Double point compression for elliptic curves of j-invariant 0

Dmitrii Koshelev
Versailles Saint-Quentin-en-Yvelines University, France
Infotecs, Russia
Institute for Information Transmission Problems, Russia
dishport@yandex.ru

Abstract

The article provides a new double point compression method (to $2\left[\log _{2}(q)\right\rceil+4$ bits) for an elliptic curve $E_{b}: y^{2}=x^{3}+b$ of j-invariant 0 over a finite field \mathbb{F}_{q} such that $q \equiv 1(\bmod 3)$. More precisely, we obtain explicit simple formulas transforming the coordinates $x_{0}, y_{0}, x_{1}, y_{1}$ of two points $P_{0}, P_{1} \in E_{b}\left(\mathbb{F}_{q}\right)$ to some two elements of \mathbb{F}_{q} with four auxiliary bits. In order to recover (in the decompression stage) the points P_{0}, P_{1} it is proposed to extract a sixth root $\sqrt[6]{Z} \in \mathbb{F}_{q}$ of some element $Z \in \mathbb{F}_{q}$. It is known that for $q \equiv 3(\bmod 4), q \not \equiv 1(\bmod 27)$ this can be implemented by means of just one exponentiation in \mathbb{F}_{q}. Therefore the new compression method seems to be much faster than the classical one with the coordinates x_{0}, x_{1}, whose decompression stage requires two exponentiations in \mathbb{F}_{q}.

Keywords: finite fields, pairing-based cryptography, elliptic curves of j-invariant 0 , double point compression.

1 Introduction

In many protocols of elliptic cryptography one needs a compression method for points of an elliptic curve E over a finite field \mathbb{F}_{q} of characteristic p. This is done for quick transmission of the information over a communication channel or for its compact storage in a memory. There exists a classical method, which considers an \mathbb{F}_{q}-point on $E \subset \mathbb{A}_{(x, y)}^{2}$ as the x-coordinate with one auxiliary bit to uniquely recover the y-coordinate by solving the quadratic equation over \mathbb{F}_{q}.

Consider an elliptic curve $E_{b}: y^{2}=x^{3}+b$ for $b \in \mathbb{F}_{q}^{*}$, which is of j invariant 0 . Ordinary curves of such the form have become very popular in elliptic cryptography, especially in pairing-based cryptography [1]. This is due to the existence of (maximally possible) degree 6 twists for them, leading
to faster pairing computation $[1, \S 3.3]$. One of the latest reviews of standards, commercial products and libraries for this type of cryptography is given in $[2, \S 5]$. Last time, the most popular choice for the 128-bit security level is the so-called Barreto-Lynn-Scott \mathbb{F}_{p}-curve $B L S 12-381[3]$, where $p \equiv 3(\bmod 4)$, $p \equiv 10(\bmod 27)$, and $\left\lceil\log _{2}(p)\right\rceil=381$.

The simultaneous compression of two points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)$ from $E\left(\mathbb{F}_{q}\right)$ (so-called double point compression) also has reason to live. It occurs, for example, in pairing-based protocols of succinct non-interactive zero-knowledge proof (NIZK). One of the most notable recent works in this field is [4].

Double point compression has already been discussed in [5] not only for $j(E)=0$, but in a slightly different way. In that article authors do not try to compress points as compact as possible. Instead of this they find formulas transforming the coordinates $x_{0}, y_{0}, x_{1}, y_{1}$ to some three elements of the field \mathbb{F}_{q}. The advantage of their approach is the speed, because it should not solve any equations in the decompression stage.

By virtue of $\left[6\right.$, Example V.4.4] the ordinariness of the curve E_{b} means that $p \equiv 1(\bmod 3)$ or, equivalently, $\omega:=\sqrt[3]{1} \in \mathbb{F}_{p}$, where $\omega \neq 1$. There is on E_{b} the order 6 automorphism $[-\omega]:(x, y) \mapsto(\omega x,-y)$. Consider the geometric quotient $G K_{b}^{\prime}:=E_{b}^{2} /[-\omega]^{\times 2}$, which is an example of so-called generalized Kummer surface [7, §1.3].

Our double compression is based on \mathbb{F}_{q}-rationality of $G K_{b}^{\prime}$, which is almost obvious (see $\S 3$). This concept of algebraic geometry means that for almost all (in some topological sense) points of $G K_{b}^{\prime}$ their compression (and subsequent decompression) can be accomplished by computing some rational functions defined over \mathbb{F}_{q}. To recover the original point belonging to $E_{b}^{2}\left(\mathbb{F}_{q}\right)$ from a given \mathbb{F}_{q}-point on $G K_{b}^{\prime}$ we find an inverse image of the natural map $E_{b}^{2} \rightarrow G K_{b}^{\prime}$ of degree 6. Since $\omega \in \mathbb{F}_{q}$, it is a Kummer map, that is the field $\mathbb{F}_{q}\left(E_{b}^{2}\right)$ is generated by a sixth root of some rational function from $\mathbb{F}_{q}\left(G K_{b}^{\prime}\right)$.

In the article [7] the author solves a similar task (almost in the same way), namely the compression task of points from $E_{b}\left(\mathbb{F}_{q^{2}}\right)$, where $q \equiv 1(\bmod 3)$, $q \equiv 3(\bmod 4)$, and $b \in \mathbb{F}_{q^{2}}^{*}$. Its actuality for pairing-based cryptography is explained in the introduction of [7]. There we use so-called Weil restriction (descent) R_{b} of E_{b} with respect to the extension $\mathbb{F}_{q^{2}} / \mathbb{F}_{q}$ (see $[7, \S 1.2 .1]$). For this $\mathbb{F}_{q^{-}}$surface we have $R_{b}\left(\mathbb{F}_{q}\right)=E_{b}\left(\mathbb{F}_{q^{2}}\right)$. Besides, the map $[-\omega]$ is naturally induced to the order 6 automorphism $[-\omega]_{2}: R_{b} \xrightarrow{\sim} R_{b}$.

We next consider the generalized Kummer surface $G K_{b}:=R_{b} /[\omega]_{2}$ under the order 3 automorphism $[\omega]_{2}:=\left([-\omega]_{2}\right)^{2}$. In order to prove \mathbb{F}_{q}-rationality of $G K_{b}$ we use quite complicated algebraic geometry (unlike $G K_{b}^{\prime}$). In ac-
cordance with $[8, \S 8]$ from \mathbb{F}_{q}-rationality of $G K_{b}$ it follows \mathbb{F}_{q}-rationality of the generalized Kummer surface $R_{b} /[-\omega]_{2} \simeq_{\mathbb{F}_{q}} G K_{b} /[-1]$. However, this fact does not provide explicit formulas of a birational \mathbb{F}_{q}-isomorphism $R_{b} /[-\omega]_{2} \simeq \mathbb{A}^{2}$. Nevertheless, such formulas can be easily derived in the same way as for $G K_{b}^{\prime}$ (for details see $\S 4$).

2 Double compression

For the sake of generality we will consider any pair of elliptic \mathbb{F}_{q}-curves of j-invariant 0 , where $q \equiv 1(\bmod 3)$, i.e., $\omega \in \mathbb{F}_{q}$. Namely, for $i=0,1$ let $E_{i}: y_{i}^{2}=x_{i}^{3}+b_{i}$, that is $E_{b_{i}}$ in our old notation. These curves are isomorphic at most over $\mathbb{F}_{q^{6}}$ by the map

$$
\varphi: E_{0} \xrightarrow{\leadsto} E_{1}, \quad\left(x_{0}, y_{0}\right) \mapsto\left(\sqrt[3]{\beta} x_{0}, \sqrt{\beta} y_{0}\right)
$$

where $\beta:=b_{1} / b_{0}$. Also, for $k \in \mathbb{Z} / 6$ let $\varphi_{k}:=\varphi \circ[-\omega]^{k}=[-\omega]^{k} \circ \varphi$ and

$$
S_{i}:=\left\{\left(x_{i}, y_{i}\right) \in E_{i} \mid x_{i} y_{i}=0\right\} \cup\{(0: 1: 0)\} \quad \subset \quad E_{i}[2] \cup E_{i}[3]
$$

Using the fractions

$$
X:=\frac{x_{0}}{x_{1}}, \quad Y:=\frac{y_{0}}{y_{1}}
$$

we obtain the compression map

$$
\begin{gathered}
\operatorname{com}:\left(E_{0} \times E_{1}\right)\left(\mathbb{F}_{q}\right) \backslash S_{0} \times S_{1} \quad \hookrightarrow \quad \mathbb{F}_{q}^{2} \times \mathbb{Z} / 6 \times \mathbb{Z} / 2 \\
\operatorname{com}\left(P_{0}, P_{1}\right):=\left\{\begin{array}{lll}
(X, Y, n, 0) & \text { if } & \forall k \in \mathbb{Z} / 6: \varphi_{k}\left(P_{0}\right) \neq P_{1}, \\
\left(x_{0}, y_{0}, k, 1\right) & \text { if } & \exists k \in \mathbb{Z} / 6: \varphi_{k}\left(P_{0}\right)=P_{1},
\end{array}\right.
\end{gathered}
$$

where $n \in \mathbb{Z} / 6$ is the position number of the element $z:=x_{1} y_{1} \in \mathbb{F}_{q}^{*}$ in the set $\left\{(-1)^{i} \omega^{j} z\right\}_{i=0, j=0}^{1,2}$ ordered with respect to some order in \mathbb{F}_{q}^{*}. For example, in the case $q=p$ this can be the usual numerical one. Note that the condition $\varphi_{k}\left(P_{0}\right)=P_{1}$ is possible only if the isomorphism φ is defined over \mathbb{F}_{q}, that is $\sqrt[6]{\beta} \in \mathbb{F}_{q}$. Finally, if it is necessary, points from $\left(S_{0} \times S_{1}\right)\left(\mathbb{F}_{q}\right)$ can be separately processed, using few additional bits.

3 Double decompression

Let $u:=x_{1}^{3}, v:=y_{1}^{2}$, and $Z:=u^{2} v^{3}=z^{6}$. Since $x_{0}=X x_{1}$, we have $x_{0}^{3}=$ $X^{3} u$. Hence

$$
Y^{2}=\frac{y_{0}^{2}}{y_{1}^{2}}=\frac{x_{0}^{3}+b_{0}}{x_{1}^{3}+b_{1}}=\frac{X^{3} u+b_{0}}{u+b_{1}}
$$

and

$$
u=\frac{b_{0}-b_{1} Y^{2}}{Y^{2}-X^{3}}, \quad v=u+b_{1}
$$

Using the number $n \in \mathbb{Z} / 6$, we can extract the original sixth root

$$
z=x_{1} y_{1}=\sqrt[3]{u} \sqrt{v}=\sqrt[6]{Z}=\sqrt[3]{\sqrt{Z}}
$$

For $q \equiv 3(\bmod 4), q \not \equiv 1(\bmod 27)$ according to $[1, \S 5.1 .7],[9, \S 4]$

$$
a:=\sqrt{Z}= \pm Z^{\frac{q+1}{4}}, \quad \sqrt[3]{a}=\theta a^{e}, \quad \text { hence } \quad z= \pm \theta Z^{\frac{q+1}{4}}
$$

for some $\theta \in \mathbb{F}_{q}^{*}, \theta^{9}=1$ and $e \in \mathbb{Z} /(q-1)$. Moreover, e has an explicit simple expression depending only on q. We eventually obtain the equalities

$$
x_{1}=f_{n}(X, Y):=\frac{u v}{z^{2}}, \quad y_{1}=g_{n}(X, Y):=\frac{z}{x_{1}}
$$

If $Y^{2}=X^{3}$, then

$$
\frac{x_{0}^{3}+b_{0}}{x_{1}^{3}+b_{1}}=\frac{x_{0}^{3}}{x_{1}^{3}} \quad \Leftrightarrow \quad b_{0} x_{1}^{3}=b_{1} x_{0}^{3} \quad \Leftrightarrow \quad \exists j \in \mathbb{Z} / 3: x_{1}=\omega^{j} \sqrt[3]{\beta} x_{0}
$$

This means that $\varphi_{k}\left(P_{0}\right)=P_{1}$ for $k \in\{j, j+3\}$. Thus the decompression map has the form

$$
\begin{array}{cc}
\operatorname{com}^{-1}: \operatorname{Im}(\mathrm{com}) & \xrightarrow{\sim} \quad\left(E_{0} \times E_{1}\right)\left(\mathbb{F}_{q}\right) \backslash \\
\operatorname{com}^{-1}(t, s, m, b i t)= \begin{cases}\left(t f_{m}, s g_{m}, f_{m}, g_{m}\right) & \text { if } \\
\left((t, s), \varphi_{m}(t, s)\right) & \text { if }=0 \\
\text { if }=1\end{cases}
\end{array}
$$

where $f_{m}:=f_{m}(t, s), g_{m}:=g_{m}(t, s)$.
Remark 1. Although the new point compression-decompression method contains a lot of inversion operations in the field \mathbb{F}_{q}, this is often harmless in regard to timing attacks [1, §8.2.2, §12.1.1]. The point is that this type of conversion is mainly applied to public data.

4 Extension of the compression technique

Our approach still works well for compressing $\mathbb{F}_{q^{2}}$-points on the curve $E_{b}: y^{2}=x^{3}+b$, where $b \in \mathbb{F}_{q^{2}}^{*}$. For simplicity we take $q \equiv 3(\bmod 4)$, i.e., $i:=\sqrt{-1} \notin \mathbb{F}_{q}$. Let $b=b_{0}+b_{1} i$ (such that $\left.b_{0}, b_{1} \in \mathbb{F}_{q}\right)$ and

$$
x=x_{0}+x_{1} i, \quad y=y_{0}+y_{1} i, \quad X:=\frac{x_{0}}{x_{1}}, \quad Y:=\frac{y_{0}}{y_{1}}
$$

Building on the equations of the Weil restriction $R_{b}=\mathrm{R}_{\mathbb{F}_{q^{2}} / \mathbb{F}_{q}}\left(E_{b}\right)$ (see [7, §1.2.1]), we obtain

$$
u:=x_{1}^{3}=\frac{2 b_{0} Y-b_{1} \gamma(Y)}{\alpha(X) \gamma(Y)-2 \beta(X) Y}, \quad v:=y_{1}^{2}=\frac{\beta(X) u+b_{0}}{\gamma(Y)},
$$

where

$$
\alpha(X):=3 X^{2}-1, \quad \beta(X):=X\left(X^{2}-3\right), \quad \gamma(Y):=Y^{2}-1
$$

As above, the degenerate cases (whenever the denominator of X, Y, u, or v equals 0) can be easily handled independently.

Finally, consider an elliptic $\mathbb{F}_{q^{2}}$-curve $E_{a}: y^{2}=x^{3}+a x$ of j-invariant 1728 , where $q \equiv 1(\bmod 4)$. According to [1, Example 2.28] the latter condition is necessary for the ordinariness of E_{a}. Our technique also remains to be valid for compressing \mathbb{F}_{q}-points of $E_{a}^{2}\left(\right.$ if $\left.a \in \mathbb{F}_{q}^{*}\right)$ and $\mathbb{F}_{q^{2}}$-points of E_{a}, because there is on E_{a} the \mathbb{F}_{q}-automorphism $[i]:(x, y) \mapsto(-x, i y)$ of order 4. However in the second case one needs to take another basis of the extension $\mathbb{F}_{q^{2}} / \mathbb{F}_{q}$.

References

[1] El Mrabet N., Joye M., Guide to Pairing-Based Cryptography, Cryptography and Network Security Series, Chapman and Hall/CRC, New York, 2016.
[2] Sakemi Y., Kobayashi T., Saito T., Wahby R., Pairing-friendly curves, 2020, IETF draft.
[3] Bowe S., BLS12-381: New zk-SNARK elliptic curve construction, Zcash Company blog: https://z.cash/blog/new-snark-curve/, 2017.
[4] Groth J., "On the size of pairing-based non-interactive arguments", LNCS, Eurocrypt 2016, 9665, ed. Fischlin M., Coron J.-S., Springer, Berlin, 2016, 305-326.
[5] Khabbazian M., Gulliver T., Bhargava V., "Double point compression with applications to speeding up random point multiplication", IEEE Transactions on Computers, 56(3) (2007), 305-313.
[6] Silverman J., The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, 106, Springer, New York, 2009.
[7] Koshelev D., A new elliptic curve point compression method based on \mathbb{F}_{p}-rationality of some generalized Kummer surfaces, 2019, IACR Cryptology ePrint Archive.
[8] Liedtke C., "Algebraic surfaces in positive characteristic", Birational Geometry, Rational Curves, and Arithmetic, Simons Symposia, ed. Bogomolov F., Hassett B., Tschinkel Y., Springer, New York, 2013, 229-292.
[9] Cho G. at al., "New cube root algorithm based on the third order linear recurrence relations in finite fields", Designs, Codes and Cryptography, 75(3) (2015), 483-495.

