤ δabort .

Proof. Given a fixed δabort we can write ` as a function in M using the above given inequality. In
particular, if σ = αT for α > 0 then M = exp( 12

α + 1
2α2 ), ε = 2−100, and the probability of aborting

using only one masking term is 1 − (1 − ε)/M (see Lemma 2). Hence, ` can also be considered as a
function in α, i.e.,

`(α) = log(δabort)/ log
(

1− 1− 2−100

exp( 12
α + 1

2α2 )

)
.

Note that increasing α directly reduces `. Therefore, this problem translates to finding a local minimum
of the function `(α) within a given range of α, which can be solved using Lagrange optimization. ut

The above lemma shows that reducing the number of masking terms ` for a fixed aborting probability
δabort increases σ, hence the size of the responses or signatures. In Table 2 we exhibit examples for
various values of ` and σ = αT given δabort and T = 500.

4 Applications

As mentioned in Section 1 there are advanced lattice-based constructions that are based on CID
and thus may benefit from using trees of commitments as described in Section 3. Our approach can
also be applied to interactive zero-knowledge proof systems in a straightforward way. For instance,
we can slightly modify the scheme depicted in Figure 4 to resemble a variant of the protocol given
in [BCK+14, Section 3]. We obtain a zero-knowledge proof of knowledge of RLWE secrets with reduced
communication complexity and the same soundness error of 1/(2n).

As a further practical application, we exploit trees of commitments within the recently proposed blind
signature scheme BLAZE [AEB19] resulting in major efficiency gains. The signing protocol of BLAZE
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consists of 4 moves between a signer S and a user U . It can be aborted due to 2 rejection sampling
procedures; the first one is carried out by S in order to hide the secret key and the second one by
U to ensure blindness. In case the latter fails, U must send S a proof of failure in order to restart
the signing protocol. This is why the last move is needed in the protocol as opposed to the standard
3-move structure of the CID scheme underlying BLAZE. Due to the possibility of failures the user must
also use a commitment scheme in order to hide the message from the signer.

In the following we redesign BLAZE such that signatures can be generated in 3 moves. We call the
new scheme BLAZE+. In particular, we are able to completely remove the rejection sampling procedure
carried out by U . This is accomplished by generating enough masking terms at once such that blindness
is achieved with overwhelming probability. This allows to safely eliminate the last move in the protocol
and hence the need for proof of failures. Consequently, statistically hiding and computationally binding
commitments concealing the message from S are not required anymore. We also describe a 4-move
version of BLAZE+ in Appendix B. In that version aborts at U occur with probability of choice. We
note that a similar approach may be applied at the signer side.

In addition to the functions defined in Section 3 we need some additional tools. Let H be a public
hash function modeled as a random oracle, which is chosen uniformly at random from the family
H = {H : {0, 1}∗ −→ Tnκ}. Further let E be a public function that expands given strings to any desired
length. Sampling from Dn

Z,s using randomness ρ is denoted by Dn
Z,s(ρ). The set of signed rotation

polynomials is defined by T̂ = {(−1)s · xi : s ∈ N, i ∈ Z}. Let Compress and Decompress be functions
for (de)compressing Gaussian elements (see [AEB19] for description). Next we describe the new blind
signature scheme BLAZE+. The respective algorithms are formalized in Figure 5.

Key Generation.
As in BLAZE, the algorithm BS.KGen(1λ) generates an instance of RLWE as described in Figure 5.
However, BLAZE+ employs an additional condition on the secret key, i.e., it bounds its `2-norm by
γσ
√

2n. This condition presents a trade-off between the speed of generating keys and the size of
signatures, since the standard deviation s∗ of masking terms used by the signer is a multiple of
‖(ŝ1, ŝ2)‖. Therefore, a smaller γ decreases s∗, but reduces the success probability of passing the
given condition (see Lemma 1).

Signing.
The signing algorithm is similar to that of BLAZE [AEB19]. The difference is that in BLAZE+ the user
U generates ` > 1 pairs of masking terms (ê(0)

1 , ê
(0)
2 ), . . . , (ê(`−1)

1 , ê
(`−1)
2 ) chosen from DZn,s × DZn,s.

These pairs are then used to compute t̂(k) = âê
(k)
1 + ê

(k)
2 + ŷ (mod q), which are needed to generate

a tree of commitments of height h = dlog(`)e via the algorithm HashTree. We note that generating
(ê(k)

1 , ê
(k)
2 ) and âê

(k)
1 + ê

(k)
2 (mod q) (for k = 0, . . . , ` − 1) can be precomputed by U before starting

the protocol with S. The sum t̂(k) containing ŷ and the construction of the tree cannot be carried out
in advance, since ŷ is computed from the commitment sent by S (see Figure 5). After receiving the
vector ẑ∗, U computes the pair (ẑ1, ẑ2) and the authentication path auth associated to the first index
k < ` for which the pair (ê(k)

1 , ê
(k)
2 ) ensures blindness. Note that ` is chosen such that this happens

with probability at least 1− 2−λ, i.e., U outputs a valid signature with overwhelming probability. Also
note that for each signature a new root is generated.

Verification.
Verifying a signature is straightforward as described in Figure 5.

Table 3 shows our proposed parameters of BLAZE+ selected for 128 bits of security. The table also
reviews the parameters of BLAZE proposed in [AEB19] for the same security level. Table 1 gives the
resulted communication complexity, performance, and sizes of keys and signatures.
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BS.KGen(1λ)

1: seed←$ {0, 1}λ
2: â ∈ Rq ← E(seed)
3: ŝ1, ŝ2 ← Dn

Z,σ
4: if (‖(ŝ1, ŝ2)‖ > γσ

√
2n) then

5: goto 3
6: b̂← âŝ1 + ŝ2 (mod q)
7: sk := (ŝ1, ŝ2), pk := (seed, b̂)
8: return (sk, pk)

BS.Verify(pk, µ, (ẑ1, ẑ2, ĉ, auth))
1: â← E(seed)
2: (ẑ1, ẑ2)← Decompress(ẑ1, ẑ2)
3: ŵ ← âẑ1 + ẑ2 − b̂ĉ (mod q)
4: root← RootCalc(ŵ, auth)
5: if

(
‖(ẑ1, ẑ2)‖ ≤ B ∧ ĉ = H(root, µ)

)
then

6: return 1
7: return 0

BS.Sign(sk, pk, µ)
Signer S(sk, pk) User U(seed, µ)
â← E(seed)
ŷ∗1,1, . . . , ŷ

∗
κ,1 ← Dn

Z,s∗

ŷ∗1,2, . . . , ŷ
∗
κ,2 ← Dn

Z,s∗

for (j = 1, . . . , κ) do
ŷj ← âŷ∗j,1 + ŷ∗j,2 (mod q)
ŷ := (ŷ1, . . . , ŷκ)

ρ←$ {0, 1}λ

ê
(0)
1 , ê

(0)
2 , . . . , ê

(`−1)
1 , ê

(`−1)
2 ← Dn

Z,s(ρ)
â← E(seed), p̂1, . . . , p̂κ ←$ T̂
ŷ ←

∑κ

1 p̂j ŷj (mod q)
for (k = 0, . . . , `− 1) do
t̂(k) ← âê

(k)
1 + ê

(k)
2 + ŷ (mod q)

(root, tree)← HashTree(t̂(0), . . . , t̂(`−1))
ĉ← H(root, µ), ĉ :=

∑κ

1 ĉj , ĉj ∈ T̂
for (j = 1, . . . , κ) do
ĉ∗j ← p̂−1

j · ĉj

for (j = 1, . . . , κ) do ĉ∗ := (ĉ∗1, . . . , ĉ∗κ)

ẑ∗j,1 ← ŷ∗j,1 + ŝ1ĉ
∗
j , ẑ∗j,2 ← ŷ∗j,2 + ŝ2ĉ

∗
j

if (RejSamp(ẑ∗1,1, . . . , ẑ∗κ,2) = 0) then
restart

ẑ∗ := (ẑ∗1,1, . . . , ẑ∗κ,2)
v̂1 ←

∑κ

1 p̂j ẑ
∗
j,1, v̂2 ←

∑κ

1 p̂j ẑ
∗
j,2

if (‖(v̂1, v̂2)‖ > ηs∗
√

2κn) then
abort with probability 2−λ

k ← 0
while (k < `) do
ẑ1 ← ê

(k)
1 + v̂1, ẑ2 ← ê

(k)
2 + v̂2

if (RejSamp(ẑ1, ẑ2) = 0) then
k ← k + 1

if (k ≥ `) then
abort with probability 2−λ

auth← BuildAuth(k, tree, h)
(ẑ1, ẑ2)← Compress(ẑ1, ẑ2)
return (µ, (ẑ1, ẑ2, ĉ, auth))

Fig. 5. A formal description of the new blind signature scheme BLAZE+.

In the following we give the main security statements of this section comprising completeness, blindness,
and strong one-more unforgeability of BLAZE+. The proofs of both correctness and blindness directly
follow from [AEB19] and are hence omitted.
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Table 3. Parameters for BLAZE+ and BLAZE targeting 128 bits of security. The performance, sizes, and
communication complexity corresponding to these parameters are given in Table 1.

Scheme Parameters
δabort ` h n q σ γ κ α∗ α s∗ s MS MU M

BLAZE+ 2−128 71 7 1024 ≈ 231 0.5 1.01 16 19 33 1736.9 12450734 1.9 1 1.9
BLAZE+ 2−40 32 5 1024 ≈ 231 0.5 1.01 16 28 22 2559.6 12232099 1.5 1 1.5
BLAZE+ 2−10 8 3 1024 ≈ 231 0.5 1.01 16 28 22 2559.6 12232099 1.5 1 1.5
BLAZE 0.38 1 0 1024 ≈ 231 0.5 1.2 16 20 25 2172.2 11796306 1.8 1.6 2.9

Theorem 1. Let α∗, α, γ, η > 0, s∗ = α∗γσ
√

2n, s = ηαs∗
√

2κn, and B = ηs
√

2n. Furthermore let
(1 − 1−2−100

U )` ≤ 2−λ, where U = exp( 12
α + 1

2α2 ). After at most M repetitions, any blind signature
produced by BLAZE+ is validated with probability at least 1− 2−λ, where M = exp( 12

α∗ + 1
2α∗2 ).

Theorem 2. The scheme BLAZE+ is statistically blind. The statistical distance between two executions
of its signing protocol is given by 2−100/M .

Next we prove the strong one-more unforgeability of BLAZE+. Similar to BLAZE [AEB19], key recovery
is as hard as distinguishing a RLWE sample (â, b̂) from a uniform random sample over Rq×Rq. There-
fore, the proof assumes the hardness of RLWE, i.e., (â, b̂) is uniform random under this assumption.

Theorem 3. The scheme BLAZE+ is strongly one-more unforgeable in the random oracle model
(ROM) if F is a family of collision resistant hash functions and both RLWE and inhomogeneous RSIS
are hard. More precisely, suppose that any F ← F is collision resistant, (â, b̂) is indistinguishable
from uniform, and it is hard to find a vector (v̂1, v̂2, v̂3) 6= 0 such that âv̂1 + v̂2 = v̂3b̂ (mod q),
‖(v̂1, v̂2)‖ ≤ 2B, and ‖v̂3‖∞ ≤ 2, then BLAZE+ is strongly one-more unforgeable in the ROM.

Proof. We assume that there exists a forger A that wins the one-more unforgeability game given in
Definition 3 with probability εA. We construct a reduction algorithm D that finds collisions in the hash
function F or computes a vector (v̂1, v̂2, v̂3) 6= 0 as described in the theorem statement with probability
εD ≥ εfork

(k+1) , where k ≤ qSign denotes the number of successful signing queries. The probability εfork is
given below.

Setup. The input of D is a uniform random pair (â, b̂) ∈ Rq × Rq and a function F randomly chosen
from F . It also has access to an oracle OF for F. The reduction D randomly selects answers for random
oracle queries {ĥ1, . . . , ĥqH}. Then, it runs the forger A with input (â, b̂).

Random Oracle Query. The reduction D maintains a list LH, which includes pairs of random oracle
queries and their answers from Tnκ. If H was previously queried on some input, then D looks up its
entry in LH and returns its answer ĥ ∈ Tnκ. Otherwise, it returns the first unused ĥ and updates the
list.

Hash Query. Hash queries to F sent by A are forwarded to the oracle OF. The reduction D also
maintains a list LF, which includes pairs of hash queries to F and their answers as well as the structure
of the trees.

Blind Signature Query. Upon receiving signature queries from the forger A as a user, D interacts
as a signer with A according to the signing protocol. However, rather than computing ẑ∗1,1, . . . , ẑ∗κ,2 as
described in Figure 5, D directly samples these elements from Dn

Z,s∗ and sends them back to A with
probability ≈ 1/M (Lemma 2).

Output. After k ≤ qSign successful executions of the signing protocol, A outputs (by assumption)
k + 1 distinct and valid pairs of messages and corresponding signatures (µ1, sig1), . . . , (µk+1, sigk+1).
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We point out that a forgery is considered valid if and only if its associated root was not queried to the
signing oracle during invocation of A, i.e., a forgery must contain a new root that is distinct from the
roots queried to the signing oracle. Then, one of the following two cases applies.

Case 1. D finds two signatures of messages µ, µ′ ∈ {µ1, . . . , µk+1} with the same random oracle answer
ĉ. In this case the verification algorithm yields H(root, µ) = H(root′, µ′). If µ 6= µ′ or root 6= root′, then
a second preimage of ĉ has been found by A. If µ = µ′ and root = root′ then the output of A is not a
valid forgery.

Case 2. If all signatures output by A have distinct random oracle answers, then D guesses an index
i ∈ [k + 1] such that ĉi = ĥj for some j ∈ [qH]. Then, it records the pair (µi, (ẑ1, ẑ2, ĉi, authi)) and
invokes A again with the same random tape and the random oracle queries {ĥ1, . . . , ĥj−1, ĥ

′
j , . . . , ĥ

′
qH
},

where {ĥ′j , . . . , ĥ′qH
} are fresh random elements. After the second invocation, the output of A includes

a pair (µ′i, (ẑ′1, ẑ′2, ĉ′i, auth′i)). By the General Forking Lemma [BN06] we have ĉi 6= ĉ′i and root = root′
with probability εfork (see below). Let ŵ = âẑ1 + ẑ2 − b̂ĉi (mod q) and ŵ′ = âẑ′1 + ẑ′2 − b̂ĉ′i (mod q).
Then, one of the following holds:

1. (ẑ1, ẑ2) 6= (ẑ′1, ẑ′2) and auth = auth′. If ŵ = ŵ′ then â(ẑ1 − ẑ′1) + (ẑ2 − ẑ′2) = b̂(ĉi − ĉ′i) (mod q),
where ‖(ẑ1 − ẑ′1, ẑ2 − ẑ′2)‖ ≤ 2B and ‖ĉi − ĉ′i‖∞ ≤ 2. This constitutes a solution to inhomogeneous
RSIS with `2-norm bound 2

√
B2 + κ. If ŵ 6= ŵ′ then a collision in F has been found in the leaves

of the hash tree.
2. (ẑ1, ẑ2) 6= (ẑ′1, ẑ′2) and auth 6= auth′. If ŵ = ŵ′ then we have a solution to inhomogeneous RSIS

as above. If ŵ 6= ŵ′ then we consider two cases: If ŵ′ 6∈ LF then a collision has occurred in F
similar to [Mer89], i.e., there exists an index i ∈ {0, . . . , h− 1} such that ai 6= a′i, where ai ∈ auth,
a′i ∈ auth′ and RootCalc(ŵ, auth) = root = RootCalc(ŵ′, auth′). If ŵ′ ∈ LF then since ŵ′ and root
are queried before ĉ′i was programmed we have âẑ′1 + ẑ′2 = b̂ĉ′i − ŵ′ (mod q). Hence, (ẑ′1, ẑ′2) is a
solution to the inhomogeneous RSIS for given random polynomial b̂ĉ′i − ŵ′.

3. (ẑ1, ẑ2) = (ẑ′1, ẑ′2) and auth = auth′. This implies that ŵ 6= ŵ′, hence a collision has occurred in F
(in the leaves of the hash tree).

4. (ẑ1, ẑ2) = (ẑ′1, ẑ′2) and auth 6= auth′. This implies that ŵ 6= ŵ′. If F(ŵ′) is not a leaf of the tree in
LF associated to root then a collision has occurred (as in 2.). Otherwise, since ĉ′ is a uniformly
random element, then the probability that F(ŵ′) is a leaf of the tree associated to root with
ŵ′ := âẑ′1 + ẑ′2− b̂ĉ′i (mod q) is negligible because F(ŵ′) was given as a response from OF before ĉ′
was programmed.

Analysis. According to Lemma 2, simulating the computation of ẑ∗1,1, . . . , ẑ∗κ,2 by D (without having
the secret key) is statistically indistinguishable from generating them as described in the protocol,
and the simulation produces these elements with probability ≈ 1/M as in a real execution. Next, one
of the k + 1 pairs output by A is by assumption not generated during the execution of the signing
protocol. The probability of correctly guessing the index i corresponding to this pair is 1/(k+ 1). The
probability that ĉi was a random oracle query made by A is 1 − 1/|Tnκ|. Thus, the probability that
ĉi = ĉj is εA − 1/|Tnκ|. According to the General Forking Lemma, the probability that ĉi 6= ĉ′i and ĉ′i
is used by A in the forgery is at least εfork ≥

(
εA − 1

|Tnκ |

)
·
(
εA−1/|Tnκ |
qSign+qH

− 1
|Tnκ |

)
. Therefore, the success

probability of D is given by εD ≥
εfork

(k + 1) , which is non-negligible if εA is non-negligible. ut
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A Standard Lattice-Based Signatures with Trees of Commitments

In this section we present an ordinary lattice-based signature scheme. It is constructed by applying
the Fiat-Shamir transform [FS86] to the CID scheme described in Section 3 (Figure 4). Its signing
algorithm generates a tree of commitments with enough masking terms such that it outputs valid
signatures with a probability of choice. More precisely, with a desired aborting probability signatures
do not leak information about the secret key using at least one of the generated masking terms. The
goal of the scheme introduced below is to show how trees of commitments can also be utilized in lattice-
based ordinary signatures with a proof of security, i.e., we omit exploiting other tools and techniques
from prior works on lattice-based signatures towards a practical construction. We first define signature
schemes and their security.

Definition 8 (Signature Scheme). Let λ be a security parameter. A signature scheme Sig with
key space K, message space M, and signature space S is a tuple of polynomial-time algorithms
(KGen,Sign,Verify) such that

– KGen(1λ) is a key generation algorithm that outputs a key pair (pk, sk) ∈ K, where pk is a public
(verification) key and sk is a secret (signing) key.

– Sign(sk, µ) is a signing algorithm that takes as input a secret key sk and a message µ ∈ M. It
outputs a signature s ∈ S.

– Verify(pk, µ, s) is a verification algorithm that takes as input a public key pk, a message µ with its
signature s. It outputs 1 if s is valid and 0 otherwise.

A signature scheme requires that Verify always (or with overwhelming probability) validates correctly
signed messages, i.e., for all λ ∈ N, (pk, sk) ← KGen(1λ), µ ∈ M, and all s ← Sign(sk, µ), it holds
Pr[Verify(pk, µ, s) = 1] ≥ 1− negl(λ). Security of signature schemes is captured by the security notion
existential unforgeability under adaptive chosen-message attacks (EUF-CMA).
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Game EUF-CMAA(λ)
1: (pk, sk)← KGen(1λ)
2: H← H(1λ)
3: Q := ∅
4: (µ∗, s∗)← AH(·),O(sk,·)(pk)
5: if

(
µ∗ 6∈ Q ∧ Verify(pk, µ∗, s∗) = 1

)
then

6: return 1
7: return 0

O(sk, µ)
1: Q ← Q∪ {µ}
2: s← Sign(sk, µ)
3: return s

Fig. 6. The security game EUF-CMA of signature schemes.

Definition 9 (EUF-CMA Security). Let H be a family of random oracles. A signature scheme
Sig is called (t, qSign, qH, ε)-EUF-CMA in the random oracle model if for any adversary A running
in time at most t and making at most qSign signature queries and at most qH random oracle queries to
H ← H(1λ), the game EUF-CMAA(λ) depicted in Figure 6 outputs 1 with probability at most ε, i.e.,
Pr[EUF-CMAA(λ) = 1] ≤ ε. The scheme is strongly (t, qSign, qH, ε)-EUF-CMA if the condition µ∗ 6∈ Q
changes to (µ∗, s∗) 6∈ {(µ1, s1), . . . , (µq, sq)}, where Q = {µ1, . . . , µq} and q ≤ qSign.

Next we describe the new signature scheme. The relevant functions and algorithms are already defined
in Section 3 and 4. The respective algorithms are formalized in Figure 7.

Key Generation.
On input the security parameter 1λ the algorithm samples a k2-dimensional vector ŝ1 with entries
distributed according to DZn,σ′ and a k1-dimensional vector ŝ2 from DZn,σ′ . It also selects a uniformly
random matrix Â from Rk1×k2

q . The secret key sk consists of the pair (ŝ1, ŝ2), while the public key pk
is given by (Â, b̂ = Âŝ1 + ŝ2 (mod q)).

Signing.
Given the secret key sk, the matrix Â, and a message µ, the algorithm starts by sampling ` pairs
of masking vectors (ŷ(k)

1 , ŷ(k)
2 ) from Dk2

Zn,σ × D
k1
Zn,σ, where k = 0, . . . , ` − 1. Afterwards, the vectors

v̂(k) = Âŷ(k)
1 + ŷ(k)

2 (mod q) are computed and used to generate a tree of commitments of height
h = dlog(`)e, i.e., (root, tree) = HashTree(v̂(0), . . . , v̂(`−1)). The function H is then called on input
(root, µ) to compute a polynomial ĉ. After that the vectors ẑ1 = ŷ(k)

1 + ŝ1ĉ, ẑ2 = ŷ(k)
2 + ŝ2ĉ are

computed and RejSamp is applied on (ẑ1, ẑ2) starting from k = 0 until it outputs 1 for some k < `.
The authentication path of the vector v̂(k) is then built, i.e., auth = BuildAuth(k, tree, h), and the
algorithm outputs the signature (ẑ1, ẑ2, ĉ, auth). If RejSamp outputs 0 for all k = 0, . . . , ` − 1 the
algorithm restarts.

Verification.
On input (pk, µ, (ẑ1, ẑ2, ĉ, auth)) the algorithm computes the vector ŵ = Âẑ1 + ẑ2 − b̂ĉ (mod q)
in addition to the root of the hash tree corresponding to ŵ and its authentication path auth, i.e.,
root = RootCalc(ŵ, auth). The algorithm accepts if and only if the Euclidean norm of (ẑ1, ẑ2) is
smaller than some predefined bound B and the output of H on (root, µ) is equal to ĉ.

The following two theorems show the correctness and security of the above described scheme.

Theorem 4. Let α, η, σ′ > 0, σ = αησ′
√
κ(k1 + k2)n, and B = ησ

√
(k1 + k2)n. Any signature gener-

ated by the scheme depicted in Figure 7 is verified with probability at least 1−ε, where ε = (1− 1−2−100

M )`,
` ∈ Z≥1, and M = exp( 12

α + 1
2α2 ).
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KGen(1λ)

1: ŝ1 ← Dk2
Zn,σ′

2: ŝ2 ← Dk1
Zn,σ′

3: Â←$ R
k1×k2
q

4: b̂← Âŝ1 + ŝ2 (mod q)
5: sk := (ŝ1, ŝ2)
6: pk := (Â, b̂)
7: return (sk, pk)
Verify(pk, µ, (ẑ1, ẑ2, ĉ, auth))

1: ŵ← Âẑ1 + ẑ2 − b̂ĉ (mod q)
2: root← RootCalc(ŵ, auth)
3: if

(
‖(ẑ1, ẑ2)‖ ≤ B ∧ H(root, µ) = ĉ

)
then

4: return 1
5: return 0

Sign(sk, Â, µ)

1: ŷ(0)
1 , . . . , ŷ(`−1)

1 ← Dk2
Zn,σ

2: ŷ(0)
2 , . . . , ŷ(`−1)

2 ← Dk1
Zn,σ

3: for (k = 0, . . . , `− 1) do
4: v̂(k) ← Âŷ(k)

1 + ŷ(k)
2 (mod q)

5: (root, tree)← HashTree(v̂(0), . . . , v̂(`−1))
6: ĉ← H(root, µ)
7: k ← 0
8: while (k < `) do
9: ẑ1 ← ŷ(k)

1 + ŝ1ĉ

10: ẑ2 ← ŷ(k)
2 + ŝ2ĉ

11: if (RejSamp(ẑ1, ẑ2) = 0) then
12: k ← k + 1
13: if (k ≥ `) then
14: goto 1
15: auth← BuildAuth(k, tree, h)
16: return (ẑ1, ẑ2, ĉ, auth)

Fig. 7. A formal description of a standard signature scheme using trees of commitments.

Proof. For an honestly generated signature (ẑ1, ẑ2, ĉ, auth) the pair (ẑ1, ẑ2) is distributed according to
Dk1+k2

Zn,σ and bounded by ησ
√

(k1 + k2)n = B with probability 1 − η(k1+k2)n · exp( (k1+k2)n
2 (1 − η2))

due to Lemma 1. Therefore, choosing η such that this probability ≤ 2−λ ensures that the condition
‖(ẑ1, ẑ2)‖ ≤ B is satisfied with probability 1−2−λ. Furthermore, the honestly generated authentication
path auth together with the fact that

ŵ = Âẑ1 + ẑ2 − b̂ĉ = Âŷ(k)
1 + ŷ(k)

2 = v̂(k) (mod q)

ensure that the algorithm RootCalc computes the correct root of the hash tree. Therefore, the input
of H in Verify is equal to the input of H during signing, hence both outputs equal to ĉ and the second
condition is satisfied.

Finally, we justify the acceptance probability 1 − ε of a correctly generated signature. Rather than
subsequently generating a pair of masking terms (ŷ1, ŷ2) from Dk2

Zn,σ ×D
k1
Zn,σ and applying rejection

sampling, the signing algorithm generates ` pairs at once. By Lemma 2, the probability that one pair
(ŷ(k)

1 , ŷ(k)
2 ), for k = 0, . . . , `− 1, masks û = (ŝ1ĉ, ŝ2ĉ) is given by

DZ(k1+k2)n,σ(w(k))/(M ·DZ(k1+k2)n,σ,u(w(k))),

where M = exp( 12
α + 1

2α2 ) is the expected number of repetitions, σ = α ‖u‖, and w(k),u are the vector
representations of (ŷ(k)

1 , ŷ(k)
2 ) + û and û, respectively. Note that by choosing η as described above

the norm ‖u‖ is bounded by ησ′
√
κ(k1 + k2)n with probability 1 − 2−λ. The acceptance probability

of rejection sampling using one making pair is at least (1 − 2−100)/M following Lemma 2. Thus, the
probability that the distribution of û is not concealed by neither of the ` pairs (ŷ(k)

1 , ŷ(k)
2 ) is given by

ε = (1− 1−2−100

M )`. ut

Remark 1. By choosing ` large enough such that the probability ε ≤ 2−λ aborting can completely be
removed and signatures are generated without repetition with probability 1− 2−λ.

Recovering the secret key is as hard as distinguishing an MLWE sample (Â, b̂) from the uniform
distribution over Rk1×k2

q × Rk1
q . Therefore, we prove the strong EUF-CMA assuming the hardness of
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Algorithm 1 Simulation of signing queries from the adversary A.
1: ŷ(0)

1 , . . . , ŷ(`−1)
1 ← Dk2

Zn,σ

2: ŷ(0)
2 , . . . , ŷ(`−1)

2 ← Dk1
Zn,σ

3: k ←$ {0, . . . , `− 1}
4: (ẑ1, ẑ2)← (ŷ(k)

1 , ŷ(k)
2 )

5: v̂(k) ← Âẑ1 + ẑ2 − b̂ĉ (mod q)

6: for (i = 0, . . . , k − 1, k + 1, . . . , `− 1) do
7: v̂(i) ← Âŷ(i)

1 + ŷ(i)
2 (mod q)

8: (root, tree)← HashTree(v̂(0), . . . , v̂(`−1))
9: ĉ := H(root, µ)
10: auth← BuildAuth(k, tree, h)
11: return (ẑ1, ẑ2, ĉ, auth)

MLWE, i.e., (Â, b̂) is uniform random under this assumption and reduce the security from the hardness
of finding collisions in F and solving MSIS.

Theorem 5. The signature scheme depicted in Figure 7 is strongly EUF-CMA in the random oracle
model (ROM) if F is a family of collision resistant hash functions and both MLWE and (inhomogeneous)
MSIS are hard. More precisely, suppose that any F← F is collision resistant, (Â, b̂) is indistinguishable
from uniform, and it is hard to find a vector (v̂1, v̂2, v̂3) 6= 0 such that ‖(v̂1, v̂2, v̂3)‖ ≤ 2

√
B2 + κ

satisfying Âv̂1 + v̂2 = b̂v̂3 (mod q), then the scheme is strongly EUF-CMA in the ROM.

Proof. We assume that there exists an adversary A, which is able to forge signatures with probability
εA. We construct a reduction algorithm D that finds collisions in F or computes (v̂1, v̂2, v̂3) 6= 0
as described in the theorem statement with probability εD ≥ εfork, where εfork is given below. The
reduction D has access to an oracle OF for F.

Setup. On input a uniform random pair (Â, b̂) ∈ Rk1×k2
q × Rk1

q and a function F randomly chosen
from F the reduction D runs the forger A with input (Â, b̂).

Random oracle query. The reduction D maintains a list LH, which includes pairs of random oracle
queries and their answers. If H was previously queried on some input, then D looks up its entry in LH
and returns its answer ĉ ∈ Tnκ. Otherwise, it selects a new ĉ and updates the list.

Hash Query. Hash queries to F sent by A are forwarded to the oracle OF. The reduction D also
maintains a list LF, which includes pairs of hash queries to F and their answers as well as the structure
of the trees.

Signature query. Upon receiving a signature query from A, the reduction D runs Algorithm 1 in
order to generate a signature and sends it back to A. Note that D queries OF in order to generate
binary hash trees using HashTree. By Lemma 2, simulating the computation of (ẑ1, ẑ2) by D (without
having the secret key) is statistically indistinguishable from generating them as in a real execution of
the signing algorithm.

Output. After invocation of A, it outputs a valid pair of message and its corresponding signature
(µ, (ẑ1, ẑ2, ĉ, auth)) with probability εA. We note that a forgery is considered to be valid even if A
succeeds in changing any part of a signature queried from the signing oracle. If H was not programmed
or queried during invocation of A, then A produces a ĉ that validates correctly with probability 1/|Tnκ|.
Therefore, the probability that A succeeds in a forgery and ĉ corresponds to one of the random oracle
queries ĉj (for some j) is at least εA − 1/|Tnκ|. Then, one of the following two cases applies.

Case 1. If ĉ was included in a response (ẑ′1, ẑ′2, ĉ, auth′) to a signing query made by A for a message µ′,
then D knows its corresponding hash value root′. In this case we have H(root, µ) = ĉ = H(root′, µ′). If
µ 6= µ′ or root 6= root′, then a second preimage of ĉ has been found by A. If µ = µ′ and root = root′ then
we have (ẑ1, ẑ2, auth) 6= (ẑ′1, ẑ′2, auth′) according to the unforgeability game of Definition 9. Therefore,
one of the following holds:
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1. (ẑ1, ẑ2) 6= (ẑ′1, ẑ′2) and auth = auth′. If ŵ = ŵ′ then we know that ‖(ẑ1, ẑ2)‖ ≤ B and ‖(ẑ′1, ẑ′2)‖ ≤ B.
We assume w.l.o.g. that ẑ1 6= ẑ′1. Therefore we have Â(ẑ1 − ẑ′1) + (ẑ2 − ẑ′2) = 0 (mod q) and
‖(ẑ1 − ẑ′1, ẑ2 − ẑ′2)‖∞ ≤ 2B. This constitutes a solution to MSIS. If ŵ 6= ŵ′ then a collision in F
has been found in the leaves of the hash tree.

2. (ẑ1, ẑ2) 6= (ẑ′1, ẑ′2) and auth 6= auth′. If ŵ = ŵ′ then we have a solution to MSIS as above. If ŵ 6= ŵ′
then we consider two cases: If F(ŵ′) is not a leaf of the tree in LF associated to root then a collision
has occurred in F similar to [Mer89], i.e., there exists an index i ∈ {0, . . . , h−1} such that ai 6= a′i,
where ai ∈ auth, a′i ∈ auth′ and RootCalc(ŵ, auth) = root = RootCalc(ŵ′, auth′). If F(ŵ′) is a leaf
of the tree in LF associated to root then A must have found a collision such that F(ŵ′) = F(x̂),
where x̂ ∈ LF.

3. (ẑ1, ẑ2) = (ẑ′1, ẑ′2) and auth 6= auth′. This means a collision has occurred in F (as in 2.).

Case 2. If ĉ was a response to a random oracle query made by A, then the reduction D records the
pair (µ, (ẑ1, ẑ2, ĉ, auth)) and invokes A again with the same random tape and random oracle queries
{ĉ1, . . . , ĉj−1, ĉ

′
j , . . . , ĉ

′
qSign+qH

}, where {ĉ′j , . . . , ĉ′qSign+qH
} are fresh random elements and qSign, qH denotes

the maximum number of signing and random oracle queries made by A, respectively. By the General
Forking Lemma [BN06], the probability that ĉ 6= ĉ′ and ĉ′ is used (together with its query) by A in
the forgery is at least

εfork =
(
εA −

1
|Tnκ|

)
·
(εA − 1/|Tnκ|
qSign + qH

− 1
|Tnκ|

)
.

Thus, with the same probability A outputs a signature (ẑ′1, ẑ′2, ĉ′, auth′) of the message µ such that
root = root′. Let ŵ = Âẑ1 + ẑ2 − b̂ĉ (mod q) and ŵ′ = Âẑ′1 + ẑ′2 − b̂ĉ′ (mod q). Then, one of the
following holds:

1. (ẑ1, ẑ2) 6= (ẑ′1, ẑ′2) and auth = auth′. If ŵ = ŵ′ then Â(ẑ1 − ẑ′1) + (ẑ2 − ẑ′2) = b̂(ĉ − ĉ′) (mod q),
where ‖(ẑ1 − ẑ′1, ẑ2 − ẑ′2)‖ ≤ 2B and ‖ĉ− ĉ′‖ ≤ 2

√
κ. This constitutes a solution to inhomogeneous

MSIS with `2-norm bound 2
√
B2 + κ. If ŵ 6= ŵ′ then a collision in F has been found in the leaves

of the hash tree.
2. (ẑ1, ẑ2) 6= (ẑ′1, ẑ′2) and auth 6= auth′. If ŵ = ŵ′ then we have a solution to inhomogeneous MSIS

as above. If ŵ 6= ŵ′ then we consider two cases: If ŵ′ 6∈ LF then a collision has occurred in F
similar to [Mer89], i.e., there exists an index i ∈ {0, . . . , h− 1} such that ai 6= a′i, where ai ∈ auth,
a′i ∈ auth′ and RootCalc(ŵ, auth) = root = RootCalc(ŵ′, auth′). If ŵ′ ∈ LF then since ŵ′ and root
are queried before ĉ′ was programmed we have Âẑ′1 + ẑ′2 = b̂ĉ′ − ŵ′ (mod q). Hence, (ẑ′1, ẑ′2) is a
solution to the inhomogeneous MSIS for given random polynomial b̂ĉ′ − ŵ′.

3. (ẑ1, ẑ2) = (ẑ′1, ẑ′2) and auth = auth′. This implies that ŵ 6= ŵ′, hence a collision has occurred in F
(in the leaves of the hash tree).

4. (ẑ1, ẑ2) = (ẑ′1, ẑ′2) and auth 6= auth′. This implies that ŵ 6= ŵ′. If F(ŵ′) is not a leaf of the tree in
LF associated to root then a collision has occurred (as in 2.). Otherwise, since ĉ′ is a uniformly
random element, then the probability that F(ŵ′) is a leaf of the tree associated to root with
ŵ′ := Âẑ′1 + ẑ′2 − b̂ĉ′ (mod q) is negligible because F(ŵ′) was given as a response from OF before
ĉ′ was programmed.

ut

B The 4-Move Version of BLAZE+

In this section we present a 4-move version of BLAZE+. Similar to BLAZE [AEB19], in this version the
user U requests a protocol restart from the signer S if the computed signature leaks information about
the message being signed (blindness is not satisfied). In order to check this, U carries out rejection
sampling. After that, U sends S either an ok message or a proof of failure, which allows S to verify
the invalidity of the computed signature and restarts the signing protocol.
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Let Com : {0, 1}∗×{0, 1}λ → {0, 1}λ be a statistically hiding and computationally binding commitment
function. The key generation is identical to that of the 3-move version (see Figure 5). Signing and
verification are described in Figure 8. The proof of failure is given in Algorithm 2.

Algorithm 2 Proof(pk, ŷ, ĉ∗, ẑ∗, result)
1: ŷ := (ŷ1, . . . , ŷκ), ĉ∗ := (ĉ∗1, . . . , ĉ∗κ), ẑ∗ := (ẑ∗1,1, . . . , ẑ∗κ,1, ẑ∗1,2, . . . , ẑ∗κ,2)
2: result := (τ, ρ, ρ′, r′, p̂1, . . . , p̂κ, ĉ)
3: â← E(seed), τ ′ ← Com(ρ′; r′), (ρ0, . . . , ρ`−1)← E(ρ′)
4: ê(0)

1 , ê
(0)
2 , . . . , ê

(`−1)
1 , ê

(`−1)
2 ← Dn

Z,s(ρ)
5: ŷ ←

∑κ

1 p̂j ŷj (mod q)
6: for (k = 0, . . . , `− 1) do
7: t̂(k) ← âê

(k)
1 + ê

(k)
2 + ŷ (mod q)

8: (root, tree)← HashTree(t̂(0), . . . , t̂(`−1))
9: v̂1 ←

∑κ

1 p̂j ẑ
∗
j,1, v̂2 ←

∑κ

1 p̂j ẑ
∗
j,2

10: for (k = 0, . . . , `− 1) do
11: ẑ

(k)
1 ← ê

(k)
1 + v̂1, ẑ(k)

2 ← ê
(k)
2 + v̂2

12: auth← BuildAuth(k, tree, h)
13: ŵ(k) ← âẑ

(k)
1 + ẑ

(k)
2 − b̂ĉ (mod q)

14: if
(
ĉ 6= H(RootCalc(ŵ(k), auth), τ ′, τ) ∨ RejSamp(ẑ(k)

1 , ẑ
(k)
2 ; ρk) = 1

)
then

15: return 0
16: if

(∑κ

1 p̂j ĉ
∗
j = ĉ = H(root, τ ′, τ)

)
then

17: return 1
18: else return 0
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BS.Sign(sk, pk, µ)
Signer S(sk, pk) User U(seed, µ)
â← E(seed)
ŷ∗1,1, . . . , ŷ

∗
κ,1 ← Dn

Z,s∗

ŷ∗1,2, . . . , ŷ
∗
κ,2 ← Dn

Z,s∗

for (j = 1, . . . , κ) do
ŷj ← âŷ∗j,1 + ŷ∗j,2 (mod q)
ŷ := (ŷ1, . . . , ŷκ) r, r′, ρ, ρ′ ←$ {0, 1}λ

τ ← Com(µ; r), τ ′ ← Com(ρ′; r′)
â← E(seed), p̂1, . . . , p̂κ ←$ T̂
ê

(0)
1 , ê

(0)
2 , . . . , ê

(`−1)
1 , ê

(`−1)
2 ← Dn

Z,s(ρ)
ŷ ←

∑κ

1 p̂j ŷj (mod q)
for (k = 0, . . . , `− 1) do
t̂(k) ← âê

(k)
1 + ê

(k)
2 + ŷ (mod q)

(root, tree)← HashTree(t̂(0), . . . , t̂(`−1))
ĉ← H(root, τ ′, τ), ĉ :=

∑κ

1 ĉj , ĉj ∈ T̂
for (j = 1, . . . , κ) do
ĉ∗j ← p̂−1

j · ĉj

for (j = 1, . . . , κ) do ĉ∗ := (ĉ∗1, . . . , ĉ∗κ)

ẑ∗j,1 ← ŷ∗j,1 + ŝ1ĉ
∗
j , ẑ∗j,2 ← ŷ∗j,2 + ŝ2ĉ

∗
j

if (RejSamp(ẑ∗1,1, . . . , ẑ∗κ,2) = 0) then
restart

ẑ∗ := (ẑ∗1,1, . . . , ẑ∗κ,2)
v̂1 ←

∑κ

1 p̂j ẑ
∗
j,1, v̂2 ←

∑κ

1 p̂j ẑ
∗
j,2

if (‖(v̂1, v̂2)‖ > ηs∗
√

2κn) then
abort with probability 2−λ

(ρ0, . . . , ρ`−1)← E(ρ′)
k ← 0
while (k < `) do
ẑ1 ← ê

(k)
1 + v̂1, ẑ2 ← ê

(k)
2 + v̂2

if (RejSamp(ẑ1, ẑ2; ρk) = 0) then
k ← k + 1

if (k ≥ `) then
result← (τ, ρ, ρ′, r′, p̂1, . . . , p̂κ, ĉ)

result← ok

if (result 6= ok) then result
if (Proof(pk, ŷ, ĉ∗, ẑ∗, result) = 1) then

restart if (result = ok)
auth← BuildAuth(k, tree, h)
(ẑ1, ẑ2)← Compress(ẑ1, ẑ2)
return (µ, (τ ′, r, ẑ1, ẑ2, ĉ, auth))

BS.Verify(pk, µ, (τ ′, r, ẑ1, ẑ2, ĉ, auth))
1: â← E(seed)
2: (ẑ1, ẑ2)← Decompress(ẑ1, ẑ2)
3: ŵ ← âẑ1 + ẑ2 − b̂ĉ (mod q)
4: root← RootCalc(ŵ, auth)
5: if

(
‖(ẑ1, ẑ2)‖ ≤ B ∧ ĉ = H(root, τ ′,Com(µ; r))

)
then

6: return 1
7: return 0

Fig. 8. The signing and verification algorithm of the 4-move version of BLAZE+.
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