Double point compression for elliptic curves of j-invariant 0

Koshelev Dmitrii ${ }^{\text {Q }}$
Versailles Laboratory of Mathematics, Versailles Saint-Quentin-en-Yvelines University Algebra and Number Theory Laboratory, Institute for Information Transmission Problems

Abstract

The article provides a new double point compression method (to $2 \log _{2}(q)+4$ bits) for an elliptic \mathbb{F}_{q}-curve $E: y^{2}=x^{3}+b$ of j-invariant 0 over a finite field \mathbb{F}_{q} such that $q \equiv$ $1(\bmod 3)$. More precisely, we obtain explicit simple formulas transforming the coordinates $x_{0}, y_{0}, x_{1}, y_{1}$ of two points $P_{0}, P_{1} \in E\left(\mathbb{F}_{q}\right)$ to some two elements $t, s \in \mathbb{F}_{q}$ with four auxiliary bits. To recover (in the decompression stage) the points P_{0}, P_{1} it is proposed to extract a sixth root $\sqrt[6]{w} \in \mathbb{F}_{q}$ of some element $w \in \mathbb{F}_{q}$. It is easily seen that for $q \equiv 3(\bmod 4), q \not \equiv 1(\bmod 27)$ this can be implemented by means of just one exponentiation in \mathbb{F}_{q}. Therefore the new compression method seems to be much faster than the classical one with the coordinates x_{0}, x_{1}, whose decompression stage requires two exponentiations in \mathbb{F}_{q}.

Key words: finite fields, pairing-based cryptography, elliptic curves of j-invariant 0 , double point compression.

Introduction

In many protocols of elliptic cryptography one needs a compression method for points of an elliptic curve E over a finite field \mathbb{F}_{q} of characteristic p. This is done for quick transmission of the information over a communication channel or for its compact storage in a memory. There exists a classical method, which considers an \mathbb{F}_{q}-point on $E \subset \mathbb{A}_{(x, y)}^{2}$ as the x-coordinate with one auxiliary bit to uniquely recover the y-coordinate by solving the quadratic equation over \mathbb{F}_{q}.

The simultaneous compression of two points from $E\left(\mathbb{F}_{q}\right)$ (so-called double point compression) also has reason to live. It has already been discussed in [4] not only for $j(E)=0$, but in a slightly different way. In that article authors do not try to compress points as compact as possible. Instead of this they find formulas transforming the coordinates $x_{0}, y_{0}, x_{1}, y_{1}$ to some three elements of the field \mathbb{F}_{q}. The advantage of their approach is speed, because it should not solve any equations in the decompression stage.

Consider an elliptic curve $E: y^{2}=x^{3}+b$ for $b \in \mathbb{F}_{q}^{*}$, which is of j-invariant 0 . Ordinary curves of such the form (in this case, $q \equiv 1(\bmod 3))$ have become very popular in elliptic cryptography, especially in pairing-based cryptography [3]. This is due to the existence of (maximally possible) degree 6 twists for them, leading to faster pairing computation [3, $\S 3.3]$. One of the latest reviews of standards, commercial products and libraries for this type of cryptography is given in [6, §5]. Last time, the most popular choice for the 128 -bit security level is the so-called Barreto-Lynn-Scott \mathbb{F}_{p}-curve BLS12-381 [1], where $p \equiv 3(\bmod 4), p \equiv$ $10(\bmod 27)$.

[^0]There is an order 6 automorphism

$$
\sigma: E \leadsto E, \quad(x, y) \mapsto(\zeta x,-y),
$$

where $\zeta^{2}+\zeta+1=0$, i.e., $\zeta^{3}=1, \zeta \neq 1$. Note that $\zeta \in \mathbb{F}_{q}$, because $q \equiv 1(\bmod 3)$. Consider the quotient $G K:=E^{2} / \sigma \times \sigma$, which is an example of so-called generalized Kummer surface [5, §1.3].

Our double compression is based on \mathbb{F}_{q}-rationality of $G K$, which is almost obvious (see \$22). This concept of algebraic geometry means that for almost all (in some topological sense) points of $G K$ their compression (and subsequent decompression) can be accomplished by computing some rational functions defined over \mathbb{F}_{q}. Finally, to recover the original points $P_{0}, P_{1} \in E\left(\mathbb{F}_{q}\right)$ from a given \mathbb{F}_{q}-point on $G K$ we find an inverse image of the natural map $\varrho: E^{2} \rightarrow G K$ of degree 6. Since $\zeta \in \mathbb{F}_{q}$, it is a Kummer map, that is the field $\mathbb{F}_{q}\left(E^{2}\right)$ is generated by a sixth root of some rational function from $\mathbb{F}_{q}(G K)$.

In the article [5] the author solves a similar task (almost in the same way), namely compression of $E\left(\mathbb{F}_{p^{2}}\right)$, where $p \equiv 1(\bmod 3), p \equiv 3(\bmod 4)$. There it is used so-called Weil restriction (descent) R of E with respect to the extension $\mathbb{F}_{p^{2}} / \mathbb{F}_{p}$ (see [5, §1.2.1]). For this \mathbb{F}_{p}-surface we have $R\left(\mathbb{F}_{p}\right)=E\left(\mathbb{F}_{p^{2}}\right)$. The map $\sigma: E \leadsto E$ is naturally induced to the order 6 map $\sigma_{R}: R \xrightarrow{\sim} R$. Next we consider the generalized Kummer surface R / σ_{R}^{2} under the order 3 map σ_{R}^{2}. To prove \mathbb{F}_{p}-rationality of R / σ_{R}^{2} we use quite complicated algebraic geometry (unlike $G K$). As a result, the quotient surface R / σ_{R} is also \mathbb{F}_{p}-rational and we expect that (in comparison with R / σ_{R}^{2}) there are much simpler compression (decompression) formulas for \mathbb{F}_{p}-points of R / σ_{R}.

Acknowledgements. The author expresses his deep gratitude to his scientific advisor M. Tsfasman.

Contents

Introduction

1 Double compression
2 Double decompression 3
References 4

1 Double compression

For sake of generality we will consider any pair of elliptic \mathbb{F}_{q}-curves of j-invariant 0 , where $q \equiv 1(\bmod 3)$, i.e., $\zeta \in \mathbb{F}_{q}$. Namely, for $i=0,1$ let $E_{i}: y_{i}^{2}=x_{i}^{3}+b_{i}$. These curves are isomorphic at most over $\mathbb{F}_{q^{6}}$ by the map

$$
\varphi: E_{0} \xrightarrow{\hookrightarrow} E_{1}, \quad\left(x_{0}, y_{0}\right) \mapsto\left(\sqrt[3]{\beta} x_{0}, \sqrt{\beta} y_{0}\right)
$$

where $\beta:=b_{1} / b_{0}$. Also, for $k \in \mathbb{Z} / 6$ let $\varphi_{k}:=\varphi \circ \sigma^{k}=\sigma^{k} \circ \varphi$ and

$$
S_{i}:=\left\{\left(x_{i}, y_{i}\right) \in E_{i} \mid x_{i} y_{i}=0\right\} \cup\{(0: 1: 0)\} \quad \subset \quad E_{i}[2] \cup E_{i}[3] .
$$

Finally, using the fractions

$$
X:=\frac{x_{0}}{x_{1}}, \quad Y:=\frac{y_{0}}{y_{1}}
$$

we obtain the compression map

$$
\begin{gathered}
\operatorname{com}:\left(E_{0} \times E_{1}\right)\left(\mathbb{F}_{q}\right) \backslash S_{0} \times S_{1} \quad \hookrightarrow \quad \mathbb{F}_{q}^{2} \times \mathbb{Z} / 6 \times \mathbb{Z} / 2 \\
\operatorname{com}\left(P_{0}, P_{1}\right):=\left\{\begin{array}{lll}
(X, Y, n, 0) & \text { if } & \forall k \in \mathbb{Z} / 6: \varphi_{k}\left(P_{0}\right) \neq P_{1} \\
\left(x_{0}, y_{0}, k, 1\right) & \text { if } & \exists k \in \mathbb{Z} / 6: \varphi_{k}\left(P_{0}\right)=P_{1}
\end{array}\right.
\end{gathered}
$$

where $n \in \mathbb{Z} / 6$ is the position number of $z:=x_{1} y_{1} \in \mathbb{F}_{q}^{*}$ in the set $\left\{(-1)^{i} \zeta^{j} z\right\}_{i=0, j=0}^{1,2}$ ordered with respect to some order in \mathbb{F}_{q}^{*}. For example, in the case $q=p$ this can be the usual numerical one. Note that the condition $\varphi_{k}\left(P_{0}\right)=P_{1}$ is possible only if the isomorphism φ is defined over \mathbb{F}_{q}, that is $\sqrt[6]{\beta} \in \mathbb{F}_{q}$. Finally, if it is necessary, points from $\left(S_{0} \times S_{1}\right)\left(\mathbb{F}_{q}\right)$ can be separately processed, using few additional bits.

2 Double decompression

Let $u:=x_{1}^{3}, v:=y_{1}^{2}$, and $w:=u^{2} v^{3}=z^{6}$. Since $x_{0}=X x_{1}$, we have $x_{0}^{3}=X^{3} u$. Hence

$$
Y^{2}=\frac{y_{0}^{2}}{y_{1}^{2}}=\frac{x_{0}^{3}+b_{0}}{x_{1}^{3}+b_{1}}=\frac{X^{3} u+b_{0}}{u+b_{1}}
$$

and

$$
u=\frac{b_{0}-b_{1} Y^{2}}{Y^{2}-X^{3}}, \quad v=u+b_{1}
$$

We eventually obtain the equalities

$$
x_{1}=f_{n}(X, Y):=\frac{u v}{z^{2}}, \quad y_{1}=g_{n}(X, Y):=\frac{z}{x_{1}}
$$

Using the number n, we can extract the original sixth root

$$
z=x_{1} y_{1}=\sqrt[3]{u} \sqrt{v}=\sqrt[6]{w}=\sqrt[3]{\sqrt{w}}
$$

For $q \equiv 3(\bmod 4), q \not \equiv 1(\bmod 27)$ according to [3, §5.1.7], [2, §4]

$$
a:=\sqrt{w}= \pm w^{\frac{q+1}{4}}, \quad \sqrt[3]{a}=\theta a^{m}, \quad \text { hence } \quad z= \pm \theta w^{m \frac{q+1}{4}}
$$

for some $\theta \in \mathbb{F}_{q}^{*}, \theta^{9}=1$ and $m \in \mathbb{Z} /(q-1)$. Moreover, m has an explicit simple expression depending only on q.

If $Y^{2}=X^{3}$, then

$$
\frac{x_{0}^{3}+b_{0}}{x_{1}^{3}+b_{1}}=\frac{x_{0}^{3}}{x_{1}^{3}} \quad \Leftrightarrow \quad b_{0} x_{1}^{3}=b_{1} x_{0}^{3} \quad \Leftrightarrow \quad \exists j \in \mathbb{Z} / 3: x_{1}=\zeta^{j} \sqrt[3]{\beta} x_{0}
$$

This means that $\varphi_{k}\left(P_{0}\right)=P_{1}$ for $k \in\{j, j+3\}$. Thus the decompression map has the form

$$
\begin{gathered}
\mathrm{com}^{-1}: \operatorname{Im}(\mathrm{com}) \quad \xrightarrow{\leadsto} \quad\left(E_{0} \times E_{1}\right)\left(\mathbb{F}_{q}\right) \backslash S_{0} \times S_{1}, \\
\operatorname{com}^{-1}(t, s, m, b i t)= \begin{cases}\left(t f_{m}, s g_{m}, f_{m}, g_{m}\right) & \text { if } \quad \text { bit }=0, \\
\left((t, s), \varphi_{m}(t, s)\right) & \text { if } \quad \text { bit }=1,\end{cases}
\end{gathered}
$$

where $f_{m}:=f_{m}(t, s), g_{m}:=g_{m}(t, s)$.

References

[1] Bowe S. BLS12-381: New zk-SNARK elliptic curve construction. // Zcash Company blog, URL: https://z.cash/blog/new-snark-curve/.
[2] Cho G. at al. New cube root algorithm based on the third order linear recurrence relations in finite fields. // Designs, Codes and Cryptography, 2015. Vol. 75(3). P. 483-495.
[3] El Mrabet N., Joye M. Guide to pairing-based cryptography. - New York.: Chapman and Hall, 2016.
[4] Khabbazian M., Gulliver T., Bhargava V. Double point compression with applications to speeding up random point multiplication. // IEEE Transactions on Computers, 2007. Vol. 56(3). P. 305-313.
[5] Koshelev D. A new elliptic curve point compression method based on \mathbb{F}_{p}-rationality of some generalized Kummer surfaces.
[6] Yonezawa S. et al. Pairing-friendly curves. // Internet-Draft, IETF Secretariat, 2019.

[^0]: ${ }^{1}$ Web page: https://www.researchgate.net/profile/Dima_Koshelev
 Email: dishport@yandex.ru

